iommu.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867
  1. /* iommu.c: Generic sparc64 IOMMU support.
  2. *
  3. * Copyright (C) 1999, 2007, 2008 David S. Miller (davem@davemloft.net)
  4. * Copyright (C) 1999, 2000 Jakub Jelinek (jakub@redhat.com)
  5. */
  6. #include <linux/kernel.h>
  7. #include <linux/module.h>
  8. #include <linux/delay.h>
  9. #include <linux/device.h>
  10. #include <linux/dma-mapping.h>
  11. #include <linux/errno.h>
  12. #include <linux/iommu-helper.h>
  13. #ifdef CONFIG_PCI
  14. #include <linux/pci.h>
  15. #endif
  16. #include <asm/iommu.h>
  17. #include "iommu_common.h"
  18. #define STC_CTXMATCH_ADDR(STC, CTX) \
  19. ((STC)->strbuf_ctxmatch_base + ((CTX) << 3))
  20. #define STC_FLUSHFLAG_INIT(STC) \
  21. (*((STC)->strbuf_flushflag) = 0UL)
  22. #define STC_FLUSHFLAG_SET(STC) \
  23. (*((STC)->strbuf_flushflag) != 0UL)
  24. #define iommu_read(__reg) \
  25. ({ u64 __ret; \
  26. __asm__ __volatile__("ldxa [%1] %2, %0" \
  27. : "=r" (__ret) \
  28. : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \
  29. : "memory"); \
  30. __ret; \
  31. })
  32. #define iommu_write(__reg, __val) \
  33. __asm__ __volatile__("stxa %0, [%1] %2" \
  34. : /* no outputs */ \
  35. : "r" (__val), "r" (__reg), \
  36. "i" (ASI_PHYS_BYPASS_EC_E))
  37. /* Must be invoked under the IOMMU lock. */
  38. static void iommu_flushall(struct iommu *iommu)
  39. {
  40. if (iommu->iommu_flushinv) {
  41. iommu_write(iommu->iommu_flushinv, ~(u64)0);
  42. } else {
  43. unsigned long tag;
  44. int entry;
  45. tag = iommu->iommu_tags;
  46. for (entry = 0; entry < 16; entry++) {
  47. iommu_write(tag, 0);
  48. tag += 8;
  49. }
  50. /* Ensure completion of previous PIO writes. */
  51. (void) iommu_read(iommu->write_complete_reg);
  52. }
  53. }
  54. #define IOPTE_CONSISTENT(CTX) \
  55. (IOPTE_VALID | IOPTE_CACHE | \
  56. (((CTX) << 47) & IOPTE_CONTEXT))
  57. #define IOPTE_STREAMING(CTX) \
  58. (IOPTE_CONSISTENT(CTX) | IOPTE_STBUF)
  59. /* Existing mappings are never marked invalid, instead they
  60. * are pointed to a dummy page.
  61. */
  62. #define IOPTE_IS_DUMMY(iommu, iopte) \
  63. ((iopte_val(*iopte) & IOPTE_PAGE) == (iommu)->dummy_page_pa)
  64. static inline void iopte_make_dummy(struct iommu *iommu, iopte_t *iopte)
  65. {
  66. unsigned long val = iopte_val(*iopte);
  67. val &= ~IOPTE_PAGE;
  68. val |= iommu->dummy_page_pa;
  69. iopte_val(*iopte) = val;
  70. }
  71. /* Based almost entirely upon the ppc64 iommu allocator. If you use the 'handle'
  72. * facility it must all be done in one pass while under the iommu lock.
  73. *
  74. * On sun4u platforms, we only flush the IOMMU once every time we've passed
  75. * over the entire page table doing allocations. Therefore we only ever advance
  76. * the hint and cannot backtrack it.
