qe_ic.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509
  1. /*
  2. * arch/powerpc/sysdev/qe_lib/qe_ic.c
  3. *
  4. * Copyright (C) 2006 Freescale Semicondutor, Inc. All rights reserved.
  5. *
  6. * Author: Li Yang <leoli@freescale.com>
  7. * Based on code from Shlomi Gridish <gridish@freescale.com>
  8. *
  9. * QUICC ENGINE Interrupt Controller
  10. *
  11. * This program is free software; you can redistribute it and/or modify it
  12. * under the terms of the GNU General Public License as published by the
  13. * Free Software Foundation; either version 2 of the License, or (at your
  14. * option) any later version.
  15. */
  16. #include <linux/kernel.h>
  17. #include <linux/init.h>
  18. #include <linux/errno.h>
  19. #include <linux/reboot.h>
  20. #include <linux/slab.h>
  21. #include <linux/stddef.h>
  22. #include <linux/sched.h>
  23. #include <linux/signal.h>
  24. #include <linux/sysdev.h>
  25. #include <linux/device.h>
  26. #include <linux/bootmem.h>
  27. #include <linux/spinlock.h>
  28. #include <asm/irq.h>
  29. #include <asm/io.h>
  30. #include <asm/prom.h>
  31. #include <asm/qe_ic.h>
  32. #include "qe_ic.h"
  33. static DEFINE_SPINLOCK(qe_ic_lock);
  34. static struct qe_ic_info qe_ic_info[] = {
  35. [1] = {
  36. .mask = 0x00008000,
  37. .mask_reg = QEIC_CIMR,
  38. .pri_code = 0,
  39. .pri_reg = QEIC_CIPWCC,
  40. },
  41. [2] = {
  42. .mask = 0x00004000,
  43. .mask_reg = QEIC_CIMR,
  44. .pri_code = 1,
  45. .pri_reg = QEIC_CIPWCC,
  46. },
  47. [3] = {
  48. .mask = 0x00002000,
  49. .mask_reg = QEIC_CIMR,
  50. .pri_code = 2,
  51. .pri_reg = QEIC_CIPWCC,
  52. },
  53. [10] = {
  54. .mask = 0x00000040,
  55. .mask_reg = QEIC_CIMR,
  56. .pri_code = 1,
  57. .pri_reg = QEIC_CIPZCC,
  58. },
  59. [11] = {
  60. .mask = 0x00000020,
  61. .mask_reg = QEIC_CIMR,
  62. .pri_code = 2,
  63. .pri_reg = QEIC_CIPZCC,
  64. },
  65. [12] = {
  66. .mask = 0x00000010,
  67. .mask_reg = QEIC_CIMR,
  68. .pri_code = 3,
  69. .pri_reg = QEIC_CIPZCC,
  70. },
  71. [13] = {
  72. .mask = 0x00000008,
  73. .mask_reg = QEIC_CIMR,
  74. .pri_code = 4,
  75. .pri_reg = QEIC_CIPZCC,
  76. },
  77. [14] = {
  78. .mask = 0x00000004,
  79. .mask_reg = QEIC_CIMR,
  80. .pri_code = 5,
  81. .pri_reg = QEIC_CIPZCC,
  82. },
  83. [15] = {
  84. .mask = 0x00000002,
  85. .mask_reg = QEIC_CIMR,
  86. .pri_code = 6,
  87. .pri_reg = QEIC_CIPZCC,
  88. },
  89. [20] = {
  90. .mask = 0x10000000,
  91. .mask_reg = QEIC_CRIMR,
  92. .pri_code = 3,
  93. .pri_reg = QEIC_CIPRTA,
  94. },
  95. [25] = {
  96. .mask = 0x00800000,
  97. .mask_reg = QEIC_CRIMR,
  98. .pri_code = 0,
  99. .pri_reg = QEIC_CIPRTB,
  100. },
  101. [26] = {
  102. .mask = 0x00400000,
  103. .mask_reg = QEIC_CRIMR,
  104. .pri_code = 1,
  105. .pri_reg = QEIC_CIPRTB,
  106. },
  107. [27] = {
  108. .mask = 0x00200000,
  109. .mask_reg = QEIC_CRIMR,
  110. .pri_code = 2,
  111. .pri_reg = QEIC_CIPRTB,
  112. },
  113. [28] = {
  114. .mask = 0x00100000,
  115. .mask_reg = QEIC_CRIMR,
  116. .pri_code = 3,
  117. .pri_reg = QEIC_CIPRTB,
  118. },
