setup.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586
  1. /*
  2. * arch/sh/kernel/setup.c
  3. *
  4. * This file handles the architecture-dependent parts of initialization
  5. *
  6. * Copyright (C) 1999 Niibe Yutaka
  7. * Copyright (C) 2002 - 2007 Paul Mundt
  8. */
  9. #include <linux/screen_info.h>
  10. #include <linux/ioport.h>
  11. #include <linux/init.h>
  12. #include <linux/initrd.h>
  13. #include <linux/bootmem.h>
  14. #include <linux/console.h>
  15. #include <linux/seq_file.h>
  16. #include <linux/root_dev.h>
  17. #include <linux/utsname.h>
  18. #include <linux/nodemask.h>
  19. #include <linux/cpu.h>
  20. #include <linux/pfn.h>
  21. #include <linux/fs.h>
  22. #include <linux/mm.h>
  23. #include <linux/kexec.h>
  24. #include <linux/module.h>
  25. #include <linux/smp.h>
  26. #include <linux/err.h>
  27. #include <linux/debugfs.h>
  28. #include <linux/crash_dump.h>
  29. #include <linux/mmzone.h>
  30. #include <linux/clk.h>
  31. #include <linux/delay.h>
  32. #include <linux/platform_device.h>
  33. #include <asm/uaccess.h>
  34. #include <asm/io.h>
  35. #include <asm/page.h>
  36. #include <asm/elf.h>
  37. #include <asm/sections.h>
  38. #include <asm/irq.h>
  39. #include <asm/setup.h>
  40. #include <asm/clock.h>
  41. #include <asm/mmu_context.h>
  42. /*
  43. * Initialize loops_per_jiffy as 10000000 (1000MIPS).
  44. * This value will be used at the very early stage of serial setup.
  45. * The bigger value means no problem.
  46. */
  47. struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = {
  48. [0] = {
  49. .type = CPU_SH_NONE,
  50. .loops_per_jiffy = 10000000,
  51. },
  52. };
  53. EXPORT_SYMBOL(cpu_data);
  54. /*
  55. * The machine vector. First entry in .machvec.init, or clobbered by
  56. * sh_mv= on the command line, prior to .machvec.init teardown.
  57. */
  58. struct sh_machine_vector sh_mv = { .mv_name = "generic", };
  59. EXPORT_SYMBOL(sh_mv);
  60. #ifdef CONFIG_VT
  61. struct screen_info screen_info;
  62. #endif
  63. extern int root_mountflags;
  64. #define RAMDISK_IMAGE_START_MASK 0x07FF
  65. #define RAMDISK_PROMPT_FLAG 0x8000
  66. #define RAMDISK_LOAD_FLAG 0x4000
  67. static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
  68. static struct resource code_resource = {
  69. .name = "Kernel code",
  70. .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
  71. };
  72. static struct resource data_resource = {
  73. .name = "Kernel data",
  74. .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
  75. };
  76. static struct resource bss_resource = {
  77. .name = "Kernel bss",
  78. .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
  79. };
  80. unsigned long memory_start;
  81. EXPORT_SYMBOL(memory_start);
  82. unsigned long memory_end = 0;
  83. EXPORT_SYMBOL(memory_end);
  84. static struct resource mem_resources[MAX_NUMNODES];
  85. int l1i_cache_shape, l1d_cache_shape, l2_cache_shape;
  86. static int __init early_parse_mem(char *p)
  87. {
  88. unsigned long size;
  89. memory_start = (unsigned long)__va(__MEMORY_START);
  90. size = memparse(p, &p);
  91. if (size > __MEMORY_SIZE) {
  92. printk(KERN_ERR
  93. "Using mem= to increase the size of kernel memory "
  94. "is not allowed.\n"
  95. " Recompile the kernel with the correct value for "
  96. "CONFIG_MEMORY_SIZE.\n");
  97. return 0;
  98. }
  99. memory_end = memory_start + size;
  100. return 0;
  101. }
  102. early_param("mem", early_parse_mem);
  103. /*
  104. * Register fully available low RAM pages with the bootmem allocator.
