process.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841
  1. /*
  2. * Architecture-specific setup.
  3. *
  4. * Copyright (C) 1998-2003 Hewlett-Packard Co
  5. * David Mosberger-Tang <davidm@hpl.hp.com>
  6. * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
  7. *
  8. * 2005-10-07 Keith Owens <kaos@sgi.com>
  9. * Add notify_die() hooks.
  10. */
  11. #include <linux/cpu.h>
  12. #include <linux/pm.h>
  13. #include <linux/elf.h>
  14. #include <linux/errno.h>
  15. #include <linux/kallsyms.h>
  16. #include <linux/kernel.h>
  17. #include <linux/mm.h>
  18. #include <linux/module.h>
  19. #include <linux/notifier.h>
  20. #include <linux/personality.h>
  21. #include <linux/sched.h>
  22. #include <linux/slab.h>
  23. #include <linux/stddef.h>
  24. #include <linux/thread_info.h>
  25. #include <linux/unistd.h>
  26. #include <linux/efi.h>
  27. #include <linux/interrupt.h>
  28. #include <linux/delay.h>
  29. #include <linux/kdebug.h>
  30. #include <linux/utsname.h>
  31. #include <linux/tracehook.h>
  32. #include <asm/cpu.h>
  33. #include <asm/delay.h>
  34. #include <asm/elf.h>
  35. #include <asm/ia32.h>
  36. #include <asm/irq.h>
  37. #include <asm/kexec.h>
  38. #include <asm/pgalloc.h>
  39. #include <asm/processor.h>
  40. #include <asm/sal.h>
  41. #include <asm/tlbflush.h>
  42. #include <asm/uaccess.h>
  43. #include <asm/unwind.h>
  44. #include <asm/user.h>
  45. #include "entry.h"
  46. #ifdef CONFIG_PERFMON
  47. # include <asm/perfmon.h>
  48. #endif
  49. #include "sigframe.h"
  50. void (*ia64_mark_idle)(int);
  51. unsigned long boot_option_idle_override = 0;
  52. EXPORT_SYMBOL(boot_option_idle_override);
  53. unsigned long idle_halt;
  54. EXPORT_SYMBOL(idle_halt);
  55. unsigned long idle_nomwait;
  56. EXPORT_SYMBOL(idle_nomwait);
  57. void
  58. ia64_do_show_stack (struct unw_frame_info *info, void *arg)
  59. {
  60. unsigned long ip, sp, bsp;
  61. char buf[128]; /* don't make it so big that it overflows the stack! */
  62. printk("\nCall Trace:\n");
  63. do {
  64. unw_get_ip(info, &ip);
  65. if (ip == 0)
  66. break;
  67. unw_get_sp(info, &sp);
  68. unw_get_bsp(info, &bsp);
  69. snprintf(buf, sizeof(buf),
  70. " [<%016lx>] %%s\n"
  71. " sp=%016lx bsp=%016lx\n",
  72. ip, sp, bsp);
  73. print_symbol(buf, ip);
  74. } while (unw_unwind(info) >= 0);
  75. }
  76. void
  77. show_stack (struct task_struct *task, unsigned long *sp)
  78. {
  79. if (!task)
  80. unw_init_running(ia64_do_show_stack, NULL);
  81. else {
  82. struct unw_frame_info info;
  83. unw_init_from_blocked_task(&info, task);
  84. ia64_do_show_stack(&info, NULL);
  85. }
  86. }
  87. void
  88. dump_stack (void)
  89. {
  90. show_stack(NULL, NULL);
  91. }
  92. EXPORT_SYMBOL(dump_stack);
  93. void
  94. show_regs (struct pt_regs *regs)
  95. {
  96. unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
  97. print_modules();
  98. printk("\nPid: %d, CPU %d, comm: %20s\n", task_pid_nr(current),
  99. smp_processor_id(), current->comm);
  100. printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s (%s)\n",
  101. regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(),
  102. init_utsname()->release);
  103. print_symbol("ip is at %s\n", ip);
  104. printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
  105. regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
  106. printk("rnat: %016lx bsps: %016lx pr : %016lx\n",
  107. regs->ar_rnat, regs->ar_bspstore, regs->pr);
  108. printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
  109. regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
  110. printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
  111. printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7);
  112. printk("f6 : %05lx%016lx f7 : %05lx%016lx\n",
  113. regs->f6.u.bits[1], regs->f6.u.bits[0],
  114. regs->f7.u.bits[1], regs->f7.u.bits[0]);
  115. printk("f8 : %05lx%016lx f9 : %05lx%016lx\n",
  116. regs->f8.u.bits[1], regs->f8.u.bits[0],
  117. regs->f9.u.bits[1], regs->f9.u.bits[0]);
  118. printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
  119. regs->f10.u.bits[1], regs->f10.u.bits[0],
  120. regs->f11.u.bits[1], regs->f11.u.bits[0]);
  121. printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3);
  122. printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
  123. printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
  124. printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
  125. printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
  126. printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
  127. printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
  128. printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
  129. printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
  130. if (user_mode(regs)) {
  131. /* print the stacked registers */
  132. unsigned long val, *bsp, ndirty;
  133. int i, sof, is_nat = 0;
  134. sof = regs->cr_ifs & 0x7f; /* size of frame */
  135. ndirty = (regs->loadrs >> 19);
  136. bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
  137. for (i = 0; i < sof; ++i) {
  138. get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
  139. printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
  140. ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
  141. }
  142. } else
  143. show_stack(NULL, NULL);
  144. }
  145. void
  146. do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall)
  147. {
  148. if (fsys_mode(current, &scr->pt)) {
  149. /*
  150. * defer signal-handling etc. until we return to
  151. * privilege-level 0.
