time.c 7.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282
  1. /*
  2. * linux/arch/parisc/kernel/time.c
  3. *
  4. * Copyright (C) 1991, 1992, 1995 Linus Torvalds
  5. * Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
  6. * Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
  7. *
  8. * 1994-07-02 Alan Modra
  9. * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
  10. * 1998-12-20 Updated NTP code according to technical memorandum Jan '96
  11. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  12. */
  13. #include <linux/errno.h>
  14. #include <linux/module.h>
  15. #include <linux/sched.h>
  16. #include <linux/kernel.h>
  17. #include <linux/param.h>
  18. #include <linux/string.h>
  19. #include <linux/mm.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/time.h>
  22. #include <linux/init.h>
  23. #include <linux/smp.h>
  24. #include <linux/profile.h>
  25. #include <linux/clocksource.h>
  26. #include <linux/platform_device.h>
  27. #include <linux/ftrace.h>
  28. #include <asm/uaccess.h>
  29. #include <asm/io.h>
  30. #include <asm/irq.h>
  31. #include <asm/param.h>
  32. #include <asm/pdc.h>
  33. #include <asm/led.h>
  34. #include <linux/timex.h>
  35. static unsigned long clocktick __read_mostly; /* timer cycles per tick */
  36. /*
  37. * We keep time on PA-RISC Linux by using the Interval Timer which is
  38. * a pair of registers; one is read-only and one is write-only; both
  39. * accessed through CR16. The read-only register is 32 or 64 bits wide,
  40. * and increments by 1 every CPU clock tick. The architecture only
  41. * guarantees us a rate between 0.5 and 2, but all implementations use a
  42. * rate of 1. The write-only register is 32-bits wide. When the lowest
  43. * 32 bits of the read-only register compare equal to the write-only
  44. * register, it raises a maskable external interrupt. Each processor has
  45. * an Interval Timer of its own and they are not synchronised.
  46. *
  47. * We want to generate an interrupt every 1/HZ seconds. So we program
  48. * CR16 to interrupt every @clocktick cycles. The it_value in cpu_data
  49. * is programmed with the intended time of the next tick. We can be
  50. * held off for an arbitrarily long period of time by interrupts being
  51. * disabled, so we may miss one or more ticks.
  52. */
  53. irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id)
  54. {
  55. unsigned long now, now2;
  56. unsigned long next_tick;
  57. unsigned long cycles_elapsed, ticks_elapsed = 1;
  58. unsigned long cycles_remainder;
  59. unsigned int cpu = smp_processor_id();
  60. struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
  61. /* gcc can optimize for "read-only" case with a local clocktick */
  62. unsigned long cpt = clocktick;
  63. profile_tick(CPU_PROFILING);
  64. /* Initialize next_tick to the expected tick time. */
  65. next_tick = cpuinfo->it_value;
  66. /* Get current cycle counter (Control Register 16). */
  67. now = mfctl(16);
  68. cycles_elapsed = now - next_tick;
  69. if ((cycles_elapsed >> 6) < cpt) {
  70. /* use "cheap" math (add/subtract) instead
  71. * of the more expensive div/mul method
  72. */
  73. cycles_remainder = cycles_elapsed;
  74. while (cycles_remainder > cpt) {
  75. cycles_remainder -= cpt;
  76. ticks_elapsed++;
  77. }
  78. } else {
  79. /* TODO: Reduce this to one fdiv op */
  80. cycles_remainder = cycles_elapsed % cpt;
  81. ticks_elapsed += cycles_elapsed / cpt;
  82. }
  83. /* convert from "division remainder" to "remainder of clock tick" */
  84. cycles_remainder = cpt - cycles_remainder;
  85. /* Determine when (in CR16 cycles) next IT interrupt will fire.
  86. * We want IT to fire modulo clocktick even if we miss/skip some.
  87. * But those interrupts don't in fact get delivered that regularly.
  88. */
  89. next_tick = now + cycles_remainder;
  90. cpuinfo->it_value = next_tick;
  91. /* Program the IT when to deliver the next interrupt.
  92. * Only bottom 32-bits of next_tick are writable in CR16!
  93. */
  94. mtctl(next_tick, 16);
  95. /* Skip one clocktick on purpose if we missed next_tick.
  96. * The new CR16 must be "later" than current CR16 otherwise
  97. * itimer would not fire until CR16 wrapped - e.g 4 seconds
  98. * later on a 1Ghz processor. We'll account for the missed
  99. * tick on the next timer interrupt.
  100. *
  101. * "next_tick - now" will always give the difference regardless
  102. * if one or the other wrapped. If "now" is "bigger" we'll end up
  103. * with a very large unsigned number.
  104. */
  105. now2 = mfctl(16);
  106. if (next_tick - now2 > cpt)
  107. mtctl(next_tick+cpt, 16);
  108. #if 1
  109. /*
  110. * GGG: DEBUG code for how many cycles programming CR16 used.
  111. */
  112. if (unlikely(now2 - now > 0x3000)) /* 12K cycles */
  113. printk (KERN_CRIT "timer_interrupt(CPU %d): SLOW! 0x%lx cycles!"
