core.c 25 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028
  1. /*
  2. * linux/arch/arm/mach-versatile/core.c
  3. *
  4. * Copyright (C) 1999 - 2003 ARM Limited
  5. * Copyright (C) 2000 Deep Blue Solutions Ltd
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  20. */
  21. #include <linux/init.h>
  22. #include <linux/device.h>
  23. #include <linux/dma-mapping.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/sysdev.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/amba/bus.h>
  28. #include <linux/amba/clcd.h>
  29. #include <linux/clocksource.h>
  30. #include <linux/clockchips.h>
  31. #include <linux/cnt32_to_63.h>
  32. #include <linux/io.h>
  33. #include <asm/clkdev.h>
  34. #include <asm/system.h>
  35. #include <mach/hardware.h>
  36. #include <asm/irq.h>
  37. #include <asm/leds.h>
  38. #include <asm/hardware/arm_timer.h>
  39. #include <asm/hardware/icst307.h>
  40. #include <asm/hardware/vic.h>
  41. #include <asm/mach-types.h>
  42. #include <asm/mach/arch.h>
  43. #include <asm/mach/flash.h>
  44. #include <asm/mach/irq.h>
  45. #include <asm/mach/time.h>
  46. #include <asm/mach/map.h>
  47. #include <asm/mach/mmc.h>
  48. #include "core.h"
  49. #include "clock.h"
  50. /*
  51. * All IO addresses are mapped onto VA 0xFFFx.xxxx, where x.xxxx
  52. * is the (PA >> 12).
  53. *
  54. * Setup a VA for the Versatile Vectored Interrupt Controller.
  55. */
  56. #define __io_address(n) __io(IO_ADDRESS(n))
  57. #define VA_VIC_BASE __io_address(VERSATILE_VIC_BASE)
  58. #define VA_SIC_BASE __io_address(VERSATILE_SIC_BASE)
  59. static void sic_mask_irq(unsigned int irq)
  60. {
  61. irq -= IRQ_SIC_START;
  62. writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
  63. }
  64. static void sic_unmask_irq(unsigned int irq)
  65. {
  66. irq -= IRQ_SIC_START;
  67. writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_SET);
  68. }
  69. static struct irq_chip sic_chip = {
  70. .name = "SIC",
  71. .ack = sic_mask_irq,
  72. .mask = sic_mask_irq,
  73. .unmask = sic_unmask_irq,
  74. };
  75. static void
  76. sic_handle_irq(unsigned int irq, struct irq_desc *desc)
  77. {
  78. unsigned long status = readl(VA_SIC_BASE + SIC_IRQ_STATUS);
  79. if (status == 0) {
  80. do_bad_IRQ(irq, desc);
  81. return;
  82. }
  83. do {
  84. irq = ffs(status) - 1;
  85. status &= ~(1 << irq);
  86. irq += IRQ_SIC_START;
  87. generic_handle_irq(irq);
  88. } while (status);
  89. }
  90. #if 1
  91. #define IRQ_MMCI0A IRQ_VICSOURCE22
  92. #define IRQ_AACI IRQ_VICSOURCE24
  93. #define IRQ_ETH IRQ_VICSOURCE25
  94. #define PIC_MASK 0xFFD00000
  95. #else
  96. #define IRQ_MMCI0A IRQ_SIC_MMCI0A
  97. #define IRQ_AACI IRQ_SIC_AACI
  98. #define IRQ_ETH IRQ_SIC_ETH
  99. #define PIC_MASK 0
  100. #endif
  101. void __init versatile_init_irq(void)
  102. {
  103. unsigned int i;
  104. vic_init(VA_VIC_BASE, IRQ_VIC_START, ~0, 0);
  105. set_irq_chained_handler(IRQ_VICSOURCE31, sic_handle_irq);
  106. /* Do second interrupt controller */
  107. writel(~0, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
  108. for (i = IRQ_SIC_START; i <= IRQ_SIC_END; i++) {
  109. if ((PIC_MASK & (1 << (i - IRQ_SIC_START))) == 0) {
  110. set_irq_chip(i, &sic_chip);
  111. set_irq_handler(i, handle_level_irq);
  112. set_irq_flags(i, IRQF_VALID | IRQF_PROBE);
  113. }
  114. }
  115. /*
  116. * Interrupts on secondary controller from 0 to 8 are routed to
  117. * source 31 on PIC.
  118. * Interrupts from 21 to 31 are routed directly to the VIC on
  119. * the corresponding number on primary controller. This is controlled
  120. * by setting PIC_ENABLEx.