  152. */
  153. if (!ia64_psr(&scr->pt)->lp)
  154. ia64_psr(&scr->pt)->lp = 1;
  155. return;
  156. }
  157. #ifdef CONFIG_PERFMON
  158. if (current->thread.pfm_needs_checking)
  159. /*
  160. * Note: pfm_handle_work() allow us to call it with interrupts
  161. * disabled, and may enable interrupts within the function.
  162. */
  163. pfm_handle_work();
  164. #endif
  165. /* deal with pending signal delivery */
  166. if (test_thread_flag(TIF_SIGPENDING)) {
  167. local_irq_enable(); /* force interrupt enable */
  168. ia64_do_signal(scr, in_syscall);
  169. }
  170. if (test_thread_flag(TIF_NOTIFY_RESUME)) {
  171. clear_thread_flag(TIF_NOTIFY_RESUME);
  172. tracehook_notify_resume(&scr->pt);
  173. }
  174. /* copy user rbs to kernel rbs */
  175. if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) {
  176. local_irq_enable(); /* force interrupt enable */
  177. ia64_sync_krbs();
  178. }
  179. local_irq_disable(); /* force interrupt disable */
  180. }
  181. static int pal_halt = 1;
  182. static int can_do_pal_halt = 1;
  183. static int __init nohalt_setup(char * str)
  184. {
  185. pal_halt = can_do_pal_halt = 0;
  186. return 1;
  187. }
  188. __setup("nohalt", nohalt_setup);
  189. void
  190. update_pal_halt_status(int status)
  191. {
  192. can_do_pal_halt = pal_halt && status;
  193. }
  194. /*
  195. * We use this if we don't have any better idle routine..
  196. */
  197. void
  198. default_idle (void)
  199. {
  200. local_irq_enable();
  201. while (!need_resched()) {
  202. if (can_do_pal_halt) {
  203. local_irq_disable();
  204. if (!need_resched()) {
  205. safe_halt();
  206. }
  207. local_irq_enable();
  208. } else
  209. cpu_relax();
  210. }
  211. }
  212. #ifdef CONFIG_HOTPLUG_CPU
  213. /* We don't actually take CPU down, just spin without interrupts. */
  214. static inline void play_dead(void)
  215. {
  216. unsigned int this_cpu = smp_processor_id();
  217. /* Ack it */
  218. __get_cpu_var(cpu_state) = CPU_DEAD;
  219. max_xtp();
  220. local_irq_disable();
  221. idle_task_exit();
  222. ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
  223. /*
  224. * The above is a point of no-return, the processor is
  225. * expected to be in SAL loop now.
  226. */
  227. BUG();
  228. }
  229. #else
  230. static inline void play_dead(void)
  231. {
  232. BUG();
  233. }
  234. #endif /* CONFIG_HOTPLUG_CPU */
  235. static void do_nothing(void *unused)
  236. {
  237. }
  238. /*
  239. * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
  240. * pm_idle and update to new pm_idle value. Required while changing pm_idle
  241. * handler on SMP systems.
  242. *
  243. * Caller must have changed pm_idle to the new value before the call. Old
  244. * pm_idle value will not be used by any CPU after the return of this function.