  77. */
  78. unsigned long iommu_range_alloc(struct device *dev,
  79. struct iommu *iommu,
  80. unsigned long npages,
  81. unsigned long *handle)
  82. {
  83. unsigned long n, end, start, limit, boundary_size;
  84. struct iommu_arena *arena = &iommu->arena;
  85. int pass = 0;
  86. /* This allocator was derived from x86_64's bit string search */
  87. /* Sanity check */
  88. if (unlikely(npages == 0)) {
  89. if (printk_ratelimit())
  90. WARN_ON(1);
  91. return DMA_ERROR_CODE;
  92. }
  93. if (handle && *handle)
  94. start = *handle;
  95. else
  96. start = arena->hint;
  97. limit = arena->limit;
  98. /* The case below can happen if we have a small segment appended
  99. * to a large, or when the previous alloc was at the very end of
  100. * the available space. If so, go back to the beginning and flush.
  101. */
  102. if (start >= limit) {
  103. start = 0;
  104. if (iommu->flush_all)
  105. iommu->flush_all(iommu);
  106. }
  107. again:
  108. if (dev)
  109. boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
  110. 1 << IO_PAGE_SHIFT);
  111. else
  112. boundary_size = ALIGN(1UL << 32, 1 << IO_PAGE_SHIFT);
  113. n = iommu_area_alloc(arena->map, limit, start, npages,
  114. iommu->page_table_map_base >> IO_PAGE_SHIFT,
  115. boundary_size >> IO_PAGE_SHIFT, 0);
  116. if (n == -1) {
  117. if (likely(pass < 1)) {
  118. /* First failure, rescan from the beginning. */
  119. start = 0;
  120. if (iommu->flush_all)
  121. iommu->flush_all(iommu);
  122. pass++;
  123. goto again;
  124. } else {
  125. /* Second failure, give up */
  126. return DMA_ERROR_CODE;
  127. }
  128. }
  129. end = n + npages;
  130. arena->hint = end;
  131. /* Update handle for SG allocations */
  132. if (handle)
  133. *handle = end;
  134. return n;
  135. }
  136. void iommu_range_free(struct iommu *iommu, dma_addr_t dma_addr, unsigned long npages)
  137. {
  138. struct iommu_arena *arena = &iommu->arena;
  139. unsigned long entry;
  140. entry = (dma_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT;
  141. iommu_area_free(arena->map, entry, npages);
  142. }
  143. int iommu_table_init(struct iommu *iommu, int tsbsize,
  144. u32 dma_offset, u32 dma_addr_mask,
  145. int numa_node)
  146. {
  147. unsigned long i, order, sz, num_tsb_entries;
  148. struct page *page;
  149. num_tsb_entries = tsbsize / sizeof(iopte_t);
  150. /* Setup initial software IOMMU state. */
  151. spin_lock_init(&iommu->lock);
  152. iommu->ctx_lowest_free = 1;
  153. iommu->page_table_map_base = dma_offset;
  154. iommu->dma_addr_mask = dma_addr_mask;
  155. /* Allocate and initialize the free area map. */
  156. sz = num_tsb_entries / 8;
  157. sz = (sz + 7UL) & ~7UL;
  158. iommu->arena.map = kmalloc_node(sz, GFP_KERNEL, numa_node);
  159. if (!iommu->arena.map) {
  160. printk(KERN_ERR "IOMMU: Error, kmalloc(arena.map) failed.\n");
  161. return -ENOMEM;
  162. }
  163. memset(iommu->arena.map, 0, sz);
  164. iommu->arena.limit = num_tsb_entries;
  165. if (tlb_type != hypervisor)
  166. iommu->flush_all = iommu_flushall;
  167. /* Allocate and initialize the dummy page which we
  168. * set inactive IO PTEs to point to.
