irq_64.c 25 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034
  1. /* irq.c: UltraSparc IRQ handling/init/registry.
  2. *
  3. * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
  4. * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
  5. * Copyright (C) 1998 Jakub Jelinek (jj@ultra.linux.cz)
  6. */
  7. #include <linux/module.h>
  8. #include <linux/sched.h>
  9. #include <linux/linkage.h>
  10. #include <linux/ptrace.h>
  11. #include <linux/errno.h>
  12. #include <linux/kernel_stat.h>
  13. #include <linux/signal.h>
  14. #include <linux/mm.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/slab.h>
  17. #include <linux/random.h>
  18. #include <linux/init.h>
  19. #include <linux/delay.h>
  20. #include <linux/proc_fs.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/irq.h>
  23. #include <asm/ptrace.h>
  24. #include <asm/processor.h>
  25. #include <asm/atomic.h>
  26. #include <asm/system.h>
  27. #include <asm/irq.h>
  28. #include <asm/io.h>
  29. #include <asm/iommu.h>
  30. #include <asm/upa.h>
  31. #include <asm/oplib.h>
  32. #include <asm/prom.h>
  33. #include <asm/timer.h>
  34. #include <asm/smp.h>
  35. #include <asm/starfire.h>
  36. #include <asm/uaccess.h>
  37. #include <asm/cache.h>
  38. #include <asm/cpudata.h>
  39. #include <asm/auxio.h>
  40. #include <asm/head.h>
  41. #include <asm/hypervisor.h>
  42. #include <asm/cacheflush.h>
  43. #include "entry.h"
  44. #include "cpumap.h"
  45. #define NUM_IVECS (IMAP_INR + 1)
  46. struct ino_bucket *ivector_table;
  47. unsigned long ivector_table_pa;
  48. /* On several sun4u processors, it is illegal to mix bypass and
  49. * non-bypass accesses. Therefore we access all INO buckets
  50. * using bypass accesses only.
  51. */
  52. static unsigned long bucket_get_chain_pa(unsigned long bucket_pa)
  53. {
  54. unsigned long ret;
  55. __asm__ __volatile__("ldxa [%1] %2, %0"
  56. : "=&r" (ret)
  57. : "r" (bucket_pa +
  58. offsetof(struct ino_bucket,
  59. __irq_chain_pa)),
  60. "i" (ASI_PHYS_USE_EC));
  61. return ret;
  62. }
  63. static void bucket_clear_chain_pa(unsigned long bucket_pa)
  64. {
  65. __asm__ __volatile__("stxa %%g0, [%0] %1"
  66. : /* no outputs */
  67. : "r" (bucket_pa +
  68. offsetof(struct ino_bucket,
  69. __irq_chain_pa)),
  70. "i" (ASI_PHYS_USE_EC));
  71. }
  72. static unsigned int bucket_get_virt_irq(unsigned long bucket_pa)
  73. {
  74. unsigned int ret;
  75. __asm__ __volatile__("lduwa [%1] %2, %0"
  76. : "=&r" (ret)
  77. : "r" (bucket_pa +
  78. offsetof(struct ino_bucket,
  79. __virt_irq)),
  80. "i" (ASI_PHYS_USE_EC));
  81. return ret;
  82. }
  83. static void bucket_set_virt_irq(unsigned long bucket_pa,
  84. unsigned int virt_irq)
  85. {
  86. __asm__ __volatile__("stwa %0, [%1] %2"
  87. : /* no outputs */
  88. : "r" (virt_irq),
  89. "r" (bucket_pa +
  90. offsetof(struct ino_bucket,
  91. __virt_irq)),
  92. "i" (ASI_PHYS_USE_EC));
  93. }
  94. #define irq_work_pa(__cpu) &(trap_block[(__cpu)].irq_worklist_pa)
  95. static struct {
  96. unsigned int dev_handle;
  97. unsigned int dev_ino;
  98. unsigned int in_use;
  99. } virt_irq_table[NR_IRQS];
  100. static DEFINE_SPINLOCK(virt_irq_alloc_lock);
  101. unsigned char virt_irq_alloc(unsigned int dev_handle,
  102. unsigned int dev_ino)
  103. {
  104. unsigned long flags;
  105. unsigned char ent;
  106. BUILD_BUG_ON(NR_IRQS >= 256);
  107. spin_lock_irqsave(&virt_irq_alloc_lock, flags);
  108. for (ent = 1; ent < NR_IRQS; ent++) {
  109. if (!virt_irq_table[ent].in_use)
  110. break;
  111. }
  112. if (ent >= NR_IRQS) {
  113. printk(KERN_ERR "IRQ: Out of virtual IRQs.\n");
  114. ent = 0;
  115. } else {
  116. virt_irq_table[ent].dev_handle = dev_handle;
  117. virt_irq_table[ent].dev_ino = dev_ino;
