kprobes-decode.c 47 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529
  1. /*
  2. * arch/arm/kernel/kprobes-decode.c
  3. *
  4. * Copyright (C) 2006, 2007 Motorola Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * General Public License for more details.
  14. */
  15. /*
  16. * We do not have hardware single-stepping on ARM, This
  17. * effort is further complicated by the ARM not having a
  18. * "next PC" register. Instructions that change the PC
  19. * can't be safely single-stepped in a MP environment, so
  20. * we have a lot of work to do:
  21. *
  22. * In the prepare phase:
  23. * *) If it is an instruction that does anything
  24. * with the CPU mode, we reject it for a kprobe.
  25. * (This is out of laziness rather than need. The
  26. * instructions could be simulated.)
  27. *
  28. * *) Otherwise, decode the instruction rewriting its
  29. * registers to take fixed, ordered registers and
  30. * setting a handler for it to run the instruction.
  31. *
  32. * In the execution phase by an instruction's handler:
  33. *
  34. * *) If the PC is written to by the instruction, the
  35. * instruction must be fully simulated in software.
  36. * If it is a conditional instruction, the handler
  37. * will use insn[0] to copy its condition code to
  38. * set r0 to 1 and insn[1] to "mov pc, lr" to return.
  39. *
  40. * *) Otherwise, a modified form of the instruction is
  41. * directly executed. Its handler calls the
  42. * instruction in insn[0]. In insn[1] is a
  43. * "mov pc, lr" to return.
  44. *
  45. * Before calling, load up the reordered registers
  46. * from the original instruction's registers. If one
  47. * of the original input registers is the PC, compute
  48. * and adjust the appropriate input register.
  49. *
  50. * After call completes, copy the output registers to
  51. * the original instruction's original registers.
  52. *
  53. * We don't use a real breakpoint instruction since that
  54. * would have us in the kernel go from SVC mode to SVC
  55. * mode losing the link register. Instead we use an
  56. * undefined instruction. To simplify processing, the
  57. * undefined instruction used for kprobes must be reserved
  58. * exclusively for kprobes use.
  59. *
  60. * TODO: ifdef out some instruction decoding based on architecture.
  61. */
  62. #include <linux/kernel.h>
  63. #include <linux/kprobes.h>
  64. #define sign_extend(x, signbit) ((x) | (0 - ((x) & (1 << (signbit)))))
  65. #define branch_displacement(insn) sign_extend(((insn) & 0xffffff) << 2, 25)
  66. #define PSR_fs (PSR_f|PSR_s)
  67. #define KPROBE_RETURN_INSTRUCTION 0xe1a0f00e /* mov pc, lr */
  68. #define SET_R0_TRUE_INSTRUCTION 0xe3a00001 /* mov r0, #1 */
  69. #define truecc_insn(insn) (((insn) & 0xf0000000) | \
  70. (SET_R0_TRUE_INSTRUCTION & 0x0fffffff))
  71. typedef long (insn_0arg_fn_t)(void);
  72. typedef long (insn_1arg_fn_t)(long);
  73. typedef long (insn_2arg_fn_t)(long, long);
  74. typedef long (insn_3arg_fn_t)(long, long, long);
  75. typedef long (insn_4arg_fn_t)(long, long, long, long);
  76. typedef long long (insn_llret_0arg_fn_t)(void);
  77. typedef long long (insn_llret_3arg_fn_t)(long, long, long);
  78. typedef long long (insn_llret_4arg_fn_t)(long, long, long, long);
  79. union reg_pair {
  80. long long dr;
  81. #ifdef __LITTLE_ENDIAN
  82. struct { long r0, r1; };
  83. #else
  84. struct { long r1, r0; };
  85. #endif
  86. };
  87. /*
  88. * For STR and STM instructions, an ARM core may choose to use either
  89. * a +8 or a +12 displacement from the current instruction's address.
  90. * Whichever value is chosen for a given core, it must be the same for
  91. * both instructions and may not change. This function measures it.
  92. */
  93. static int str_pc_offset;
  94. static void __init find_str_pc_offset(void)
  95. {
  96. int addr, scratch, ret;
  97. __asm__ (
  98. "sub %[ret], pc, #4 \n\t"
  99. "str pc, %[addr] \n\t"
  100. "ldr %[scr], %[addr] \n\t"
  101. "sub %[ret], %[scr], %[ret] \n\t"
  102. : [ret] "=r" (ret), [scr] "=r" (scratch), [addr] "+m" (addr));
  103. str_pc_offset = ret;
  104. }
  105. /*
  106. * The insnslot_?arg_r[w]flags() functions below are to keep the
  107. * msr -> *fn -> mrs instruction sequences indivisible so that
  108. * the state of the CPSR flags aren't inadvertently modified
  109. * just before or just after the call.
  110. */
  111. static inline long __kprobes
  112. insnslot_0arg_rflags(long cpsr, insn_0arg_fn_t *fn)
  113. {
  114. register long ret asm("r0");
  115. __asm__ __volatile__ (
  116. "msr cpsr_fs, %[cpsr] \n\t"
  117. "mov lr, pc \n\t"
  118. "mov pc, %[fn] \n\t"
  119. : "=r" (ret)
  120. : [cpsr] "r" (cpsr), [fn] "r" (fn)
  121. : "lr", "cc"
  122. );
  123. return ret;
  124. }
  125. static inline long long __kprobes
  126. insnslot_llret_0arg_rflags(long cpsr, insn_llret_0arg_fn_t *fn)
  127. {
  128. register long ret0 asm("r0");
  129. register long ret1 asm("r1");
  130. union reg_pair fnr;
  131. __asm__ __volatile__ (
  132. "msr cpsr_fs, %[cpsr] \n\t"
  133. "mov lr, pc \n\t"
  134. "mov pc, %[fn] \n\t"
  135. : "=r" (ret0), "=r" (ret1)
  136. : [cpsr] "r" (cpsr), [fn] "r" (fn)
  137. : "lr", "cc"
  138. );
  139. fnr.r0 = ret0;
  140. fnr.r1 = ret1;
  141. return fnr.dr;
  142. }
  143. static inline long __kprobes
  144. insnslot_1arg_rflags(long r0, long cpsr, insn_1arg_fn_t *fn)
  145. {
  146. register long rr0 asm("r0") = r0;
  147. register long ret asm("r0");
  148. __asm__ __volatile__ (
  149. "msr cpsr_fs, %[cpsr] \n\t"
  150. "mov lr, pc \n\t"
  151. "mov pc, %[fn] \n\t"
  152. : "=r" (ret)
  153. : "0" (rr0), [cpsr] "r" (cpsr), [fn] "r" (fn)
  154. : "lr", "cc"
  155. );
  156. return ret;
  157. }
  158. static inline long __kprobes
  159. insnslot_2arg_rflags(long r0, long r1, long cpsr, insn_2arg_fn_t *fn)
  160. {
  161. register long rr0 asm("r0") = r0;
  162. register long rr1 asm("r1") = r1;
  163. register long ret asm("r0");
  164. __asm__ __volatile__ (
  165. "msr cpsr_fs, %[cpsr] \n\t"
  166. "mov lr, pc \n\t"
  167. "mov pc, %[fn] \n\t"
  168. : "=r" (ret)