  169. */
  170. page = alloc_pages_node(numa_node, GFP_KERNEL, 0);
  171. if (!page) {
  172. printk(KERN_ERR "IOMMU: Error, gfp(dummy_page) failed.\n");
  173. goto out_free_map;
  174. }
  175. iommu->dummy_page = (unsigned long) page_address(page);
  176. memset((void *)iommu->dummy_page, 0, PAGE_SIZE);
  177. iommu->dummy_page_pa = (unsigned long) __pa(iommu->dummy_page);
  178. /* Now allocate and setup the IOMMU page table itself. */
  179. order = get_order(tsbsize);
  180. page = alloc_pages_node(numa_node, GFP_KERNEL, order);
  181. if (!page) {
  182. printk(KERN_ERR "IOMMU: Error, gfp(tsb) failed.\n");
  183. goto out_free_dummy_page;
  184. }
  185. iommu->page_table = (iopte_t *)page_address(page);
  186. for (i = 0; i < num_tsb_entries; i++)
  187. iopte_make_dummy(iommu, &iommu->page_table[i]);
  188. return 0;
  189. out_free_dummy_page:
  190. free_page(iommu->dummy_page);
  191. iommu->dummy_page = 0UL;
  192. out_free_map:
  193. kfree(iommu->arena.map);
  194. iommu->arena.map = NULL;
  195. return -ENOMEM;
  196. }
  197. static inline iopte_t *alloc_npages(struct device *dev, struct iommu *iommu,
  198. unsigned long npages)
  199. {
  200. unsigned long entry;
  201. entry = iommu_range_alloc(dev, iommu, npages, NULL);
  202. if (unlikely(entry == DMA_ERROR_CODE))
  203. return NULL;
  204. return iommu->page_table + entry;
  205. }
  206. static int iommu_alloc_ctx(struct iommu *iommu)
  207. {
  208. int lowest = iommu->ctx_lowest_free;
  209. int sz = IOMMU_NUM_CTXS - lowest;
  210. int n = find_next_zero_bit(iommu->ctx_bitmap, sz, lowest);
  211. if (unlikely(n == sz)) {
  212. n = find_next_zero_bit(iommu->ctx_bitmap, lowest, 1);
  213. if (unlikely(n == lowest)) {
  214. printk(KERN_WARNING "IOMMU: Ran out of contexts.\n");
  215. n = 0;
  216. }
  217. }
  218. if (n)
  219. __set_bit(n, iommu->ctx_bitmap);
  220. return n;
  221. }
  222. static inline void iommu_free_ctx(struct iommu *iommu, int ctx)
  223. {
  224. if (likely(ctx)) {
  225. __clear_bit(ctx, iommu->ctx_bitmap);
  226. if (ctx < iommu->ctx_lowest_free)
  227. iommu->ctx_lowest_free = ctx;
  228. }
  229. }
  230. static void *dma_4u_alloc_coherent(struct device *dev, size_t size,
  231. dma_addr_t *dma_addrp, gfp_t gfp)
  232. {
  233. unsigned long flags, order, first_page;
  234. struct iommu *iommu;
  235. struct page *page;
  236. int npages, nid;
  237. iopte_t *iopte;
  238. void *ret;
  239. size = IO_PAGE_ALIGN(size);
  240. order = get_order(size);
  241. if (order >= 10)
  242. return NULL;
  243. nid = dev->archdata.numa_node;
  244. page = alloc_pages_node(nid, gfp, order);
  245. if (unlikely(!page))
  246. return NULL;
  247. first_page = (unsigned long) page_address(page);
  248. memset((char *)first_page, 0, PAGE_SIZE << order);
  249. iommu = dev->archdata.iommu;
  250. spin_lock_irqsave(&iommu->lock, flags);
  251. iopte = alloc_npages(dev, iommu, size >> IO_PAGE_SHIFT);
  252. spin_unlock_irqrestore(&iommu->lock, flags);
  253. if (unlikely(iopte == NULL)) {
  254. free_pages(first_page, order);
  255. return NULL;
  256. }
  257. *dma_addrp = (iommu->page_table_map_base +
  258. ((iopte - iommu->page_table) << IO_PAGE_SHIFT));
  259. ret = (void *) first_page;
  260. npages = size >> IO_PAGE_SHIFT;
  261. first_page = __pa(first_page);
  262. while (npages--) {
  263. iopte_val(*iopte) = (IOPTE_CONSISTENT(0UL) |
  264. IOPTE_WRITE |
  265. (first_page & IOPTE_PAGE));
  266. iopte++;
  267. first_page += IO_PAGE_SIZE;
  268. }
  269. return ret;
  270. }