  118. virt_irq_table[ent].in_use = 1;
  119. }
  120. spin_unlock_irqrestore(&virt_irq_alloc_lock, flags);
  121. return ent;
  122. }
  123. #ifdef CONFIG_PCI_MSI
  124. void virt_irq_free(unsigned int virt_irq)
  125. {
  126. unsigned long flags;
  127. if (virt_irq >= NR_IRQS)
  128. return;
  129. spin_lock_irqsave(&virt_irq_alloc_lock, flags);
  130. virt_irq_table[virt_irq].in_use = 0;
  131. spin_unlock_irqrestore(&virt_irq_alloc_lock, flags);
  132. }
  133. #endif
  134. /*
  135. * /proc/interrupts printing:
  136. */
  137. int show_interrupts(struct seq_file *p, void *v)
  138. {
  139. int i = *(loff_t *) v, j;
  140. struct irqaction * action;
  141. unsigned long flags;
  142. if (i == 0) {
  143. seq_printf(p, " ");
  144. for_each_online_cpu(j)
  145. seq_printf(p, "CPU%d ",j);
  146. seq_putc(p, '\n');
  147. }
  148. if (i < NR_IRQS) {
  149. spin_lock_irqsave(&irq_desc[i].lock, flags);
  150. action = irq_desc[i].action;
  151. if (!action)
  152. goto skip;
  153. seq_printf(p, "%3d: ",i);
  154. #ifndef CONFIG_SMP
  155. seq_printf(p, "%10u ", kstat_irqs(i));
  156. #else
  157. for_each_online_cpu(j)
  158. seq_printf(p, "%10u ", kstat_irqs_cpu(i, j));
  159. #endif
  160. seq_printf(p, " %9s", irq_desc[i].chip->typename);
  161. seq_printf(p, " %s", action->name);
  162. for (action=action->next; action; action = action->next)
  163. seq_printf(p, ", %s", action->name);
  164. seq_putc(p, '\n');
  165. skip:
  166. spin_unlock_irqrestore(&irq_desc[i].lock, flags);
  167. } else if (i == NR_IRQS) {
  168. seq_printf(p, "NMI: ");
  169. for_each_online_cpu(j)
  170. seq_printf(p, "%10u ", cpu_data(j).__nmi_count);
  171. seq_printf(p, " Non-maskable interrupts\n");
  172. }
  173. return 0;
  174. }
  175. static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
  176. {
  177. unsigned int tid;
  178. if (this_is_starfire) {
  179. tid = starfire_translate(imap, cpuid);
  180. tid <<= IMAP_TID_SHIFT;
  181. tid &= IMAP_TID_UPA;
  182. } else {
  183. if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  184. unsigned long ver;
  185. __asm__ ("rdpr %%ver, %0" : "=r" (ver));
  186. if ((ver >> 32UL) == __JALAPENO_ID ||
  187. (ver >> 32UL) == __SERRANO_ID) {
  188. tid = cpuid << IMAP_TID_SHIFT;
  189. tid &= IMAP_TID_JBUS;
  190. } else {
  191. unsigned int a = cpuid & 0x1f;
  192. unsigned int n = (cpuid >> 5) & 0x1f;
  193. tid = ((a << IMAP_AID_SHIFT) |
  194. (n << IMAP_NID_SHIFT));
  195. tid &= (IMAP_AID_SAFARI |
  196. IMAP_NID_SAFARI);;
  197. }
  198. } else {
  199. tid = cpuid << IMAP_TID_SHIFT;
  200. tid &= IMAP_TID_UPA;
  201. }
  202. }
  203. return tid;
  204. }
  205. struct irq_handler_data {
  206. unsigned long iclr;
  207. unsigned long imap;
  208. void (*pre_handler)(unsigned int, void *, void *);
  209. void *arg1;
  210. void *arg2;
  211. };
  212. #ifdef CONFIG_SMP
  213. static int irq_choose_cpu(unsigned int virt_irq)
  214. {
  215. cpumask_t mask;
  216. int cpuid;
  217. cpumask_copy(&mask, irq_desc[virt_irq].affinity);
  218. if (cpus_equal(mask, cpu_online_map)) {
  219. cpuid = map_to_cpu(virt_irq);
  220. } else {
  221. cpumask_t tmp;
  222. cpus_and(tmp, cpu_online_map, mask);
  223. cpuid = cpus_empty(tmp) ? map_to_cpu(virt_irq) : first_cpu(tmp);
  224. }
  225. return cpuid;
  226. }
  227. #else
  228. static int irq_choose_cpu(unsigned int virt_irq)
  229. {
  230. return real_hard_smp_processor_id();
  231. }
  232. #endif
  233. static void sun4u_irq_enable(unsigned int virt_irq)
  234. {
  235. struct irq_handler_data *data = get_irq_chip_data(virt_irq);
  236. if (likely(data)) {
  237. unsigned long cpuid, imap, val;
  238. unsigned int tid;
  239. cpuid = irq_choose_cpu(virt_irq);
  240. imap = data->imap;
