time-ts.c 8.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367
  1. /*
  2. * linux/arch/kernel/time-ts.c
  3. *
  4. * Based on arm clockevents implementation and old bfin time tick.
  5. *
  6. * Copyright(C) 2008, GeoTechnologies, Vitja Makarov
  7. *
  8. * This code is licenced under the GPL version 2. For details see
  9. * kernel-base/COPYING.
  10. */
  11. #include <linux/module.h>
  12. #include <linux/profile.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/time.h>
  15. #include <linux/timex.h>
  16. #include <linux/irq.h>
  17. #include <linux/clocksource.h>
  18. #include <linux/clockchips.h>
  19. #include <linux/cpufreq.h>
  20. #include <asm/blackfin.h>
  21. #include <asm/time.h>
  22. #include <asm/gptimers.h>
  23. #if defined(CONFIG_CYCLES_CLOCKSOURCE)
  24. /* Accelerators for sched_clock()
  25. * convert from cycles(64bits) => nanoseconds (64bits)
  26. * basic equation:
  27. * ns = cycles / (freq / ns_per_sec)
  28. * ns = cycles * (ns_per_sec / freq)
  29. * ns = cycles * (10^9 / (cpu_khz * 10^3))
  30. * ns = cycles * (10^6 / cpu_khz)
  31. *
  32. * Then we use scaling math (suggested by george@mvista.com) to get:
  33. * ns = cycles * (10^6 * SC / cpu_khz) / SC
  34. * ns = cycles * cyc2ns_scale / SC
  35. *
  36. * And since SC is a constant power of two, we can convert the div
  37. * into a shift.
  38. *
  39. * We can use khz divisor instead of mhz to keep a better precision, since
  40. * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
  41. * (mathieu.desnoyers@polymtl.ca)
  42. *
  43. * -johnstul@us.ibm.com "math is hard, lets go shopping!"
  44. */
  45. static unsigned long cyc2ns_scale;
  46. #define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
  47. static inline void set_cyc2ns_scale(unsigned long cpu_khz)
  48. {
  49. cyc2ns_scale = (1000000 << CYC2NS_SCALE_FACTOR) / cpu_khz;
  50. }
  51. static inline unsigned long long cycles_2_ns(cycle_t cyc)
  52. {
  53. return (cyc * cyc2ns_scale) >> CYC2NS_SCALE_FACTOR;
  54. }
  55. static cycle_t bfin_read_cycles(struct clocksource *cs)
  56. {
  57. return __bfin_cycles_off + (get_cycles() << __bfin_cycles_mod);
  58. }
  59. static struct clocksource bfin_cs_cycles = {
  60. .name = "bfin_cs_cycles",
  61. .rating = 350,
  62. .read = bfin_read_cycles,
  63. .mask = CLOCKSOURCE_MASK(64),
  64. .shift = 22,
  65. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  66. };
  67. unsigned long long sched_clock(void)
  68. {
  69. return cycles_2_ns(bfin_read_cycles(&bfin_cs_cycles));
  70. }
  71. static int __init bfin_cs_cycles_init(void)
  72. {
  73. set_cyc2ns_scale(get_cclk() / 1000);
  74. bfin_cs_cycles.mult = \
  75. clocksource_hz2mult(get_cclk(), bfin_cs_cycles.shift);
  76. if (clocksource_register(&bfin_cs_cycles))
  77. panic("failed to register clocksource");
  78. return 0;
  79. }
  80. #else
  81. # define bfin_cs_cycles_init()
  82. #endif
  83. #ifdef CONFIG_GPTMR0_CLOCKSOURCE
  84. void __init setup_gptimer0(void)
  85. {
  86. disable_gptimers(TIMER0bit);
  87. set_gptimer_config(TIMER0_id, \
  88. TIMER_OUT_DIS | TIMER_PERIOD_CNT | TIMER_MODE_PWM);
  89. set_gptimer_period(TIMER0_id, -1);
  90. set_gptimer_pwidth(TIMER0_id, -2);
  91. SSYNC();
  92. enable_gptimers(TIMER0bit);
  93. }
  94. static cycle_t bfin_read_gptimer0(void)
  95. {
  96. return bfin_read_TIMER0_COUNTER();
  97. }
  98. static struct clocksource bfin_cs_gptimer0 = {
  99. .name = "bfin_cs_gptimer0",
  100. .rating = 400,
  101. .read = bfin_read_gptimer0,