  169. : "0" (rr0), "r" (rr1),
  170. [cpsr] "r" (cpsr), [fn] "r" (fn)
  171. : "lr", "cc"
  172. );
  173. return ret;
  174. }
  175. static inline long __kprobes
  176. insnslot_3arg_rflags(long r0, long r1, long r2, long cpsr, insn_3arg_fn_t *fn)
  177. {
  178. register long rr0 asm("r0") = r0;
  179. register long rr1 asm("r1") = r1;
  180. register long rr2 asm("r2") = r2;
  181. register long ret asm("r0");
  182. __asm__ __volatile__ (
  183. "msr cpsr_fs, %[cpsr] \n\t"
  184. "mov lr, pc \n\t"
  185. "mov pc, %[fn] \n\t"
  186. : "=r" (ret)
  187. : "0" (rr0), "r" (rr1), "r" (rr2),
  188. [cpsr] "r" (cpsr), [fn] "r" (fn)
  189. : "lr", "cc"
  190. );
  191. return ret;
  192. }
  193. static inline long long __kprobes
  194. insnslot_llret_3arg_rflags(long r0, long r1, long r2, long cpsr,
  195. insn_llret_3arg_fn_t *fn)
  196. {
  197. register long rr0 asm("r0") = r0;
  198. register long rr1 asm("r1") = r1;
  199. register long rr2 asm("r2") = r2;
  200. register long ret0 asm("r0");
  201. register long ret1 asm("r1");
  202. union reg_pair fnr;
  203. __asm__ __volatile__ (
  204. "msr cpsr_fs, %[cpsr] \n\t"
  205. "mov lr, pc \n\t"
  206. "mov pc, %[fn] \n\t"
  207. : "=r" (ret0), "=r" (ret1)
  208. : "0" (rr0), "r" (rr1), "r" (rr2),
  209. [cpsr] "r" (cpsr), [fn] "r" (fn)
  210. : "lr", "cc"
  211. );
  212. fnr.r0 = ret0;
  213. fnr.r1 = ret1;
  214. return fnr.dr;
  215. }
  216. static inline long __kprobes
  217. insnslot_4arg_rflags(long r0, long r1, long r2, long r3, long cpsr,
  218. insn_4arg_fn_t *fn)
  219. {
  220. register long rr0 asm("r0") = r0;
  221. register long rr1 asm("r1") = r1;
  222. register long rr2 asm("r2") = r2;
  223. register long rr3 asm("r3") = r3;
  224. register long ret asm("r0");
  225. __asm__ __volatile__ (
  226. "msr cpsr_fs, %[cpsr] \n\t"
  227. "mov lr, pc \n\t"
  228. "mov pc, %[fn] \n\t"
  229. : "=r" (ret)
  230. : "0" (rr0), "r" (rr1), "r" (rr2), "r" (rr3),
  231. [cpsr] "r" (cpsr), [fn] "r" (fn)
  232. : "lr", "cc"
  233. );
  234. return ret;
  235. }
  236. static inline long __kprobes
  237. insnslot_1arg_rwflags(long r0, long *cpsr, insn_1arg_fn_t *fn)
  238. {
  239. register long rr0 asm("r0") = r0;
  240. register long ret asm("r0");
  241. long oldcpsr = *cpsr;
  242. long newcpsr;
  243. __asm__ __volatile__ (
  244. "msr cpsr_fs, %[oldcpsr] \n\t"
  245. "mov lr, pc \n\t"
  246. "mov pc, %[fn] \n\t"
  247. "mrs %[newcpsr], cpsr \n\t"
  248. : "=r" (ret), [newcpsr] "=r" (newcpsr)
  249. : "0" (rr0), [oldcpsr] "r" (oldcpsr), [fn] "r" (fn)
  250. : "lr", "cc"
  251. );
  252. *cpsr = (oldcpsr & ~PSR_fs) | (newcpsr & PSR_fs);
  253. return ret;
  254. }
  255. static inline long __kprobes
  256. insnslot_2arg_rwflags(long r0, long r1, long *cpsr, insn_2arg_fn_t *fn)
  257. {
  258. register long rr0 asm("r0") = r0;
  259. register long rr1 asm("r1") = r1;
  260. register long ret asm("r0");
  261. long oldcpsr = *cpsr;
  262. long newcpsr;
  263. __asm__ __volatile__ (
  264. "msr cpsr_fs, %[oldcpsr] \n\t"
  265. "mov lr, pc \n\t"
  266. "mov pc, %[fn] \n\t"
  267. "mrs %[newcpsr], cpsr \n\t"
  268. : "=r" (ret), [newcpsr] "=r" (newcpsr)
  269. : "0" (rr0), "r" (rr1), [oldcpsr] "r" (oldcpsr), [fn] "r" (fn)
  270. : "lr", "cc"
  271. );
  272. *cpsr = (oldcpsr & ~PSR_fs) | (newcpsr & PSR_fs);
  273. return ret;
  274. }
  275. static inline long __kprobes
  276. insnslot_3arg_rwflags(long r0, long r1, long r2, long *cpsr,
  277. insn_3arg_fn_t *fn)
  278. {
  279. register long rr0 asm("r0") = r0;
  280. register long rr1 asm("r1") = r1;
  281. register long rr2 asm("r2") = r2;
  282. register long ret asm("r0");
  283. long oldcpsr = *cpsr;
  284. long newcpsr;
  285. __asm__ __volatile__ (
  286. "msr cpsr_fs, %[oldcpsr] \n\t"
  287. "mov lr, pc \n\t"
  288. "mov pc, %[fn] \n\t"
  289. "mrs %[newcpsr], cpsr \n\t"
  290. : "=r" (ret), [newcpsr] "=r" (newcpsr)
  291. : "0" (rr0), "r" (rr1), "r" (rr2),
  292. [oldcpsr] "r" (oldcpsr), [fn] "r" (fn)
  293. : "lr", "cc"
  294. );
  295. *cpsr = (oldcpsr & ~PSR_fs) | (newcpsr & PSR_fs);
  296. return ret;
  297. }
  298. static inline long __kprobes
  299. insnslot_4arg_rwflags(long r0, long r1, long r2, long r3, long *cpsr,
  300. insn_4arg_fn_t *fn)
  301. {
  302. register long rr0 asm("r0") = r0;
  303. register long rr1 asm("r1") = r1;
  304. register long rr2 asm("r2") = r2;
  305. register long rr3 asm("r3") = r3;
  306. register long ret asm("r0");
  307. long oldcpsr = *cpsr;
  308. long newcpsr;
  309. __asm__ __volatile__ (
  310. "msr cpsr_fs, %[oldcpsr] \n\t"
  311. "mov lr, pc \n\t"
  312. "mov pc, %[fn] \n\t"
  313. "mrs %[newcpsr], cpsr \n\t"
  314. : "=r" (ret), [newcpsr] "=r" (newcpsr)
  315. : "0" (rr0), "r" (rr1), "r" (rr2), "r" (rr3),
  316. [oldcpsr] "r" (oldcpsr), [fn] "r" (fn)
  317. : "lr", "cc"
  318. );
  319. *cpsr = (oldcpsr & ~PSR_fs) | (newcpsr & PSR_fs);
  320. return ret;
  321. }
  322. static inline long long __kprobes
  323. insnslot_llret_4arg_rwflags(long r0, long r1, long r2, long r3, long *cpsr,
  324. insn_llret_4arg_fn_t *fn)
  325. {
  326. register long rr0 asm("r0") = r0;
  327. register long rr1 asm("r1") = r1;
  328. register long rr2 asm("r2") = r2;
  329. register long rr3 asm("r3") = r3;
  330. register long ret0 asm("r0");
  331. register long ret1 asm("r1");
  332. long oldcpsr = *cpsr;
  333. long newcpsr;
  334. union reg_pair fnr;
  335. __asm__ __volatile__ (
  336. "msr cpsr_fs, %[oldcpsr] \n\t"
  337. "mov lr, pc \n\t"
  338. "mov pc, %[fn] \n\t"
  339. "mrs %[newcpsr], cpsr \n\t"
  340. : "=r" (ret0), "=r" (ret1), [newcpsr] "=r" (newcpsr)
  341. : "0" (rr0), "r" (rr1), "r" (rr2), "r" (rr3),
  342. [oldcpsr] "r" (oldcpsr), [fn] "r" (fn)
  343. : "lr", "cc"
  344. );
  345. *cpsr = (oldcpsr & ~PSR_fs) | (newcpsr & PSR_fs);
  346. fnr.r0 = ret0;
  347. fnr.r1 = ret1;
  348. return fnr.dr;
  349. }
  350. /*
  351. * To avoid the complications of mimicing single-stepping on a
  352. * processor without a Next-PC or a single-step mode, and to
  353. * avoid having to deal with the side-effects of boosting, we
  354. * simulate or emulate (almost) all ARM instructions.