  114. " cyc %lX rem %lX "
  115. " next/now %lX/%lX\n",
  116. cpu, now2 - now, cycles_elapsed, cycles_remainder,
  117. next_tick, now );
  118. #endif
  119. /* Can we differentiate between "early CR16" (aka Scenario 1) and
  120. * "long delay" (aka Scenario 3)? I don't think so.
  121. *
  122. * Timer_interrupt will be delivered at least a few hundred cycles
  123. * after the IT fires. But it's arbitrary how much time passes
  124. * before we call it "late". I've picked one second.
  125. *
  126. * It's important NO printk's are between reading CR16 and
  127. * setting up the next value. May introduce huge variance.
  128. */
  129. if (unlikely(ticks_elapsed > HZ)) {
  130. /* Scenario 3: very long delay? bad in any case */
  131. printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!"
  132. " cycles %lX rem %lX "
  133. " next/now %lX/%lX\n",
  134. cpu,
  135. cycles_elapsed, cycles_remainder,
  136. next_tick, now );
  137. }
  138. /* Done mucking with unreliable delivery of interrupts.
  139. * Go do system house keeping.
  140. */
  141. if (!--cpuinfo->prof_counter) {
  142. cpuinfo->prof_counter = cpuinfo->prof_multiplier;
  143. update_process_times(user_mode(get_irq_regs()));
  144. }
  145. if (cpu == 0) {
  146. write_seqlock(&xtime_lock);
  147. do_timer(ticks_elapsed);
  148. write_sequnlock(&xtime_lock);
  149. }
  150. return IRQ_HANDLED;
  151. }
  152. unsigned long profile_pc(struct pt_regs *regs)
  153. {
  154. unsigned long pc = instruction_pointer(regs);
  155. if (regs->gr[0] & PSW_N)
  156. pc -= 4;
  157. #ifdef CONFIG_SMP
  158. if (in_lock_functions(pc))
  159. pc = regs->gr[2];
  160. #endif
  161. return pc;
  162. }
  163. EXPORT_SYMBOL(profile_pc);
  164. /* clock source code */
  165. static cycle_t read_cr16(struct clocksource *cs)
  166. {
  167. return get_cycles();
  168. }
  169. static struct clocksource clocksource_cr16 = {
  170. .name = "cr16",
  171. .rating = 300,
  172. .read = read_cr16,
  173. .mask = CLOCKSOURCE_MASK(BITS_PER_LONG),
  174. .mult = 0, /* to be set */
  175. .shift = 22,
  176. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  177. };
  178. #ifdef CONFIG_SMP
  179. int update_cr16_clocksource(void)
  180. {
  181. /* since the cr16 cycle counters are not synchronized across CPUs,
  182. we'll check if we should switch to a safe clocksource: */
  183. if (clocksource_cr16.rating != 0 && num_online_cpus() > 1) {
  184. clocksource_change_rating(&clocksource_cr16, 0);
  185. return 1;
  186. }
  187. return 0;
  188. }
  189. #else
  190. int update_cr16_clocksource(void)
  191. {
  192. return 0; /* no change */
  193. }
  194. #endif /*CONFIG_SMP*/
  195. void __init start_cpu_itimer(void)
  196. {
  197. unsigned int cpu = smp_processor_id();
  198. unsigned long next_tick = mfctl(16) + clocktick;
  199. mtctl(next_tick, 16); /* kick off Interval Timer (CR16) */
  200. per_cpu(cpu_data, cpu).it_value = next_tick;
  201. }
  202. static struct platform_device rtc_generic_dev = {
  203. .name = "rtc-generic",
  204. .id = -1,
  205. };
  206. static int __init rtc_init(void)
  207. {
  208. if (platform_device_register(&rtc_generic_dev) < 0)
  209. printk(KERN_ERR "unable to register rtc device...\n");
  210. /* not necessarily an error */
  211. return 0;
  212. }
  213. module_init(rtc_init);
  214. void __init time_init(void)
  215. {
  216. static struct pdc_tod tod_data;
  217. unsigned long current_cr16_khz;
  218. clocktick = (100 * PAGE0->mem_10msec) / HZ;
  219. start_cpu_itimer(); /* get CPU 0 started */
  220. /* register at clocksource framework */
  221. current_cr16_khz = PAGE0->mem_10msec/10; /* kHz */
  222. clocksource_cr16.mult = clocksource_khz2mult(current_cr16_khz,
  223. clocksource_cr16.shift);
  224. clocksource_register(&clocksource_cr16);
  225. if (pdc_tod_read(&tod_data) == 0) {
  226. unsigned long flags;
  227. write_seqlock_irqsave(&xtime_lock, flags);
  228. xtime.tv_sec = tod_data.tod_sec;
  229. xtime.tv_nsec = tod_data.tod_usec * 1000;
  230. set_normalized_timespec(&wall_to_monotonic,
  231. -xtime.tv_sec, -xtime.tv_nsec);
  232. write_sequnlock_irqrestore(&xtime_lock, flags);
  233. } else {
  234. printk(KERN_ERR "Error reading tod clock\n");
  235. xtime.tv_sec = 0;
  236. xtime.tv_nsec = 0;
  237. }
  238. }