powerpc.c 9.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441
  1. /*
  2. * This program is free software; you can redistribute it and/or modify
  3. * it under the terms of the GNU General Public License, version 2, as
  4. * published by the Free Software Foundation.
  5. *
  6. * This program is distributed in the hope that it will be useful,
  7. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  8. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  9. * GNU General Public License for more details.
  10. *
  11. * You should have received a copy of the GNU General Public License
  12. * along with this program; if not, write to the Free Software
  13. * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
  14. *
  15. * Copyright IBM Corp. 2007
  16. *
  17. * Authors: Hollis Blanchard <hollisb@us.ibm.com>
  18. * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
  19. */
  20. #include <linux/errno.h>
  21. #include <linux/err.h>
  22. #include <linux/kvm_host.h>
  23. #include <linux/module.h>
  24. #include <linux/vmalloc.h>
  25. #include <linux/fs.h>
  26. #include <asm/cputable.h>
  27. #include <asm/uaccess.h>
  28. #include <asm/kvm_ppc.h>
  29. #include <asm/tlbflush.h>
  30. #include "timing.h"
  31. #include "../mm/mmu_decl.h"
  32. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  33. {
  34. return gfn;
  35. }
  36. int kvm_cpu_has_interrupt(struct kvm_vcpu *v)
  37. {
  38. return !!(v->arch.pending_exceptions);
  39. }
  40. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  41. {
  42. /* do real check here */
  43. return 1;
  44. }
  45. int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
  46. {
  47. return !(v->arch.msr & MSR_WE);
  48. }
  49. int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
  50. {
  51. enum emulation_result er;
  52. int r;
  53. er = kvmppc_emulate_instruction(run, vcpu);
  54. switch (er) {
  55. case EMULATE_DONE:
  56. /* Future optimization: only reload non-volatiles if they were
  57. * actually modified. */
  58. r = RESUME_GUEST_NV;
  59. break;
  60. case EMULATE_DO_MMIO:
  61. run->exit_reason = KVM_EXIT_MMIO;
  62. /* We must reload nonvolatiles because "update" load/store
  63. * instructions modify register state. */
  64. /* Future optimization: only reload non-volatiles if they were
  65. * actually modified. */
  66. r = RESUME_HOST_NV;
  67. break;
  68. case EMULATE_FAIL:
  69. /* XXX Deliver Program interrupt to guest. */
  70. printk(KERN_EMERG "%s: emulation failed (%08x)\n", __func__,
  71. vcpu->arch.last_inst);
  72. r = RESUME_HOST;
  73. break;
  74. default:
  75. BUG();
  76. }
  77. return r;
  78. }
  79. void kvm_arch_hardware_enable(void *garbage)
  80. {
  81. }
  82. void kvm_arch_hardware_disable(void *garbage)
  83. {
  84. }
  85. int kvm_arch_hardware_setup(void)
  86. {
  87. return 0;
  88. }
  89. void kvm_arch_hardware_unsetup(void)
  90. {
  91. }
  92. void kvm_arch_check_processor_compat(void *rtn)
  93. {
  94. *(int *)rtn = kvmppc_core_check_processor_compat();
  95. }
  96. struct kvm *kvm_arch_create_vm(void)
  97. {
  98. struct kvm *kvm;
  99. kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  100. if (!kvm)
  101. return ERR_PTR(-ENOMEM);
  102. return kvm;
  103. }
  104. static void kvmppc_free_vcpus(struct kvm *kvm)
  105. {
  106. unsigned int i;
  107. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  108. if (kvm->vcpus[i]) {
  109. kvm_arch_vcpu_free(kvm->vcpus[i]);
  110. kvm->vcpus[i] = NULL;
  111. }
  112. }
  113. }
  114. void kvm_arch_sync_events(struct kvm *kvm)
  115. {
  116. }
  117. void kvm_arch_destroy_vm(struct kvm *kvm)
  118. {
  119. kvmppc_free_vcpus(kvm);
