time.c 8.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400
  1. /*
  2. * linux/arch/arm/kernel/time.c
  3. *
  4. * Copyright (C) 1991, 1992, 1995 Linus Torvalds
  5. * Modifications for ARM (C) 1994-2001 Russell King
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. *
  11. * This file contains the ARM-specific time handling details:
  12. * reading the RTC at bootup, etc...
  13. *
  14. * 1994-07-02 Alan Modra
  15. * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
  16. * 1998-12-20 Updated NTP code according to technical memorandum Jan '96
  17. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  18. */
  19. #include <linux/module.h>
  20. #include <linux/kernel.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/time.h>
  23. #include <linux/init.h>
  24. #include <linux/smp.h>
  25. #include <linux/timex.h>
  26. #include <linux/errno.h>
  27. #include <linux/profile.h>
  28. #include <linux/sysdev.h>
  29. #include <linux/timer.h>
  30. #include <linux/irq.h>
  31. #include <linux/mc146818rtc.h>
  32. #include <asm/leds.h>
  33. #include <asm/thread_info.h>
  34. #include <asm/stacktrace.h>
  35. #include <asm/mach/time.h>
  36. /*
  37. * Our system timer.
  38. */
  39. struct sys_timer *system_timer;
  40. #if defined(CONFIG_RTC_DRV_CMOS) || defined(CONFIG_RTC_DRV_CMOS_MODULE)
  41. /* this needs a better home */
  42. DEFINE_SPINLOCK(rtc_lock);
  43. #ifdef CONFIG_RTC_DRV_CMOS_MODULE
  44. EXPORT_SYMBOL(rtc_lock);
  45. #endif
  46. #endif /* pc-style 'CMOS' RTC support */
  47. /* change this if you have some constant time drift */
  48. #define USECS_PER_JIFFY (1000000/HZ)
  49. #ifdef CONFIG_SMP
  50. unsigned long profile_pc(struct pt_regs *regs)
  51. {
  52. struct stackframe frame;
  53. if (!in_lock_functions(regs->ARM_pc))
  54. return regs->ARM_pc;
  55. frame.fp = regs->ARM_fp;
  56. frame.sp = regs->ARM_sp;
  57. frame.lr = regs->ARM_lr;
  58. frame.pc = regs->ARM_pc;
  59. do {
  60. int ret = unwind_frame(&frame);
  61. if (ret < 0)
  62. return 0;
  63. } while (in_lock_functions(frame.pc));
  64. return frame.pc;
  65. }
  66. EXPORT_SYMBOL(profile_pc);
  67. #endif
  68. /*
  69. * hook for setting the RTC's idea of the current time.
  70. */
  71. int (*set_rtc)(void);
  72. #ifndef CONFIG_GENERIC_TIME
  73. static unsigned long dummy_gettimeoffset(void)
  74. {
  75. return 0;
  76. }
  77. #endif
  78. static unsigned long next_rtc_update;
  79. /*
  80. * If we have an externally synchronized linux clock, then update
  81. * CMOS clock accordingly every ~11 minutes. set_rtc() has to be
  82. * called as close as possible to 500 ms before the new second
  83. * starts.