  102. .mask = CLOCKSOURCE_MASK(32),
  103. .shift = 22,
  104. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  105. };
  106. static int __init bfin_cs_gptimer0_init(void)
  107. {
  108. setup_gptimer0();
  109. bfin_cs_gptimer0.mult = \
  110. clocksource_hz2mult(get_sclk(), bfin_cs_gptimer0.shift);
  111. if (clocksource_register(&bfin_cs_gptimer0))
  112. panic("failed to register clocksource");
  113. return 0;
  114. }
  115. #else
  116. # define bfin_cs_gptimer0_init()
  117. #endif
  118. #ifdef CONFIG_CORE_TIMER_IRQ_L1
  119. __attribute__((l1_text))
  120. #endif
  121. irqreturn_t timer_interrupt(int irq, void *dev_id);
  122. static int bfin_timer_set_next_event(unsigned long, \
  123. struct clock_event_device *);
  124. static void bfin_timer_set_mode(enum clock_event_mode, \
  125. struct clock_event_device *);
  126. static struct clock_event_device clockevent_bfin = {
  127. #if defined(CONFIG_TICKSOURCE_GPTMR0)
  128. .name = "bfin_gptimer0",
  129. .rating = 300,
  130. .irq = IRQ_TIMER0,
  131. #else
  132. .name = "bfin_core_timer",
  133. .rating = 350,
  134. .irq = IRQ_CORETMR,
  135. #endif
  136. .shift = 32,
  137. .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
  138. .set_next_event = bfin_timer_set_next_event,
  139. .set_mode = bfin_timer_set_mode,
  140. };
  141. static struct irqaction bfin_timer_irq = {
  142. #if defined(CONFIG_TICKSOURCE_GPTMR0)
  143. .name = "Blackfin GPTimer0",
  144. #else
  145. .name = "Blackfin CoreTimer",
  146. #endif
  147. .flags = IRQF_DISABLED | IRQF_TIMER | \
  148. IRQF_IRQPOLL | IRQF_PERCPU,
  149. .handler = timer_interrupt,
  150. .dev_id = &clockevent_bfin,
  151. };
  152. #if defined(CONFIG_TICKSOURCE_GPTMR0)
  153. static int bfin_timer_set_next_event(unsigned long cycles,
  154. struct clock_event_device *evt)
  155. {
  156. disable_gptimers(TIMER0bit);
  157. /* it starts counting three SCLK cycles after the TIMENx bit is set */
  158. set_gptimer_pwidth(TIMER0_id, cycles - 3);
  159. enable_gptimers(TIMER0bit);
  160. return 0;
  161. }
  162. static void bfin_timer_set_mode(enum clock_event_mode mode,
  163. struct clock_event_device *evt)
  164. {
  165. switch (mode) {
  166. case CLOCK_EVT_MODE_PERIODIC: {
  167. set_gptimer_config(TIMER0_id, \
  168. TIMER_OUT_DIS | TIMER_IRQ_ENA | \
  169. TIMER_PERIOD_CNT | TIMER_MODE_PWM);
  170. set_gptimer_period(TIMER0_id, get_sclk() / HZ);
  171. set_gptimer_pwidth(TIMER0_id, get_sclk() / HZ - 1);
  172. enable_gptimers(TIMER0bit);
  173. break;
  174. }
  175. case CLOCK_EVT_MODE_ONESHOT:
  176. disable_gptimers(TIMER0bit);
  177. set_gptimer_config(TIMER0_id, \
  178. TIMER_OUT_DIS | TIMER_IRQ_ENA | TIMER_MODE_PWM);
  179. set_gptimer_period(TIMER0_id, 0);
  180. break;
  181. case CLOCK_EVT_MODE_UNUSED:
  182. case CLOCK_EVT_MODE_SHUTDOWN:
  183. disable_gptimers(TIMER0bit);
  184. break;
  185. case CLOCK_EVT_MODE_RESUME:
  186. break;
  187. }
  188. }
  189. static void bfin_timer_ack(void)
  190. {
  191. set_gptimer_status(TIMER_GROUP1, TIMER_STATUS_TIMIL0);
  192. }
  193. static void __init bfin_timer_init(void)
  194. {
  195. disable_gptimers(TIMER0bit);
  196. }
  197. static unsigned long __init bfin_clockevent_check(void)
  198. {
  199. setup_irq(IRQ_TIMER0, &bfin_timer_irq);
  200. return get_sclk();
  201. }
  202. #else /* CONFIG_TICKSOURCE_CORETMR */
  203. static int bfin_timer_set_next_event(unsigned long cycles,
  204. struct clock_event_device *evt)
  205. {
  206. bfin_write_TCNTL(TMPWR);
  207. CSYNC();