  119. [32] = {
  120. .mask = 0x80000000,
  121. .mask_reg = QEIC_CIMR,
  122. .pri_code = 0,
  123. .pri_reg = QEIC_CIPXCC,
  124. },
  125. [33] = {
  126. .mask = 0x40000000,
  127. .mask_reg = QEIC_CIMR,
  128. .pri_code = 1,
  129. .pri_reg = QEIC_CIPXCC,
  130. },
  131. [34] = {
  132. .mask = 0x20000000,
  133. .mask_reg = QEIC_CIMR,
  134. .pri_code = 2,
  135. .pri_reg = QEIC_CIPXCC,
  136. },
  137. [35] = {
  138. .mask = 0x10000000,
  139. .mask_reg = QEIC_CIMR,
  140. .pri_code = 3,
  141. .pri_reg = QEIC_CIPXCC,
  142. },
  143. [36] = {
  144. .mask = 0x08000000,
  145. .mask_reg = QEIC_CIMR,
  146. .pri_code = 4,
  147. .pri_reg = QEIC_CIPXCC,
  148. },
  149. [40] = {
  150. .mask = 0x00800000,
  151. .mask_reg = QEIC_CIMR,
  152. .pri_code = 0,
  153. .pri_reg = QEIC_CIPYCC,
  154. },
  155. [41] = {
  156. .mask = 0x00400000,
  157. .mask_reg = QEIC_CIMR,
  158. .pri_code = 1,
  159. .pri_reg = QEIC_CIPYCC,
  160. },
  161. [42] = {
  162. .mask = 0x00200000,
  163. .mask_reg = QEIC_CIMR,
  164. .pri_code = 2,
  165. .pri_reg = QEIC_CIPYCC,
  166. },
  167. [43] = {
  168. .mask = 0x00100000,
  169. .mask_reg = QEIC_CIMR,
  170. .pri_code = 3,
  171. .pri_reg = QEIC_CIPYCC,
  172. },
  173. };
  174. static inline u32 qe_ic_read(volatile __be32 __iomem * base, unsigned int reg)
  175. {
  176. return in_be32(base + (reg >> 2));
  177. }
  178. static inline void qe_ic_write(volatile __be32 __iomem * base, unsigned int reg,
  179. u32 value)
  180. {
  181. out_be32(base + (reg >> 2), value);
  182. }
  183. static inline struct qe_ic *qe_ic_from_irq(unsigned int virq)
  184. {
  185. return irq_desc[virq].chip_data;
  186. }
  187. #define virq_to_hw(virq) ((unsigned int)irq_map[virq].hwirq)
  188. static void qe_ic_unmask_irq(unsigned int virq)
  189. {
  190. struct qe_ic *qe_ic = qe_ic_from_irq(virq);
  191. unsigned int src = virq_to_hw(virq);
  192. unsigned long flags;
  193. u32 temp;
  194. spin_lock_irqsave(&qe_ic_lock, flags);
  195. temp = qe_ic_read(qe_ic->regs, qe_ic_info[src].mask_reg);
  196. qe_ic_write(qe_ic->regs, qe_ic_info[src].mask_reg,
  197. temp | qe_ic_info[src].mask);
  198. spin_unlock_irqrestore(&qe_ic_lock, flags);
  199. }
  200. static void qe_ic_mask_irq(unsigned int virq)
  201. {
  202. struct qe_ic *qe_ic = qe_ic_from_irq(virq);
  203. unsigned int src = virq_to_hw(virq);
  204. unsigned long flags;
  205. u32 temp;
  206. spin_lock_irqsave(&qe_ic_lock, flags);
  207. temp = qe_ic_read(qe_ic->regs, qe_ic_info[src].mask_reg);
  208. qe_ic_write(qe_ic->regs, qe_ic_info[src].mask_reg,
  209. temp & ~qe_ic_info[src].mask);
  210. /* Flush the above write before enabling interrupts; otherwise,
  211. * spurious interrupts will sometimes happen. To be 100% sure
  212. * that the write has reached the device before interrupts are
  213. * enabled, the mask register would have to be read back; however,
  214. * this is not required for correctness, only to avoid wasting
  215. * time on a large number of spurious interrupts. In testing,
  216. * a sync reduced the observed spurious interrupts to zero.