  355. *
  356. * "Simulation" is where the instruction's behavior is duplicated in
  357. * C code. "Emulation" is where the original instruction is rewritten
  358. * and executed, often by altering its registers.
  359. *
  360. * By having all behavior of the kprobe'd instruction completed before
  361. * returning from the kprobe_handler(), all locks (scheduler and
  362. * interrupt) can safely be released. There is no need for secondary
  363. * breakpoints, no race with MP or preemptable kernels, nor having to
  364. * clean up resources counts at a later time impacting overall system
  365. * performance. By rewriting the instruction, only the minimum registers
  366. * need to be loaded and saved back optimizing performance.
  367. *
  368. * Calling the insnslot_*_rwflags version of a function doesn't hurt
  369. * anything even when the CPSR flags aren't updated by the
  370. * instruction. It's just a little slower in return for saving
  371. * a little space by not having a duplicate function that doesn't
  372. * update the flags. (The same optimization can be said for
  373. * instructions that do or don't perform register writeback)
  374. * Also, instructions can either read the flags, only write the
  375. * flags, or read and write the flags. To save combinations
  376. * rather than for sheer performance, flag functions just assume
  377. * read and write of flags.
  378. */
  379. static void __kprobes simulate_bbl(struct kprobe *p, struct pt_regs *regs)
  380. {
  381. insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
  382. kprobe_opcode_t insn = p->opcode;
  383. long iaddr = (long)p->addr;
  384. int disp = branch_displacement(insn);
  385. if (!insnslot_1arg_rflags(0, regs->ARM_cpsr, i_fn))
  386. return;
  387. if (insn & (1 << 24))
  388. regs->ARM_lr = iaddr + 4;
  389. regs->ARM_pc = iaddr + 8 + disp;
  390. }
  391. static void __kprobes simulate_blx1(struct kprobe *p, struct pt_regs *regs)
  392. {
  393. kprobe_opcode_t insn = p->opcode;
  394. long iaddr = (long)p->addr;
  395. int disp = branch_displacement(insn);
  396. regs->ARM_lr = iaddr + 4;
  397. regs->ARM_pc = iaddr + 8 + disp + ((insn >> 23) & 0x2);
  398. regs->ARM_cpsr |= PSR_T_BIT;
  399. }
  400. static void __kprobes simulate_blx2bx(struct kprobe *p, struct pt_regs *regs)
  401. {
  402. insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
  403. kprobe_opcode_t insn = p->opcode;
  404. int rm = insn & 0xf;
  405. long rmv = regs->uregs[rm];
  406. if (!insnslot_1arg_rflags(0, regs->ARM_cpsr, i_fn))
  407. return;
  408. if (insn & (1 << 5))
  409. regs->ARM_lr = (long)p->addr + 4;
  410. regs->ARM_pc = rmv & ~0x1;
  411. regs->ARM_cpsr &= ~PSR_T_BIT;
  412. if (rmv & 0x1)
  413. regs->ARM_cpsr |= PSR_T_BIT;
  414. }
  415. static void __kprobes simulate_ldm1stm1(struct kprobe *p, struct pt_regs *regs)
  416. {
  417. insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
  418. kprobe_opcode_t insn = p->opcode;
  419. int rn = (insn >> 16) & 0xf;
  420. int lbit = insn & (1 << 20);
  421. int wbit = insn & (1 << 21);
  422. int ubit = insn & (1 << 23);
  423. int pbit = insn & (1 << 24);
  424. long *addr = (long *)regs->uregs[rn];
  425. int reg_bit_vector;
  426. int reg_count;
  427. if (!insnslot_1arg_rflags(0, regs->ARM_cpsr, i_fn))
  428. return;
  429. reg_count = 0;
  430. reg_bit_vector = insn & 0xffff;
  431. while (reg_bit_vector) {
  432. reg_bit_vector &= (reg_bit_vector - 1);
  433. ++reg_count;
  434. }
  435. if (!ubit)
  436. addr -= reg_count;
  437. addr += (!pbit == !ubit);
  438. reg_bit_vector = insn & 0xffff;
  439. while (reg_bit_vector) {
  440. int reg = __ffs(reg_bit_vector);
  441. reg_bit_vector &= (reg_bit_vector - 1);
  442. if (lbit)
  443. regs->uregs[reg] = *addr++;
  444. else
  445. *addr++ = regs->uregs[reg];
  446. }
  447. if (wbit) {
  448. if (!ubit)
  449. addr -= reg_count;
  450. addr -= (!pbit == !ubit);
  451. regs->uregs[rn] = (long)addr;
  452. }
  453. }
  454. static void __kprobes simulate_stm1_pc(struct kprobe *p, struct pt_regs *regs)
  455. {
  456. insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
  457. if (!insnslot_1arg_rflags(0, regs->ARM_cpsr, i_fn))
  458. return;
  459. regs->ARM_pc = (long)p->addr + str_pc_offset;
  460. simulate_ldm1stm1(p, regs);
  461. regs->ARM_pc = (long)p->addr + 4;
  462. }
  463. static void __kprobes simulate_mov_ipsp(struct kprobe *p, struct pt_regs *regs)
  464. {
  465. regs->uregs[12] = regs->uregs[13];
  466. }
  467. static void __kprobes emulate_ldcstc(struct kprobe *p, struct pt_regs *regs)
  468. {
  469. insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
  470. kprobe_opcode_t insn = p->opcode;
  471. int rn = (insn >> 16) & 0xf;
  472. long rnv = regs->uregs[rn];
  473. /* Save Rn in case of writeback. */
  474. regs->uregs[rn] = insnslot_1arg_rflags(rnv, regs->ARM_cpsr, i_fn);
  475. }
  476. static void __kprobes emulate_ldrd(struct kprobe *p, struct pt_regs *regs)
  477. {
  478. insn_2arg_fn_t *i_fn = (insn_2arg_fn_t *)&p->ainsn.insn[0];
  479. kprobe_opcode_t insn = p->opcode;
  480. int rd = (insn >> 12) & 0xf;
  481. int rn = (insn >> 16) & 0xf;
  482. int rm = insn & 0xf; /* rm may be invalid, don't care. */
  483. /* Not following the C calling convention here, so need asm(). */
  484. __asm__ __volatile__ (
  485. "ldr r0, %[rn] \n\t"
  486. "ldr r1, %[rm] \n\t"
  487. "msr cpsr_fs, %[cpsr]\n\t"
  488. "mov lr, pc \n\t"
  489. "mov pc, %[i_fn] \n\t"
  490. "str r0, %[rn] \n\t" /* in case of writeback */
  491. "str r2, %[rd0] \n\t"
  492. "str r3, %[rd1] \n\t"
  493. : [rn] "+m" (regs->uregs[rn]),
  494. [rd0] "=m" (regs->uregs[rd]),
  495. [rd1] "=m" (regs->uregs[rd+1])
  496. : [rm] "m" (regs->uregs[rm]),
  497. [cpsr] "r" (regs->ARM_cpsr),
  498. [i_fn] "r" (i_fn)
  499. : "r0", "r1", "r2", "r3", "lr", "cc"
  500. );
  501. }
  502. static void __kprobes emulate_strd(struct kprobe *p, struct pt_regs *regs)
  503. {
  504. insn_4arg_fn_t *i_fn = (insn_4arg_fn_t *)&p->ainsn.insn[0];
  505. kprobe_opcode_t insn = p->opcode;
  506. int rd = (insn >> 12) & 0xf;
  507. int rn = (insn >> 16) & 0xf;
  508. int rm = insn & 0xf;
  509. long rnv = regs->uregs[rn];
  510. long rmv = regs->uregs[rm]; /* rm/rmv may be invalid, don't care. */