  241. tid = sun4u_compute_tid(imap, cpuid);
  242. val = upa_readq(imap);
  243. val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
  244. IMAP_AID_SAFARI | IMAP_NID_SAFARI);
  245. val |= tid | IMAP_VALID;
  246. upa_writeq(val, imap);
  247. upa_writeq(ICLR_IDLE, data->iclr);
  248. }
  249. }
  250. static int sun4u_set_affinity(unsigned int virt_irq,
  251. const struct cpumask *mask)
  252. {
  253. sun4u_irq_enable(virt_irq);
  254. return 0;
  255. }
  256. /* Don't do anything. The desc->status check for IRQ_DISABLED in
  257. * handler_irq() will skip the handler call and that will leave the
  258. * interrupt in the sent state. The next ->enable() call will hit the
  259. * ICLR register to reset the state machine.
  260. *
  261. * This scheme is necessary, instead of clearing the Valid bit in the
  262. * IMAP register, to handle the case of IMAP registers being shared by
  263. * multiple INOs (and thus ICLR registers). Since we use a different
  264. * virtual IRQ for each shared IMAP instance, the generic code thinks
  265. * there is only one user so it prematurely calls ->disable() on
  266. * free_irq().
  267. *
  268. * We have to provide an explicit ->disable() method instead of using
  269. * NULL to get the default. The reason is that if the generic code
  270. * sees that, it also hooks up a default ->shutdown method which
  271. * invokes ->mask() which we do not want. See irq_chip_set_defaults().
  272. */
  273. static void sun4u_irq_disable(unsigned int virt_irq)
  274. {
  275. }
  276. static void sun4u_irq_eoi(unsigned int virt_irq)
  277. {
  278. struct irq_handler_data *data = get_irq_chip_data(virt_irq);
  279. struct irq_desc *desc = irq_desc + virt_irq;
  280. if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
  281. return;
  282. if (likely(data))
  283. upa_writeq(ICLR_IDLE, data->iclr);
  284. }
  285. static void sun4v_irq_enable(unsigned int virt_irq)
  286. {
  287. unsigned int ino = virt_irq_table[virt_irq].dev_ino;
  288. unsigned long cpuid = irq_choose_cpu(virt_irq);
  289. int err;
  290. err = sun4v_intr_settarget(ino, cpuid);
  291. if (err != HV_EOK)
  292. printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
  293. "err(%d)\n", ino, cpuid, err);
  294. err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
  295. if (err != HV_EOK)
  296. printk(KERN_ERR "sun4v_intr_setstate(%x): "
  297. "err(%d)\n", ino, err);
  298. err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
  299. if (err != HV_EOK)
  300. printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n",
  301. ino, err);
  302. }
  303. static int sun4v_set_affinity(unsigned int virt_irq,
  304. const struct cpumask *mask)
  305. {
  306. unsigned int ino = virt_irq_table[virt_irq].dev_ino;
  307. unsigned long cpuid = irq_choose_cpu(virt_irq);
  308. int err;
  309. err = sun4v_intr_settarget(ino, cpuid);
  310. if (err != HV_EOK)
  311. printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
  312. "err(%d)\n", ino, cpuid, err);
  313. return 0;
  314. }
  315. static void sun4v_irq_disable(unsigned int virt_irq)
  316. {
  317. unsigned int ino = virt_irq_table[virt_irq].dev_ino;
  318. int err;
  319. err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
  320. if (err != HV_EOK)
  321. printk(KERN_ERR "sun4v_intr_setenabled(%x): "
  322. "err(%d)\n", ino, err);
  323. }
  324. static void sun4v_irq_eoi(unsigned int virt_irq)
  325. {
  326. unsigned int ino = virt_irq_table[virt_irq].dev_ino;
  327. struct irq_desc *desc = irq_desc + virt_irq;
  328. int err;
  329. if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
  330. return;
  331. err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
  332. if (err != HV_EOK)