  121. */
  122. writel(PIC_MASK, VA_SIC_BASE + SIC_INT_PIC_ENABLE);
  123. }
  124. static struct map_desc versatile_io_desc[] __initdata = {
  125. {
  126. .virtual = IO_ADDRESS(VERSATILE_SYS_BASE),
  127. .pfn = __phys_to_pfn(VERSATILE_SYS_BASE),
  128. .length = SZ_4K,
  129. .type = MT_DEVICE
  130. }, {
  131. .virtual = IO_ADDRESS(VERSATILE_SIC_BASE),
  132. .pfn = __phys_to_pfn(VERSATILE_SIC_BASE),
  133. .length = SZ_4K,
  134. .type = MT_DEVICE
  135. }, {
  136. .virtual = IO_ADDRESS(VERSATILE_VIC_BASE),
  137. .pfn = __phys_to_pfn(VERSATILE_VIC_BASE),
  138. .length = SZ_4K,
  139. .type = MT_DEVICE
  140. }, {
  141. .virtual = IO_ADDRESS(VERSATILE_SCTL_BASE),
  142. .pfn = __phys_to_pfn(VERSATILE_SCTL_BASE),
  143. .length = SZ_4K * 9,
  144. .type = MT_DEVICE
  145. },
  146. #ifdef CONFIG_MACH_VERSATILE_AB
  147. {
  148. .virtual = IO_ADDRESS(VERSATILE_GPIO0_BASE),
  149. .pfn = __phys_to_pfn(VERSATILE_GPIO0_BASE),
  150. .length = SZ_4K,
  151. .type = MT_DEVICE
  152. }, {
  153. .virtual = IO_ADDRESS(VERSATILE_IB2_BASE),
  154. .pfn = __phys_to_pfn(VERSATILE_IB2_BASE),
  155. .length = SZ_64M,
  156. .type = MT_DEVICE
  157. },
  158. #endif
  159. #ifdef CONFIG_DEBUG_LL
  160. {
  161. .virtual = IO_ADDRESS(VERSATILE_UART0_BASE),
  162. .pfn = __phys_to_pfn(VERSATILE_UART0_BASE),
  163. .length = SZ_4K,
  164. .type = MT_DEVICE
  165. },
  166. #endif
  167. #ifdef CONFIG_PCI
  168. {
  169. .virtual = IO_ADDRESS(VERSATILE_PCI_CORE_BASE),
  170. .pfn = __phys_to_pfn(VERSATILE_PCI_CORE_BASE),
  171. .length = SZ_4K,
  172. .type = MT_DEVICE
  173. }, {
  174. .virtual = (unsigned long)VERSATILE_PCI_VIRT_BASE,
  175. .pfn = __phys_to_pfn(VERSATILE_PCI_BASE),
  176. .length = VERSATILE_PCI_BASE_SIZE,
  177. .type = MT_DEVICE
  178. }, {
  179. .virtual = (unsigned long)VERSATILE_PCI_CFG_VIRT_BASE,
  180. .pfn = __phys_to_pfn(VERSATILE_PCI_CFG_BASE),
  181. .length = VERSATILE_PCI_CFG_BASE_SIZE,
  182. .type = MT_DEVICE
  183. },
  184. #if 0
  185. {
  186. .virtual = VERSATILE_PCI_VIRT_MEM_BASE0,
  187. .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE0),
  188. .length = SZ_16M,
  189. .type = MT_DEVICE
  190. }, {
  191. .virtual = VERSATILE_PCI_VIRT_MEM_BASE1,
  192. .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE1),
  193. .length = SZ_16M,
  194. .type = MT_DEVICE
  195. }, {
  196. .virtual = VERSATILE_PCI_VIRT_MEM_BASE2,
  197. .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE2),
  198. .length = SZ_16M,
  199. .type = MT_DEVICE
  200. },
  201. #endif
  202. #endif
  203. };
  204. void __init versatile_map_io(void)
  205. {
  206. iotable_init(versatile_io_desc, ARRAY_SIZE(versatile_io_desc));
  207. }
  208. #define VERSATILE_REFCOUNTER (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_24MHz_OFFSET)
  209. /*
  210. * This is the Versatile sched_clock implementation. This has
  211. * a resolution of 41.7ns, and a maximum value of about 35583 days.
  212. *
  213. * The return value is guaranteed to be monotonic in that range as
  214. * long as there is always less than 89 seconds between successive
  215. * calls to this function.