  105. */
  106. static void __init register_bootmem_low_pages(void)
  107. {
  108. unsigned long curr_pfn, last_pfn, pages;
  109. /*
  110. * We are rounding up the start address of usable memory:
  111. */
  112. curr_pfn = PFN_UP(__MEMORY_START);
  113. /*
  114. * ... and at the end of the usable range downwards:
  115. */
  116. last_pfn = PFN_DOWN(__pa(memory_end));
  117. if (last_pfn > max_low_pfn)
  118. last_pfn = max_low_pfn;
  119. pages = last_pfn - curr_pfn;
  120. free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages));
  121. }
  122. #ifdef CONFIG_KEXEC
  123. static void __init reserve_crashkernel(void)
  124. {
  125. unsigned long long free_mem;
  126. unsigned long long crash_size, crash_base;
  127. void *vp;
  128. int ret;
  129. free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
  130. ret = parse_crashkernel(boot_command_line, free_mem,
  131. &crash_size, &crash_base);
  132. if (ret == 0 && crash_size) {
  133. if (crash_base <= 0) {
  134. vp = alloc_bootmem_nopanic(crash_size);
  135. if (!vp) {
  136. printk(KERN_INFO "crashkernel allocation "
  137. "failed\n");
  138. return;
  139. }
  140. crash_base = __pa(vp);
  141. } else if (reserve_bootmem(crash_base, crash_size,
  142. BOOTMEM_EXCLUSIVE) < 0) {
  143. printk(KERN_INFO "crashkernel reservation failed - "
  144. "memory is in use\n");
  145. return;
  146. }
  147. printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
  148. "for crashkernel (System RAM: %ldMB)\n",
  149. (unsigned long)(crash_size >> 20),
  150. (unsigned long)(crash_base >> 20),
  151. (unsigned long)(free_mem >> 20));
  152. crashk_res.start = crash_base;
  153. crashk_res.end = crash_base + crash_size - 1;
  154. insert_resource(&iomem_resource, &crashk_res);
  155. }
  156. }
  157. #else
  158. static inline void __init reserve_crashkernel(void)
  159. {}
  160. #endif
  161. void __cpuinit calibrate_delay(void)
  162. {
  163. struct clk *clk = clk_get(NULL, "cpu_clk");
  164. if (IS_ERR(clk))
  165. panic("Need a sane CPU clock definition!");
  166. loops_per_jiffy = (clk_get_rate(clk) >> 1) / HZ;
  167. printk(KERN_INFO "Calibrating delay loop (skipped)... "
  168. "%lu.%02lu BogoMIPS PRESET (lpj=%lu)\n",
  169. loops_per_jiffy/(500000/HZ),
  170. (loops_per_jiffy/(5000/HZ)) % 100,
  171. loops_per_jiffy);
  172. }
  173. void __init __add_active_range(unsigned int nid, unsigned long start_pfn,
  174. unsigned long end_pfn)
  175. {
  176. struct resource *res = &mem_resources[nid];
  177. WARN_ON(res->name); /* max one active range per node for now */
  178. res->name = "System RAM";
  179. res->start = start_pfn << PAGE_SHIFT;
  180. res->end = (end_pfn << PAGE_SHIFT) - 1;
  181. res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
  182. if (request_resource(&iomem_resource, res)) {
  183. pr_err("unable to request memory_resource 0x%lx 0x%lx\n",
  184. start_pfn, end_pfn);
  185. return;
  186. }
  187. /*
  188. * We don't know which RAM region contains kernel data,
  189. * so we try it repeatedly and let the resource manager
  190. * test it.
  191. */
  192. request_resource(res, &code_resource);
  193. request_resource(res, &data_resource);
  194. request_resource(res, &bss_resource);
  195. add_active_range(nid, start_pfn, end_pfn);
  196. }
  197. void __init setup_bootmem_allocator(unsigned long free_pfn)
  198. {
  199. unsigned long bootmap_size;
  200. /*
  201. * Find a proper area for the bootmem bitmap. After this
  202. * bootstrap step all allocations (until the page allocator
  203. * is intact) must be done via bootmem_alloc().
  204. */
  205. bootmap_size = init_bootmem_node(NODE_DATA(0), free_pfn,
  206. min_low_pfn, max_low_pfn);
  207. __add_active_range(0, min_low_pfn, max_low_pfn);
  208. register_bootmem_low_pages();
  209. node_set_online(0);
  210. /*
  211. * Reserve the kernel text and
  212. * Reserve the bootmem bitmap. We do this in two steps (first step
  213. * was init_bootmem()), because this catches the (definitely buggy)
  214. * case of us accidentally initializing the bootmem allocator with
  215. * an invalid RAM area.