  333. printk(KERN_ERR "sun4v_intr_setstate(%x): "
  334. "err(%d)\n", ino, err);
  335. }
  336. static void sun4v_virq_enable(unsigned int virt_irq)
  337. {
  338. unsigned long cpuid, dev_handle, dev_ino;
  339. int err;
  340. cpuid = irq_choose_cpu(virt_irq);
  341. dev_handle = virt_irq_table[virt_irq].dev_handle;
  342. dev_ino = virt_irq_table[virt_irq].dev_ino;
  343. err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
  344. if (err != HV_EOK)
  345. printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
  346. "err(%d)\n",
  347. dev_handle, dev_ino, cpuid, err);
  348. err = sun4v_vintr_set_state(dev_handle, dev_ino,
  349. HV_INTR_STATE_IDLE);
  350. if (err != HV_EOK)
  351. printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
  352. "HV_INTR_STATE_IDLE): err(%d)\n",
  353. dev_handle, dev_ino, err);
  354. err = sun4v_vintr_set_valid(dev_handle, dev_ino,
  355. HV_INTR_ENABLED);
  356. if (err != HV_EOK)
  357. printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
  358. "HV_INTR_ENABLED): err(%d)\n",
  359. dev_handle, dev_ino, err);
  360. }
  361. static int sun4v_virt_set_affinity(unsigned int virt_irq,
  362. const struct cpumask *mask)
  363. {
  364. unsigned long cpuid, dev_handle, dev_ino;
  365. int err;
  366. cpuid = irq_choose_cpu(virt_irq);
  367. dev_handle = virt_irq_table[virt_irq].dev_handle;
  368. dev_ino = virt_irq_table[virt_irq].dev_ino;
  369. err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
  370. if (err != HV_EOK)
  371. printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
  372. "err(%d)\n",
  373. dev_handle, dev_ino, cpuid, err);
  374. return 0;
  375. }
  376. static void sun4v_virq_disable(unsigned int virt_irq)
  377. {
  378. unsigned long dev_handle, dev_ino;
  379. int err;
  380. dev_handle = virt_irq_table[virt_irq].dev_handle;
  381. dev_ino = virt_irq_table[virt_irq].dev_ino;
  382. err = sun4v_vintr_set_valid(dev_handle, dev_ino,
  383. HV_INTR_DISABLED);
  384. if (err != HV_EOK)
  385. printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
  386. "HV_INTR_DISABLED): err(%d)\n",
  387. dev_handle, dev_ino, err);
  388. }
  389. static void sun4v_virq_eoi(unsigned int virt_irq)
  390. {
  391. struct irq_desc *desc = irq_desc + virt_irq;
  392. unsigned long dev_handle, dev_ino;
  393. int err;
  394. if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
  395. return;
  396. dev_handle = virt_irq_table[virt_irq].dev_handle;
  397. dev_ino = virt_irq_table[virt_irq].dev_ino;
  398. err = sun4v_vintr_set_state(dev_handle, dev_ino,
  399. HV_INTR_STATE_IDLE);
  400. if (err != HV_EOK)
  401. printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
  402. "HV_INTR_STATE_IDLE): err(%d)\n",
  403. dev_handle, dev_ino, err);
  404. }
  405. static struct irq_chip sun4u_irq = {
  406. .typename = "sun4u",
  407. .enable = sun4u_irq_enable,
  408. .disable = sun4u_irq_disable,
  409. .eoi = sun4u_irq_eoi,
  410. .set_affinity = sun4u_set_affinity,
  411. };
  412. static struct irq_chip sun4v_irq = {
  413. .typename = "sun4v",
  414. .enable = sun4v_irq_enable,
  415. .disable = sun4v_irq_disable,
  416. .eoi = sun4v_irq_eoi,
  417. .set_affinity = sun4v_set_affinity,
  418. };
  419. static struct irq_chip sun4v_virq = {
  420. .typename = "vsun4v",
  421. .enable = sun4v_virq_enable,
  422. .disable = sun4v_virq_disable,
  423. .eoi = sun4v_virq_eoi,
  424. .set_affinity = sun4v_virt_set_affinity,
  425. };
  426. static void pre_flow_handler(unsigned int virt_irq,
  427. struct irq_desc *desc)
  428. {
  429. struct irq_handler_data *data = get_irq_chip_data(virt_irq);
  430. unsigned int ino = virt_irq_table[virt_irq].dev_ino;
  431. data->pre_handler(ino, data->arg1, data->arg2);
  432. handle_fasteoi_irq(virt_irq, desc);
