smp.c 9.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418
  1. /*
  2. * This program is free software; you can redistribute it and/or
  3. * modify it under the terms of the GNU General Public License
  4. * as published by the Free Software Foundation; either version 2
  5. * of the License, or (at your option) any later version.
  6. *
  7. * This program is distributed in the hope that it will be useful,
  8. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  9. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  10. * GNU General Public License for more details.
  11. *
  12. * You should have received a copy of the GNU General Public License
  13. * along with this program; if not, write to the Free Software
  14. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  15. *
  16. * Copyright (C) 2000, 2001 Kanoj Sarcar
  17. * Copyright (C) 2000, 2001 Ralf Baechle
  18. * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
  19. * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
  20. */
  21. #include <linux/cache.h>
  22. #include <linux/delay.h>
  23. #include <linux/init.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/smp.h>
  26. #include <linux/spinlock.h>
  27. #include <linux/threads.h>
  28. #include <linux/module.h>
  29. #include <linux/time.h>
  30. #include <linux/timex.h>
  31. #include <linux/sched.h>
  32. #include <linux/cpumask.h>
  33. #include <linux/cpu.h>
  34. #include <linux/err.h>
  35. #include <asm/atomic.h>
  36. #include <asm/cpu.h>
  37. #include <asm/processor.h>
  38. #include <asm/r4k-timer.h>
  39. #include <asm/system.h>
  40. #include <asm/mmu_context.h>
  41. #include <asm/time.h>
  42. #ifdef CONFIG_MIPS_MT_SMTC
  43. #include <asm/mipsmtregs.h>
  44. #endif /* CONFIG_MIPS_MT_SMTC */
  45. volatile cpumask_t cpu_callin_map; /* Bitmask of started secondaries */
  46. int __cpu_number_map[NR_CPUS]; /* Map physical to logical */
  47. int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */
  48. extern void cpu_idle(void);
  49. /* Number of TCs (or siblings in Intel speak) per CPU core */
  50. int smp_num_siblings = 1;
  51. EXPORT_SYMBOL(smp_num_siblings);
  52. /* representing the TCs (or siblings in Intel speak) of each logical CPU */
  53. cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
  54. EXPORT_SYMBOL(cpu_sibling_map);
  55. /* representing cpus for which sibling maps can be computed */
  56. static cpumask_t cpu_sibling_setup_map;
  57. static inline void set_cpu_sibling_map(int cpu)
  58. {
  59. int i;
  60. cpu_set(cpu, cpu_sibling_setup_map);
  61. if (smp_num_siblings > 1) {
  62. for_each_cpu_mask(i, cpu_sibling_setup_map) {
  63. if (cpu_data[cpu].core == cpu_data[i].core) {
  64. cpu_set(i, cpu_sibling_map[cpu]);
  65. cpu_set(cpu, cpu_sibling_map[i]);
  66. }
  67. }
  68. } else
  69. cpu_set(cpu, cpu_sibling_map[cpu]);
  70. }
  71. struct plat_smp_ops *mp_ops;
  72. __cpuinit void register_smp_ops(struct plat_smp_ops *ops)
  73. {
  74. if (mp_ops)
  75. printk(KERN_WARNING "Overriding previously set SMP ops\n");
  76. mp_ops = ops;
  77. }
  78. /*
  79. * First C code run on the secondary CPUs after being started up by
  80. * the master.