  217. */
  218. mb();
  219. spin_unlock_irqrestore(&qe_ic_lock, flags);
  220. }
  221. static struct irq_chip qe_ic_irq_chip = {
  222. .typename = " QEIC ",
  223. .unmask = qe_ic_unmask_irq,
  224. .mask = qe_ic_mask_irq,
  225. .mask_ack = qe_ic_mask_irq,
  226. };
  227. static int qe_ic_host_match(struct irq_host *h, struct device_node *node)
  228. {
  229. /* Exact match, unless qe_ic node is NULL */
  230. return h->of_node == NULL || h->of_node == node;
  231. }
  232. static int qe_ic_host_map(struct irq_host *h, unsigned int virq,
  233. irq_hw_number_t hw)
  234. {
  235. struct qe_ic *qe_ic = h->host_data;
  236. struct irq_chip *chip;
  237. if (qe_ic_info[hw].mask == 0) {
  238. printk(KERN_ERR "Can't map reserved IRQ \n");
  239. return -EINVAL;
  240. }
  241. /* Default chip */
  242. chip = &qe_ic->hc_irq;
  243. set_irq_chip_data(virq, qe_ic);
  244. get_irq_desc(virq)->status |= IRQ_LEVEL;
  245. set_irq_chip_and_handler(virq, chip, handle_level_irq);
  246. return 0;
  247. }
  248. static int qe_ic_host_xlate(struct irq_host *h, struct device_node *ct,
  249. u32 * intspec, unsigned int intsize,
  250. irq_hw_number_t * out_hwirq,
  251. unsigned int *out_flags)
  252. {
  253. *out_hwirq = intspec[0];
  254. if (intsize > 1)
  255. *out_flags = intspec[1];
  256. else
  257. *out_flags = IRQ_TYPE_NONE;
  258. return 0;
  259. }
  260. static struct irq_host_ops qe_ic_host_ops = {
  261. .match = qe_ic_host_match,
  262. .map = qe_ic_host_map,
  263. .xlate = qe_ic_host_xlate,
  264. };
  265. /* Return an interrupt vector or NO_IRQ if no interrupt is pending. */
  266. unsigned int qe_ic_get_low_irq(struct qe_ic *qe_ic)
  267. {
  268. int irq;
  269. BUG_ON(qe_ic == NULL);
  270. /* get the interrupt source vector. */
  271. irq = qe_ic_read(qe_ic->regs, QEIC_CIVEC) >> 26;
  272. if (irq == 0)
  273. return NO_IRQ;
  274. return irq_linear_revmap(qe_ic->irqhost, irq);
  275. }
  276. /* Return an interrupt vector or NO_IRQ if no interrupt is pending. */
  277. unsigned int qe_ic_get_high_irq(struct qe_ic *qe_ic)
  278. {
  279. int irq;
  280. BUG_ON(qe_ic == NULL);
  281. /* get the interrupt source vector. */
  282. irq = qe_ic_read(qe_ic->regs, QEIC_CHIVEC) >> 26;
  283. if (irq == 0)
  284. return NO_IRQ;
  285. return irq_linear_revmap(qe_ic->irqhost, irq);
  286. }
  287. void __init qe_ic_init(struct device_node *node, unsigned int flags,
  288. void (*low_handler)(unsigned int irq, struct irq_desc *desc),
  289. void (*high_handler)(unsigned int irq, struct irq_desc *desc))
  290. {
  291. struct qe_ic *qe_ic;