  433. }
  434. void irq_install_pre_handler(int virt_irq,
  435. void (*func)(unsigned int, void *, void *),
  436. void *arg1, void *arg2)
  437. {
  438. struct irq_handler_data *data = get_irq_chip_data(virt_irq);
  439. struct irq_desc *desc = irq_desc + virt_irq;
  440. data->pre_handler = func;
  441. data->arg1 = arg1;
  442. data->arg2 = arg2;
  443. desc->handle_irq = pre_flow_handler;
  444. }
  445. unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
  446. {
  447. struct ino_bucket *bucket;
  448. struct irq_handler_data *data;
  449. unsigned int virt_irq;
  450. int ino;
  451. BUG_ON(tlb_type == hypervisor);
  452. ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
  453. bucket = &ivector_table[ino];
  454. virt_irq = bucket_get_virt_irq(__pa(bucket));
  455. if (!virt_irq) {
  456. virt_irq = virt_irq_alloc(0, ino);
  457. bucket_set_virt_irq(__pa(bucket), virt_irq);
  458. set_irq_chip_and_handler_name(virt_irq,
  459. &sun4u_irq,
  460. handle_fasteoi_irq,
  461. "IVEC");
  462. }
  463. data = get_irq_chip_data(virt_irq);
  464. if (unlikely(data))
  465. goto out;
  466. data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
  467. if (unlikely(!data)) {
  468. prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
  469. prom_halt();
  470. }
  471. set_irq_chip_data(virt_irq, data);
  472. data->imap = imap;
  473. data->iclr = iclr;
  474. out:
  475. return virt_irq;
  476. }
  477. static unsigned int sun4v_build_common(unsigned long sysino,
  478. struct irq_chip *chip)
  479. {
  480. struct ino_bucket *bucket;
  481. struct irq_handler_data *data;
  482. unsigned int virt_irq;
  483. BUG_ON(tlb_type != hypervisor);
  484. bucket = &ivector_table[sysino];
  485. virt_irq = bucket_get_virt_irq(__pa(bucket));
  486. if (!virt_irq) {
  487. virt_irq = virt_irq_alloc(0, sysino);
  488. bucket_set_virt_irq(__pa(bucket), virt_irq);
  489. set_irq_chip_and_handler_name(virt_irq, chip,
  490. handle_fasteoi_irq,
  491. "IVEC");
  492. }
  493. data = get_irq_chip_data(virt_irq);
  494. if (unlikely(data))
  495. goto out;
  496. data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
  497. if (unlikely(!data)) {
  498. prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
  499. prom_halt();
  500. }
  501. set_irq_chip_data(virt_irq, data);
  502. /* Catch accidental accesses to these things. IMAP/ICLR handling
  503. * is done by hypervisor calls on sun4v platforms, not by direct
  504. * register accesses.
  505. */
  506. data->imap = ~0UL;
  507. data->iclr = ~0UL;
  508. out:
  509. return virt_irq;
  510. }
  511. unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
  512. {
  513. unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino);
  514. return sun4v_build_common(sysino, &sun4v_irq);
  515. }
  516. unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino)
  517. {
  518. struct irq_handler_data *data;
  519. unsigned long hv_err, cookie;
  520. struct ino_bucket *bucket;
  521. struct irq_desc *desc;
  522. unsigned int virt_irq;
  523. bucket = kzalloc(sizeof(struct ino_bucket), GFP_ATOMIC);
  524. if (unlikely(!bucket))
  525. return 0;
  526. __flush_dcache_range((unsigned long) bucket,
  527. ((unsigned long) bucket +
  528. sizeof(struct ino_bucket)));
  529. virt_irq = virt_irq_alloc(devhandle, devino);
  530. bucket_set_virt_irq(__pa(bucket), virt_irq);
  531. set_irq_chip_and_handler_name(virt_irq, &sun4v_virq,
  532. handle_fasteoi_irq,
  533. "IVEC");
  534. data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
  535. if (unlikely(!data))
  536. return 0;
  537. /* In order to make the LDC channel startup sequence easier,
  538. * especially wrt. locking, we do not let request_irq() enable
  539. * the interrupt.