  120. kvm_free_physmem(kvm);
  121. kfree(kvm);
  122. }
  123. int kvm_dev_ioctl_check_extension(long ext)
  124. {
  125. int r;
  126. switch (ext) {
  127. case KVM_CAP_COALESCED_MMIO:
  128. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  129. break;
  130. default:
  131. r = 0;
  132. break;
  133. }
  134. return r;
  135. }
  136. long kvm_arch_dev_ioctl(struct file *filp,
  137. unsigned int ioctl, unsigned long arg)
  138. {
  139. return -EINVAL;
  140. }
  141. int kvm_arch_set_memory_region(struct kvm *kvm,
  142. struct kvm_userspace_memory_region *mem,
  143. struct kvm_memory_slot old,
  144. int user_alloc)
  145. {
  146. return 0;
  147. }
  148. void kvm_arch_flush_shadow(struct kvm *kvm)
  149. {
  150. }
  151. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
  152. {
  153. struct kvm_vcpu *vcpu;
  154. vcpu = kvmppc_core_vcpu_create(kvm, id);
  155. kvmppc_create_vcpu_debugfs(vcpu, id);
  156. return vcpu;
  157. }
  158. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  159. {
  160. kvmppc_remove_vcpu_debugfs(vcpu);
  161. kvmppc_core_vcpu_free(vcpu);
  162. }
  163. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  164. {
  165. kvm_arch_vcpu_free(vcpu);
  166. }
  167. int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
  168. {
  169. return kvmppc_core_pending_dec(vcpu);
  170. }
  171. static void kvmppc_decrementer_func(unsigned long data)
  172. {
  173. struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
  174. kvmppc_core_queue_dec(vcpu);
  175. if (waitqueue_active(&vcpu->wq)) {
  176. wake_up_interruptible(&vcpu->wq);
  177. vcpu->stat.halt_wakeup++;
  178. }
  179. }
  180. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  181. {
  182. setup_timer(&vcpu->arch.dec_timer, kvmppc_decrementer_func,
  183. (unsigned long)vcpu);
  184. return 0;
  185. }
  186. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  187. {
  188. kvmppc_mmu_destroy(vcpu);
  189. }
  190. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  191. {
  192. kvmppc_core_vcpu_load(vcpu, cpu);
  193. }
  194. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  195. {
  196. kvmppc_core_vcpu_put(vcpu);
  197. }
  198. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  199. struct kvm_guest_debug *dbg)
  200. {
  201. return -EINVAL;
  202. }
  203. static void kvmppc_complete_dcr_load(struct kvm_vcpu *vcpu,
  204. struct kvm_run *run)
  205. {
  206. ulong *gpr = &vcpu->arch.gpr[vcpu->arch.io_gpr];
  207. *gpr = run->dcr.data;
  208. }
  209. static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
  210. struct kvm_run *run)
  211. {
  212. ulong *gpr = &vcpu->arch.gpr[vcpu->arch.io_gpr];
  213. if (run->mmio.len > sizeof(*gpr)) {
  214. printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
  215. return;
  216. }
  217. if (vcpu->arch.mmio_is_bigendian) {
  218. switch (run->mmio.len) {
  219. case 4: *gpr = *(u32 *)run->mmio.data; break;
  220. case 2: *gpr = *(u16 *)run->mmio.data; break;
  221. case 1: *gpr = *(u8 *)run->mmio.data; break;
  222. }
  223. } else {
  224. /* Convert BE data from userland back to LE. */
  225. switch (run->mmio.len) {
  226. case 4: *gpr = ld_le32((u32 *)run->mmio.data); break;
  227. case 2: *gpr = ld_le16((u16 *)run->mmio.data); break;
  228. case 1: *gpr = *(u8 *)run->mmio.data; break;
  229. }
  230. }
  231. }
  232. int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
  233. unsigned int rt, unsigned int bytes, int is_bigendian)
  234. {
  235. if (bytes > sizeof(run->mmio.data)) {
  236. printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
  237. run->mmio.len);
  238. }