  216. */
  217. reserve_bootmem(__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET,
  218. (PFN_PHYS(free_pfn) + bootmap_size + PAGE_SIZE - 1) -
  219. (__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET),
  220. BOOTMEM_DEFAULT);
  221. /*
  222. * Reserve physical pages below CONFIG_ZERO_PAGE_OFFSET.
  223. */
  224. if (CONFIG_ZERO_PAGE_OFFSET != 0)
  225. reserve_bootmem(__MEMORY_START, CONFIG_ZERO_PAGE_OFFSET,
  226. BOOTMEM_DEFAULT);
  227. sparse_memory_present_with_active_regions(0);
  228. #ifdef CONFIG_BLK_DEV_INITRD
  229. ROOT_DEV = Root_RAM0;
  230. if (LOADER_TYPE && INITRD_START) {
  231. unsigned long initrd_start_phys = INITRD_START + __MEMORY_START;
  232. if (initrd_start_phys + INITRD_SIZE <= PFN_PHYS(max_low_pfn)) {
  233. reserve_bootmem(initrd_start_phys, INITRD_SIZE,
  234. BOOTMEM_DEFAULT);
  235. initrd_start = (unsigned long)__va(initrd_start_phys);
  236. initrd_end = initrd_start + INITRD_SIZE;
  237. } else {
  238. printk("initrd extends beyond end of memory "
  239. "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
  240. initrd_start_phys + INITRD_SIZE,
  241. (unsigned long)PFN_PHYS(max_low_pfn));
  242. initrd_start = 0;
  243. }
  244. }
  245. #endif
  246. reserve_crashkernel();
  247. }
  248. #ifndef CONFIG_NEED_MULTIPLE_NODES
  249. static void __init setup_memory(void)
  250. {
  251. unsigned long start_pfn;
  252. /*
  253. * Partially used pages are not usable - thus
  254. * we are rounding upwards:
  255. */
  256. start_pfn = PFN_UP(__pa(_end));
  257. setup_bootmem_allocator(start_pfn);
  258. }
  259. #else
  260. extern void __init setup_memory(void);
  261. #endif
  262. /*
  263. * Note: elfcorehdr_addr is not just limited to vmcore. It is also used by
  264. * is_kdump_kernel() to determine if we are booting after a panic. Hence
  265. * ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE.
  266. */
  267. #ifdef CONFIG_CRASH_DUMP
  268. /* elfcorehdr= specifies the location of elf core header
  269. * stored by the crashed kernel.
  270. */
  271. static int __init parse_elfcorehdr(char *arg)
  272. {
  273. if (!arg)
  274. return -EINVAL;
  275. elfcorehdr_addr = memparse(arg, &arg);
  276. return 0;
  277. }
  278. early_param("elfcorehdr", parse_elfcorehdr);
  279. #endif
  280. void __init __attribute__ ((weak)) plat_early_device_setup(void)
  281. {
  282. }
  283. void __init setup_arch(char **cmdline_p)
  284. {
  285. enable_mmu();
  286. ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
  287. printk(KERN_NOTICE "Boot params:\n"
  288. "... MOUNT_ROOT_RDONLY - %08lx\n"
  289. "... RAMDISK_FLAGS - %08lx\n"
  290. "... ORIG_ROOT_DEV - %08lx\n"
  291. "... LOADER_TYPE - %08lx\n"
  292. "... INITRD_START - %08lx\n"
  293. "... INITRD_SIZE - %08lx\n",
  294. MOUNT_ROOT_RDONLY, RAMDISK_FLAGS,
  295. ORIG_ROOT_DEV, LOADER_TYPE,
  296. INITRD_START, INITRD_SIZE);
  297. #ifdef CONFIG_BLK_DEV_RAM
  298. rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
  299. rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
  300. rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
  301. #endif
  302. if (!MOUNT_ROOT_RDONLY)
  303. root_mountflags &= ~MS_RDONLY;
  304. init_mm.start_code = (unsigned long) _text;
  305. init_mm.end_code = (unsigned long) _etext;
  306. init_mm.end_data = (unsigned long) _edata;
  307. init_mm.brk = (unsigned long) _end;
  308. code_resource.start = virt_to_phys(_text);
  309. code_resource.end = virt_to_phys(_etext)-1;
  310. data_resource.start = virt_to_phys(_etext);
  311. data_resource.end = virt_to_phys(_edata)-1;
  312. bss_resource.start = virt_to_phys(__bss_start);
  313. bss_resource.end = virt_to_phys(_ebss)-1;
  314. memory_start = (unsigned long)__va(__MEMORY_START);
  315. if (!memory_end)
  316. memory_end = memory_start + __MEMORY_SIZE;