  208. bfin_write_TCOUNT(cycles);
  209. CSYNC();
  210. bfin_write_TCNTL(TMPWR | TMREN);
  211. return 0;
  212. }
  213. static void bfin_timer_set_mode(enum clock_event_mode mode,
  214. struct clock_event_device *evt)
  215. {
  216. switch (mode) {
  217. case CLOCK_EVT_MODE_PERIODIC: {
  218. unsigned long tcount = ((get_cclk() / (HZ * TIME_SCALE)) - 1);
  219. bfin_write_TCNTL(TMPWR);
  220. CSYNC();
  221. bfin_write_TSCALE(TIME_SCALE - 1);
  222. bfin_write_TPERIOD(tcount);
  223. bfin_write_TCOUNT(tcount);
  224. CSYNC();
  225. bfin_write_TCNTL(TMPWR | TMREN | TAUTORLD);
  226. break;
  227. }
  228. case CLOCK_EVT_MODE_ONESHOT:
  229. bfin_write_TCNTL(TMPWR);
  230. CSYNC();
  231. bfin_write_TSCALE(TIME_SCALE - 1);
  232. bfin_write_TPERIOD(0);
  233. bfin_write_TCOUNT(0);
  234. break;
  235. case CLOCK_EVT_MODE_UNUSED:
  236. case CLOCK_EVT_MODE_SHUTDOWN:
  237. bfin_write_TCNTL(0);
  238. CSYNC();
  239. break;
  240. case CLOCK_EVT_MODE_RESUME:
  241. break;
  242. }
  243. }
  244. static void bfin_timer_ack(void)
  245. {
  246. }
  247. static void __init bfin_timer_init(void)
  248. {
  249. /* power up the timer, but don't enable it just yet */
  250. bfin_write_TCNTL(TMPWR);
  251. CSYNC();
  252. /*
  253. * the TSCALE prescaler counter.
  254. */
  255. bfin_write_TSCALE(TIME_SCALE - 1);
  256. bfin_write_TPERIOD(0);
  257. bfin_write_TCOUNT(0);
  258. CSYNC();
  259. }
  260. static unsigned long __init bfin_clockevent_check(void)
  261. {
  262. setup_irq(IRQ_CORETMR, &bfin_timer_irq);
  263. return get_cclk() / TIME_SCALE;
  264. }
  265. void __init setup_core_timer(void)
  266. {
  267. bfin_timer_init();
  268. bfin_timer_set_mode(CLOCK_EVT_MODE_PERIODIC, NULL);
  269. }
  270. #endif /* CONFIG_TICKSOURCE_GPTMR0 */
  271. /*
  272. * timer_interrupt() needs to keep up the real-time clock,
  273. * as well as call the "do_timer()" routine every clocktick
  274. */
  275. irqreturn_t timer_interrupt(int irq, void *dev_id)
  276. {
  277. struct clock_event_device *evt = dev_id;
  278. smp_mb();
  279. evt->event_handler(evt);
  280. bfin_timer_ack();
  281. return IRQ_HANDLED;
  282. }
  283. static int __init bfin_clockevent_init(void)
  284. {
  285. unsigned long timer_clk;
  286. timer_clk = bfin_clockevent_check();
  287. bfin_timer_init();
  288. clockevent_bfin.mult = div_sc(timer_clk, NSEC_PER_SEC, clockevent_bfin.shift);
  289. clockevent_bfin.max_delta_ns = clockevent_delta2ns(-1, &clockevent_bfin);
  290. clockevent_bfin.min_delta_ns = clockevent_delta2ns(100, &clockevent_bfin);
  291. clockevent_bfin.cpumask = cpumask_of(0);
  292. clockevents_register_device(&clockevent_bfin);
  293. return 0;
  294. }
  295. void __init time_init(void)
  296. {
  297. time_t secs_since_1970 = (365 * 37 + 9) * 24 * 60 * 60; /* 1 Jan 2007 */
  298. #ifdef CONFIG_RTC_DRV_BFIN
  299. /* [#2663] hack to filter junk RTC values that would cause
  300. * userspace to have to deal with time values greater than
  301. * 2^31 seconds (which uClibc cannot cope with yet)
  302. */
  303. if ((bfin_read_RTC_STAT() & 0xC0000000) == 0xC0000000) {
  304. printk(KERN_NOTICE "bfin-rtc: invalid date; resetting\n");
  305. bfin_write_RTC_STAT(0);
  306. }
  307. #endif
  308. /* Initialize xtime. From now on, xtime is updated with timer interrupts */
  309. xtime.tv_sec = secs_since_1970;
  310. xtime.tv_nsec = 0;
  311. set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
  312. bfin_cs_cycles_init();
  313. bfin_cs_gptimer0_init();
  314. bfin_clockevent_init();
  315. }