  239. run->mmio.phys_addr = vcpu->arch.paddr_accessed;
  240. run->mmio.len = bytes;
  241. run->mmio.is_write = 0;
  242. vcpu->arch.io_gpr = rt;
  243. vcpu->arch.mmio_is_bigendian = is_bigendian;
  244. vcpu->mmio_needed = 1;
  245. vcpu->mmio_is_write = 0;
  246. return EMULATE_DO_MMIO;
  247. }
  248. int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
  249. u32 val, unsigned int bytes, int is_bigendian)
  250. {
  251. void *data = run->mmio.data;
  252. if (bytes > sizeof(run->mmio.data)) {
  253. printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
  254. run->mmio.len);
  255. }
  256. run->mmio.phys_addr = vcpu->arch.paddr_accessed;
  257. run->mmio.len = bytes;
  258. run->mmio.is_write = 1;
  259. vcpu->mmio_needed = 1;
  260. vcpu->mmio_is_write = 1;
  261. /* Store the value at the lowest bytes in 'data'. */
  262. if (is_bigendian) {
  263. switch (bytes) {
  264. case 4: *(u32 *)data = val; break;
  265. case 2: *(u16 *)data = val; break;
  266. case 1: *(u8 *)data = val; break;
  267. }
  268. } else {
  269. /* Store LE value into 'data'. */
  270. switch (bytes) {
  271. case 4: st_le32(data, val); break;
  272. case 2: st_le16(data, val); break;
  273. case 1: *(u8 *)data = val; break;
  274. }
  275. }
  276. return EMULATE_DO_MMIO;
  277. }
  278. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
  279. {
  280. int r;
  281. sigset_t sigsaved;
  282. vcpu_load(vcpu);
  283. if (vcpu->sigset_active)
  284. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  285. if (vcpu->mmio_needed) {
  286. if (!vcpu->mmio_is_write)
  287. kvmppc_complete_mmio_load(vcpu, run);
  288. vcpu->mmio_needed = 0;
  289. } else if (vcpu->arch.dcr_needed) {
  290. if (!vcpu->arch.dcr_is_write)
  291. kvmppc_complete_dcr_load(vcpu, run);
  292. vcpu->arch.dcr_needed = 0;
  293. }
  294. kvmppc_core_deliver_interrupts(vcpu);
  295. local_irq_disable();
  296. kvm_guest_enter();
  297. r = __kvmppc_vcpu_run(run, vcpu);
  298. kvm_guest_exit();
  299. local_irq_enable();
  300. if (vcpu->sigset_active)
  301. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  302. vcpu_put(vcpu);
  303. return r;
  304. }
  305. int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
  306. {
  307. kvmppc_core_queue_external(vcpu, irq);
  308. if (waitqueue_active(&vcpu->wq)) {
  309. wake_up_interruptible(&vcpu->wq);
  310. vcpu->stat.halt_wakeup++;
  311. }
  312. return 0;
  313. }
  314. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  315. struct kvm_mp_state *mp_state)
  316. {
  317. return -EINVAL;
  318. }
  319. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  320. struct kvm_mp_state *mp_state)
  321. {
  322. return -EINVAL;
  323. }
  324. long kvm_arch_vcpu_ioctl(struct file *filp,
  325. unsigned int ioctl, unsigned long arg)
  326. {
  327. struct kvm_vcpu *vcpu = filp->private_data;
  328. void __user *argp = (void __user *)arg;
  329. long r;
  330. switch (ioctl) {
  331. case KVM_INTERRUPT: {
  332. struct kvm_interrupt irq;
  333. r = -EFAULT;
  334. if (copy_from_user(&irq, argp, sizeof(irq)))
  335. goto out;
  336. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  337. break;
  338. }
  339. default:
  340. r = -EINVAL;
  341. }
  342. out:
  343. return r;
  344. }
  345. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
  346. {
  347. return -ENOTSUPP;
  348. }
  349. long kvm_arch_vm_ioctl(struct file *filp,
  350. unsigned int ioctl, unsigned long arg)
  351. {
  352. long r;
  353. switch (ioctl) {
  354. default:
  355. r = -EINVAL;
  356. }
  357. return r;
  358. }
  359. int kvm_arch_init(void *opaque)
  360. {
  361. return 0;
  362. }
  363. void kvm_arch_exit(void)
  364. {
  365. }