  540. */
  541. desc = irq_desc + virt_irq;
  542. desc->status |= IRQ_NOAUTOEN;
  543. set_irq_chip_data(virt_irq, data);
  544. /* Catch accidental accesses to these things. IMAP/ICLR handling
  545. * is done by hypervisor calls on sun4v platforms, not by direct
  546. * register accesses.
  547. */
  548. data->imap = ~0UL;
  549. data->iclr = ~0UL;
  550. cookie = ~__pa(bucket);
  551. hv_err = sun4v_vintr_set_cookie(devhandle, devino, cookie);
  552. if (hv_err) {
  553. prom_printf("IRQ: Fatal, cannot set cookie for [%x:%x] "
  554. "err=%lu\n", devhandle, devino, hv_err);
  555. prom_halt();
  556. }
  557. return virt_irq;
  558. }
  559. void ack_bad_irq(unsigned int virt_irq)
  560. {
  561. unsigned int ino = virt_irq_table[virt_irq].dev_ino;
  562. if (!ino)
  563. ino = 0xdeadbeef;
  564. printk(KERN_CRIT "Unexpected IRQ from ino[%x] virt_irq[%u]\n",
  565. ino, virt_irq);
  566. }
  567. void *hardirq_stack[NR_CPUS];
  568. void *softirq_stack[NR_CPUS];
  569. static __attribute__((always_inline)) void *set_hardirq_stack(void)
  570. {
  571. void *orig_sp, *sp = hardirq_stack[smp_processor_id()];
  572. __asm__ __volatile__("mov %%sp, %0" : "=r" (orig_sp));
  573. if (orig_sp < sp ||
  574. orig_sp > (sp + THREAD_SIZE)) {
  575. sp += THREAD_SIZE - 192 - STACK_BIAS;
  576. __asm__ __volatile__("mov %0, %%sp" : : "r" (sp));
  577. }
  578. return orig_sp;
  579. }
  580. static __attribute__((always_inline)) void restore_hardirq_stack(void *orig_sp)
  581. {
  582. __asm__ __volatile__("mov %0, %%sp" : : "r" (orig_sp));
  583. }
  584. void handler_irq(int irq, struct pt_regs *regs)
  585. {
  586. unsigned long pstate, bucket_pa;
  587. struct pt_regs *old_regs;
  588. void *orig_sp;
  589. clear_softint(1 << irq);
  590. old_regs = set_irq_regs(regs);
  591. irq_enter();
  592. /* Grab an atomic snapshot of the pending IVECs. */
  593. __asm__ __volatile__("rdpr %%pstate, %0\n\t"
  594. "wrpr %0, %3, %%pstate\n\t"
  595. "ldx [%2], %1\n\t"
  596. "stx %%g0, [%2]\n\t"
  597. "wrpr %0, 0x0, %%pstate\n\t"
  598. : "=&r" (pstate), "=&r" (bucket_pa)
  599. : "r" (irq_work_pa(smp_processor_id())),
  600. "i" (PSTATE_IE)
  601. : "memory");
  602. orig_sp = set_hardirq_stack();
  603. while (bucket_pa) {
  604. struct irq_desc *desc;
  605. unsigned long next_pa;
  606. unsigned int virt_irq;
  607. next_pa = bucket_get_chain_pa(bucket_pa);
  608. virt_irq = bucket_get_virt_irq(bucket_pa);
  609. bucket_clear_chain_pa(bucket_pa);
  610. desc = irq_desc + virt_irq;
  611. if (!(desc->status & IRQ_DISABLED))
  612. desc->handle_irq(virt_irq, desc);
  613. bucket_pa = next_pa;
  614. }
  615. restore_hardirq_stack(orig_sp);
  616. irq_exit();
  617. set_irq_regs(old_regs);
  618. }
  619. void do_softirq(void)
  620. {
  621. unsigned long flags;
  622. if (in_interrupt())
  623. return;
  624. local_irq_save(flags);
  625. if (local_softirq_pending()) {
  626. void *orig_sp, *sp = softirq_stack[smp_processor_id()];
  627. sp += THREAD_SIZE - 192 - STACK_BIAS;
  628. __asm__ __volatile__("mov %%sp, %0\n\t"
  629. "mov %1, %%sp"
  630. : "=&r" (orig_sp)
  631. : "r" (sp));
  632. __do_softirq();