  216. */
  217. unsigned long long sched_clock(void)
  218. {
  219. unsigned long long v = cnt32_to_63(readl(VERSATILE_REFCOUNTER));
  220. /* the <<1 gets rid of the cnt_32_to_63 top bit saving on a bic insn */
  221. v *= 125<<1;
  222. do_div(v, 3<<1);
  223. return v;
  224. }
  225. #define VERSATILE_FLASHCTRL (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_FLASH_OFFSET)
  226. static int versatile_flash_init(void)
  227. {
  228. u32 val;
  229. val = __raw_readl(VERSATILE_FLASHCTRL);
  230. val &= ~VERSATILE_FLASHPROG_FLVPPEN;
  231. __raw_writel(val, VERSATILE_FLASHCTRL);
  232. return 0;
  233. }
  234. static void versatile_flash_exit(void)
  235. {
  236. u32 val;
  237. val = __raw_readl(VERSATILE_FLASHCTRL);
  238. val &= ~VERSATILE_FLASHPROG_FLVPPEN;
  239. __raw_writel(val, VERSATILE_FLASHCTRL);
  240. }
  241. static void versatile_flash_set_vpp(int on)
  242. {
  243. u32 val;
  244. val = __raw_readl(VERSATILE_FLASHCTRL);
  245. if (on)
  246. val |= VERSATILE_FLASHPROG_FLVPPEN;
  247. else
  248. val &= ~VERSATILE_FLASHPROG_FLVPPEN;
  249. __raw_writel(val, VERSATILE_FLASHCTRL);
  250. }
  251. static struct flash_platform_data versatile_flash_data = {
  252. .map_name = "cfi_probe",
  253. .width = 4,
  254. .init = versatile_flash_init,
  255. .exit = versatile_flash_exit,
  256. .set_vpp = versatile_flash_set_vpp,
  257. };
  258. static struct resource versatile_flash_resource = {
  259. .start = VERSATILE_FLASH_BASE,
  260. .end = VERSATILE_FLASH_BASE + VERSATILE_FLASH_SIZE - 1,
  261. .flags = IORESOURCE_MEM,
  262. };
  263. static struct platform_device versatile_flash_device = {
  264. .name = "armflash",
  265. .id = 0,
  266. .dev = {
  267. .platform_data = &versatile_flash_data,
  268. },
  269. .num_resources = 1,
  270. .resource = &versatile_flash_resource,
  271. };
  272. static struct resource smc91x_resources[] = {
  273. [0] = {
  274. .start = VERSATILE_ETH_BASE,
  275. .end = VERSATILE_ETH_BASE + SZ_64K - 1,
  276. .flags = IORESOURCE_MEM,
  277. },
  278. [1] = {
  279. .start = IRQ_ETH,
  280. .end = IRQ_ETH,
  281. .flags = IORESOURCE_IRQ,
  282. },
  283. };
  284. static struct platform_device smc91x_device = {
  285. .name = "smc91x",
  286. .id = 0,
  287. .num_resources = ARRAY_SIZE(smc91x_resources),
  288. .resource = smc91x_resources,
  289. };
  290. static struct resource versatile_i2c_resource = {
  291. .start = VERSATILE_I2C_BASE,
  292. .end = VERSATILE_I2C_BASE + SZ_4K - 1,
  293. .flags = IORESOURCE_MEM,
  294. };
  295. static struct platform_device versatile_i2c_device = {
  296. .name = "versatile-i2c",
  297. .id = 0,
  298. .num_resources = 1,
  299. .resource = &versatile_i2c_resource,
  300. };
  301. static struct i2c_board_info versatile_i2c_board_info[] = {
  302. {
  303. I2C_BOARD_INFO("ds1338", 0xd0 >> 1),
  304. },
  305. };
  306. static int __init versatile_i2c_init(void)
  307. {
  308. return i2c_register_board_info(0, versatile_i2c_board_info,
  309. ARRAY_SIZE(versatile_i2c_board_info));
  310. }
  311. arch_initcall(versatile_i2c_init);
  312. #define VERSATILE_SYSMCI (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_MCI_OFFSET)
  313. unsigned int mmc_status(struct device *dev)
  314. {
  315. struct amba_device *adev = container_of(dev, struct amba_device, dev);
  316. u32 mask;
  317. if (adev->res.start == VERSATILE_MMCI0_BASE)
  318. mask = 1;
  319. else
  320. mask = 2;
  321. return readl(VERSATILE_SYSMCI) & mask;
  322. }
  323. static struct mmc_platform_data mmc0_plat_data = {
  324. .ocr_mask = MMC_VDD_32_33|MMC_VDD_33_34,
  325. .status = mmc_status,
  326. };
  327. /*
  328. * Clock handling
  329. */
  330. static const struct icst307_params versatile_oscvco_params = {
  331. .ref = 24000,
  332. .vco_max = 200000,
  333. .vd_min = 4 + 8,
  334. .vd_max = 511 + 8,
  335. .rd_min = 1 + 2,
  336. .rd_max = 127 + 2,
  337. };
  338. static void versatile_oscvco_set(struct clk *clk, struct icst307_vco vco)
  339. {
  340. void __iomem *sys = __io_address(VERSATILE_SYS_BASE);
  341. void __iomem *sys_lock = sys + VERSATILE_SYS_LOCK_OFFSET;
  342. u32 val;
  343. val = readl(sys + clk->oscoff) & ~0x7ffff;
  344. val |= vco.v | (vco.r << 9) | (vco.s << 16);
  345. writel(0xa05f, sys_lock);
  346. writel(val, sys + clk->oscoff);
  347. writel(0, sys_lock);
  348. }
  349. static struct clk osc4_clk = {
  350. .params = &versatile_oscvco_params,
  351. .oscoff = VERSATILE_SYS_OSCCLCD_OFFSET,
  352. .setvco = versatile_oscvco_set,
  353. };
  354. /*
  355. * These are fixed clocks.
