io.h 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Copyright (C) 1994, 1995 Waldorf GmbH
  7. * Copyright (C) 1994 - 2000, 06 Ralf Baechle
  8. * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
  9. * Copyright (C) 2004, 2005 MIPS Technologies, Inc. All rights reserved.
  10. * Author: Maciej W. Rozycki <macro@mips.com>
  11. */
  12. #ifndef _ASM_IO_H
  13. #define _ASM_IO_H
  14. #include <linux/compiler.h>
  15. #include <linux/kernel.h>
  16. #include <linux/types.h>
  17. #include <asm/addrspace.h>
  18. #include <asm/byteorder.h>
  19. #include <asm/cpu.h>
  20. #include <asm/cpu-features.h>
  21. #include <asm-generic/iomap.h>
  22. #include <asm/page.h>
  23. #include <asm/pgtable-bits.h>
  24. #include <asm/processor.h>
  25. #include <asm/string.h>
  26. #include <ioremap.h>
  27. #include <mangle-port.h>
  28. /*
  29. * Slowdown I/O port space accesses for antique hardware.
  30. */
  31. #undef CONF_SLOWDOWN_IO
  32. /*
  33. * Raw operations are never swapped in software. OTOH values that raw
  34. * operations are working on may or may not have been swapped by the bus
  35. * hardware. An example use would be for flash memory that's used for
  36. * execute in place.
  37. */
  38. # define __raw_ioswabb(a, x) (x)
  39. # define __raw_ioswabw(a, x) (x)
  40. # define __raw_ioswabl(a, x) (x)
  41. # define __raw_ioswabq(a, x) (x)
  42. # define ____raw_ioswabq(a, x) (x)
  43. /* ioswab[bwlq], __mem_ioswab[bwlq] are defined in mangle-port.h */
  44. #define IO_SPACE_LIMIT 0xffff
  45. /*
  46. * On MIPS I/O ports are memory mapped, so we access them using normal
  47. * load/store instructions. mips_io_port_base is the virtual address to
  48. * which all ports are being mapped. For sake of efficiency some code
  49. * assumes that this is an address that can be loaded with a single lui
  50. * instruction, so the lower 16 bits must be zero. Should be true on
  51. * on any sane architecture; generic code does not use this assumption.
  52. */
  53. extern const unsigned long mips_io_port_base;
  54. /*
  55. * Gcc will generate code to load the value of mips_io_port_base after each
  56. * function call which may be fairly wasteful in some cases. So we don't
  57. * play quite by the book. We tell gcc mips_io_port_base is a long variable
  58. * which solves the code generation issue. Now we need to violate the
  59. * aliasing rules a little to make initialization possible and finally we
  60. * will need the barrier() to fight side effects of the aliasing chat.
  61. * This trickery will eventually collapse under gcc's optimizer. Oh well.
  62. */
  63. static inline void set_io_port_base(unsigned long base)
  64. {
  65. * (unsigned long *) &mips_io_port_base = base;
  66. barrier();
  67. }
  68. /*
  69. * Thanks to James van Artsdalen for a better timing-fix than
  70. * the two short jumps: using outb's to a nonexistent port seems
  71. * to guarantee better timings even on fast machines.
  72. *
  73. * On the other hand, I'd like to be sure of a non-existent port:
  74. * I feel a bit unsafe about using 0x80 (should be safe, though)
  75. *
  76. * Linus
  77. *
  78. */
  79. #define __SLOW_DOWN_IO \
  80. __asm__ __volatile__( \
  81. "sb\t$0,0x80(%0)" \
  82. : : "r" (mips_io_port_base));
  83. #ifdef CONF_SLOWDOWN_IO
  84. #ifdef REALLY_SLOW_IO
  85. #define SLOW_DOWN_IO { __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; }
  86. #else
  87. #define SLOW_DOWN_IO __SLOW_DOWN_IO
  88. #endif
  89. #else
  90. #define SLOW_DOWN_IO
  91. #endif
  92. /*
  93. * virt_to_phys - map virtual addresses to physical
  94. * @address: address to remap
  95. *
  96. * The returned physical address is the physical (CPU) mapping for
  97. * the memory address given. It is only valid to use this function on
  98. * addresses directly mapped or allocated via kmalloc.