  245. */
  246. void cpu_idle_wait(void)
  247. {
  248. smp_mb();
  249. /* kick all the CPUs so that they exit out of pm_idle */
  250. smp_call_function(do_nothing, NULL, 1);
  251. }
  252. EXPORT_SYMBOL_GPL(cpu_idle_wait);
  253. void __attribute__((noreturn))
  254. cpu_idle (void)
  255. {
  256. void (*mark_idle)(int) = ia64_mark_idle;
  257. int cpu = smp_processor_id();
  258. /* endless idle loop with no priority at all */
  259. while (1) {
  260. if (can_do_pal_halt) {
  261. current_thread_info()->status &= ~TS_POLLING;
  262. /*
  263. * TS_POLLING-cleared state must be visible before we
  264. * test NEED_RESCHED:
  265. */
  266. smp_mb();
  267. } else {
  268. current_thread_info()->status |= TS_POLLING;
  269. }
  270. if (!need_resched()) {
  271. void (*idle)(void);
  272. #ifdef CONFIG_SMP
  273. min_xtp();
  274. #endif
  275. rmb();
  276. if (mark_idle)
  277. (*mark_idle)(1);
  278. idle = pm_idle;
  279. if (!idle)
  280. idle = default_idle;
  281. (*idle)();
  282. if (mark_idle)
  283. (*mark_idle)(0);
  284. #ifdef CONFIG_SMP
  285. normal_xtp();
  286. #endif
  287. }
  288. preempt_enable_no_resched();
  289. schedule();
  290. preempt_disable();
  291. check_pgt_cache();
  292. if (cpu_is_offline(cpu))
  293. play_dead();
  294. }
  295. }
  296. void
  297. ia64_save_extra (struct task_struct *task)
  298. {
  299. #ifdef CONFIG_PERFMON
  300. unsigned long info;
  301. #endif
  302. if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
  303. ia64_save_debug_regs(&task->thread.dbr[0]);
  304. #ifdef CONFIG_PERFMON
  305. if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
  306. pfm_save_regs(task);
  307. info = __get_cpu_var(pfm_syst_info);
  308. if (info & PFM_CPUINFO_SYST_WIDE)
  309. pfm_syst_wide_update_task(task, info, 0);
  310. #endif
  311. #ifdef CONFIG_IA32_SUPPORT
  312. if (IS_IA32_PROCESS(task_pt_regs(task)))
  313. ia32_save_state(task);
  314. #endif
  315. }
  316. void
  317. ia64_load_extra (struct task_struct *task)
  318. {
  319. #ifdef CONFIG_PERFMON
  320. unsigned long info;
  321. #endif
  322. if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
  323. ia64_load_debug_regs(&task->thread.dbr[0]);
  324. #ifdef CONFIG_PERFMON
  325. if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
  326. pfm_load_regs(task);
  327. info = __get_cpu_var(pfm_syst_info);
  328. if (info & PFM_CPUINFO_SYST_WIDE)
  329. pfm_syst_wide_update_task(task, info, 1);
  330. #endif
  331. #ifdef CONFIG_IA32_SUPPORT
  332. if (IS_IA32_PROCESS(task_pt_regs(task)))
  333. ia32_load_state(task);
  334. #endif
  335. }
  336. /*
  337. * Copy the state of an ia-64 thread.
  338. *
  339. * We get here through the following call chain:
  340. *
  341. * from user-level: from kernel:
  342. *
  343. * <clone syscall> <some kernel call frames>
  344. * sys_clone :
  345. * do_fork do_fork
  346. * copy_thread copy_thread
  347. *
  348. * This means that the stack layout is as follows:
  349. *
  350. * +---------------------+ (highest addr)
  351. * | struct pt_regs |
  352. * +---------------------+
  353. * | struct switch_stack |
  354. * +---------------------+
  355. * | |
  356. * | memory stack |
  357. * | | <-- sp (lowest addr)
  358. * +---------------------+
  359. *
  360. * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an
  361. * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
  362. * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the
  363. * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since
  364. * the stack is page aligned and the page size is at least 4KB, this is always the case,
  365. * so there is nothing to worry about.
  366. */
  367. int
  368. copy_thread(unsigned long clone_flags,
  369. unsigned long user_stack_base, unsigned long user_stack_size,
  370. struct task_struct *p, struct pt_regs *regs)
  371. {
  372. extern char ia64_ret_from_clone, ia32_ret_from_clone;
  373. struct switch_stack *child_stack, *stack;
  374. unsigned long rbs, child_rbs, rbs_size;
  375. struct pt_regs *child_ptregs;
  376. int retval = 0;
  377. #ifdef CONFIG_SMP
  378. /*
  379. * For SMP idle threads, fork_by_hand() calls do_fork with
  380. * NULL regs.