  511. regs->uregs[rn] = insnslot_4arg_rflags(rnv, rmv, regs->uregs[rd],
  512. regs->uregs[rd+1],
  513. regs->ARM_cpsr, i_fn);
  514. }
  515. static void __kprobes emulate_ldr(struct kprobe *p, struct pt_regs *regs)
  516. {
  517. insn_llret_3arg_fn_t *i_fn = (insn_llret_3arg_fn_t *)&p->ainsn.insn[0];
  518. kprobe_opcode_t insn = p->opcode;
  519. union reg_pair fnr;
  520. int rd = (insn >> 12) & 0xf;
  521. int rn = (insn >> 16) & 0xf;
  522. int rm = insn & 0xf;
  523. long rdv;
  524. long rnv = regs->uregs[rn];
  525. long rmv = regs->uregs[rm]; /* rm/rmv may be invalid, don't care. */
  526. long cpsr = regs->ARM_cpsr;
  527. fnr.dr = insnslot_llret_3arg_rflags(rnv, 0, rmv, cpsr, i_fn);
  528. regs->uregs[rn] = fnr.r0; /* Save Rn in case of writeback. */
  529. rdv = fnr.r1;
  530. if (rd == 15) {
  531. #if __LINUX_ARM_ARCH__ >= 5
  532. cpsr &= ~PSR_T_BIT;
  533. if (rdv & 0x1)
  534. cpsr |= PSR_T_BIT;
  535. regs->ARM_cpsr = cpsr;
  536. rdv &= ~0x1;
  537. #else
  538. rdv &= ~0x2;
  539. #endif
  540. }
  541. regs->uregs[rd] = rdv;
  542. }
  543. static void __kprobes emulate_str(struct kprobe *p, struct pt_regs *regs)
  544. {
  545. insn_3arg_fn_t *i_fn = (insn_3arg_fn_t *)&p->ainsn.insn[0];
  546. kprobe_opcode_t insn = p->opcode;
  547. long iaddr = (long)p->addr;
  548. int rd = (insn >> 12) & 0xf;
  549. int rn = (insn >> 16) & 0xf;
  550. int rm = insn & 0xf;
  551. long rdv = (rd == 15) ? iaddr + str_pc_offset : regs->uregs[rd];
  552. long rnv = (rn == 15) ? iaddr + 8 : regs->uregs[rn];
  553. long rmv = regs->uregs[rm]; /* rm/rmv may be invalid, don't care. */
  554. /* Save Rn in case of writeback. */
  555. regs->uregs[rn] =
  556. insnslot_3arg_rflags(rnv, rdv, rmv, regs->ARM_cpsr, i_fn);
  557. }
  558. static void __kprobes emulate_mrrc(struct kprobe *p, struct pt_regs *regs)
  559. {
  560. insn_llret_0arg_fn_t *i_fn = (insn_llret_0arg_fn_t *)&p->ainsn.insn[0];
  561. kprobe_opcode_t insn = p->opcode;
  562. union reg_pair fnr;
  563. int rd = (insn >> 12) & 0xf;
  564. int rn = (insn >> 16) & 0xf;
  565. fnr.dr = insnslot_llret_0arg_rflags(regs->ARM_cpsr, i_fn);
  566. regs->uregs[rn] = fnr.r0;
  567. regs->uregs[rd] = fnr.r1;
  568. }
  569. static void __kprobes emulate_mcrr(struct kprobe *p, struct pt_regs *regs)
  570. {
  571. insn_2arg_fn_t *i_fn = (insn_2arg_fn_t *)&p->ainsn.insn[0];
  572. kprobe_opcode_t insn = p->opcode;
  573. int rd = (insn >> 12) & 0xf;
  574. int rn = (insn >> 16) & 0xf;
  575. long rnv = regs->uregs[rn];
  576. long rdv = regs->uregs[rd];
  577. insnslot_2arg_rflags(rnv, rdv, regs->ARM_cpsr, i_fn);
  578. }
  579. static void __kprobes emulate_sat(struct kprobe *p, struct pt_regs *regs)
  580. {
  581. insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
  582. kprobe_opcode_t insn = p->opcode;
  583. int rd = (insn >> 12) & 0xf;
  584. int rm = insn & 0xf;
  585. long rmv = regs->uregs[rm];
  586. /* Writes Q flag */
  587. regs->uregs[rd] = insnslot_1arg_rwflags(rmv, &regs->ARM_cpsr, i_fn);
  588. }
  589. static void __kprobes emulate_sel(struct kprobe *p, struct pt_regs *regs)
  590. {
  591. insn_2arg_fn_t *i_fn = (insn_2arg_fn_t *)&p->ainsn.insn[0];
  592. kprobe_opcode_t insn = p->opcode;
  593. int rd = (insn >> 12) & 0xf;
  594. int rn = (insn >> 16) & 0xf;
  595. int rm = insn & 0xf;
  596. long rnv = regs->uregs[rn];
  597. long rmv = regs->uregs[rm];
  598. /* Reads GE bits */
  599. regs->uregs[rd] = insnslot_2arg_rflags(rnv, rmv, regs->ARM_cpsr, i_fn);
  600. }
  601. static void __kprobes emulate_none(struct kprobe *p, struct pt_regs *regs)
  602. {
  603. insn_0arg_fn_t *i_fn = (insn_0arg_fn_t *)&p->ainsn.insn[0];
  604. insnslot_0arg_rflags(regs->ARM_cpsr, i_fn);
  605. }
  606. static void __kprobes emulate_rd12(struct kprobe *p, struct pt_regs *regs)
  607. {
  608. insn_0arg_fn_t *i_fn = (insn_0arg_fn_t *)&p->ainsn.insn[0];
  609. kprobe_opcode_t insn = p->opcode;
  610. int rd = (insn >> 12) & 0xf;
  611. regs->uregs[rd] = insnslot_0arg_rflags(regs->ARM_cpsr, i_fn);
  612. }
  613. static void __kprobes emulate_ird12(struct kprobe *p, struct pt_regs *regs)
  614. {
  615. insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
  616. kprobe_opcode_t insn = p->opcode;
  617. int ird = (insn >> 12) & 0xf;
  618. insnslot_1arg_rflags(regs->uregs[ird], regs->ARM_cpsr, i_fn);
  619. }
  620. static void __kprobes emulate_rn16(struct kprobe *p, struct pt_regs *regs)
  621. {
  622. insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
  623. kprobe_opcode_t insn = p->opcode;
  624. int rn = (insn >> 16) & 0xf;
  625. long rnv = regs->uregs[rn];
  626. insnslot_1arg_rflags(rnv, regs->ARM_cpsr, i_fn);
  627. }
  628. static void __kprobes emulate_rd12rm0(struct kprobe *p, struct pt_regs *regs)
  629. {
  630. insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
  631. kprobe_opcode_t insn = p->opcode;
  632. int rd = (insn >> 12) & 0xf;
  633. int rm = insn & 0xf;
  634. long rmv = regs->uregs[rm];
  635. regs->uregs[rd] = insnslot_1arg_rflags(rmv, regs->ARM_cpsr, i_fn);
  636. }
  637. static void __kprobes
  638. emulate_rd12rn16rm0_rwflags(struct kprobe *p, struct pt_regs *regs)
  639. {
  640. insn_2arg_fn_t *i_fn = (insn_2arg_fn_t *)&p->ainsn.insn[0];
  641. kprobe_opcode_t insn = p->opcode;
  642. int rd = (insn >> 12) & 0xf;
  643. int rn = (insn >> 16) & 0xf;
  644. int rm = insn & 0xf;
  645. long rnv = regs->uregs[rn];
  646. long rmv = regs->uregs[rm];
  647. regs->uregs[rd] =
  648. insnslot_2arg_rwflags(rnv, rmv, &regs->ARM_cpsr, i_fn);
  649. }
  650. static void __kprobes
  651. emulate_rd16rn12rs8rm0_rwflags(struct kprobe *p, struct pt_regs *regs)
  652. {
  653. insn_3arg_fn_t *i_fn = (insn_3arg_fn_t *)&p->ainsn.insn[0];
  654. kprobe_opcode_t insn = p->opcode;
  655. int rd = (insn >> 16) & 0xf;
  656. int rn = (insn >> 12) & 0xf;
  657. int rs = (insn >> 8) & 0xf;
  658. int rm = insn & 0xf;
  659. long rnv = regs->uregs[rn];
  660. long rsv = regs->uregs[rs];
  661. long rmv = regs->uregs[rm];
  662. regs->uregs[rd] =
  663. insnslot_3arg_rwflags(rnv, rsv, rmv, &regs->ARM_cpsr, i_fn);
  664. }
  665. static void __kprobes
  666. emulate_rd16rs8rm0_rwflags(struct kprobe *p, struct pt_regs *regs)
  667. {