  99. *
  100. * This function does not give bus mappings for DMA transfers. In
  101. * almost all conceivable cases a device driver should not be using
  102. * this function
  103. */
  104. static inline unsigned long virt_to_phys(volatile const void *address)
  105. {
  106. return (unsigned long)address - PAGE_OFFSET + PHYS_OFFSET;
  107. }
  108. /*
  109. * phys_to_virt - map physical address to virtual
  110. * @address: address to remap
  111. *
  112. * The returned virtual address is a current CPU mapping for
  113. * the memory address given. It is only valid to use this function on
  114. * addresses that have a kernel mapping
  115. *
  116. * This function does not handle bus mappings for DMA transfers. In
  117. * almost all conceivable cases a device driver should not be using
  118. * this function
  119. */
  120. static inline void * phys_to_virt(unsigned long address)
  121. {
  122. return (void *)(address + PAGE_OFFSET - PHYS_OFFSET);
  123. }
  124. /*
  125. * ISA I/O bus memory addresses are 1:1 with the physical address.
  126. */
  127. static inline unsigned long isa_virt_to_bus(volatile void * address)
  128. {
  129. return (unsigned long)address - PAGE_OFFSET;
  130. }
  131. static inline void * isa_bus_to_virt(unsigned long address)
  132. {
  133. return (void *)(address + PAGE_OFFSET);
  134. }
  135. #define isa_page_to_bus page_to_phys
  136. /*
  137. * However PCI ones are not necessarily 1:1 and therefore these interfaces
  138. * are forbidden in portable PCI drivers.
  139. *
  140. * Allow them for x86 for legacy drivers, though.
  141. */
  142. #define virt_to_bus virt_to_phys
  143. #define bus_to_virt phys_to_virt
  144. /*
  145. * Change "struct page" to physical address.
  146. */
  147. #define page_to_phys(page) ((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT)
  148. extern void __iomem * __ioremap(phys_t offset, phys_t size, unsigned long flags);
  149. extern void __iounmap(const volatile void __iomem *addr);
  150. static inline void __iomem * __ioremap_mode(phys_t offset, unsigned long size,
  151. unsigned long flags)
  152. {
  153. void __iomem *addr = plat_ioremap(offset, size, flags);
  154. if (addr)
  155. return addr;
  156. #define __IS_LOW512(addr) (!((phys_t)(addr) & (phys_t) ~0x1fffffffULL))
  157. if (cpu_has_64bit_addresses) {
  158. u64 base = UNCAC_BASE;
  159. /*
  160. * R10000 supports a 2 bit uncached attribute therefore
  161. * UNCAC_BASE may not equal IO_BASE.
  162. */
  163. if (flags == _CACHE_UNCACHED)
  164. base = (u64) IO_BASE;
  165. return (void __iomem *) (unsigned long) (base + offset);
  166. } else if (__builtin_constant_p(offset) &&
  167. __builtin_constant_p(size) && __builtin_constant_p(flags)) {
  168. phys_t phys_addr, last_addr;
  169. phys_addr = fixup_bigphys_addr(offset, size);
  170. /* Don't allow wraparound or zero size. */
  171. last_addr = phys_addr + size - 1;
  172. if (!size || last_addr < phys_addr)
  173. return NULL;
  174. /*
  175. * Map uncached objects in the low 512MB of address
  176. * space using KSEG1.
  177. */
  178. if (__IS_LOW512(phys_addr) && __IS_LOW512(last_addr) &&
  179. flags == _CACHE_UNCACHED)
  180. return (void __iomem *)
  181. (unsigned long)CKSEG1ADDR(phys_addr);
  182. }
  183. return __ioremap(offset, size, flags);
  184. #undef __IS_LOW512
  185. }
  186. /*
  187. * ioremap - map bus memory into CPU space
  188. * @offset: bus address of the memory
  189. * @size: size of the resource to map
  190. *
  191. * ioremap performs a platform specific sequence of operations to
  192. * make bus memory CPU accessible via the readb/readw/readl/writeb/
  193. * writew/writel functions and the other mmio helpers. The returned
  194. * address is not guaranteed to be usable directly as a virtual
  195. * address.
  196. */
  197. #define ioremap(offset, size) \
  198. __ioremap_mode((offset), (size), _CACHE_UNCACHED)
  199. /*
  200. * ioremap_nocache - map bus memory into CPU space
  201. * @offset: bus address of the memory
  202. * @size: size of the resource to map
  203. *
  204. * ioremap_nocache performs a platform specific sequence of operations to
  205. * make bus memory CPU accessible via the readb/readw/readl/writeb/
  206. * writew/writel functions and the other mmio helpers. The returned
  207. * address is not guaranteed to be usable directly as a virtual
  208. * address.