  81. */
  82. asmlinkage __cpuinit void start_secondary(void)
  83. {
  84. unsigned int cpu;
  85. #ifdef CONFIG_MIPS_MT_SMTC
  86. /* Only do cpu_probe for first TC of CPU */
  87. if ((read_c0_tcbind() & TCBIND_CURTC) == 0)
  88. #endif /* CONFIG_MIPS_MT_SMTC */
  89. cpu_probe();
  90. cpu_report();
  91. per_cpu_trap_init();
  92. mips_clockevent_init();
  93. mp_ops->init_secondary();
  94. /*
  95. * XXX parity protection should be folded in here when it's converted
  96. * to an option instead of something based on .cputype
  97. */
  98. calibrate_delay();
  99. preempt_disable();
  100. cpu = smp_processor_id();
  101. cpu_data[cpu].udelay_val = loops_per_jiffy;
  102. notify_cpu_starting(cpu);
  103. mp_ops->smp_finish();
  104. set_cpu_sibling_map(cpu);
  105. cpu_set(cpu, cpu_callin_map);
  106. synchronise_count_slave();
  107. cpu_idle();
  108. }
  109. void arch_send_call_function_ipi(cpumask_t mask)
  110. {
  111. mp_ops->send_ipi_mask(mask, SMP_CALL_FUNCTION);
  112. }
  113. /*
  114. * We reuse the same vector for the single IPI
  115. */
  116. void arch_send_call_function_single_ipi(int cpu)
  117. {
  118. mp_ops->send_ipi_mask(cpumask_of_cpu(cpu), SMP_CALL_FUNCTION);
  119. }
  120. /*
  121. * Call into both interrupt handlers, as we share the IPI for them
  122. */
  123. void smp_call_function_interrupt(void)
  124. {
  125. irq_enter();
  126. generic_smp_call_function_single_interrupt();
  127. generic_smp_call_function_interrupt();
  128. irq_exit();
  129. }
  130. static void stop_this_cpu(void *dummy)
  131. {
  132. /*
  133. * Remove this CPU:
  134. */
  135. cpu_clear(smp_processor_id(), cpu_online_map);
  136. for (;;) {
  137. if (cpu_wait)
  138. (*cpu_wait)(); /* Wait if available. */
  139. }
  140. }
  141. void smp_send_stop(void)
  142. {
  143. smp_call_function(stop_this_cpu, NULL, 0);
  144. }
  145. void __init smp_cpus_done(unsigned int max_cpus)
  146. {
  147. mp_ops->cpus_done();
  148. synchronise_count_master();
  149. }
  150. /* called from main before smp_init() */
  151. void __init smp_prepare_cpus(unsigned int max_cpus)
  152. {
  153. init_new_context(current, &init_mm);
  154. current_thread_info()->cpu = 0;
  155. mp_ops->prepare_cpus(max_cpus);
  156. set_cpu_sibling_map(0);
  157. #ifndef CONFIG_HOTPLUG_CPU
  158. cpu_present_map = cpu_possible_map;
  159. #endif
  160. }
  161. /* preload SMP state for boot cpu */
  162. void __devinit smp_prepare_boot_cpu(void)
  163. {
  164. cpu_set(0, cpu_possible_map);
  165. cpu_set(0, cpu_online_map);
  166. cpu_set(0, cpu_callin_map);
  167. }
  168. /*
  169. * Called once for each "cpu_possible(cpu)". Needs to spin up the cpu
  170. * and keep control until "cpu_online(cpu)" is set. Note: cpu is
  171. * physical, not logical.
  172. */
  173. static struct task_struct *cpu_idle_thread[NR_CPUS];
  174. int __cpuinit __cpu_up(unsigned int cpu)
  175. {
  176. struct task_struct *idle;
  177. /*
  178. * Processor goes to start_secondary(), sets online flag
  179. * The following code is purely to make sure
  180. * Linux can schedule processes on this slave.
  181. */
  182. if (!cpu_idle_thread[cpu]) {
  183. idle = fork_idle(cpu);
  184. cpu_idle_thread[cpu] = idle;
  185. if (IS_ERR(idle))
  186. panic(KERN_ERR "Fork failed for CPU %d", cpu);
  187. } else {
  188. idle = cpu_idle_thread[cpu];
  189. init_idle(idle, cpu);
  190. }
  191. mp_ops->boot_secondary(cpu, idle);
  192. /*
  193. * Trust is futile. We should really have timeouts ...
  194. */
  195. while (!cpu_isset(cpu, cpu_callin_map))
  196. udelay(100);
  197. cpu_set(cpu, cpu_online_map);
  198. return 0;
  199. }
  200. /* Not really SMP stuff ... */
  201. int setup_profiling_timer(unsigned int multiplier)
  202. {
  203. return 0;
  204. }
  205. static void flush_tlb_all_ipi(void *info)
  206. {
  207. local_flush_tlb_all();
  208. }
  209. void flush_tlb_all(void)
  210. {
  211. on_each_cpu(flush_tlb_all_ipi, NULL, 1);
  212. }
  213. static void flush_tlb_mm_ipi(void *mm)
  214. {
  215. local_flush_tlb_mm((struct mm_struct *)mm);
  216. }
  217. /*
  218. * Special Variant of smp_call_function for use by TLB functions:
  219. *
  220. * o No return value
  221. * o collapses to normal function call on UP kernels
  222. * o collapses to normal function call on systems with a single shared
  223. * primary cache.