  317. #ifdef CONFIG_CMDLINE_BOOL
  318. strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line));
  319. #else
  320. strlcpy(command_line, COMMAND_LINE, sizeof(command_line));
  321. #endif
  322. /* Save unparsed command line copy for /proc/cmdline */
  323. memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
  324. *cmdline_p = command_line;
  325. parse_early_param();
  326. plat_early_device_setup();
  327. sh_mv_setup();
  328. /*
  329. * Find the highest page frame number we have available
  330. */
  331. max_pfn = PFN_DOWN(__pa(memory_end));
  332. /*
  333. * Determine low and high memory ranges:
  334. */
  335. max_low_pfn = max_pfn;
  336. min_low_pfn = __MEMORY_START >> PAGE_SHIFT;
  337. nodes_clear(node_online_map);
  338. /* Setup bootmem with available RAM */
  339. setup_memory();
  340. sparse_init();
  341. #ifdef CONFIG_DUMMY_CONSOLE
  342. conswitchp = &dummy_con;
  343. #endif
  344. /* Perform the machine specific initialisation */
  345. if (likely(sh_mv.mv_setup))
  346. sh_mv.mv_setup(cmdline_p);
  347. paging_init();
  348. #ifdef CONFIG_SMP
  349. plat_smp_setup();
  350. #endif
  351. }
  352. /* processor boot mode configuration */
  353. int generic_mode_pins(void)
  354. {
  355. pr_warning("generic_mode_pins(): missing mode pin configuration\n");
  356. return 0;
  357. }
  358. int test_mode_pin(int pin)
  359. {
  360. return sh_mv.mv_mode_pins() & pin;
  361. }
  362. static const char *cpu_name[] = {
  363. [CPU_SH7201] = "SH7201",
  364. [CPU_SH7203] = "SH7203", [CPU_SH7263] = "SH7263",
  365. [CPU_SH7206] = "SH7206", [CPU_SH7619] = "SH7619",
  366. [CPU_SH7705] = "SH7705", [CPU_SH7706] = "SH7706",
  367. [CPU_SH7707] = "SH7707", [CPU_SH7708] = "SH7708",
  368. [CPU_SH7709] = "SH7709", [CPU_SH7710] = "SH7710",
  369. [CPU_SH7712] = "SH7712", [CPU_SH7720] = "SH7720",
  370. [CPU_SH7721] = "SH7721", [CPU_SH7729] = "SH7729",
  371. [CPU_SH7750] = "SH7750", [CPU_SH7750S] = "SH7750S",
  372. [CPU_SH7750R] = "SH7750R", [CPU_SH7751] = "SH7751",
  373. [CPU_SH7751R] = "SH7751R", [CPU_SH7760] = "SH7760",
  374. [CPU_SH4_202] = "SH4-202", [CPU_SH4_501] = "SH4-501",
  375. [CPU_SH7763] = "SH7763", [CPU_SH7770] = "SH7770",
  376. [CPU_SH7780] = "SH7780", [CPU_SH7781] = "SH7781",
  377. [CPU_SH7343] = "SH7343", [CPU_SH7785] = "SH7785",
  378. [CPU_SH7786] = "SH7786",
  379. [CPU_SH7722] = "SH7722", [CPU_SHX3] = "SH-X3",
  380. [CPU_SH5_101] = "SH5-101", [CPU_SH5_103] = "SH5-103",
  381. [CPU_MXG] = "MX-G", [CPU_SH7723] = "SH7723",
  382. [CPU_SH7366] = "SH7366", [CPU_SH7724] = "SH7724",
  383. [CPU_SH_NONE] = "Unknown"
  384. };
  385. const char *get_cpu_subtype(struct sh_cpuinfo *c)
  386. {
  387. return cpu_name[c->type];
  388. }
  389. EXPORT_SYMBOL(get_cpu_subtype);
  390. #ifdef CONFIG_PROC_FS
  391. /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
  392. static const char *cpu_flags[] = {
  393. "none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
  394. "ptea", "llsc", "l2", "op32", "pteaex", NULL
  395. };
  396. static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
  397. {
  398. unsigned long i;
  399. seq_printf(m, "cpu flags\t:");
  400. if (!c->flags) {
  401. seq_printf(m, " %s\n", cpu_flags[0]);
  402. return;
  403. }
  404. for (i = 0; cpu_flags[i]; i++)
  405. if ((c->flags & (1 << i)))
  406. seq_printf(m, " %s", cpu_flags[i+1]);
  407. seq_printf(m, "\n");
  408. }
  409. static void show_cacheinfo(struct seq_file *m, const char *type,
  410. struct cache_info info)
  411. {
  412. unsigned int cache_size;
  413. cache_size = info.ways * info.sets * info.linesz;
  414. seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
  415. type, cache_size >> 10, info.ways);
  416. }
  417. /*
  418. * Get CPU information for use by the procfs.