  292. struct resource res;
  293. u32 temp = 0, ret, high_active = 0;
  294. ret = of_address_to_resource(node, 0, &res);
  295. if (ret)
  296. return;
  297. qe_ic = kzalloc(sizeof(*qe_ic), GFP_KERNEL);
  298. if (qe_ic == NULL)
  299. return;
  300. qe_ic->irqhost = irq_alloc_host(node, IRQ_HOST_MAP_LINEAR,
  301. NR_QE_IC_INTS, &qe_ic_host_ops, 0);
  302. if (qe_ic->irqhost == NULL)
  303. return;
  304. qe_ic->regs = ioremap(res.start, res.end - res.start + 1);
  305. qe_ic->irqhost->host_data = qe_ic;
  306. qe_ic->hc_irq = qe_ic_irq_chip;
  307. qe_ic->virq_high = irq_of_parse_and_map(node, 0);
  308. qe_ic->virq_low = irq_of_parse_and_map(node, 1);
  309. if (qe_ic->virq_low == NO_IRQ) {
  310. printk(KERN_ERR "Failed to map QE_IC low IRQ\n");
  311. return;
  312. }
  313. /* default priority scheme is grouped. If spread mode is */
  314. /* required, configure cicr accordingly. */
  315. if (flags & QE_IC_SPREADMODE_GRP_W)
  316. temp |= CICR_GWCC;
  317. if (flags & QE_IC_SPREADMODE_GRP_X)
  318. temp |= CICR_GXCC;
  319. if (flags & QE_IC_SPREADMODE_GRP_Y)
  320. temp |= CICR_GYCC;
  321. if (flags & QE_IC_SPREADMODE_GRP_Z)
  322. temp |= CICR_GZCC;
  323. if (flags & QE_IC_SPREADMODE_GRP_RISCA)
  324. temp |= CICR_GRTA;
  325. if (flags & QE_IC_SPREADMODE_GRP_RISCB)
  326. temp |= CICR_GRTB;
  327. /* choose destination signal for highest priority interrupt */
  328. if (flags & QE_IC_HIGH_SIGNAL) {
  329. temp |= (SIGNAL_HIGH << CICR_HPIT_SHIFT);
  330. high_active = 1;
  331. }
  332. qe_ic_write(qe_ic->regs, QEIC_CICR, temp);
  333. set_irq_data(qe_ic->virq_low, qe_ic);
  334. set_irq_chained_handler(qe_ic->virq_low, low_handler);
  335. if (qe_ic->virq_high != NO_IRQ &&
  336. qe_ic->virq_high != qe_ic->virq_low) {
  337. set_irq_data(qe_ic->virq_high, qe_ic);
  338. set_irq_chained_handler(qe_ic->virq_high, high_handler);
  339. }
  340. }
  341. void qe_ic_set_highest_priority(unsigned int virq, int high)
  342. {
  343. struct qe_ic *qe_ic = qe_ic_from_irq(virq);
  344. unsigned int src = virq_to_hw(virq);
  345. u32 temp = 0;
  346. temp = qe_ic_read(qe_ic->regs, QEIC_CICR);
  347. temp &= ~CICR_HP_MASK;
  348. temp |= src << CICR_HP_SHIFT;
  349. temp &= ~CICR_HPIT_MASK;
  350. temp |= (high ? SIGNAL_HIGH : SIGNAL_LOW) << CICR_HPIT_SHIFT;
  351. qe_ic_write(qe_ic->regs, QEIC_CICR, temp);
  352. }
  353. /* Set Priority level within its group, from 1 to 8 */
  354. int qe_ic_set_priority(unsigned int virq, unsigned int priority)
  355. {
  356. struct qe_ic *qe_ic = qe_ic_from_irq(virq);
  357. unsigned int src = virq_to_hw(virq);
