process.c 6.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249
  1. /*
  2. * Copyright (C) 2008-2009 Michal Simek <monstr@monstr.eu>
  3. * Copyright (C) 2008-2009 PetaLogix
  4. * Copyright (C) 2006 Atmark Techno, Inc.
  5. *
  6. * This file is subject to the terms and conditions of the GNU General Public
  7. * License. See the file "COPYING" in the main directory of this archive
  8. * for more details.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/sched.h>
  12. #include <linux/pm.h>
  13. #include <linux/tick.h>
  14. #include <linux/bitops.h>
  15. #include <asm/system.h>
  16. #include <asm/pgalloc.h>
  17. void show_regs(struct pt_regs *regs)
  18. {
  19. printk(KERN_INFO " Registers dump: mode=%X\r\n", regs->pt_mode);
  20. printk(KERN_INFO " r1=%08lX, r2=%08lX, r3=%08lX, r4=%08lX\n",
  21. regs->r1, regs->r2, regs->r3, regs->r4);
  22. printk(KERN_INFO " r5=%08lX, r6=%08lX, r7=%08lX, r8=%08lX\n",
  23. regs->r5, regs->r6, regs->r7, regs->r8);
  24. printk(KERN_INFO " r9=%08lX, r10=%08lX, r11=%08lX, r12=%08lX\n",
  25. regs->r9, regs->r10, regs->r11, regs->r12);
  26. printk(KERN_INFO " r13=%08lX, r14=%08lX, r15=%08lX, r16=%08lX\n",
  27. regs->r13, regs->r14, regs->r15, regs->r16);
  28. printk(KERN_INFO " r17=%08lX, r18=%08lX, r19=%08lX, r20=%08lX\n",
  29. regs->r17, regs->r18, regs->r19, regs->r20);
  30. printk(KERN_INFO " r21=%08lX, r22=%08lX, r23=%08lX, r24=%08lX\n",
  31. regs->r21, regs->r22, regs->r23, regs->r24);
  32. printk(KERN_INFO " r25=%08lX, r26=%08lX, r27=%08lX, r28=%08lX\n",
  33. regs->r25, regs->r26, regs->r27, regs->r28);
  34. printk(KERN_INFO " r29=%08lX, r30=%08lX, r31=%08lX, rPC=%08lX\n",
  35. regs->r29, regs->r30, regs->r31, regs->pc);
  36. printk(KERN_INFO " msr=%08lX, ear=%08lX, esr=%08lX, fsr=%08lX\n",
  37. regs->msr, regs->ear, regs->esr, regs->fsr);
  38. }
  39. void (*pm_idle)(void);
  40. void (*pm_power_off)(void) = NULL;
  41. EXPORT_SYMBOL(pm_power_off);
  42. static int hlt_counter = 1;
  43. void disable_hlt(void)
  44. {
  45. hlt_counter++;
  46. }
  47. EXPORT_SYMBOL(disable_hlt);
  48. void enable_hlt(void)
  49. {
  50. hlt_counter--;
  51. }
  52. EXPORT_SYMBOL(enable_hlt);
  53. static int __init nohlt_setup(char *__unused)
  54. {
  55. hlt_counter = 1;
  56. return 1;
  57. }
  58. __setup("nohlt", nohlt_setup);
  59. static int __init hlt_setup(char *__unused)
  60. {
  61. hlt_counter = 0;
  62. return 1;
  63. }
  64. __setup("hlt", hlt_setup);
  65. void default_idle(void)
  66. {
  67. if (!hlt_counter) {
  68. clear_thread_flag(TIF_POLLING_NRFLAG);
  69. smp_mb__after_clear_bit();
  70. local_irq_disable();
  71. while (!need_resched())
  72. cpu_sleep();
  73. local_irq_enable();
  74. set_thread_flag(TIF_POLLING_NRFLAG);
  75. } else
  76. while (!need_resched())
  77. cpu_relax();
  78. }
  79. void cpu_idle(void)
  80. {
  81. set_thread_flag(TIF_POLLING_NRFLAG);
  82. /* endless idle loop with no priority at all */
  83. while (1) {
  84. void (*idle)(void) = pm_idle;
  85. if (!idle)
  86. idle = default_idle;
  87. tick_nohz_stop_sched_tick(1);
  88. while (!need_resched())
  89. idle();
  90. tick_nohz_restart_sched_tick();
  91. preempt_enable_no_resched();
  92. schedule();
  93. preempt_disable();
  94. check_pgt_cache();
  95. }
  96. }
  97. void flush_thread(void)
  98. {
  99. }
  100. int copy_thread(unsigned long clone_flags, unsigned long usp,
  101. unsigned long unused,
  102. struct task_struct *p, struct pt_regs *regs)
  103. {
  104. struct pt_regs *childregs = task_pt_regs(p);
  105. struct thread_info *ti = task_thread_info(p);
  106. *childregs = *regs;
  107. if (user_mode(regs))
  108. childregs->r1 = usp;
  109. else
  110. childregs->r1 = ((unsigned long) ti) + THREAD_SIZE;
  111. #ifndef CONFIG_MMU
  112. memset(&ti->cpu_context, 0, sizeof(struct cpu_context));
  113. ti->cpu_context.r1 = (unsigned long)childregs;
  114. ti->cpu_context.msr = (unsigned long)childregs->msr;
  115. #else