  381. */
  382. if (!regs)
  383. return 0;
  384. #endif
  385. stack = ((struct switch_stack *) regs) - 1;
  386. child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
  387. child_stack = (struct switch_stack *) child_ptregs - 1;
  388. /* copy parent's switch_stack & pt_regs to child: */
  389. memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
  390. rbs = (unsigned long) current + IA64_RBS_OFFSET;
  391. child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
  392. rbs_size = stack->ar_bspstore - rbs;
  393. /* copy the parent's register backing store to the child: */
  394. memcpy((void *) child_rbs, (void *) rbs, rbs_size);
  395. if (likely(user_mode(child_ptregs))) {
  396. if ((clone_flags & CLONE_SETTLS) && !IS_IA32_PROCESS(regs))
  397. child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */
  398. if (user_stack_base) {
  399. child_ptregs->r12 = user_stack_base + user_stack_size - 16;
  400. child_ptregs->ar_bspstore = user_stack_base;
  401. child_ptregs->ar_rnat = 0;
  402. child_ptregs->loadrs = 0;
  403. }
  404. } else {
  405. /*
  406. * Note: we simply preserve the relative position of
  407. * the stack pointer here. There is no need to
  408. * allocate a scratch area here, since that will have
  409. * been taken care of by the caller of sys_clone()
  410. * already.
  411. */
  412. child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */
  413. child_ptregs->r13 = (unsigned long) p; /* set `current' pointer */
  414. }
  415. child_stack->ar_bspstore = child_rbs + rbs_size;
  416. if (IS_IA32_PROCESS(regs))
  417. child_stack->b0 = (unsigned long) &ia32_ret_from_clone;
  418. else
  419. child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
  420. /* copy parts of thread_struct: */
  421. p->thread.ksp = (unsigned long) child_stack - 16;
  422. /* stop some PSR bits from being inherited.
  423. * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
  424. * therefore we must specify them explicitly here and not include them in
  425. * IA64_PSR_BITS_TO_CLEAR.
  426. */
  427. child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
  428. & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
  429. /*
  430. * NOTE: The calling convention considers all floating point
  431. * registers in the high partition (fph) to be scratch. Since
  432. * the only way to get to this point is through a system call,
  433. * we know that the values in fph are all dead. Hence, there
  434. * is no need to inherit the fph state from the parent to the
  435. * child and all we have to do is to make sure that
  436. * IA64_THREAD_FPH_VALID is cleared in the child.
  437. *
  438. * XXX We could push this optimization a bit further by
  439. * clearing IA64_THREAD_FPH_VALID on ANY system call.
  440. * However, it's not clear this is worth doing. Also, it
  441. * would be a slight deviation from the normal Linux system
  442. * call behavior where scratch registers are preserved across
  443. * system calls (unless used by the system call itself).
  444. */
  445. # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
  446. | IA64_THREAD_PM_VALID)
  447. # define THREAD_FLAGS_TO_SET 0
  448. p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
  449. | THREAD_FLAGS_TO_SET);
  450. ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */
  451. #ifdef CONFIG_IA32_SUPPORT
  452. /*
  453. * If we're cloning an IA32 task then save the IA32 extra
  454. * state from the current task to the new task
  455. */
  456. if (IS_IA32_PROCESS(task_pt_regs(current))) {
  457. ia32_save_state(p);
  458. if (clone_flags & CLONE_SETTLS)
  459. retval = ia32_clone_tls(p, child_ptregs);
  460. /* Copy partially mapped page list */
  461. if (!retval)
  462. retval = ia32_copy_ia64_partial_page_list(p,
  463. clone_flags);
  464. }
  465. #endif
  466. #ifdef CONFIG_PERFMON
  467. if (current->thread.pfm_context)
  468. pfm_inherit(p, child_ptregs);
  469. #endif
  470. return retval;
  471. }
  472. static void
  473. do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
  474. {
  475. unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm;
  476. unsigned long uninitialized_var(ip); /* GCC be quiet */
  477. elf_greg_t *dst = arg;
  478. struct pt_regs *pt;
  479. char nat;
  480. int i;
  481. memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */
  482. if (unw_unwind_to_user(info) < 0)
  483. return;
  484. unw_get_sp(info, &sp);
  485. pt = (struct pt_regs *) (sp + 16);
  486. urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
  487. if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
  488. return;
  489. ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
  490. &ar_rnat);
  491. /*
  492. * coredump format:
  493. * r0-r31