  271. static void dma_4u_free_coherent(struct device *dev, size_t size,
  272. void *cpu, dma_addr_t dvma)
  273. {
  274. struct iommu *iommu;
  275. iopte_t *iopte;
  276. unsigned long flags, order, npages;
  277. npages = IO_PAGE_ALIGN(size) >> IO_PAGE_SHIFT;
  278. iommu = dev->archdata.iommu;
  279. iopte = iommu->page_table +
  280. ((dvma - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
  281. spin_lock_irqsave(&iommu->lock, flags);
  282. iommu_range_free(iommu, dvma, npages);
  283. spin_unlock_irqrestore(&iommu->lock, flags);
  284. order = get_order(size);
  285. if (order < 10)
  286. free_pages((unsigned long)cpu, order);
  287. }
  288. static dma_addr_t dma_4u_map_page(struct device *dev, struct page *page,
  289. unsigned long offset, size_t sz,
  290. enum dma_data_direction direction)
  291. {
  292. struct iommu *iommu;
  293. struct strbuf *strbuf;
  294. iopte_t *base;
  295. unsigned long flags, npages, oaddr;
  296. unsigned long i, base_paddr, ctx;
  297. u32 bus_addr, ret;
  298. unsigned long iopte_protection;
  299. iommu = dev->archdata.iommu;
  300. strbuf = dev->archdata.stc;
  301. if (unlikely(direction == DMA_NONE))
  302. goto bad_no_ctx;
  303. oaddr = (unsigned long)(page_address(page) + offset);
  304. npages = IO_PAGE_ALIGN(oaddr + sz) - (oaddr & IO_PAGE_MASK);
  305. npages >>= IO_PAGE_SHIFT;
  306. spin_lock_irqsave(&iommu->lock, flags);
  307. base = alloc_npages(dev, iommu, npages);
  308. ctx = 0;
  309. if (iommu->iommu_ctxflush)
  310. ctx = iommu_alloc_ctx(iommu);
  311. spin_unlock_irqrestore(&iommu->lock, flags);
  312. if (unlikely(!base))
  313. goto bad;
  314. bus_addr = (iommu->page_table_map_base +
  315. ((base - iommu->page_table) << IO_PAGE_SHIFT));
  316. ret = bus_addr | (oaddr & ~IO_PAGE_MASK);
  317. base_paddr = __pa(oaddr & IO_PAGE_MASK);
  318. if (strbuf->strbuf_enabled)
  319. iopte_protection = IOPTE_STREAMING(ctx);
  320. else
  321. iopte_protection = IOPTE_CONSISTENT(ctx);
  322. if (direction != DMA_TO_DEVICE)
  323. iopte_protection |= IOPTE_WRITE;
  324. for (i = 0; i < npages; i++, base++, base_paddr += IO_PAGE_SIZE)
  325. iopte_val(*base) = iopte_protection | base_paddr;
  326. return ret;
  327. bad:
  328. iommu_free_ctx(iommu, ctx);
  329. bad_no_ctx:
  330. if (printk_ratelimit())
  331. WARN_ON(1);
  332. return DMA_ERROR_CODE;
  333. }
  334. static void strbuf_flush(struct strbuf *strbuf, struct iommu *iommu,
  335. u32 vaddr, unsigned long ctx, unsigned long npages,
  336. enum dma_data_direction direction)
  337. {
  338. int limit;
  339. if (strbuf->strbuf_ctxflush &&
  340. iommu->iommu_ctxflush) {
  341. unsigned long matchreg, flushreg;
  342. u64 val;
  343. flushreg = strbuf->strbuf_ctxflush;
  344. matchreg = STC_CTXMATCH_ADDR(strbuf, ctx);
  345. iommu_write(flushreg, ctx);
  346. val = iommu_read(matchreg);
  347. val &= 0xffff;
  348. if (!val)
  349. goto do_flush_sync;
  350. while (val) {
  351. if (val & 0x1)
  352. iommu_write(flushreg, ctx);
  353. val >>= 1;
  354. }
  355. val = iommu_read(matchreg);
  356. if (unlikely(val)) {
  357. printk(KERN_WARNING "strbuf_flush: ctx flush "
  358. "timeout matchreg[%llx] ctx[%lx]\n",
  359. val, ctx);
  360. goto do_page_flush;
  361. }
  362. } else {
  363. unsigned long i;
  364. do_page_flush:
  365. for (i = 0; i < npages; i++, vaddr += IO_PAGE_SIZE)
  366. iommu_write(strbuf->strbuf_pflush, vaddr);
  367. }
  368. do_flush_sync:
  369. /* If the device could not have possibly put dirty data into
  370. * the streaming cache, no flush-flag synchronization needs
  371. * to be performed.