  356. */
  357. static struct clk ref24_clk = {
  358. .rate = 24000000,
  359. };
  360. static struct clk_lookup lookups[] = {
  361. { /* UART0 */
  362. .dev_id = "dev:f1",
  363. .clk = &ref24_clk,
  364. }, { /* UART1 */
  365. .dev_id = "dev:f2",
  366. .clk = &ref24_clk,
  367. }, { /* UART2 */
  368. .dev_id = "dev:f3",
  369. .clk = &ref24_clk,
  370. }, { /* UART3 */
  371. .dev_id = "fpga:09",
  372. .clk = &ref24_clk,
  373. }, { /* KMI0 */
  374. .dev_id = "fpga:06",
  375. .clk = &ref24_clk,
  376. }, { /* KMI1 */
  377. .dev_id = "fpga:07",
  378. .clk = &ref24_clk,
  379. }, { /* MMC0 */
  380. .dev_id = "fpga:05",
  381. .clk = &ref24_clk,
  382. }, { /* MMC1 */
  383. .dev_id = "fpga:0b",
  384. .clk = &ref24_clk,
  385. }, { /* CLCD */
  386. .dev_id = "dev:20",
  387. .clk = &osc4_clk,
  388. }
  389. };
  390. /*
  391. * CLCD support.
  392. */
  393. #define SYS_CLCD_MODE_MASK (3 << 0)
  394. #define SYS_CLCD_MODE_888 (0 << 0)
  395. #define SYS_CLCD_MODE_5551 (1 << 0)
  396. #define SYS_CLCD_MODE_565_RLSB (2 << 0)
  397. #define SYS_CLCD_MODE_565_BLSB (3 << 0)
  398. #define SYS_CLCD_NLCDIOON (1 << 2)
  399. #define SYS_CLCD_VDDPOSSWITCH (1 << 3)
  400. #define SYS_CLCD_PWR3V5SWITCH (1 << 4)
  401. #define SYS_CLCD_ID_MASK (0x1f << 8)
  402. #define SYS_CLCD_ID_SANYO_3_8 (0x00 << 8)
  403. #define SYS_CLCD_ID_UNKNOWN_8_4 (0x01 << 8)
  404. #define SYS_CLCD_ID_EPSON_2_2 (0x02 << 8)
  405. #define SYS_CLCD_ID_SANYO_2_5 (0x07 << 8)
  406. #define SYS_CLCD_ID_VGA (0x1f << 8)
  407. static struct clcd_panel vga = {
  408. .mode = {
  409. .name = "VGA",
  410. .refresh = 60,
  411. .xres = 640,
  412. .yres = 480,
  413. .pixclock = 39721,
  414. .left_margin = 40,
  415. .right_margin = 24,
  416. .upper_margin = 32,
  417. .lower_margin = 11,
  418. .hsync_len = 96,
  419. .vsync_len = 2,
  420. .sync = 0,
  421. .vmode = FB_VMODE_NONINTERLACED,
  422. },
  423. .width = -1,
  424. .height = -1,
  425. .tim2 = TIM2_BCD | TIM2_IPC,
  426. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  427. .bpp = 16,
  428. };
  429. static struct clcd_panel sanyo_3_8_in = {
  430. .mode = {
  431. .name = "Sanyo QVGA",
  432. .refresh = 116,
  433. .xres = 320,
  434. .yres = 240,
  435. .pixclock = 100000,
  436. .left_margin = 6,
  437. .right_margin = 6,
  438. .upper_margin = 5,
  439. .lower_margin = 5,
  440. .hsync_len = 6,
  441. .vsync_len = 6,
  442. .sync = 0,
  443. .vmode = FB_VMODE_NONINTERLACED,
  444. },
  445. .width = -1,
  446. .height = -1,
  447. .tim2 = TIM2_BCD,
  448. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  449. .bpp = 16,
  450. };
  451. static struct clcd_panel sanyo_2_5_in = {
  452. .mode = {
  453. .name = "Sanyo QVGA Portrait",
  454. .refresh = 116,
  455. .xres = 240,
  456. .yres = 320,
  457. .pixclock = 100000,
  458. .left_margin = 20,
  459. .right_margin = 10,
  460. .upper_margin = 2,
  461. .lower_margin = 2,
  462. .hsync_len = 10,
  463. .vsync_len = 2,
  464. .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
  465. .vmode = FB_VMODE_NONINTERLACED,
  466. },
  467. .width = -1,
  468. .height = -1,
  469. .tim2 = TIM2_IVS | TIM2_IHS | TIM2_IPC,
  470. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  471. .bpp = 16,
  472. };
  473. static struct clcd_panel epson_2_2_in = {
  474. .mode = {
  475. .name = "Epson QCIF",
  476. .refresh = 390,
  477. .xres = 176,
  478. .yres = 220,
  479. .pixclock = 62500,
  480. .left_margin = 3,
  481. .right_margin = 2,
  482. .upper_margin = 1,
  483. .lower_margin = 0,
  484. .hsync_len = 3,
  485. .vsync_len = 2,
  486. .sync = 0,
  487. .vmode = FB_VMODE_NONINTERLACED,
  488. },
  489. .width = -1,
  490. .height = -1,
  491. .tim2 = TIM2_BCD | TIM2_IPC,
  492. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  493. .bpp = 16,
  494. };
  495. /*
  496. * Detect which LCD panel is connected, and return the appropriate
  497. * clcd_panel structure. Note: we do not have any information on
  498. * the required timings for the 8.4in panel, so we presently assume
  499. * VGA timings.