  668. insn_2arg_fn_t *i_fn = (insn_2arg_fn_t *)&p->ainsn.insn[0];
  669. kprobe_opcode_t insn = p->opcode;
  670. int rd = (insn >> 16) & 0xf;
  671. int rs = (insn >> 8) & 0xf;
  672. int rm = insn & 0xf;
  673. long rsv = regs->uregs[rs];
  674. long rmv = regs->uregs[rm];
  675. regs->uregs[rd] =
  676. insnslot_2arg_rwflags(rsv, rmv, &regs->ARM_cpsr, i_fn);
  677. }
  678. static void __kprobes
  679. emulate_rdhi16rdlo12rs8rm0_rwflags(struct kprobe *p, struct pt_regs *regs)
  680. {
  681. insn_llret_4arg_fn_t *i_fn = (insn_llret_4arg_fn_t *)&p->ainsn.insn[0];
  682. kprobe_opcode_t insn = p->opcode;
  683. union reg_pair fnr;
  684. int rdhi = (insn >> 16) & 0xf;
  685. int rdlo = (insn >> 12) & 0xf;
  686. int rs = (insn >> 8) & 0xf;
  687. int rm = insn & 0xf;
  688. long rsv = regs->uregs[rs];
  689. long rmv = regs->uregs[rm];
  690. fnr.dr = insnslot_llret_4arg_rwflags(regs->uregs[rdhi],
  691. regs->uregs[rdlo], rsv, rmv,
  692. &regs->ARM_cpsr, i_fn);
  693. regs->uregs[rdhi] = fnr.r0;
  694. regs->uregs[rdlo] = fnr.r1;
  695. }
  696. static void __kprobes
  697. emulate_alu_imm_rflags(struct kprobe *p, struct pt_regs *regs)
  698. {
  699. insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
  700. kprobe_opcode_t insn = p->opcode;
  701. int rd = (insn >> 12) & 0xf;
  702. int rn = (insn >> 16) & 0xf;
  703. long rnv = (rn == 15) ? (long)p->addr + 8 : regs->uregs[rn];
  704. regs->uregs[rd] = insnslot_1arg_rflags(rnv, regs->ARM_cpsr, i_fn);
  705. }
  706. static void __kprobes
  707. emulate_alu_imm_rwflags(struct kprobe *p, struct pt_regs *regs)
  708. {
  709. insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
  710. kprobe_opcode_t insn = p->opcode;
  711. int rd = (insn >> 12) & 0xf;
  712. int rn = (insn >> 16) & 0xf;
  713. long rnv = (rn == 15) ? (long)p->addr + 8 : regs->uregs[rn];
  714. regs->uregs[rd] = insnslot_1arg_rwflags(rnv, &regs->ARM_cpsr, i_fn);
  715. }
  716. static void __kprobes
  717. emulate_alu_rflags(struct kprobe *p, struct pt_regs *regs)
  718. {
  719. insn_3arg_fn_t *i_fn = (insn_3arg_fn_t *)&p->ainsn.insn[0];
  720. kprobe_opcode_t insn = p->opcode;
  721. long ppc = (long)p->addr + 8;
  722. int rd = (insn >> 12) & 0xf;
  723. int rn = (insn >> 16) & 0xf; /* rn/rnv/rs/rsv may be */
  724. int rs = (insn >> 8) & 0xf; /* invalid, don't care. */
  725. int rm = insn & 0xf;
  726. long rnv = (rn == 15) ? ppc : regs->uregs[rn];
  727. long rmv = (rm == 15) ? ppc : regs->uregs[rm];
  728. long rsv = regs->uregs[rs];
  729. regs->uregs[rd] =
  730. insnslot_3arg_rflags(rnv, rmv, rsv, regs->ARM_cpsr, i_fn);
  731. }
  732. static void __kprobes
  733. emulate_alu_rwflags(struct kprobe *p, struct pt_regs *regs)
  734. {
  735. insn_3arg_fn_t *i_fn = (insn_3arg_fn_t *)&p->ainsn.insn[0];
  736. kprobe_opcode_t insn = p->opcode;
  737. long ppc = (long)p->addr + 8;
  738. int rd = (insn >> 12) & 0xf;
  739. int rn = (insn >> 16) & 0xf; /* rn/rnv/rs/rsv may be */
  740. int rs = (insn >> 8) & 0xf; /* invalid, don't care. */
  741. int rm = insn & 0xf;
  742. long rnv = (rn == 15) ? ppc : regs->uregs[rn];
  743. long rmv = (rm == 15) ? ppc : regs->uregs[rm];
  744. long rsv = regs->uregs[rs];
  745. regs->uregs[rd] =
  746. insnslot_3arg_rwflags(rnv, rmv, rsv, &regs->ARM_cpsr, i_fn);
  747. }
  748. static enum kprobe_insn __kprobes
  749. prep_emulate_ldr_str(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  750. {
  751. int ibit = (insn & (1 << 26)) ? 25 : 22;
  752. insn &= 0xfff00fff;
  753. insn |= 0x00001000; /* Rn = r0, Rd = r1 */
  754. if (insn & (1 << ibit)) {
  755. insn &= ~0xf;
  756. insn |= 2; /* Rm = r2 */
  757. }
  758. asi->insn[0] = insn;
  759. asi->insn_handler = (insn & (1 << 20)) ? emulate_ldr : emulate_str;
  760. return INSN_GOOD;
  761. }
  762. static enum kprobe_insn __kprobes
  763. prep_emulate_rd12rm0(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  764. {
  765. insn &= 0xffff0ff0; /* Rd = r0, Rm = r0 */
  766. asi->insn[0] = insn;
  767. asi->insn_handler = emulate_rd12rm0;
  768. return INSN_GOOD;
  769. }
  770. static enum kprobe_insn __kprobes
  771. prep_emulate_rd12(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  772. {
  773. insn &= 0xffff0fff; /* Rd = r0 */
  774. asi->insn[0] = insn;
  775. asi->insn_handler = emulate_rd12;
  776. return INSN_GOOD;
  777. }
  778. static enum kprobe_insn __kprobes
  779. prep_emulate_rd12rn16rm0_wflags(kprobe_opcode_t insn,
  780. struct arch_specific_insn *asi)
  781. {
  782. insn &= 0xfff00ff0; /* Rd = r0, Rn = r0 */
  783. insn |= 0x00000001; /* Rm = r1 */
  784. asi->insn[0] = insn;
  785. asi->insn_handler = emulate_rd12rn16rm0_rwflags;
  786. return INSN_GOOD;
  787. }
  788. static enum kprobe_insn __kprobes
  789. prep_emulate_rd16rs8rm0_wflags(kprobe_opcode_t insn,
  790. struct arch_specific_insn *asi)
  791. {
  792. insn &= 0xfff0f0f0; /* Rd = r0, Rs = r0 */
  793. insn |= 0x00000001; /* Rm = r1 */
  794. asi->insn[0] = insn;
  795. asi->insn_handler = emulate_rd16rs8rm0_rwflags;
  796. return INSN_GOOD;
  797. }
  798. static enum kprobe_insn __kprobes
  799. prep_emulate_rd16rn12rs8rm0_wflags(kprobe_opcode_t insn,
  800. struct arch_specific_insn *asi)
  801. {
  802. insn &= 0xfff000f0; /* Rd = r0, Rn = r0 */
  803. insn |= 0x00000102; /* Rs = r1, Rm = r2 */
  804. asi->insn[0] = insn;
  805. asi->insn_handler = emulate_rd16rn12rs8rm0_rwflags;
  806. return INSN_GOOD;
  807. }
  808. static enum kprobe_insn __kprobes
  809. prep_emulate_rdhi16rdlo12rs8rm0_wflags(kprobe_opcode_t insn,
  810. struct arch_specific_insn *asi)
  811. {
  812. insn &= 0xfff000f0; /* RdHi = r0, RdLo = r1 */
  813. insn |= 0x00001203; /* Rs = r2, Rm = r3 */
  814. asi->insn[0] = insn;
  815. asi->insn_handler = emulate_rdhi16rdlo12rs8rm0_rwflags;
  816. return INSN_GOOD;
  817. }
  818. /*
  819. * For the instruction masking and comparisons in all the "space_*"
  820. * functions below, Do _not_ rearrange the order of tests unless
  821. * you're very, very sure of what you are doing. For the sake of
  822. * efficiency, the masks for some tests sometimes assume other test
  823. * have been done prior to them so the number of patterns to test
  824. * for an instruction set can be as broad as possible to reduce the
  825. * number of tests needed.