  372. */
  373. if (direction == DMA_TO_DEVICE)
  374. return;
  375. STC_FLUSHFLAG_INIT(strbuf);
  376. iommu_write(strbuf->strbuf_fsync, strbuf->strbuf_flushflag_pa);
  377. (void) iommu_read(iommu->write_complete_reg);
  378. limit = 100000;
  379. while (!STC_FLUSHFLAG_SET(strbuf)) {
  380. limit--;
  381. if (!limit)
  382. break;
  383. udelay(1);
  384. rmb();
  385. }
  386. if (!limit)
  387. printk(KERN_WARNING "strbuf_flush: flushflag timeout "
  388. "vaddr[%08x] ctx[%lx] npages[%ld]\n",
  389. vaddr, ctx, npages);
  390. }
  391. static void dma_4u_unmap_page(struct device *dev, dma_addr_t bus_addr,
  392. size_t sz, enum dma_data_direction direction)
  393. {
  394. struct iommu *iommu;
  395. struct strbuf *strbuf;
  396. iopte_t *base;
  397. unsigned long flags, npages, ctx, i;
  398. if (unlikely(direction == DMA_NONE)) {
  399. if (printk_ratelimit())
  400. WARN_ON(1);
  401. return;
  402. }
  403. iommu = dev->archdata.iommu;
  404. strbuf = dev->archdata.stc;
  405. npages = IO_PAGE_ALIGN(bus_addr + sz) - (bus_addr & IO_PAGE_MASK);
  406. npages >>= IO_PAGE_SHIFT;
  407. base = iommu->page_table +
  408. ((bus_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
  409. bus_addr &= IO_PAGE_MASK;
  410. spin_lock_irqsave(&iommu->lock, flags);
  411. /* Record the context, if any. */
  412. ctx = 0;
  413. if (iommu->iommu_ctxflush)
  414. ctx = (iopte_val(*base) & IOPTE_CONTEXT) >> 47UL;
  415. /* Step 1: Kick data out of streaming buffers if necessary. */
  416. if (strbuf->strbuf_enabled)
  417. strbuf_flush(strbuf, iommu, bus_addr, ctx,
  418. npages, direction);
  419. /* Step 2: Clear out TSB entries. */
  420. for (i = 0; i < npages; i++)
  421. iopte_make_dummy(iommu, base + i);
  422. iommu_range_free(iommu, bus_addr, npages);
  423. iommu_free_ctx(iommu, ctx);
  424. spin_unlock_irqrestore(&iommu->lock, flags);
  425. }
  426. static int dma_4u_map_sg(struct device *dev, struct scatterlist *sglist,
  427. int nelems, enum dma_data_direction direction)
  428. {
  429. struct scatterlist *s, *outs, *segstart;
  430. unsigned long flags, handle, prot, ctx;
  431. dma_addr_t dma_next = 0, dma_addr;
  432. unsigned int max_seg_size;
  433. unsigned long seg_boundary_size;
  434. int outcount, incount, i;
  435. struct strbuf *strbuf;
  436. struct iommu *iommu;
  437. unsigned long base_shift;
  438. BUG_ON(direction == DMA_NONE);
  439. iommu = dev->archdata.iommu;
  440. strbuf = dev->archdata.stc;
  441. if (nelems == 0 || !iommu)
  442. return 0;
  443. spin_lock_irqsave(&iommu->lock, flags);
  444. ctx = 0;
  445. if (iommu->iommu_ctxflush)
  446. ctx = iommu_alloc_ctx(iommu);
  447. if (strbuf->strbuf_enabled)
  448. prot = IOPTE_STREAMING(ctx);
  449. else
  450. prot = IOPTE_CONSISTENT(ctx);
  451. if (direction != DMA_TO_DEVICE)
  452. prot |= IOPTE_WRITE;
  453. outs = s = segstart = &sglist[0];
  454. outcount = 1;
  455. incount = nelems;
  456. handle = 0;
  457. /* Init first segment length for backout at failure */
  458. outs->dma_length = 0;
  459. max_seg_size = dma_get_max_seg_size(dev);
  460. seg_boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