  500. */
  501. static struct clcd_panel *versatile_clcd_panel(void)
  502. {
  503. void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
  504. struct clcd_panel *panel = &vga;
  505. u32 val;
  506. val = readl(sys_clcd) & SYS_CLCD_ID_MASK;
  507. if (val == SYS_CLCD_ID_SANYO_3_8)
  508. panel = &sanyo_3_8_in;
  509. else if (val == SYS_CLCD_ID_SANYO_2_5)
  510. panel = &sanyo_2_5_in;
  511. else if (val == SYS_CLCD_ID_EPSON_2_2)
  512. panel = &epson_2_2_in;
  513. else if (val == SYS_CLCD_ID_VGA)
  514. panel = &vga;
  515. else {
  516. printk(KERN_ERR "CLCD: unknown LCD panel ID 0x%08x, using VGA\n",
  517. val);
  518. panel = &vga;
  519. }
  520. return panel;
  521. }
  522. /*
  523. * Disable all display connectors on the interface module.
  524. */
  525. static void versatile_clcd_disable(struct clcd_fb *fb)
  526. {
  527. void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
  528. u32 val;
  529. val = readl(sys_clcd);
  530. val &= ~SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
  531. writel(val, sys_clcd);
  532. #ifdef CONFIG_MACH_VERSATILE_AB
  533. /*
  534. * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light off
  535. */
  536. if (machine_is_versatile_ab() && fb->panel == &sanyo_2_5_in) {
  537. void __iomem *versatile_ib2_ctrl = __io_address(VERSATILE_IB2_CTRL);
  538. unsigned long ctrl;
  539. ctrl = readl(versatile_ib2_ctrl);
  540. ctrl &= ~0x01;
  541. writel(ctrl, versatile_ib2_ctrl);
  542. }
  543. #endif
  544. }
  545. /*
  546. * Enable the relevant connector on the interface module.
  547. */
  548. static void versatile_clcd_enable(struct clcd_fb *fb)
  549. {
  550. void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
  551. u32 val;
  552. val = readl(sys_clcd);
  553. val &= ~SYS_CLCD_MODE_MASK;
  554. switch (fb->fb.var.green.length) {
  555. case 5:
  556. val |= SYS_CLCD_MODE_5551;
  557. break;
  558. case 6:
  559. val |= SYS_CLCD_MODE_565_RLSB;
  560. break;
  561. case 8:
  562. val |= SYS_CLCD_MODE_888;
  563. break;
  564. }
  565. /*
  566. * Set the MUX
  567. */
  568. writel(val, sys_clcd);
  569. /*
  570. * And now enable the PSUs
  571. */
  572. val |= SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
  573. writel(val, sys_clcd);
  574. #ifdef CONFIG_MACH_VERSATILE_AB
  575. /*
  576. * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light on
  577. */
  578. if (machine_is_versatile_ab() && fb->panel == &sanyo_2_5_in) {
  579. void __iomem *versatile_ib2_ctrl = __io_address(VERSATILE_IB2_CTRL);
  580. unsigned long ctrl;
  581. ctrl = readl(versatile_ib2_ctrl);
  582. ctrl |= 0x01;
  583. writel(ctrl, versatile_ib2_ctrl);
  584. }
  585. #endif
  586. }
  587. static unsigned long framesize = SZ_1M;
  588. static int versatile_clcd_setup(struct clcd_fb *fb)
  589. {
  590. dma_addr_t dma;
  591. fb->panel = versatile_clcd_panel();
  592. fb->fb.screen_base = dma_alloc_writecombine(&fb->dev->dev, framesize,
  593. &dma, GFP_KERNEL);
  594. if (!fb->fb.screen_base) {
  595. printk(KERN_ERR "CLCD: unable to map framebuffer\n");
  596. return -ENOMEM;
  597. }
  598. fb->fb.fix.smem_start = dma;
  599. fb->fb.fix.smem_len = framesize;
  600. return 0;
  601. }
  602. static int versatile_clcd_mmap(struct clcd_fb *fb, struct vm_area_struct *vma)
  603. {
  604. return dma_mmap_writecombine(&fb->dev->dev, vma,
  605. fb->fb.screen_base,
  606. fb->fb.fix.smem_start,
  607. fb->fb.fix.smem_len);
  608. }