  826. */
  827. static enum kprobe_insn __kprobes
  828. space_1111(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  829. {
  830. /* CPS mmod == 1 : 1111 0001 0000 xx10 xxxx xxxx xx0x xxxx */
  831. /* RFE : 1111 100x x0x1 xxxx xxxx 1010 xxxx xxxx */
  832. /* SRS : 1111 100x x1x0 1101 xxxx 0101 xxxx xxxx */
  833. if ((insn & 0xfff30020) == 0xf1020000 ||
  834. (insn & 0xfe500f00) == 0xf8100a00 ||
  835. (insn & 0xfe5f0f00) == 0xf84d0500)
  836. return INSN_REJECTED;
  837. /* PLD : 1111 01x1 x101 xxxx xxxx xxxx xxxx xxxx : */
  838. if ((insn & 0xfd700000) == 0xf4500000) {
  839. insn &= 0xfff0ffff; /* Rn = r0 */
  840. asi->insn[0] = insn;
  841. asi->insn_handler = emulate_rn16;
  842. return INSN_GOOD;
  843. }
  844. /* BLX(1) : 1111 101x xxxx xxxx xxxx xxxx xxxx xxxx : */
  845. if ((insn & 0xfe000000) == 0xfa000000) {
  846. asi->insn_handler = simulate_blx1;
  847. return INSN_GOOD_NO_SLOT;
  848. }
  849. /* SETEND : 1111 0001 0000 0001 xxxx xxxx 0000 xxxx */
  850. /* CDP2 : 1111 1110 xxxx xxxx xxxx xxxx xxx0 xxxx */
  851. if ((insn & 0xffff00f0) == 0xf1010000 ||
  852. (insn & 0xff000010) == 0xfe000000) {
  853. asi->insn[0] = insn;
  854. asi->insn_handler = emulate_none;
  855. return INSN_GOOD;
  856. }
  857. /* MCRR2 : 1111 1100 0100 xxxx xxxx xxxx xxxx xxxx : (Rd != Rn) */
  858. /* MRRC2 : 1111 1100 0101 xxxx xxxx xxxx xxxx xxxx : (Rd != Rn) */
  859. if ((insn & 0xffe00000) == 0xfc400000) {
  860. insn &= 0xfff00fff; /* Rn = r0 */
  861. insn |= 0x00001000; /* Rd = r1 */
  862. asi->insn[0] = insn;
  863. asi->insn_handler =
  864. (insn & (1 << 20)) ? emulate_mrrc : emulate_mcrr;
  865. return INSN_GOOD;
  866. }
  867. /* LDC2 : 1111 110x xxx1 xxxx xxxx xxxx xxxx xxxx */
  868. /* STC2 : 1111 110x xxx0 xxxx xxxx xxxx xxxx xxxx */
  869. if ((insn & 0xfe000000) == 0xfc000000) {
  870. insn &= 0xfff0ffff; /* Rn = r0 */
  871. asi->insn[0] = insn;
  872. asi->insn_handler = emulate_ldcstc;
  873. return INSN_GOOD;
  874. }
  875. /* MCR2 : 1111 1110 xxx0 xxxx xxxx xxxx xxx1 xxxx */
  876. /* MRC2 : 1111 1110 xxx1 xxxx xxxx xxxx xxx1 xxxx */
  877. insn &= 0xffff0fff; /* Rd = r0 */
  878. asi->insn[0] = insn;
  879. asi->insn_handler = (insn & (1 << 20)) ? emulate_rd12 : emulate_ird12;
  880. return INSN_GOOD;
  881. }
  882. static enum kprobe_insn __kprobes
  883. space_cccc_000x(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  884. {
  885. /* cccc 0001 0xx0 xxxx xxxx xxxx xxxx xxx0 xxxx */
  886. if ((insn & 0x0f900010) == 0x01000000) {
  887. /* BXJ : cccc 0001 0010 xxxx xxxx xxxx 0010 xxxx */
  888. /* MSR : cccc 0001 0x10 xxxx xxxx xxxx 0000 xxxx */
  889. if ((insn & 0x0ff000f0) == 0x01200020 ||
  890. (insn & 0x0fb000f0) == 0x01200000)
  891. return INSN_REJECTED;
  892. /* MRS : cccc 0001 0x00 xxxx xxxx xxxx 0000 xxxx */
  893. if ((insn & 0x0fb00010) == 0x01000000)
  894. return prep_emulate_rd12(insn, asi);
  895. /* SMLALxy : cccc 0001 0100 xxxx xxxx xxxx 1xx0 xxxx */
  896. if ((insn & 0x0ff00090) == 0x01400080)
  897. return prep_emulate_rdhi16rdlo12rs8rm0_wflags(insn, asi);
  898. /* SMULWy : cccc 0001 0010 xxxx xxxx xxxx 1x10 xxxx */
  899. /* SMULxy : cccc 0001 0110 xxxx xxxx xxxx 1xx0 xxxx */
  900. if ((insn & 0x0ff000b0) == 0x012000a0 ||
  901. (insn & 0x0ff00090) == 0x01600080)
  902. return prep_emulate_rd16rs8rm0_wflags(insn, asi);
  903. /* SMLAxy : cccc 0001 0000 xxxx xxxx xxxx 1xx0 xxxx : Q */
  904. /* SMLAWy : cccc 0001 0010 xxxx xxxx xxxx 0x00 xxxx : Q */
  905. return prep_emulate_rd16rn12rs8rm0_wflags(insn, asi);
  906. }
  907. /* cccc 0001 0xx0 xxxx xxxx xxxx xxxx 0xx1 xxxx */
  908. else if ((insn & 0x0f900090) == 0x01000010) {
  909. /* BKPT : 1110 0001 0010 xxxx xxxx xxxx 0111 xxxx */
  910. if ((insn & 0xfff000f0) == 0xe1200070)