  494. * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
  495. * predicate registers (p0-p63)
  496. * b0-b7
  497. * ip cfm user-mask
  498. * ar.rsc ar.bsp ar.bspstore ar.rnat
  499. * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
  500. */
  501. /* r0 is zero */
  502. for (i = 1, mask = (1UL << i); i < 32; ++i) {
  503. unw_get_gr(info, i, &dst[i], &nat);
  504. if (nat)
  505. nat_bits |= mask;
  506. mask <<= 1;
  507. }
  508. dst[32] = nat_bits;
  509. unw_get_pr(info, &dst[33]);
  510. for (i = 0; i < 8; ++i)
  511. unw_get_br(info, i, &dst[34 + i]);
  512. unw_get_rp(info, &ip);
  513. dst[42] = ip + ia64_psr(pt)->ri;
  514. dst[43] = cfm;
  515. dst[44] = pt->cr_ipsr & IA64_PSR_UM;
  516. unw_get_ar(info, UNW_AR_RSC, &dst[45]);
  517. /*
  518. * For bsp and bspstore, unw_get_ar() would return the kernel
  519. * addresses, but we need the user-level addresses instead:
  520. */
  521. dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */
  522. dst[47] = pt->ar_bspstore;
  523. dst[48] = ar_rnat;
  524. unw_get_ar(info, UNW_AR_CCV, &dst[49]);
  525. unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
  526. unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
  527. dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
  528. unw_get_ar(info, UNW_AR_LC, &dst[53]);
  529. unw_get_ar(info, UNW_AR_EC, &dst[54]);
  530. unw_get_ar(info, UNW_AR_CSD, &dst[55]);
  531. unw_get_ar(info, UNW_AR_SSD, &dst[56]);
  532. }
  533. void
  534. do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
  535. {
  536. elf_fpreg_t *dst = arg;
  537. int i;
  538. memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */
  539. if (unw_unwind_to_user(info) < 0)
  540. return;
  541. /* f0 is 0.0, f1 is 1.0 */
  542. for (i = 2; i < 32; ++i)
  543. unw_get_fr(info, i, dst + i);
  544. ia64_flush_fph(task);
  545. if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
  546. memcpy(dst + 32, task->thread.fph, 96*16);
  547. }
  548. void
  549. do_copy_regs (struct unw_frame_info *info, void *arg)
  550. {
  551. do_copy_task_regs(current, info, arg);
  552. }
  553. void
  554. do_dump_fpu (struct unw_frame_info *info, void *arg)
  555. {
  556. do_dump_task_fpu(current, info, arg);
  557. }
  558. void
  559. ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
  560. {
  561. unw_init_running(do_copy_regs, dst);
  562. }
  563. int
  564. dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
  565. {
  566. unw_init_running(do_dump_fpu, dst);
  567. return 1; /* f0-f31 are always valid so we always return 1 */
  568. }
  569. long
  570. sys_execve (char __user *filename, char __user * __user *argv, char __user * __user *envp,
  571. struct pt_regs *regs)
  572. {
  573. char *fname;
  574. int error;
  575. fname = getname(filename);
  576. error = PTR_ERR(fname);
  577. if (IS_ERR(fname))
  578. goto out;
  579. error = do_execve(fname, argv, envp, regs);
  580. putname(fname);
  581. out:
  582. return error;
  583. }
  584. pid_t
  585. kernel_thread (int (*fn)(void *), void *arg, unsigned long flags)
  586. {
  587. extern void start_kernel_thread (void);
  588. unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread;
  589. struct {
  590. struct switch_stack sw;
  591. struct pt_regs pt;
  592. } regs;
  593. memset(&regs, 0, sizeof(regs));
  594. regs.pt.cr_iip = helper_fptr[0]; /* set entry point (IP) */
  595. regs.pt.r1 = helper_fptr[1]; /* set GP */
  596. regs.pt.r9 = (unsigned long) fn; /* 1st argument */
  597. regs.pt.r11 = (unsigned long) arg; /* 2nd argument */
  598. /* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read. */
  599. regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
  600. regs.pt.cr_ifs = 1UL << 63; /* mark as valid, empty frame */
  601. regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR);
  602. regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET;
  603. regs.sw.pr = (1 << PRED_KERNEL_STACK);
  604. return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs.pt, 0, NULL, NULL);
  605. }
  606. EXPORT_SYMBOL(kernel_thread);
  607. /* This gets called from kernel_thread() via ia64_invoke_thread_helper(). */
  608. int
  609. kernel_thread_helper (int (*fn)(void *), void *arg)
  610. {
  611. #ifdef CONFIG_IA32_SUPPORT
  612. if (IS_IA32_PROCESS(task_pt_regs(current))) {
  613. /* A kernel thread is always a 64-bit process. */
  614. current->thread.map_base = DEFAULT_MAP_BASE;
  615. current->thread.task_size = DEFAULT_TASK_SIZE;
  616. ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob);
  617. ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1);
  618. }
  619. #endif
  620. return (*fn)(arg);
  621. }
  622. /*
  623. * Flush thread state. This is called when a thread does an execve().