  609. static void versatile_clcd_remove(struct clcd_fb *fb)
  610. {
  611. dma_free_writecombine(&fb->dev->dev, fb->fb.fix.smem_len,
  612. fb->fb.screen_base, fb->fb.fix.smem_start);
  613. }
  614. static struct clcd_board clcd_plat_data = {
  615. .name = "Versatile",
  616. .check = clcdfb_check,
  617. .decode = clcdfb_decode,
  618. .disable = versatile_clcd_disable,
  619. .enable = versatile_clcd_enable,
  620. .setup = versatile_clcd_setup,
  621. .mmap = versatile_clcd_mmap,
  622. .remove = versatile_clcd_remove,
  623. };
  624. #define AACI_IRQ { IRQ_AACI, NO_IRQ }
  625. #define AACI_DMA { 0x80, 0x81 }
  626. #define MMCI0_IRQ { IRQ_MMCI0A,IRQ_SIC_MMCI0B }
  627. #define MMCI0_DMA { 0x84, 0 }
  628. #define KMI0_IRQ { IRQ_SIC_KMI0, NO_IRQ }
  629. #define KMI0_DMA { 0, 0 }
  630. #define KMI1_IRQ { IRQ_SIC_KMI1, NO_IRQ }
  631. #define KMI1_DMA { 0, 0 }
  632. /*
  633. * These devices are connected directly to the multi-layer AHB switch
  634. */
  635. #define SMC_IRQ { NO_IRQ, NO_IRQ }
  636. #define SMC_DMA { 0, 0 }
  637. #define MPMC_IRQ { NO_IRQ, NO_IRQ }
  638. #define MPMC_DMA { 0, 0 }
  639. #define CLCD_IRQ { IRQ_CLCDINT, NO_IRQ }
  640. #define CLCD_DMA { 0, 0 }
  641. #define DMAC_IRQ { IRQ_DMAINT, NO_IRQ }
  642. #define DMAC_DMA { 0, 0 }
  643. /*
  644. * These devices are connected via the core APB bridge
  645. */
  646. #define SCTL_IRQ { NO_IRQ, NO_IRQ }
  647. #define SCTL_DMA { 0, 0 }
  648. #define WATCHDOG_IRQ { IRQ_WDOGINT, NO_IRQ }
  649. #define WATCHDOG_DMA { 0, 0 }
  650. #define GPIO0_IRQ { IRQ_GPIOINT0, NO_IRQ }
  651. #define GPIO0_DMA { 0, 0 }
  652. #define GPIO1_IRQ { IRQ_GPIOINT1, NO_IRQ }
  653. #define GPIO1_DMA { 0, 0 }
  654. #define RTC_IRQ { IRQ_RTCINT, NO_IRQ }
  655. #define RTC_DMA { 0, 0 }
  656. /*
  657. * These devices are connected via the DMA APB bridge
  658. */
  659. #define SCI_IRQ { IRQ_SCIINT, NO_IRQ }
  660. #define SCI_DMA { 7, 6 }
  661. #define UART0_IRQ { IRQ_UARTINT0, NO_IRQ }
  662. #define UART0_DMA { 15, 14 }
  663. #define UART1_IRQ { IRQ_UARTINT1, NO_IRQ }
  664. #define UART1_DMA { 13, 12 }
  665. #define UART2_IRQ { IRQ_UARTINT2, NO_IRQ }
  666. #define UART2_DMA { 11, 10 }
  667. #define SSP_IRQ { IRQ_SSPINT, NO_IRQ }
  668. #define SSP_DMA { 9, 8 }
  669. /* FPGA Primecells */
  670. AMBA_DEVICE(aaci, "fpga:04", AACI, NULL);
  671. AMBA_DEVICE(mmc0, "fpga:05", MMCI0, &mmc0_plat_data);
  672. AMBA_DEVICE(kmi0, "fpga:06", KMI0, NULL);
  673. AMBA_DEVICE(kmi1, "fpga:07", KMI1, NULL);
  674. /* DevChip Primecells */
  675. AMBA_DEVICE(smc, "dev:00", SMC, NULL);
  676. AMBA_DEVICE(mpmc, "dev:10", MPMC, NULL);
  677. AMBA_DEVICE(clcd, "dev:20", CLCD, &clcd_plat_data);
  678. AMBA_DEVICE(dmac, "dev:30", DMAC, NULL);
  679. AMBA_DEVICE(sctl, "dev:e0", SCTL, NULL);
  680. AMBA_DEVICE(wdog, "dev:e1", WATCHDOG, NULL);
  681. AMBA_DEVICE(gpio0, "dev:e4", GPIO0, NULL);
  682. AMBA_DEVICE(gpio1, "dev:e5", GPIO1, NULL);
  683. AMBA_DEVICE(rtc, "dev:e8", RTC, NULL);
  684. AMBA_DEVICE(sci0, "dev:f0", SCI, NULL);
  685. AMBA_DEVICE(uart0, "dev:f1", UART0, NULL);
  686. AMBA_DEVICE(uart1, "dev:f2", UART1, NULL);
  687. AMBA_DEVICE(uart2, "dev:f3", UART2, NULL);
  688. AMBA_DEVICE(ssp0, "dev:f4", SSP, NULL);
  689. static struct amba_device *amba_devs[] __initdata = {
  690. &dmac_device,
  691. &uart0_device,
  692. &uart1_device,
  693. &uart2_device,
  694. &smc_device,
  695. &mpmc_device,
  696. &clcd_device,
  697. &sctl_device,
  698. &wdog_device,
  699. &gpio0_device,
