dma.c 3.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file COPYING in the main directory of this archive
  4. * for more details.
  5. */
  6. #undef DEBUG
  7. #include <linux/dma-mapping.h>
  8. #include <linux/device.h>
  9. #include <linux/kernel.h>
  10. #include <linux/scatterlist.h>
  11. #include <linux/vmalloc.h>
  12. #include <asm/pgalloc.h>
  13. void *dma_alloc_coherent(struct device *dev, size_t size,
  14. dma_addr_t *handle, gfp_t flag)
  15. {
  16. struct page *page, **map;
  17. pgprot_t pgprot;
  18. void *addr;
  19. int i, order;
  20. pr_debug("dma_alloc_coherent: %d,%x\n", size, flag);
  21. size = PAGE_ALIGN(size);
  22. order = get_order(size);
  23. page = alloc_pages(flag, order);
  24. if (!page)
  25. return NULL;
  26. *handle = page_to_phys(page);
  27. map = kmalloc(sizeof(struct page *) << order, flag & ~__GFP_DMA);
  28. if (!map) {
  29. __free_pages(page, order);
  30. return NULL;
  31. }
  32. split_page(page, order);
  33. order = 1 << order;
  34. size >>= PAGE_SHIFT;
  35. map[0] = page;
  36. for (i = 1; i < size; i++)
  37. map[i] = page + i;
  38. for (; i < order; i++)
  39. __free_page(page + i);
  40. pgprot = __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_DIRTY);
  41. if (CPU_IS_040_OR_060)
  42. pgprot_val(pgprot) |= _PAGE_GLOBAL040 | _PAGE_NOCACHE_S;
  43. else
  44. pgprot_val(pgprot) |= _PAGE_NOCACHE030;
  45. addr = vmap(map, size, VM_MAP, pgprot);
  46. kfree(map);
  47. return addr;
  48. }
  49. EXPORT_SYMBOL(dma_alloc_coherent);
  50. void dma_free_coherent(struct device *dev, size_t size,
  51. void *addr, dma_addr_t handle)
  52. {
  53. pr_debug("dma_free_coherent: %p, %x\n", addr, handle);
  54. vfree(addr);
  55. }
  56. EXPORT_SYMBOL(dma_free_coherent);
  57. void dma_sync_single_for_device(struct device *dev, dma_addr_t handle,
  58. size_t size, enum dma_data_direction dir)
  59. {
  60. switch (dir) {
  61. case DMA_TO_DEVICE:
  62. cache_push(handle, size);
  63. break;
  64. case DMA_FROM_DEVICE:
  65. cache_clear(handle, size);
  66. break;
  67. default:
  68. if (printk_ratelimit())
  69. printk("dma_sync_single_for_device: unsupported dir %u\n", dir);
  70. break;
  71. }
  72. }
  73. EXPORT_SYMBOL(dma_sync_single_for_device);
  74. void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nents,
  75. enum dma_data_direction dir)
  76. {
  77. int i;
  78. for (i = 0; i < nents; sg++, i++)
  79. dma_sync_single_for_device(dev, sg->dma_address, sg->length, dir);
  80. }
  81. EXPORT_SYMBOL(dma_sync_sg_for_device);
  82. dma_addr_t dma_map_single(struct device *dev, void *addr, size_t size,
  83. enum dma_data_direction dir)
  84. {
  85. dma_addr_t handle = virt_to_bus(addr);
  86. dma_sync_single_for_device(dev, handle, size, dir);
  87. return handle;
  88. }
  89. EXPORT_SYMBOL(dma_map_single);
  90. dma_addr_t dma_map_page(struct device *dev, struct page *page,
  91. unsigned long offset, size_t size,
  92. enum dma_data_direction dir)
  93. {
  94. dma_addr_t handle = page_to_phys(page) + offset;
  95. dma_sync_single_for_device(dev, handle, size, dir);
  96. return handle;
  97. }
  98. EXPORT_SYMBOL(dma_map_page);
  99. int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
  100. enum dma_data_direction dir)
  101. {
  102. int i;
  103. for (i = 0; i < nents; sg++, i++) {
  104. sg->dma_address = sg_phys(sg);
  105. dma_sync_single_for_device(dev, sg->dma_address, sg->length, dir);
  106. }
  107. return nents;
  108. }
  109. EXPORT_SYMBOL(dma_map_sg);