  624. */
  625. void
  626. flush_thread (void)
  627. {
  628. /* drop floating-point and debug-register state if it exists: */
  629. current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
  630. ia64_drop_fpu(current);
  631. #ifdef CONFIG_IA32_SUPPORT
  632. if (IS_IA32_PROCESS(task_pt_regs(current))) {
  633. ia32_drop_ia64_partial_page_list(current);
  634. current->thread.task_size = IA32_PAGE_OFFSET;
  635. set_fs(USER_DS);
  636. memset(current->thread.tls_array, 0, sizeof(current->thread.tls_array));
  637. }
  638. #endif
  639. }
  640. /*
  641. * Clean up state associated with current thread. This is called when
  642. * the thread calls exit().
  643. */
  644. void
  645. exit_thread (void)
  646. {
  647. ia64_drop_fpu(current);
  648. #ifdef CONFIG_PERFMON
  649. /* if needed, stop monitoring and flush state to perfmon context */
  650. if (current->thread.pfm_context)
  651. pfm_exit_thread(current);
  652. /* free debug register resources */
  653. if (current->thread.flags & IA64_THREAD_DBG_VALID)
  654. pfm_release_debug_registers(current);
  655. #endif
  656. if (IS_IA32_PROCESS(task_pt_regs(current)))
  657. ia32_drop_ia64_partial_page_list(current);
  658. }
  659. unsigned long
  660. get_wchan (struct task_struct *p)
  661. {
  662. struct unw_frame_info info;
  663. unsigned long ip;
  664. int count = 0;
  665. if (!p || p == current || p->state == TASK_RUNNING)
  666. return 0;
  667. /*
  668. * Note: p may not be a blocked task (it could be current or
  669. * another process running on some other CPU. Rather than
  670. * trying to determine if p is really blocked, we just assume
  671. * it's blocked and rely on the unwind routines to fail
  672. * gracefully if the process wasn't really blocked after all.
  673. * --davidm 99/12/15
  674. */
  675. unw_init_from_blocked_task(&info, p);
  676. do {
  677. if (p->state == TASK_RUNNING)
  678. return 0;
  679. if (unw_unwind(&info) < 0)
  680. return 0;
  681. unw_get_ip(&info, &ip);
  682. if (!in_sched_functions(ip))
  683. return ip;
  684. } while (count++ < 16);
  685. return 0;
  686. }
  687. void
  688. cpu_halt (void)
  689. {
  690. pal_power_mgmt_info_u_t power_info[8];
  691. unsigned long min_power;
  692. int i, min_power_state;
  693. if (ia64_pal_halt_info(power_info) != 0)
  694. return;
  695. min_power_state = 0;
  696. min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
  697. for (i = 1; i < 8; ++i)
  698. if (power_info[i].pal_power_mgmt_info_s.im
  699. && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
  700. min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
  701. min_power_state = i;
  702. }
  703. while (1)
  704. ia64_pal_halt(min_power_state);
  705. }
  706. void machine_shutdown(void)
  707. {
  708. #ifdef CONFIG_HOTPLUG_CPU
  709. int cpu;
  710. for_each_online_cpu(cpu) {
  711. if (cpu != smp_processor_id())
  712. cpu_down(cpu);
  713. }
  714. #endif
  715. #ifdef CONFIG_KEXEC
  716. kexec_disable_iosapic();
  717. #endif
  718. }
  719. void
  720. machine_restart (char *restart_cmd)
  721. {
  722. (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
  723. (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL);
  724. }
  725. void
  726. machine_halt (void)
  727. {
  728. (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
  729. cpu_halt();
  730. }
  731. void
  732. machine_power_off (void)
  733. {
  734. if (pm_power_off)
  735. pm_power_off();
  736. machine_halt();
  737. }