  633. __asm__ __volatile__("mov %0, %%sp"
  634. : : "r" (orig_sp));
  635. }
  636. local_irq_restore(flags);
  637. }
  638. #ifdef CONFIG_HOTPLUG_CPU
  639. void fixup_irqs(void)
  640. {
  641. unsigned int irq;
  642. for (irq = 0; irq < NR_IRQS; irq++) {
  643. unsigned long flags;
  644. spin_lock_irqsave(&irq_desc[irq].lock, flags);
  645. if (irq_desc[irq].action &&
  646. !(irq_desc[irq].status & IRQ_PER_CPU)) {
  647. if (irq_desc[irq].chip->set_affinity)
  648. irq_desc[irq].chip->set_affinity(irq,
  649. irq_desc[irq].affinity);
  650. }
  651. spin_unlock_irqrestore(&irq_desc[irq].lock, flags);
  652. }
  653. tick_ops->disable_irq();
  654. }
  655. #endif
  656. struct sun5_timer {
  657. u64 count0;
  658. u64 limit0;
  659. u64 count1;
  660. u64 limit1;
  661. };
  662. static struct sun5_timer *prom_timers;
  663. static u64 prom_limit0, prom_limit1;
  664. static void map_prom_timers(void)
  665. {
  666. struct device_node *dp;
  667. const unsigned int *addr;
  668. /* PROM timer node hangs out in the top level of device siblings... */
  669. dp = of_find_node_by_path("/");
  670. dp = dp->child;
  671. while (dp) {
  672. if (!strcmp(dp->name, "counter-timer"))
  673. break;
  674. dp = dp->sibling;
  675. }
  676. /* Assume if node is not present, PROM uses different tick mechanism
  677. * which we should not care about.
  678. */
  679. if (!dp) {
  680. prom_timers = (struct sun5_timer *) 0;
  681. return;
  682. }
  683. /* If PROM is really using this, it must be mapped by him. */
  684. addr = of_get_property(dp, "address", NULL);
  685. if (!addr) {
  686. prom_printf("PROM does not have timer mapped, trying to continue.\n");
  687. prom_timers = (struct sun5_timer *) 0;
  688. return;
  689. }
  690. prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
  691. }
  692. static void kill_prom_timer(void)
  693. {
  694. if (!prom_timers)
  695. return;
  696. /* Save them away for later. */
  697. prom_limit0 = prom_timers->limit0;
  698. prom_limit1 = prom_timers->limit1;
  699. /* Just as in sun4c/sun4m PROM uses timer which ticks at IRQ 14.
  700. * We turn both off here just to be paranoid.
  701. */
  702. prom_timers->limit0 = 0;
  703. prom_timers->limit1 = 0;
  704. /* Wheee, eat the interrupt packet too... */
  705. __asm__ __volatile__(
  706. " mov 0x40, %%g2\n"
  707. " ldxa [%%g0] %0, %%g1\n"
  708. " ldxa [%%g2] %1, %%g1\n"
  709. " stxa %%g0, [%%g0] %0\n"
  710. " membar #Sync\n"
  711. : /* no outputs */
  712. : "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
  713. : "g1", "g2");
  714. }
  715. void notrace init_irqwork_curcpu(void)
  716. {
  717. int cpu = hard_smp_processor_id();
  718. trap_block[cpu].irq_worklist_pa = 0UL;
  719. }
  720. /* Please be very careful with register_one_mondo() and
  721. * sun4v_register_mondo_queues().
  722. *
  723. * On SMP this gets invoked from the CPU trampoline before
  724. * the cpu has fully taken over the trap table from OBP,
  725. * and it's kernel stack + %g6 thread register state is
  726. * not fully cooked yet.
  727. *
  728. * Therefore you cannot make any OBP calls, not even prom_printf,
  729. * from these two routines.