  911. return INSN_REJECTED;
  912. /* BLX(2) : cccc 0001 0010 xxxx xxxx xxxx 0011 xxxx */
  913. /* BX : cccc 0001 0010 xxxx xxxx xxxx 0001 xxxx */
  914. if ((insn & 0x0ff000d0) == 0x01200010) {
  915. asi->insn[0] = truecc_insn(insn);
  916. asi->insn_handler = simulate_blx2bx;
  917. return INSN_GOOD;
  918. }
  919. /* CLZ : cccc 0001 0110 xxxx xxxx xxxx 0001 xxxx */
  920. if ((insn & 0x0ff000f0) == 0x01600010)
  921. return prep_emulate_rd12rm0(insn, asi);
  922. /* QADD : cccc 0001 0000 xxxx xxxx xxxx 0101 xxxx :Q */
  923. /* QSUB : cccc 0001 0010 xxxx xxxx xxxx 0101 xxxx :Q */
  924. /* QDADD : cccc 0001 0100 xxxx xxxx xxxx 0101 xxxx :Q */
  925. /* QDSUB : cccc 0001 0110 xxxx xxxx xxxx 0101 xxxx :Q */
  926. return prep_emulate_rd12rn16rm0_wflags(insn, asi);
  927. }
  928. /* cccc 0000 xxxx xxxx xxxx xxxx xxxx 1001 xxxx */
  929. else if ((insn & 0x0f000090) == 0x00000090) {
  930. /* MUL : cccc 0000 0000 xxxx xxxx xxxx 1001 xxxx : */
  931. /* MULS : cccc 0000 0001 xxxx xxxx xxxx 1001 xxxx :cc */
  932. /* MLA : cccc 0000 0010 xxxx xxxx xxxx 1001 xxxx : */
  933. /* MLAS : cccc 0000 0011 xxxx xxxx xxxx 1001 xxxx :cc */
  934. /* UMAAL : cccc 0000 0100 xxxx xxxx xxxx 1001 xxxx : */
  935. /* UMULL : cccc 0000 1000 xxxx xxxx xxxx 1001 xxxx : */
  936. /* UMULLS : cccc 0000 1001 xxxx xxxx xxxx 1001 xxxx :cc */
  937. /* UMLAL : cccc 0000 1010 xxxx xxxx xxxx 1001 xxxx : */
  938. /* UMLALS : cccc 0000 1011 xxxx xxxx xxxx 1001 xxxx :cc */
  939. /* SMULL : cccc 0000 1100 xxxx xxxx xxxx 1001 xxxx : */
  940. /* SMULLS : cccc 0000 1101 xxxx xxxx xxxx 1001 xxxx :cc */
  941. /* SMLAL : cccc 0000 1110 xxxx xxxx xxxx 1001 xxxx : */
  942. /* SMLALS : cccc 0000 1111 xxxx xxxx xxxx 1001 xxxx :cc */
  943. if ((insn & 0x0fe000f0) == 0x00000090) {
  944. return prep_emulate_rd16rs8rm0_wflags(insn, asi);
  945. } else if ((insn & 0x0fe000f0) == 0x00200090) {
  946. return prep_emulate_rd16rn12rs8rm0_wflags(insn, asi);
  947. } else {
  948. return prep_emulate_rdhi16rdlo12rs8rm0_wflags(insn, asi);
  949. }
  950. }
  951. /* cccc 000x xxxx xxxx xxxx xxxx xxxx 1xx1 xxxx */
  952. else if ((insn & 0x0e000090) == 0x00000090) {
  953. /* SWP : cccc 0001 0000 xxxx xxxx xxxx 1001 xxxx */
  954. /* SWPB : cccc 0001 0100 xxxx xxxx xxxx 1001 xxxx */
  955. /* LDRD : cccc 000x xxx0 xxxx xxxx xxxx 1101 xxxx */
  956. /* STRD : cccc 000x xxx0 xxxx xxxx xxxx 1111 xxxx */
  957. /* STREX : cccc 0001 1000 xxxx xxxx xxxx 1001 xxxx */
  958. /* LDREX : cccc 0001 1001 xxxx xxxx xxxx 1001 xxxx */
  959. /* LDRH : cccc 000x xxx1 xxxx xxxx xxxx 1011 xxxx */
  960. /* STRH : cccc 000x xxx0 xxxx xxxx xxxx 1011 xxxx */
  961. /* LDRSB : cccc 000x xxx1 xxxx xxxx xxxx 1101 xxxx */
  962. /* LDRSH : cccc 000x xxx1 xxxx xxxx xxxx 1111 xxxx */
  963. if ((insn & 0x0fb000f0) == 0x01000090) {
  964. /* SWP/SWPB */
  965. return prep_emulate_rd12rn16rm0_wflags(insn, asi);
  966. } else if ((insn & 0x0e1000d0) == 0x00000d0) {
  967. /* STRD/LDRD */
  968. insn &= 0xfff00fff;
  969. insn |= 0x00002000; /* Rn = r0, Rd = r2 */
  970. if (insn & (1 << 22)) {
  971. /* I bit */
  972. insn &= ~0xf;
  973. insn |= 1; /* Rm = r1 */
  974. }
  975. asi->insn[0] = insn;
  976. asi->insn_handler =
  977. (insn & (1 << 5)) ? emulate_strd : emulate_ldrd;
  978. return INSN_GOOD;
  979. }
  980. return prep_emulate_ldr_str(insn, asi);
  981. }
  982. /* cccc 000x xxxx xxxx xxxx xxxx xxxx xxxx xxxx */
  983. /*
  984. * ALU op with S bit and Rd == 15 :
  985. * cccc 000x xxx1 xxxx 1111 xxxx xxxx xxxx
  986. */
  987. if ((insn & 0x0e10f000) == 0x0010f000)
  988. return INSN_REJECTED;
  989. /*
  990. * "mov ip, sp" is the most common kprobe'd instruction by far.
  991. * Check and optimize for it explicitly.