  700. &gpio1_device,
  701. &rtc_device,
  702. &sci0_device,
  703. &ssp0_device,
  704. &aaci_device,
  705. &mmc0_device,
  706. &kmi0_device,
  707. &kmi1_device,
  708. };
  709. #ifdef CONFIG_LEDS
  710. #define VA_LEDS_BASE (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_LED_OFFSET)
  711. static void versatile_leds_event(led_event_t ledevt)
  712. {
  713. unsigned long flags;
  714. u32 val;
  715. local_irq_save(flags);
  716. val = readl(VA_LEDS_BASE);
  717. switch (ledevt) {
  718. case led_idle_start:
  719. val = val & ~VERSATILE_SYS_LED0;
  720. break;
  721. case led_idle_end:
  722. val = val | VERSATILE_SYS_LED0;
  723. break;
  724. case led_timer:
  725. val = val ^ VERSATILE_SYS_LED1;
  726. break;
  727. case led_halted:
  728. val = 0;
  729. break;
  730. default:
  731. break;
  732. }
  733. writel(val, VA_LEDS_BASE);
  734. local_irq_restore(flags);
  735. }
  736. #endif /* CONFIG_LEDS */
  737. void __init versatile_init(void)
  738. {
  739. int i;
  740. for (i = 0; i < ARRAY_SIZE(lookups); i++)
  741. clkdev_add(&lookups[i]);
  742. platform_device_register(&versatile_flash_device);
  743. platform_device_register(&versatile_i2c_device);
  744. platform_device_register(&smc91x_device);
  745. for (i = 0; i < ARRAY_SIZE(amba_devs); i++) {
  746. struct amba_device *d = amba_devs[i];
  747. amba_device_register(d, &iomem_resource);
  748. }
  749. #ifdef CONFIG_LEDS
  750. leds_event = versatile_leds_event;
  751. #endif
  752. }
  753. /*
  754. * Where is the timer (VA)?
  755. */
  756. #define TIMER0_VA_BASE __io_address(VERSATILE_TIMER0_1_BASE)
  757. #define TIMER1_VA_BASE (__io_address(VERSATILE_TIMER0_1_BASE) + 0x20)
  758. #define TIMER2_VA_BASE __io_address(VERSATILE_TIMER2_3_BASE)
  759. #define TIMER3_VA_BASE (__io_address(VERSATILE_TIMER2_3_BASE) + 0x20)
  760. #define VA_IC_BASE __io_address(VERSATILE_VIC_BASE)
  761. /*
  762. * How long is the timer interval?
  763. */
  764. #define TIMER_INTERVAL (TICKS_PER_uSEC * mSEC_10)
  765. #if TIMER_INTERVAL >= 0x100000
  766. #define TIMER_RELOAD (TIMER_INTERVAL >> 8)
  767. #define TIMER_DIVISOR (TIMER_CTRL_DIV256)
  768. #define TICKS2USECS(x) (256 * (x) / TICKS_PER_uSEC)
  769. #elif TIMER_INTERVAL >= 0x10000
  770. #define TIMER_RELOAD (TIMER_INTERVAL >> 4) /* Divide by 16 */
  771. #define TIMER_DIVISOR (TIMER_CTRL_DIV16)
  772. #define TICKS2USECS(x) (16 * (x) / TICKS_PER_uSEC)
  773. #else
  774. #define TIMER_RELOAD (TIMER_INTERVAL)
  775. #define TIMER_DIVISOR (TIMER_CTRL_DIV1)
  776. #define TICKS2USECS(x) ((x) / TICKS_PER_uSEC)
  777. #endif
  778. static void timer_set_mode(enum clock_event_mode mode,
  779. struct clock_event_device *clk)
  780. {
  781. unsigned long ctrl;
  782. switch(mode) {
  783. case CLOCK_EVT_MODE_PERIODIC:
  784. writel(TIMER_RELOAD, TIMER0_VA_BASE + TIMER_LOAD);
  785. ctrl = TIMER_CTRL_PERIODIC;
  786. ctrl |= TIMER_CTRL_32BIT | TIMER_CTRL_IE | TIMER_CTRL_ENABLE;
  787. break;
  788. case CLOCK_EVT_MODE_ONESHOT:
  789. /* period set, and timer enabled in 'next_event' hook */
  790. ctrl = TIMER_CTRL_ONESHOT;
  791. ctrl |= TIMER_CTRL_32BIT | TIMER_CTRL_IE;
  792. break;
  793. case CLOCK_EVT_MODE_UNUSED:
  794. case CLOCK_EVT_MODE_SHUTDOWN:
  795. default:
  796. ctrl = 0;
  797. }
  798. writel(ctrl, TIMER0_VA_BASE + TIMER_CTRL);
  799. }
  800. static int timer_set_next_event(unsigned long evt,
  801. struct clock_event_device *unused)
  802. {