  84. */
  85. static inline void do_set_rtc(void)
  86. {
  87. if (!ntp_synced() || set_rtc == NULL)
  88. return;
  89. if (next_rtc_update &&
  90. time_before((unsigned long)xtime.tv_sec, next_rtc_update))
  91. return;
  92. if (xtime.tv_nsec < 500000000 - ((unsigned) tick_nsec >> 1) &&
  93. xtime.tv_nsec >= 500000000 + ((unsigned) tick_nsec >> 1))
  94. return;
  95. if (set_rtc())
  96. /*
  97. * rtc update failed. Try again in 60s
  98. */
  99. next_rtc_update = xtime.tv_sec + 60;
  100. else
  101. next_rtc_update = xtime.tv_sec + 660;
  102. }
  103. #ifdef CONFIG_LEDS
  104. static void dummy_leds_event(led_event_t evt)
  105. {
  106. }
  107. void (*leds_event)(led_event_t) = dummy_leds_event;
  108. struct leds_evt_name {
  109. const char name[8];
  110. int on;
  111. int off;
  112. };
  113. static const struct leds_evt_name evt_names[] = {
  114. { "amber", led_amber_on, led_amber_off },
  115. { "blue", led_blue_on, led_blue_off },
  116. { "green", led_green_on, led_green_off },
  117. { "red", led_red_on, led_red_off },
  118. };
  119. static ssize_t leds_store(struct sys_device *dev,
  120. struct sysdev_attribute *attr,
  121. const char *buf, size_t size)
  122. {
  123. int ret = -EINVAL, len = strcspn(buf, " ");
  124. if (len > 0 && buf[len] == '\0')
  125. len--;
  126. if (strncmp(buf, "claim", len) == 0) {
  127. leds_event(led_claim);
  128. ret = size;
  129. } else if (strncmp(buf, "release", len) == 0) {
  130. leds_event(led_release);
  131. ret = size;
  132. } else {
  133. int i;
  134. for (i = 0; i < ARRAY_SIZE(evt_names); i++) {
  135. if (strlen(evt_names[i].name) != len ||
  136. strncmp(buf, evt_names[i].name, len) != 0)
  137. continue;
  138. if (strncmp(buf+len, " on", 3) == 0) {
  139. leds_event(evt_names[i].on);
  140. ret = size;
  141. } else if (strncmp(buf+len, " off", 4) == 0) {
  142. leds_event(evt_names[i].off);
  143. ret = size;
  144. }
  145. break;
  146. }
  147. }
  148. return ret;
  149. }
  150. static SYSDEV_ATTR(event, 0200, NULL, leds_store);
  151. static int leds_suspend(struct sys_device *dev, pm_message_t state)
  152. {
  153. leds_event(led_stop);
  154. return 0;
  155. }
  156. static int leds_resume(struct sys_device *dev)
  157. {
  158. leds_event(led_start);
  159. return 0;
  160. }
  161. static int leds_shutdown(struct sys_device *dev)
  162. {
  163. leds_event(led_halted);
  164. return 0;
  165. }
  166. static struct sysdev_class leds_sysclass = {
  167. .name = "leds",
  168. .shutdown = leds_shutdown,
  169. .suspend = leds_suspend,
  170. .resume = leds_resume,
  171. };
  172. static struct sys_device leds_device = {
  173. .id = 0,
  174. .cls = &leds_sysclass,
  175. };
  176. static int __init leds_init(void)
  177. {
  178. int ret;
  179. ret = sysdev_class_register(&leds_sysclass);
  180. if (ret == 0)
  181. ret = sysdev_register(&leds_device);
  182. if (ret == 0)
  183. ret = sysdev_create_file(&leds_device, &attr_event);
  184. return ret;
  185. }
  186. device_initcall(leds_init);
  187. EXPORT_SYMBOL(leds_event);
  188. #endif
  189. #ifdef CONFIG_LEDS_TIMER
  190. static inline void do_leds(void)
  191. {
  192. static unsigned int count = HZ/2;
  193. if (--count == 0) {
  194. count = HZ/2;
  195. leds_event(led_timer);
  196. }
  197. }
  198. #else
  199. #define do_leds()
  200. #endif
  201. #ifndef CONFIG_GENERIC_TIME
  202. void do_gettimeofday(struct timeval *tv)
  203. {
  204. unsigned long flags;
  205. unsigned long seq;
  206. unsigned long usec, sec;
  207. do {
  208. seq = read_seqbegin_irqsave(&xtime_lock, flags);
  209. usec = system_timer->offset();
  210. sec = xtime.tv_sec;
  211. usec += xtime.tv_nsec / 1000;
  212. } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
  213. /* usec may have gone up a lot: be safe */
  214. while (usec >= 1000000) {
  215. usec -= 1000000;
  216. sec++;
  217. }
  218. tv->tv_sec = sec;
  219. tv->tv_usec = usec;
  220. }
  221. EXPORT_SYMBOL(do_gettimeofday);
  222. int do_settimeofday(struct timespec *tv)
  223. {
  224. time_t wtm_sec, sec = tv->tv_sec;
  225. long wtm_nsec, nsec = tv->tv_nsec;
  226. if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
  227. return -EINVAL;
  228. write_seqlock_irq(&xtime_lock);
  229. /*
  230. * This is revolting. We need to set "xtime" correctly. However, the
  231. * value in this location is the value at the most recent update of
  232. * wall time. Discover what correction gettimeofday() would have
  233. * done, and then undo it!