  461. IO_PAGE_SIZE) >> IO_PAGE_SHIFT;
  462. base_shift = iommu->page_table_map_base >> IO_PAGE_SHIFT;
  463. for_each_sg(sglist, s, nelems, i) {
  464. unsigned long paddr, npages, entry, out_entry = 0, slen;
  465. iopte_t *base;
  466. slen = s->length;
  467. /* Sanity check */
  468. if (slen == 0) {
  469. dma_next = 0;
  470. continue;
  471. }
  472. /* Allocate iommu entries for that segment */
  473. paddr = (unsigned long) SG_ENT_PHYS_ADDRESS(s);
  474. npages = iommu_num_pages(paddr, slen, IO_PAGE_SIZE);
  475. entry = iommu_range_alloc(dev, iommu, npages, &handle);
  476. /* Handle failure */
  477. if (unlikely(entry == DMA_ERROR_CODE)) {
  478. if (printk_ratelimit())
  479. printk(KERN_INFO "iommu_alloc failed, iommu %p paddr %lx"
  480. " npages %lx\n", iommu, paddr, npages);
  481. goto iommu_map_failed;
  482. }
  483. base = iommu->page_table + entry;
  484. /* Convert entry to a dma_addr_t */
  485. dma_addr = iommu->page_table_map_base +
  486. (entry << IO_PAGE_SHIFT);
  487. dma_addr |= (s->offset & ~IO_PAGE_MASK);
  488. /* Insert into HW table */
  489. paddr &= IO_PAGE_MASK;
  490. while (npages--) {
  491. iopte_val(*base) = prot | paddr;
  492. base++;
  493. paddr += IO_PAGE_SIZE;
  494. }
  495. /* If we are in an open segment, try merging */
  496. if (segstart != s) {
  497. /* We cannot merge if:
  498. * - allocated dma_addr isn't contiguous to previous allocation
  499. */
  500. if ((dma_addr != dma_next) ||
  501. (outs->dma_length + s->length > max_seg_size) ||
  502. (is_span_boundary(out_entry, base_shift,
  503. seg_boundary_size, outs, s))) {
  504. /* Can't merge: create a new segment */
  505. segstart = s;
  506. outcount++;
  507. outs = sg_next(outs);
  508. } else {
  509. outs->dma_length += s->length;
  510. }
  511. }
  512. if (segstart == s) {
  513. /* This is a new segment, fill entries */
  514. outs->dma_address = dma_addr;
  515. outs->dma_length = slen;
  516. out_entry = entry;
  517. }
  518. /* Calculate next page pointer for contiguous check */
  519. dma_next = dma_addr + slen;
  520. }
  521. spin_unlock_irqrestore(&iommu->lock, flags);
  522. if (outcount < incount) {
  523. outs = sg_next(outs);
  524. outs->dma_address = DMA_ERROR_CODE;
  525. outs->dma_length = 0;
  526. }
  527. return outcount;
  528. iommu_map_failed:
  529. for_each_sg(sglist, s, nelems, i) {
  530. if (s->dma_length != 0) {
  531. unsigned long vaddr, npages, entry, j;
  532. iopte_t *base;
  533. vaddr = s->dma_address & IO_PAGE_MASK;
  534. npages = iommu_num_pages(s->dma_address, s->dma_length,
  535. IO_PAGE_SIZE);
  536. iommu_range_free(iommu, vaddr, npages);
  537. entry = (vaddr - iommu->page_table_map_base)
  538. >> IO_PAGE_SHIFT;
  539. base = iommu->page_table + entry;
  540. for (j = 0; j < npages; j++)
  541. iopte_make_dummy(iommu, base + j);
  542. s->dma_address = DMA_ERROR_CODE;
  543. s->dma_length = 0;
  544. }
  545. if (s == outs)
  546. break;
  547. }
  548. spin_unlock_irqrestore(&iommu->lock, flags);
  549. return 0;
  550. }
  551. /* If contexts are being used, they are the same in all of the mappings
  552. * we make for a particular SG.