  209. *
  210. * This version of ioremap ensures that the memory is marked uncachable
  211. * on the CPU as well as honouring existing caching rules from things like
  212. * the PCI bus. Note that there are other caches and buffers on many
  213. * busses. In paticular driver authors should read up on PCI writes
  214. *
  215. * It's useful if some control registers are in such an area and
  216. * write combining or read caching is not desirable:
  217. */
  218. #define ioremap_nocache(offset, size) \
  219. __ioremap_mode((offset), (size), _CACHE_UNCACHED)
  220. /*
  221. * ioremap_cachable - map bus memory into CPU space
  222. * @offset: bus address of the memory
  223. * @size: size of the resource to map
  224. *
  225. * ioremap_nocache performs a platform specific sequence of operations to
  226. * make bus memory CPU accessible via the readb/readw/readl/writeb/
  227. * writew/writel functions and the other mmio helpers. The returned
  228. * address is not guaranteed to be usable directly as a virtual
  229. * address.
  230. *
  231. * This version of ioremap ensures that the memory is marked cachable by
  232. * the CPU. Also enables full write-combining. Useful for some
  233. * memory-like regions on I/O busses.
  234. */
  235. #define ioremap_cachable(offset, size) \
  236. __ioremap_mode((offset), (size), _page_cachable_default)
  237. /*
  238. * These two are MIPS specific ioremap variant. ioremap_cacheable_cow
  239. * requests a cachable mapping, ioremap_uncached_accelerated requests a
  240. * mapping using the uncached accelerated mode which isn't supported on
  241. * all processors.
  242. */
  243. #define ioremap_cacheable_cow(offset, size) \
  244. __ioremap_mode((offset), (size), _CACHE_CACHABLE_COW)
  245. #define ioremap_uncached_accelerated(offset, size) \
  246. __ioremap_mode((offset), (size), _CACHE_UNCACHED_ACCELERATED)
  247. static inline void iounmap(const volatile void __iomem *addr)
  248. {
  249. if (plat_iounmap(addr))
  250. return;
  251. #define __IS_KSEG1(addr) (((unsigned long)(addr) & ~0x1fffffffUL) == CKSEG1)
  252. if (cpu_has_64bit_addresses ||
  253. (__builtin_constant_p(addr) && __IS_KSEG1(addr)))
  254. return;
  255. __iounmap(addr);
  256. #undef __IS_KSEG1
  257. }
  258. #ifdef CONFIG_CPU_CAVIUM_OCTEON
  259. #define war_octeon_io_reorder_wmb() wmb()
  260. #else
  261. #define war_octeon_io_reorder_wmb() do { } while (0)
  262. #endif
  263. #define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, irq) \
  264. \
  265. static inline void pfx##write##bwlq(type val, \
  266. volatile void __iomem *mem) \
  267. { \
  268. volatile type *__mem; \
  269. type __val; \
  270. \
  271. war_octeon_io_reorder_wmb(); \
  272. \
  273. __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \
  274. \
  275. __val = pfx##ioswab##bwlq(__mem, val); \
  276. \
  277. if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
  278. *__mem = __val; \
  279. else if (cpu_has_64bits) { \
  280. unsigned long __flags; \
  281. type __tmp; \
  282. \
  283. if (irq) \
  284. local_irq_save(__flags); \
  285. __asm__ __volatile__( \
  286. ".set mips3" "\t\t# __writeq""\n\t" \
  287. "dsll32 %L0, %L0, 0" "\n\t" \
  288. "dsrl32 %L0, %L0, 0" "\n\t" \
  289. "dsll32 %M0, %M0, 0" "\n\t" \
  290. "or %L0, %L0, %M0" "\n\t" \
  291. "sd %L0, %2" "\n\t" \
  292. ".set mips0" "\n" \
  293. : "=r" (__tmp) \
  294. : "0" (__val), "m" (*__mem)); \
  295. if (irq) \
  296. local_irq_restore(__flags); \
  297. } else \
  298. BUG(); \
  299. } \
  300. \
  301. static inline type pfx##read##bwlq(const volatile void __iomem *mem) \
  302. { \
  303. volatile type *__mem; \
  304. type __val; \
  305. \
  306. __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \
  307. \
  308. if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
  309. __val = *__mem; \
  310. else if (cpu_has_64bits) { \