  224. * o CONFIG_MIPS_MT_SMTC currently implies there is only one physical core.
  225. */
  226. static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
  227. {
  228. #ifndef CONFIG_MIPS_MT_SMTC
  229. smp_call_function(func, info, 1);
  230. #endif
  231. }
  232. static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
  233. {
  234. preempt_disable();
  235. smp_on_other_tlbs(func, info);
  236. func(info);
  237. preempt_enable();
  238. }
  239. /*
  240. * The following tlb flush calls are invoked when old translations are
  241. * being torn down, or pte attributes are changing. For single threaded
  242. * address spaces, a new context is obtained on the current cpu, and tlb
  243. * context on other cpus are invalidated to force a new context allocation
  244. * at switch_mm time, should the mm ever be used on other cpus. For
  245. * multithreaded address spaces, intercpu interrupts have to be sent.
  246. * Another case where intercpu interrupts are required is when the target
  247. * mm might be active on another cpu (eg debuggers doing the flushes on
  248. * behalf of debugees, kswapd stealing pages from another process etc).
  249. * Kanoj 07/00.
  250. */
  251. void flush_tlb_mm(struct mm_struct *mm)
  252. {
  253. preempt_disable();
  254. if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
  255. smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
  256. } else {
  257. cpumask_t mask = cpu_online_map;
  258. unsigned int cpu;
  259. cpu_clear(smp_processor_id(), mask);
  260. for_each_cpu_mask(cpu, mask)
  261. if (cpu_context(cpu, mm))
  262. cpu_context(cpu, mm) = 0;
  263. }
  264. local_flush_tlb_mm(mm);
  265. preempt_enable();
  266. }
  267. struct flush_tlb_data {
  268. struct vm_area_struct *vma;
  269. unsigned long addr1;
  270. unsigned long addr2;
  271. };
  272. static void flush_tlb_range_ipi(void *info)
  273. {
  274. struct flush_tlb_data *fd = info;
  275. local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
  276. }
  277. void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
  278. {
  279. struct mm_struct *mm = vma->vm_mm;
  280. preempt_disable();
  281. if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
  282. struct flush_tlb_data fd = {
  283. .vma = vma,
  284. .addr1 = start,
  285. .addr2 = end,
  286. };
  287. smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
  288. } else {
  289. cpumask_t mask = cpu_online_map;
  290. unsigned int cpu;
  291. cpu_clear(smp_processor_id(), mask);
  292. for_each_cpu_mask(cpu, mask)
  293. if (cpu_context(cpu, mm))
  294. cpu_context(cpu, mm) = 0;
  295. }
  296. local_flush_tlb_range(vma, start, end);
  297. preempt_enable();
  298. }
  299. static void flush_tlb_kernel_range_ipi(void *info)
  300. {
  301. struct flush_tlb_data *fd = info;
  302. local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
  303. }
  304. void flush_tlb_kernel_range(unsigned long start, unsigned long end)
  305. {
  306. struct flush_tlb_data fd = {
  307. .addr1 = start,
  308. .addr2 = end,
  309. };
  310. on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
  311. }
  312. static void flush_tlb_page_ipi(void *info)
  313. {
  314. struct flush_tlb_data *fd = info;
  315. local_flush_tlb_page(fd->vma, fd->addr1);
  316. }
  317. void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
  318. {
  319. preempt_disable();
  320. if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
  321. struct flush_tlb_data fd = {
  322. .vma = vma,
  323. .addr1 = page,
  324. };
  325. smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
  326. } else {
  327. cpumask_t mask = cpu_online_map;
  328. unsigned int cpu;
  329. cpu_clear(smp_processor_id(), mask);
  330. for_each_cpu_mask(cpu, mask)
  331. if (cpu_context(cpu, vma->vm_mm))
  332. cpu_context(cpu, vma->vm_mm) = 0;
  333. }
  334. local_flush_tlb_page(vma, page);
  335. preempt_enable();
  336. }
  337. static void flush_tlb_one_ipi(void *info)
  338. {
  339. unsigned long vaddr = (unsigned long) info;
  340. local_flush_tlb_one(vaddr);
  341. }
  342. void flush_tlb_one(unsigned long vaddr)
  343. {
  344. smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
  345. }
  346. EXPORT_SYMBOL(flush_tlb_page);
  347. EXPORT_SYMBOL(flush_tlb_one);