  803. unsigned long ctrl = readl(TIMER0_VA_BASE + TIMER_CTRL);
  804. writel(evt, TIMER0_VA_BASE + TIMER_LOAD);
  805. writel(ctrl | TIMER_CTRL_ENABLE, TIMER0_VA_BASE + TIMER_CTRL);
  806. return 0;
  807. }
  808. static struct clock_event_device timer0_clockevent = {
  809. .name = "timer0",
  810. .shift = 32,
  811. .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
  812. .set_mode = timer_set_mode,
  813. .set_next_event = timer_set_next_event,
  814. };
  815. /*
  816. * IRQ handler for the timer
  817. */
  818. static irqreturn_t versatile_timer_interrupt(int irq, void *dev_id)
  819. {
  820. struct clock_event_device *evt = &timer0_clockevent;
  821. writel(1, TIMER0_VA_BASE + TIMER_INTCLR);
  822. evt->event_handler(evt);
  823. return IRQ_HANDLED;
  824. }
  825. static struct irqaction versatile_timer_irq = {
  826. .name = "Versatile Timer Tick",
  827. .flags = IRQF_DISABLED | IRQF_TIMER | IRQF_IRQPOLL,
  828. .handler = versatile_timer_interrupt,
  829. };
  830. static cycle_t versatile_get_cycles(struct clocksource *cs)
  831. {
  832. return ~readl(TIMER3_VA_BASE + TIMER_VALUE);
  833. }
  834. static struct clocksource clocksource_versatile = {
  835. .name = "timer3",
  836. .rating = 200,
  837. .read = versatile_get_cycles,
  838. .mask = CLOCKSOURCE_MASK(32),
  839. .shift = 20,
  840. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  841. };
  842. static int __init versatile_clocksource_init(void)
  843. {
  844. /* setup timer3 as free-running clocksource */
  845. writel(0, TIMER3_VA_BASE + TIMER_CTRL);
  846. writel(0xffffffff, TIMER3_VA_BASE + TIMER_LOAD);
  847. writel(0xffffffff, TIMER3_VA_BASE + TIMER_VALUE);
  848. writel(TIMER_CTRL_32BIT | TIMER_CTRL_ENABLE | TIMER_CTRL_PERIODIC,
  849. TIMER3_VA_BASE + TIMER_CTRL);
  850. clocksource_versatile.mult =
  851. clocksource_khz2mult(1000, clocksource_versatile.shift);
  852. clocksource_register(&clocksource_versatile);
  853. return 0;
  854. }
  855. /*
  856. * Set up timer interrupt, and return the current time in seconds.
  857. */
  858. static void __init versatile_timer_init(void)
  859. {
  860. u32 val;
  861. /*
  862. * set clock frequency:
  863. * VERSATILE_REFCLK is 32KHz
  864. * VERSATILE_TIMCLK is 1MHz
  865. */
  866. val = readl(__io_address(VERSATILE_SCTL_BASE));
  867. writel((VERSATILE_TIMCLK << VERSATILE_TIMER1_EnSel) |
  868. (VERSATILE_TIMCLK << VERSATILE_TIMER2_EnSel) |
  869. (VERSATILE_TIMCLK << VERSATILE_TIMER3_EnSel) |
  870. (VERSATILE_TIMCLK << VERSATILE_TIMER4_EnSel) | val,
  871. __io_address(VERSATILE_SCTL_BASE));
  872. /*
  873. * Initialise to a known state (all timers off)
  874. */
  875. writel(0, TIMER0_VA_BASE + TIMER_CTRL);
  876. writel(0, TIMER1_VA_BASE + TIMER_CTRL);
  877. writel(0, TIMER2_VA_BASE + TIMER_CTRL);
  878. writel(0, TIMER3_VA_BASE + TIMER_CTRL);
  879. /*
  880. * Make irqs happen for the system timer
  881. */
  882. setup_irq(IRQ_TIMERINT0_1, &versatile_timer_irq);
  883. versatile_clocksource_init();
  884. timer0_clockevent.mult =
  885. div_sc(1000000, NSEC_PER_SEC, timer0_clockevent.shift);
  886. timer0_clockevent.max_delta_ns =
  887. clockevent_delta2ns(0xffffffff, &timer0_clockevent);
  888. timer0_clockevent.min_delta_ns =
  889. clockevent_delta2ns(0xf, &timer0_clockevent);
  890. timer0_clockevent.cpumask = cpumask_of(0);
  891. clockevents_register_device(&timer0_clockevent);
  892. }
  893. struct sys_timer versatile_timer = {
  894. .init = versatile_timer_init,
  895. };