  419. */
  420. static int show_cpuinfo(struct seq_file *m, void *v)
  421. {
  422. struct sh_cpuinfo *c = v;
  423. unsigned int cpu = c - cpu_data;
  424. if (!cpu_online(cpu))
  425. return 0;
  426. if (cpu == 0)
  427. seq_printf(m, "machine\t\t: %s\n", get_system_type());
  428. seq_printf(m, "processor\t: %d\n", cpu);
  429. seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
  430. seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
  431. if (c->cut_major == -1)
  432. seq_printf(m, "cut\t\t: unknown\n");
  433. else if (c->cut_minor == -1)
  434. seq_printf(m, "cut\t\t: %d.x\n", c->cut_major);
  435. else
  436. seq_printf(m, "cut\t\t: %d.%d\n", c->cut_major, c->cut_minor);
  437. show_cpuflags(m, c);
  438. seq_printf(m, "cache type\t: ");
  439. /*
  440. * Check for what type of cache we have, we support both the
  441. * unified cache on the SH-2 and SH-3, as well as the harvard
  442. * style cache on the SH-4.
  443. */
  444. if (c->icache.flags & SH_CACHE_COMBINED) {
  445. seq_printf(m, "unified\n");
  446. show_cacheinfo(m, "cache", c->icache);
  447. } else {
  448. seq_printf(m, "split (harvard)\n");
  449. show_cacheinfo(m, "icache", c->icache);
  450. show_cacheinfo(m, "dcache", c->dcache);
  451. }
  452. /* Optional secondary cache */
  453. if (c->flags & CPU_HAS_L2_CACHE)
  454. show_cacheinfo(m, "scache", c->scache);
  455. seq_printf(m, "bogomips\t: %lu.%02lu\n",
  456. c->loops_per_jiffy/(500000/HZ),
  457. (c->loops_per_jiffy/(5000/HZ)) % 100);
  458. return 0;
  459. }
  460. static void *c_start(struct seq_file *m, loff_t *pos)
  461. {
  462. return *pos < NR_CPUS ? cpu_data + *pos : NULL;
  463. }
  464. static void *c_next(struct seq_file *m, void *v, loff_t *pos)
  465. {
  466. ++*pos;
  467. return c_start(m, pos);
  468. }
  469. static void c_stop(struct seq_file *m, void *v)
  470. {
  471. }
  472. const struct seq_operations cpuinfo_op = {
  473. .start = c_start,
  474. .next = c_next,
  475. .stop = c_stop,
  476. .show = show_cpuinfo,
  477. };
  478. #endif /* CONFIG_PROC_FS */
  479. struct dentry *sh_debugfs_root;
  480. static int __init sh_debugfs_init(void)
  481. {
  482. sh_debugfs_root = debugfs_create_dir("sh", NULL);
  483. if (!sh_debugfs_root)
  484. return -ENOMEM;
  485. if (IS_ERR(sh_debugfs_root))
  486. return PTR_ERR(sh_debugfs_root);
  487. return 0;
  488. }
  489. arch_initcall(sh_debugfs_init);