  553. */
  554. static unsigned long fetch_sg_ctx(struct iommu *iommu, struct scatterlist *sg)
  555. {
  556. unsigned long ctx = 0;
  557. if (iommu->iommu_ctxflush) {
  558. iopte_t *base;
  559. u32 bus_addr;
  560. bus_addr = sg->dma_address & IO_PAGE_MASK;
  561. base = iommu->page_table +
  562. ((bus_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
  563. ctx = (iopte_val(*base) & IOPTE_CONTEXT) >> 47UL;
  564. }
  565. return ctx;
  566. }
  567. static void dma_4u_unmap_sg(struct device *dev, struct scatterlist *sglist,
  568. int nelems, enum dma_data_direction direction)
  569. {
  570. unsigned long flags, ctx;
  571. struct scatterlist *sg;
  572. struct strbuf *strbuf;
  573. struct iommu *iommu;
  574. BUG_ON(direction == DMA_NONE);
  575. iommu = dev->archdata.iommu;
  576. strbuf = dev->archdata.stc;
  577. ctx = fetch_sg_ctx(iommu, sglist);
  578. spin_lock_irqsave(&iommu->lock, flags);
  579. sg = sglist;
  580. while (nelems--) {
  581. dma_addr_t dma_handle = sg->dma_address;
  582. unsigned int len = sg->dma_length;
  583. unsigned long npages, entry;
  584. iopte_t *base;
  585. int i;
  586. if (!len)
  587. break;
  588. npages = iommu_num_pages(dma_handle, len, IO_PAGE_SIZE);
  589. iommu_range_free(iommu, dma_handle, npages);
  590. entry = ((dma_handle - iommu->page_table_map_base)
  591. >> IO_PAGE_SHIFT);
  592. base = iommu->page_table + entry;
  593. dma_handle &= IO_PAGE_MASK;
  594. if (strbuf->strbuf_enabled)
  595. strbuf_flush(strbuf, iommu, dma_handle, ctx,
  596. npages, direction);
  597. for (i = 0; i < npages; i++)
  598. iopte_make_dummy(iommu, base + i);
  599. sg = sg_next(sg);
  600. }
  601. iommu_free_ctx(iommu, ctx);
  602. spin_unlock_irqrestore(&iommu->lock, flags);
  603. }
  604. static void dma_4u_sync_single_for_cpu(struct device *dev,
  605. dma_addr_t bus_addr, size_t sz,
  606. enum dma_data_direction direction)
  607. {
  608. struct iommu *iommu;
  609. struct strbuf *strbuf;
  610. unsigned long flags, ctx, npages;
  611. iommu = dev->archdata.iommu;
  612. strbuf = dev->archdata.stc;
  613. if (!strbuf->strbuf_enabled)
  614. return;
  615. spin_lock_irqsave(&iommu->lock, flags);
  616. npages = IO_PAGE_ALIGN(bus_addr + sz) - (bus_addr & IO_PAGE_MASK);
  617. npages >>= IO_PAGE_SHIFT;
  618. bus_addr &= IO_PAGE_MASK;
  619. /* Step 1: Record the context, if any. */
  620. ctx = 0;
  621. if (iommu->iommu_ctxflush &&
  622. strbuf->strbuf_ctxflush) {
  623. iopte_t *iopte;
  624. iopte = iommu->page_table +
  625. ((bus_addr - iommu->page_table_map_base)>>IO_PAGE_SHIFT);
  626. ctx = (iopte_val(*iopte) & IOPTE_CONTEXT) >> 47UL;
  627. }
  628. /* Step 2: Kick data out of streaming buffers. */