  311. unsigned long __flags; \
  312. \
  313. if (irq) \
  314. local_irq_save(__flags); \
  315. __asm__ __volatile__( \
  316. ".set mips3" "\t\t# __readq" "\n\t" \
  317. "ld %L0, %1" "\n\t" \
  318. "dsra32 %M0, %L0, 0" "\n\t" \
  319. "sll %L0, %L0, 0" "\n\t" \
  320. ".set mips0" "\n" \
  321. : "=r" (__val) \
  322. : "m" (*__mem)); \
  323. if (irq) \
  324. local_irq_restore(__flags); \
  325. } else { \
  326. __val = 0; \
  327. BUG(); \
  328. } \
  329. \
  330. return pfx##ioswab##bwlq(__mem, __val); \
  331. }
  332. #define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, p, slow) \
  333. \
  334. static inline void pfx##out##bwlq##p(type val, unsigned long port) \
  335. { \
  336. volatile type *__addr; \
  337. type __val; \
  338. \
  339. war_octeon_io_reorder_wmb(); \
  340. \
  341. __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
  342. \
  343. __val = pfx##ioswab##bwlq(__addr, val); \
  344. \
  345. /* Really, we want this to be atomic */ \
  346. BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
  347. \
  348. *__addr = __val; \
  349. slow; \
  350. } \
  351. \
  352. static inline type pfx##in##bwlq##p(unsigned long port) \
  353. { \
  354. volatile type *__addr; \
  355. type __val; \
  356. \
  357. __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
  358. \
  359. BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
  360. \
  361. __val = *__addr; \
  362. slow; \
  363. \
  364. return pfx##ioswab##bwlq(__addr, __val); \
  365. }
  366. #define __BUILD_MEMORY_PFX(bus, bwlq, type) \
  367. \
  368. __BUILD_MEMORY_SINGLE(bus, bwlq, type, 1)
  369. #define BUILDIO_MEM(bwlq, type) \
  370. \
  371. __BUILD_MEMORY_PFX(__raw_, bwlq, type) \
  372. __BUILD_MEMORY_PFX(, bwlq, type) \
  373. __BUILD_MEMORY_PFX(__mem_, bwlq, type) \
  374. BUILDIO_MEM(b, u8)
  375. BUILDIO_MEM(w, u16)
  376. BUILDIO_MEM(l, u32)
  377. BUILDIO_MEM(q, u64)
  378. #define __BUILD_IOPORT_PFX(bus, bwlq, type) \
  379. __BUILD_IOPORT_SINGLE(bus, bwlq, type, ,) \
  380. __BUILD_IOPORT_SINGLE(bus, bwlq, type, _p, SLOW_DOWN_IO)
  381. #define BUILDIO_IOPORT(bwlq, type) \
  382. __BUILD_IOPORT_PFX(, bwlq, type) \
  383. __BUILD_IOPORT_PFX(__mem_, bwlq, type)
  384. BUILDIO_IOPORT(b, u8)
  385. BUILDIO_IOPORT(w, u16)
  386. BUILDIO_IOPORT(l, u32)
  387. #ifdef CONFIG_64BIT
  388. BUILDIO_IOPORT(q, u64)
  389. #endif
  390. #define __BUILDIO(bwlq, type) \
  391. \
  392. __BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 0)
  393. __BUILDIO(q, u64)
  394. #define readb_relaxed readb
  395. #define readw_relaxed readw
  396. #define readl_relaxed readl
  397. #define readq_relaxed readq
  398. /*
  399. * Some code tests for these symbols
  400. */
  401. #define readq readq
  402. #define writeq writeq
  403. #define __BUILD_MEMORY_STRING(bwlq, type) \
  404. \
  405. static inline void writes##bwlq(volatile void __iomem *mem, \
  406. const void *addr, unsigned int count) \
  407. { \
  408. const volatile type *__addr = addr; \
  409. \
  410. while (count--) { \
  411. __mem_write##bwlq(*__addr, mem); \
  412. __addr++; \
  413. } \
  414. } \
  415. \
  416. static inline void reads##bwlq(volatile void __iomem *mem, void *addr, \
  417. unsigned int count) \
  418. { \
  419. volatile type *__addr = addr; \
  420. \
  421. while (count--) { \
  422. *__addr = __mem_read##bwlq(mem); \
  423. __addr++; \
  424. } \
  425. }
  426. #define __BUILD_IOPORT_STRING(bwlq, type) \
  427. \
  428. static inline void outs##bwlq(unsigned long port, const void *addr, \
  429. unsigned int count) \
  430. { \
  431. const volatile type *__addr = addr; \
  432. \
  433. while (count--) { \
  434. __mem_out##bwlq(*__addr, port); \
  435. __addr++; \
  436. } \
  437. } \
  438. \
  439. static inline void ins##bwlq(unsigned long port, void *addr, \
  440. unsigned int count) \
  441. { \
  442. volatile type *__addr = addr; \
