consistent.c 3.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164
  1. /*
  2. * arch/sh/mm/consistent.c
  3. *
  4. * Copyright (C) 2004 - 2007 Paul Mundt
  5. *
  6. * Declared coherent memory functions based on arch/x86/kernel/pci-dma_32.c
  7. *
  8. * This file is subject to the terms and conditions of the GNU General Public
  9. * License. See the file "COPYING" in the main directory of this archive
  10. * for more details.
  11. */
  12. #include <linux/mm.h>
  13. #include <linux/init.h>
  14. #include <linux/platform_device.h>
  15. #include <linux/dma-mapping.h>
  16. #include <linux/dma-debug.h>
  17. #include <linux/io.h>
  18. #include <asm/cacheflush.h>
  19. #include <asm/addrspace.h>
  20. #define PREALLOC_DMA_DEBUG_ENTRIES 4096
  21. static int __init dma_init(void)
  22. {
  23. dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
  24. return 0;
  25. }
  26. fs_initcall(dma_init);
  27. void *dma_alloc_coherent(struct device *dev, size_t size,
  28. dma_addr_t *dma_handle, gfp_t gfp)
  29. {
  30. void *ret, *ret_nocache;
  31. int order = get_order(size);
  32. if (dma_alloc_from_coherent(dev, size, dma_handle, &ret))
  33. return ret;
  34. ret = (void *)__get_free_pages(gfp, order);
  35. if (!ret)
  36. return NULL;
  37. memset(ret, 0, size);
  38. /*
  39. * Pages from the page allocator may have data present in
  40. * cache. So flush the cache before using uncached memory.
  41. */
  42. dma_cache_sync(dev, ret, size, DMA_BIDIRECTIONAL);
  43. ret_nocache = (void __force *)ioremap_nocache(virt_to_phys(ret), size);
  44. if (!ret_nocache) {
  45. free_pages((unsigned long)ret, order);
  46. return NULL;
  47. }
  48. split_page(pfn_to_page(virt_to_phys(ret) >> PAGE_SHIFT), order);
  49. *dma_handle = virt_to_phys(ret);
  50. debug_dma_alloc_coherent(dev, size, *dma_handle, ret_nocache);
  51. return ret_nocache;
  52. }
  53. EXPORT_SYMBOL(dma_alloc_coherent);
  54. void dma_free_coherent(struct device *dev, size_t size,
  55. void *vaddr, dma_addr_t dma_handle)
  56. {
  57. int order = get_order(size);
  58. unsigned long pfn = dma_handle >> PAGE_SHIFT;
  59. int k;
  60. WARN_ON(irqs_disabled()); /* for portability */
  61. if (dma_release_from_coherent(dev, order, vaddr))
  62. return;
  63. debug_dma_free_coherent(dev, size, vaddr, dma_handle);
  64. for (k = 0; k < (1 << order); k++)
  65. __free_pages(pfn_to_page(pfn + k), 0);
  66. iounmap(vaddr);
  67. }
  68. EXPORT_SYMBOL(dma_free_coherent);
  69. void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
  70. enum dma_data_direction direction)
  71. {
  72. #ifdef CONFIG_CPU_SH5
  73. void *p1addr = vaddr;
  74. #else
  75. void *p1addr = (void*) P1SEGADDR((unsigned long)vaddr);
  76. #endif
  77. switch (direction) {
  78. case DMA_FROM_DEVICE: /* invalidate only */
  79. __flush_invalidate_region(p1addr, size);
  80. break;
  81. case DMA_TO_DEVICE: /* writeback only */
  82. __flush_wback_region(p1addr, size);
  83. break;
  84. case DMA_BIDIRECTIONAL: /* writeback and invalidate */
  85. __flush_purge_region(p1addr, size);
  86. break;
  87. default:
  88. BUG();
  89. }
  90. }
  91. EXPORT_SYMBOL(dma_cache_sync);
  92. static int __init memchunk_setup(char *str)
  93. {
  94. return 1; /* accept anything that begins with "memchunk." */
  95. }
  96. __setup("memchunk.", memchunk_setup);
  97. static void __init memchunk_cmdline_override(char *name, unsigned long *sizep)
  98. {
  99. char *p = boot_command_line;
  100. int k = strlen(name);
  101. while ((p = strstr(p, "memchunk."))) {
  102. p += 9; /* strlen("memchunk.") */
  103. if (!strncmp(name, p, k) && p[k] == '=') {
  104. p += k + 1;
  105. *sizep = memparse(p, NULL);
  106. pr_info("%s: forcing memory chunk size to 0x%08lx\n",
  107. name, *sizep);
  108. break;
  109. }
  110. }
  111. }
  112. int __init platform_resource_setup_memory(struct platform_device *pdev,
  113. char *name, unsigned long memsize)
  114. {
  115. struct resource *r;
  116. dma_addr_t dma_handle;
  117. void *buf;
  118. r = pdev->resource + pdev->num_resources - 1;
  119. if (r->flags) {
  120. pr_warning("%s: unable to find empty space for resource\n",
  121. name);
  122. return -EINVAL;
  123. }
  124. memchunk_cmdline_override(name, &memsize);
  125. if (!memsize)
  126. return 0;
  127. buf = dma_alloc_coherent(NULL, memsize, &dma_handle, GFP_KERNEL);
  128. if (!buf) {
  129. pr_warning("%s: unable to allocate memory\n", name);
  130. return -ENOMEM;
  131. }
  132. memset(buf, 0, memsize);
  133. r->flags = IORESOURCE_MEM;
  134. r->start = dma_handle;
  135. r->end = r->start + memsize - 1;
  136. r->name = name;
  137. return 0;
  138. }