  116. /* if creating a kernel thread then update the current reg (we don't
  117. * want to use the parent's value when restoring by POP_STATE) */
  118. if (kernel_mode(regs))
  119. /* save new current on stack to use POP_STATE */
  120. childregs->CURRENT_TASK = (unsigned long)p;
  121. /* if returning to user then use the parent's value of this register */
  122. /* if we're creating a new kernel thread then just zeroing all
  123. * the registers. That's OK for a brand new thread.*/
  124. /* Pls. note that some of them will be restored in POP_STATE */
  125. if (kernel_mode(regs))
  126. memset(&ti->cpu_context, 0, sizeof(struct cpu_context));
  127. /* if this thread is created for fork/vfork/clone, then we want to
  128. * restore all the parent's context */
  129. /* in addition to the registers which will be restored by POP_STATE */
  130. else {
  131. ti->cpu_context = *(struct cpu_context *)regs;
  132. childregs->msr |= MSR_UMS;
  133. }
  134. /* FIXME STATE_SAVE_PT_OFFSET; */
  135. ti->cpu_context.r1 = (unsigned long)childregs - STATE_SAVE_ARG_SPACE;
  136. /* we should consider the fact that childregs is a copy of the parent
  137. * regs which were saved immediately after entering the kernel state
  138. * before enabling VM. This MSR will be restored in switch_to and
  139. * RETURN() and we want to have the right machine state there
  140. * specifically this state must have INTs disabled before and enabled
  141. * after performing rtbd
  142. * compose the right MSR for RETURN(). It will work for switch_to also
  143. * excepting for VM and UMS
  144. * don't touch UMS , CARRY and cache bits
  145. * right now MSR is a copy of parent one */
  146. childregs->msr |= MSR_BIP;
  147. childregs->msr &= ~MSR_EIP;
  148. childregs->msr |= MSR_IE;
  149. childregs->msr &= ~MSR_VM;
  150. childregs->msr |= MSR_VMS;
  151. childregs->msr |= MSR_EE; /* exceptions will be enabled*/
  152. ti->cpu_context.msr = (childregs->msr|MSR_VM);
  153. ti->cpu_context.msr &= ~MSR_UMS; /* switch_to to kernel mode */
  154. #endif
  155. ti->cpu_context.r15 = (unsigned long)ret_from_fork - 8;
  156. if (clone_flags & CLONE_SETTLS)
  157. ;
  158. return 0;
  159. }
  160. #ifndef CONFIG_MMU
  161. /*
  162. * Return saved PC of a blocked thread.
  163. */
  164. unsigned long thread_saved_pc(struct task_struct *tsk)
  165. {
  166. struct cpu_context *ctx =
  167. &(((struct thread_info *)(tsk->stack))->cpu_context);
  168. /* Check whether the thread is blocked in resume() */
  169. if (in_sched_functions(ctx->r15))
  170. return (unsigned long)ctx->r15;
  171. else
  172. return ctx->r14;
  173. }
  174. #endif
  175. static void kernel_thread_helper(int (*fn)(void *), void *arg)
  176. {
  177. fn(arg);
  178. do_exit(-1);
  179. }
  180. int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
  181. {
  182. struct pt_regs regs;
  183. memset(&regs, 0, sizeof(regs));
  184. /* store them in non-volatile registers */
  185. regs.r5 = (unsigned long)fn;
  186. regs.r6 = (unsigned long)arg;
  187. local_save_flags(regs.msr);
  188. regs.pc = (unsigned long)kernel_thread_helper;
  189. regs.pt_mode = 1;
  190. return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0,
  191. &regs, 0, NULL, NULL);
  192. }
  193. EXPORT_SYMBOL_GPL(kernel_thread);
  194. unsigned long get_wchan(struct task_struct *p)
  195. {
  196. /* TBD (used by procfs) */
  197. return 0;
  198. }
  199. /* Set up a thread for executing a new program */
  200. void start_thread(struct pt_regs *regs, unsigned long pc, unsigned long usp)
  201. {
  202. set_fs(USER_DS);
  203. regs->pc = pc;
  204. regs->r1 = usp;
  205. regs->pt_mode = 0;
  206. }
  207. #ifdef CONFIG_MMU
  208. #include <linux/elfcore.h>
  209. /*
  210. * Set up a thread for executing a new program
  211. */
  212. int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpregs)
  213. {
  214. return 0; /* MicroBlaze has no separate FPU registers */
  215. }
  216. #endif /* CONFIG_MMU */