  629. strbuf_flush(strbuf, iommu, bus_addr, ctx, npages, direction);
  630. spin_unlock_irqrestore(&iommu->lock, flags);
  631. }
  632. static void dma_4u_sync_sg_for_cpu(struct device *dev,
  633. struct scatterlist *sglist, int nelems,
  634. enum dma_data_direction direction)
  635. {
  636. struct iommu *iommu;
  637. struct strbuf *strbuf;
  638. unsigned long flags, ctx, npages, i;
  639. struct scatterlist *sg, *sgprv;
  640. u32 bus_addr;
  641. iommu = dev->archdata.iommu;
  642. strbuf = dev->archdata.stc;
  643. if (!strbuf->strbuf_enabled)
  644. return;
  645. spin_lock_irqsave(&iommu->lock, flags);
  646. /* Step 1: Record the context, if any. */
  647. ctx = 0;
  648. if (iommu->iommu_ctxflush &&
  649. strbuf->strbuf_ctxflush) {
  650. iopte_t *iopte;
  651. iopte = iommu->page_table +
  652. ((sglist[0].dma_address - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
  653. ctx = (iopte_val(*iopte) & IOPTE_CONTEXT) >> 47UL;
  654. }
  655. /* Step 2: Kick data out of streaming buffers. */
  656. bus_addr = sglist[0].dma_address & IO_PAGE_MASK;
  657. sgprv = NULL;
  658. for_each_sg(sglist, sg, nelems, i) {
  659. if (sg->dma_length == 0)
  660. break;
  661. sgprv = sg;
  662. }
  663. npages = (IO_PAGE_ALIGN(sgprv->dma_address + sgprv->dma_length)
  664. - bus_addr) >> IO_PAGE_SHIFT;
  665. strbuf_flush(strbuf, iommu, bus_addr, ctx, npages, direction);
  666. spin_unlock_irqrestore(&iommu->lock, flags);
  667. }
  668. static const struct dma_ops sun4u_dma_ops = {
  669. .alloc_coherent = dma_4u_alloc_coherent,
  670. .free_coherent = dma_4u_free_coherent,
  671. .map_page = dma_4u_map_page,
  672. .unmap_page = dma_4u_unmap_page,
  673. .map_sg = dma_4u_map_sg,
  674. .unmap_sg = dma_4u_unmap_sg,
  675. .sync_single_for_cpu = dma_4u_sync_single_for_cpu,
  676. .sync_sg_for_cpu = dma_4u_sync_sg_for_cpu,
  677. };
  678. const struct dma_ops *dma_ops = &sun4u_dma_ops;
  679. EXPORT_SYMBOL(dma_ops);
  680. int dma_supported(struct device *dev, u64 device_mask)
  681. {
  682. struct iommu *iommu = dev->archdata.iommu;
  683. u64 dma_addr_mask = iommu->dma_addr_mask;
  684. if (device_mask >= (1UL << 32UL))
  685. return 0;
  686. if ((device_mask & dma_addr_mask) == dma_addr_mask)
  687. return 1;
  688. #ifdef CONFIG_PCI
  689. if (dev->bus == &pci_bus_type)
  690. return pci_dma_supported(to_pci_dev(dev), device_mask);
  691. #endif
  692. return 0;
  693. }
  694. EXPORT_SYMBOL(dma_supported);
  695. int dma_set_mask(struct device *dev, u64 dma_mask)
  696. {
  697. #ifdef CONFIG_PCI
  698. if (dev->bus == &pci_bus_type)
  699. return pci_set_dma_mask(to_pci_dev(dev), dma_mask);
  700. #endif
  701. return -EINVAL;
  702. }
  703. EXPORT_SYMBOL(dma_set_mask);