  443. \
  444. while (count--) { \
  445. *__addr = __mem_in##bwlq(port); \
  446. __addr++; \
  447. } \
  448. }
  449. #define BUILDSTRING(bwlq, type) \
  450. \
  451. __BUILD_MEMORY_STRING(bwlq, type) \
  452. __BUILD_IOPORT_STRING(bwlq, type)
  453. BUILDSTRING(b, u8)
  454. BUILDSTRING(w, u16)
  455. BUILDSTRING(l, u32)
  456. #ifdef CONFIG_64BIT
  457. BUILDSTRING(q, u64)
  458. #endif
  459. #ifdef CONFIG_CPU_CAVIUM_OCTEON
  460. #define mmiowb() wmb()
  461. #else
  462. /* Depends on MIPS II instruction set */
  463. #define mmiowb() asm volatile ("sync" ::: "memory")
  464. #endif
  465. static inline void memset_io(volatile void __iomem *addr, unsigned char val, int count)
  466. {
  467. memset((void __force *) addr, val, count);
  468. }
  469. static inline void memcpy_fromio(void *dst, const volatile void __iomem *src, int count)
  470. {
  471. memcpy(dst, (void __force *) src, count);
  472. }
  473. static inline void memcpy_toio(volatile void __iomem *dst, const void *src, int count)
  474. {
  475. memcpy((void __force *) dst, src, count);
  476. }
  477. /*
  478. * The caches on some architectures aren't dma-coherent and have need to
  479. * handle this in software. There are three types of operations that
  480. * can be applied to dma buffers.
  481. *
  482. * - dma_cache_wback_inv(start, size) makes caches and coherent by
  483. * writing the content of the caches back to memory, if necessary.
  484. * The function also invalidates the affected part of the caches as
  485. * necessary before DMA transfers from outside to memory.
  486. * - dma_cache_wback(start, size) makes caches and coherent by
  487. * writing the content of the caches back to memory, if necessary.
  488. * The function also invalidates the affected part of the caches as
  489. * necessary before DMA transfers from outside to memory.
  490. * - dma_cache_inv(start, size) invalidates the affected parts of the
  491. * caches. Dirty lines of the caches may be written back or simply
  492. * be discarded. This operation is necessary before dma operations
  493. * to the memory.
  494. *
  495. * This API used to be exported; it now is for arch code internal use only.
  496. */
  497. #ifdef CONFIG_DMA_NONCOHERENT
  498. extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size);
  499. extern void (*_dma_cache_wback)(unsigned long start, unsigned long size);
  500. extern void (*_dma_cache_inv)(unsigned long start, unsigned long size);
  501. #define dma_cache_wback_inv(start, size) _dma_cache_wback_inv(start, size)
  502. #define dma_cache_wback(start, size) _dma_cache_wback(start, size)
  503. #define dma_cache_inv(start, size) _dma_cache_inv(start, size)
  504. #else /* Sane hardware */
  505. #define dma_cache_wback_inv(start,size) \
  506. do { (void) (start); (void) (size); } while (0)
  507. #define dma_cache_wback(start,size) \
  508. do { (void) (start); (void) (size); } while (0)
  509. #define dma_cache_inv(start,size) \
  510. do { (void) (start); (void) (size); } while (0)
  511. #endif /* CONFIG_DMA_NONCOHERENT */
  512. /*
  513. * Read a 32-bit register that requires a 64-bit read cycle on the bus.
  514. * Avoid interrupt mucking, just adjust the address for 4-byte access.
  515. * Assume the addresses are 8-byte aligned.
  516. */
  517. #ifdef __MIPSEB__
  518. #define __CSR_32_ADJUST 4
  519. #else
  520. #define __CSR_32_ADJUST 0
  521. #endif
  522. #define csr_out32(v, a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v))
  523. #define csr_in32(a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST))
  524. /*
  525. * Convert a physical pointer to a virtual kernel pointer for /dev/mem
  526. * access
  527. */
  528. #define xlate_dev_mem_ptr(p) __va(p)
  529. /*
  530. * Convert a virtual cached pointer to an uncached pointer
  531. */
  532. #define xlate_dev_kmem_ptr(p) p
  533. #endif /* _ASM_IO_H */