  730. */
  731. static void __cpuinit register_one_mondo(unsigned long paddr, unsigned long type, unsigned long qmask)
  732. {
  733. unsigned long num_entries = (qmask + 1) / 64;
  734. unsigned long status;
  735. status = sun4v_cpu_qconf(type, paddr, num_entries);
  736. if (status != HV_EOK) {
  737. prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
  738. "err %lu\n", type, paddr, num_entries, status);
  739. prom_halt();
  740. }
  741. }
  742. void __cpuinit notrace sun4v_register_mondo_queues(int this_cpu)
  743. {
  744. struct trap_per_cpu *tb = &trap_block[this_cpu];
  745. register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO,
  746. tb->cpu_mondo_qmask);
  747. register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO,
  748. tb->dev_mondo_qmask);
  749. register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR,
  750. tb->resum_qmask);
  751. register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR,
  752. tb->nonresum_qmask);
  753. }
  754. /* Each queue region must be a power of 2 multiple of 64 bytes in
  755. * size. The base real address must be aligned to the size of the
  756. * region. Thus, an 8KB queue must be 8KB aligned, for example.
  757. */
  758. static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask)
  759. {
  760. unsigned long size = PAGE_ALIGN(qmask + 1);
  761. unsigned long order = get_order(size);
  762. unsigned long p;
  763. p = __get_free_pages(GFP_KERNEL, order);
  764. if (!p) {
  765. prom_printf("SUN4V: Error, cannot allocate queue.\n");
  766. prom_halt();
  767. }
  768. *pa_ptr = __pa(p);
  769. }
  770. static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb)
  771. {
  772. #ifdef CONFIG_SMP
  773. unsigned long page;
  774. BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > (PAGE_SIZE - 64));
  775. page = get_zeroed_page(GFP_KERNEL);
  776. if (!page) {
  777. prom_printf("SUN4V: Error, cannot allocate cpu mondo page.\n");
  778. prom_halt();
  779. }
  780. tb->cpu_mondo_block_pa = __pa(page);
  781. tb->cpu_list_pa = __pa(page + 64);
  782. #endif
  783. }
  784. /* Allocate mondo and error queues for all possible cpus. */
  785. static void __init sun4v_init_mondo_queues(void)
  786. {
  787. int cpu;
  788. for_each_possible_cpu(cpu) {
  789. struct trap_per_cpu *tb = &trap_block[cpu];
  790. alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask);
  791. alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask);
  792. alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask);
  793. alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask);
  794. alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask);
  795. alloc_one_queue(&tb->nonresum_kernel_buf_pa,
  796. tb->nonresum_qmask);
  797. }
  798. }
  799. static void __init init_send_mondo_info(void)
  800. {
  801. int cpu;
  802. for_each_possible_cpu(cpu) {
  803. struct trap_per_cpu *tb = &trap_block[cpu];
  804. init_cpu_send_mondo_info(tb);
  805. }
  806. }
  807. static struct irqaction timer_irq_action = {
  808. .name = "timer",
  809. };
  810. /* Only invoked on boot processor. */
  811. void __init init_IRQ(void)
  812. {
  813. unsigned long size;
  814. map_prom_timers();
  815. kill_prom_timer();
  816. size = sizeof(struct ino_bucket) * NUM_IVECS;
  817. ivector_table = kzalloc(size, GFP_KERNEL);
  818. if (!ivector_table) {
  819. prom_printf("Fatal error, cannot allocate ivector_table\n");
  820. prom_halt();
  821. }
  822. __flush_dcache_range((unsigned long) ivector_table,
  823. ((unsigned long) ivector_table) + size);
  824. ivector_table_pa = __pa(ivector_table);
  825. if (tlb_type == hypervisor)
  826. sun4v_init_mondo_queues();
  827. init_send_mondo_info();
  828. if (tlb_type == hypervisor) {
  829. /* Load up the boot cpu's entries. */
  830. sun4v_register_mondo_queues(hard_smp_processor_id());
  831. }
  832. /* We need to clear any IRQ's pending in the soft interrupt
  833. * registers, a spurious one could be left around from the
  834. * PROM timer which we just disabled.
  835. */
  836. clear_softint(get_softint());
  837. /* Now that ivector table is initialized, it is safe
  838. * to receive IRQ vector traps. We will normally take
  839. * one or two right now, in case some device PROM used
  840. * to boot us wants to speak to us. We just ignore them.
  841. */
  842. __asm__ __volatile__("rdpr %%pstate, %%g1\n\t"
  843. "or %%g1, %0, %%g1\n\t"
  844. "wrpr %%g1, 0x0, %%pstate"
  845. : /* No outputs */
  846. : "i" (PSTATE_IE)
  847. : "g1");
  848. irq_desc[0].action = &timer_irq_action;
  849. }