  234. */
  235. nsec -= system_timer->offset() * NSEC_PER_USEC;
  236. wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
  237. wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
  238. set_normalized_timespec(&xtime, sec, nsec);
  239. set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
  240. ntp_clear();
  241. write_sequnlock_irq(&xtime_lock);
  242. clock_was_set();
  243. return 0;
  244. }
  245. EXPORT_SYMBOL(do_settimeofday);
  246. #endif /* !CONFIG_GENERIC_TIME */
  247. /**
  248. * save_time_delta - Save the offset between system time and RTC time
  249. * @delta: pointer to timespec to store delta
  250. * @rtc: pointer to timespec for current RTC time
  251. *
  252. * Return a delta between the system time and the RTC time, such
  253. * that system time can be restored later with restore_time_delta()
  254. */
  255. void save_time_delta(struct timespec *delta, struct timespec *rtc)
  256. {
  257. set_normalized_timespec(delta,
  258. xtime.tv_sec - rtc->tv_sec,
  259. xtime.tv_nsec - rtc->tv_nsec);
  260. }
  261. EXPORT_SYMBOL(save_time_delta);
  262. /**
  263. * restore_time_delta - Restore the current system time
  264. * @delta: delta returned by save_time_delta()
  265. * @rtc: pointer to timespec for current RTC time
  266. */
  267. void restore_time_delta(struct timespec *delta, struct timespec *rtc)
  268. {
  269. struct timespec ts;
  270. set_normalized_timespec(&ts,
  271. delta->tv_sec + rtc->tv_sec,
  272. delta->tv_nsec + rtc->tv_nsec);
  273. do_settimeofday(&ts);
  274. }
  275. EXPORT_SYMBOL(restore_time_delta);
  276. #ifndef CONFIG_GENERIC_CLOCKEVENTS
  277. /*
  278. * Kernel system timer support.
  279. */
  280. void timer_tick(void)
  281. {
  282. profile_tick(CPU_PROFILING);
  283. do_leds();
  284. do_set_rtc();
  285. write_seqlock(&xtime_lock);
  286. do_timer(1);
  287. write_sequnlock(&xtime_lock);
  288. #ifndef CONFIG_SMP
  289. update_process_times(user_mode(get_irq_regs()));
  290. #endif
  291. }
  292. #endif
  293. #if defined(CONFIG_PM) && !defined(CONFIG_GENERIC_CLOCKEVENTS)
  294. static int timer_suspend(struct sys_device *dev, pm_message_t state)
  295. {
  296. struct sys_timer *timer = container_of(dev, struct sys_timer, dev);
  297. if (timer->suspend != NULL)
  298. timer->suspend();
  299. return 0;
  300. }
  301. static int timer_resume(struct sys_device *dev)
  302. {
  303. struct sys_timer *timer = container_of(dev, struct sys_timer, dev);
  304. if (timer->resume != NULL)
  305. timer->resume();
  306. return 0;
  307. }
  308. #else
  309. #define timer_suspend NULL
  310. #define timer_resume NULL
  311. #endif
  312. static struct sysdev_class timer_sysclass = {
  313. .name = "timer",
  314. .suspend = timer_suspend,
  315. .resume = timer_resume,
  316. };
  317. static int __init timer_init_sysfs(void)
  318. {
  319. int ret = sysdev_class_register(&timer_sysclass);
  320. if (ret == 0) {
  321. system_timer->dev.cls = &timer_sysclass;
  322. ret = sysdev_register(&system_timer->dev);
  323. }
  324. return ret;
  325. }
  326. device_initcall(timer_init_sysfs);
  327. void __init time_init(void)
  328. {
  329. #ifndef CONFIG_GENERIC_TIME
  330. if (system_timer->offset == NULL)
  331. system_timer->offset = dummy_gettimeoffset;
  332. #endif
  333. system_timer->init();
  334. }