  358. u32 temp;
  359. if (priority > 8 || priority == 0)
  360. return -EINVAL;
  361. if (src > 127)
  362. return -EINVAL;
  363. if (qe_ic_info[src].pri_reg == 0)
  364. return -EINVAL;
  365. temp = qe_ic_read(qe_ic->regs, qe_ic_info[src].pri_reg);
  366. if (priority < 4) {
  367. temp &= ~(0x7 << (32 - priority * 3));
  368. temp |= qe_ic_info[src].pri_code << (32 - priority * 3);
  369. } else {
  370. temp &= ~(0x7 << (24 - priority * 3));
  371. temp |= qe_ic_info[src].pri_code << (24 - priority * 3);
  372. }
  373. qe_ic_write(qe_ic->regs, qe_ic_info[src].pri_reg, temp);
  374. return 0;
  375. }
  376. /* Set a QE priority to use high irq, only priority 1~2 can use high irq */
  377. int qe_ic_set_high_priority(unsigned int virq, unsigned int priority, int high)
  378. {
  379. struct qe_ic *qe_ic = qe_ic_from_irq(virq);
  380. unsigned int src = virq_to_hw(virq);
  381. u32 temp, control_reg = QEIC_CICNR, shift = 0;
  382. if (priority > 2 || priority == 0)
  383. return -EINVAL;
  384. switch (qe_ic_info[src].pri_reg) {
  385. case QEIC_CIPZCC:
  386. shift = CICNR_ZCC1T_SHIFT;
  387. break;
  388. case QEIC_CIPWCC:
  389. shift = CICNR_WCC1T_SHIFT;
  390. break;
  391. case QEIC_CIPYCC:
  392. shift = CICNR_YCC1T_SHIFT;
  393. break;
  394. case QEIC_CIPXCC:
  395. shift = CICNR_XCC1T_SHIFT;
  396. break;
  397. case QEIC_CIPRTA:
  398. shift = CRICR_RTA1T_SHIFT;
  399. control_reg = QEIC_CRICR;
  400. break;
  401. case QEIC_CIPRTB:
  402. shift = CRICR_RTB1T_SHIFT;
  403. control_reg = QEIC_CRICR;
  404. break;
  405. default:
  406. return -EINVAL;
  407. }
  408. shift += (2 - priority) * 2;
  409. temp = qe_ic_read(qe_ic->regs, control_reg);
  410. temp &= ~(SIGNAL_MASK << shift);
  411. temp |= (high ? SIGNAL_HIGH : SIGNAL_LOW) << shift;
  412. qe_ic_write(qe_ic->regs, control_reg, temp);
  413. return 0;
  414. }
  415. static struct sysdev_class qe_ic_sysclass = {
  416. .name = "qe_ic",
  417. };
  418. static struct sys_device device_qe_ic = {
  419. .id = 0,
  420. .cls = &qe_ic_sysclass,
  421. };
  422. static int __init init_qe_ic_sysfs(void)
  423. {
  424. int rc;
  425. printk(KERN_DEBUG "Registering qe_ic with sysfs...\n");
  426. rc = sysdev_class_register(&qe_ic_sysclass);
  427. if (rc) {
  428. printk(KERN_ERR "Failed registering qe_ic sys class\n");
  429. return -ENODEV;
  430. }
  431. rc = sysdev_register(&device_qe_ic);
  432. if (rc) {
  433. printk(KERN_ERR "Failed registering qe_ic sys device\n");
  434. return -ENODEV;
  435. }
  436. return 0;
  437. }
  438. subsys_initcall(init_qe_ic_sysfs);