  992. */
  993. if (insn == 0xe1a0c00d) {
  994. asi->insn_handler = simulate_mov_ipsp;
  995. return INSN_GOOD_NO_SLOT;
  996. }
  997. /*
  998. * Data processing: Immediate-shift / Register-shift
  999. * ALU op : cccc 000x xxxx xxxx xxxx xxxx xxxx xxxx
  1000. * CPY : cccc 0001 1010 xxxx xxxx 0000 0000 xxxx
  1001. * MOV : cccc 0001 101x xxxx xxxx xxxx xxxx xxxx
  1002. * *S (bit 20) updates condition codes
  1003. * ADC/SBC/RSC reads the C flag
  1004. */
  1005. insn &= 0xfff00ff0; /* Rn = r0, Rd = r0 */
  1006. insn |= 0x00000001; /* Rm = r1 */
  1007. if (insn & 0x010) {
  1008. insn &= 0xfffff0ff; /* register shift */
  1009. insn |= 0x00000200; /* Rs = r2 */
  1010. }
  1011. asi->insn[0] = insn;
  1012. asi->insn_handler = (insn & (1 << 20)) ? /* S-bit */
  1013. emulate_alu_rwflags : emulate_alu_rflags;
  1014. return INSN_GOOD;
  1015. }
  1016. static enum kprobe_insn __kprobes
  1017. space_cccc_001x(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1018. {
  1019. /*
  1020. * MSR : cccc 0011 0x10 xxxx xxxx xxxx xxxx xxxx
  1021. * Undef : cccc 0011 0x00 xxxx xxxx xxxx xxxx xxxx
  1022. * ALU op with S bit and Rd == 15 :
  1023. * cccc 001x xxx1 xxxx 1111 xxxx xxxx xxxx
  1024. */
  1025. if ((insn & 0x0f900000) == 0x03200000 || /* MSR & Undef */
  1026. (insn & 0x0e10f000) == 0x0210f000) /* ALU s-bit, R15 */
  1027. return INSN_REJECTED;
  1028. /*
  1029. * Data processing: 32-bit Immediate
  1030. * ALU op : cccc 001x xxxx xxxx xxxx xxxx xxxx xxxx
  1031. * MOV : cccc 0011 101x xxxx xxxx xxxx xxxx xxxx
  1032. * *S (bit 20) updates condition codes
  1033. * ADC/SBC/RSC reads the C flag
  1034. */
  1035. insn &= 0xfff00fff; /* Rn = r0, Rd = r0 */
  1036. asi->insn[0] = insn;
  1037. asi->insn_handler = (insn & (1 << 20)) ? /* S-bit */
  1038. emulate_alu_imm_rwflags : emulate_alu_imm_rflags;
  1039. return INSN_GOOD;
  1040. }
  1041. static enum kprobe_insn __kprobes
  1042. space_cccc_0110__1(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1043. {
  1044. /* SEL : cccc 0110 1000 xxxx xxxx xxxx 1011 xxxx GE: !!! */
  1045. if ((insn & 0x0ff000f0) == 0x068000b0) {
  1046. insn &= 0xfff00ff0; /* Rd = r0, Rn = r0 */
  1047. insn |= 0x00000001; /* Rm = r1 */
  1048. asi->insn[0] = insn;
  1049. asi->insn_handler = emulate_sel;
  1050. return INSN_GOOD;
  1051. }
  1052. /* SSAT : cccc 0110 101x xxxx xxxx xxxx xx01 xxxx :Q */
  1053. /* USAT : cccc 0110 111x xxxx xxxx xxxx xx01 xxxx :Q */
  1054. /* SSAT16 : cccc 0110 1010 xxxx xxxx xxxx 0011 xxxx :Q */
  1055. /* USAT16 : cccc 0110 1110 xxxx xxxx xxxx 0011 xxxx :Q */
  1056. if ((insn & 0x0fa00030) == 0x06a00010 ||
  1057. (insn & 0x0fb000f0) == 0x06a00030) {
  1058. insn &= 0xffff0ff0; /* Rd = r0, Rm = r0 */
  1059. asi->insn[0] = insn;
  1060. asi->insn_handler = emulate_sat;
  1061. return INSN_GOOD;
  1062. }
  1063. /* REV : cccc 0110 1011 xxxx xxxx xxxx 0011 xxxx */
  1064. /* REV16 : cccc 0110 1011 xxxx xxxx xxxx 1011 xxxx */
  1065. /* REVSH : cccc 0110 1111 xxxx xxxx xxxx 1011 xxxx */
  1066. if ((insn & 0x0ff00070) == 0x06b00030 ||
  1067. (insn & 0x0ff000f0) == 0x06f000b0)
  1068. return prep_emulate_rd12rm0(insn, asi);
  1069. /* SADD16 : cccc 0110 0001 xxxx xxxx xxxx 0001 xxxx :GE */
  1070. /* SADDSUBX : cccc 0110 0001 xxxx xxxx xxxx 0011 xxxx :GE */
  1071. /* SSUBADDX : cccc 0110 0001 xxxx xxxx xxxx 0101 xxxx :GE */
  1072. /* SSUB16 : cccc 0110 0001 xxxx xxxx xxxx 0111 xxxx :GE */
  1073. /* SADD8 : cccc 0110 0001 xxxx xxxx xxxx 1001 xxxx :GE */
  1074. /* SSUB8 : cccc 0110 0001 xxxx xxxx xxxx 1111 xxxx :GE */
  1075. /* QADD16 : cccc 0110 0010 xxxx xxxx xxxx 0001 xxxx : */
  1076. /* QADDSUBX : cccc 0110 0010 xxxx xxxx xxxx 0011 xxxx : */
  1077. /* QSUBADDX : cccc 0110 0010 xxxx xxxx xxxx 0101 xxxx : */
  1078. /* QSUB16 : cccc 0110 0010 xxxx xxxx xxxx 0111 xxxx : */
  1079. /* QADD8 : cccc 0110 0010 xxxx xxxx xxxx 1001 xxxx : */
  1080. /* QSUB8 : cccc 0110 0010 xxxx xxxx xxxx 1111 xxxx : */
  1081. /* SHADD16 : cccc 0110 0011 xxxx xxxx xxxx 0001 xxxx : */
  1082. /* SHADDSUBX : cccc 0110 0011 xxxx xxxx xxxx 0011 xxxx : */
  1083. /* SHSUBADDX : cccc 0110 0011 xxxx xxxx xxxx 0101 xxxx : */
  1084. /* SHSUB16 : cccc 0110 0011 xxxx xxxx xxxx 0111 xxxx : */
  1085. /* SHADD8 : cccc 0110 0011 xxxx xxxx xxxx 1001 xxxx : */
  1086. /* SHSUB8 : cccc 0110 0011 xxxx xxxx xxxx 1111 xxxx : */
  1087. /* UADD16 : cccc 0110 0101 xxxx xxxx xxxx 0001 xxxx :GE */
  1088. /* UADDSUBX : cccc 0110 0101 xxxx xxxx xxxx 0011 xxxx :GE */
  1089. /* USUBADDX : cccc 0110 0101 xxxx xxxx xxxx 0101 xxxx :GE */
  1090. /* USUB16 : cccc 0110 0101 xxxx xxxx xxxx 0111 xxxx :GE */
  1091. /* UADD8 : cccc 0110 0101 xxxx xxxx xxxx 1001 xxxx :GE */
  1092. /* USUB8 : cccc 0110 0101 xxxx xxxx xxxx 1111 xxxx :GE */
  1093. /* UQADD16 : cccc 0110 0110 xxxx xxxx xxxx 0001 xxxx : */
  1094. /* UQADDSUBX : cccc 0110 0110 xxxx xxxx xxxx 0011 xxxx : */
  1095. /* UQSUBADDX : cccc 0110 0110 xxxx xxxx xxxx 0101 xxxx : */
  1096. /* UQSUB16 : cccc 0110 0110 xxxx xxxx xxxx 0111 xxxx : */
  1097. /* UQADD8 : cccc 0110 0110 xxxx xxxx xxxx 1001 xxxx : */
  1098. /* UQSUB8 : cccc 0110 0110 xxxx xxxx xxxx 1111 xxxx : */
  1099. /* UHADD16 : cccc 0110 0111 xxxx xxxx xxxx 0001 xxxx : */
  1100. /* UHADDSUBX : cccc 0110 0111 xxxx xxxx xxxx 0011 xxxx : */
  1101. /* UHSUBADDX : cccc 0110 0111 xxxx xxxx xxxx 0101 xxxx : */
  1102. /* UHSUB16 : cccc 0110 0111 xxxx xxxx xxxx 0111 xxxx : */
  1103. /* UHADD8 : cccc 0110 0111 xxxx xxxx xxxx 1001 xxxx : */
  1104. /* UHSUB8 : cccc 0110 0111 xxxx xxxx xxxx 1111 xxxx : */
  1105. /* PKHBT : cccc 0110 1000 xxxx xxxx xxxx x001 xxxx : */
  1106. /* PKHTB : cccc 0110 1000 xxxx xxxx xxxx x101 xxxx : */
  1107. /* SXTAB16 : cccc 0110 1000 xxxx xxxx xxxx 0111 xxxx : */
  1108. /* SXTB : cccc 0110 1010 xxxx xxxx xxxx 0111 xxxx : */
  1109. /* SXTAB : cccc 0110 1010 xxxx xxxx xxxx 0111 xxxx : */
  1110. /* SXTAH : cccc 0110 1011 xxxx xxxx xxxx 0111 xxxx : */
  1111. /* UXTAB16 : cccc 0110 1100 xxxx xxxx xxxx 0111 xxxx : */
  1112. /* UXTAB : cccc 0110 1110 xxxx xxxx xxxx 0111 xxxx : */
  1113. /* UXTAH : cccc 0110 1111 xxxx xxxx xxxx 0111 xxxx : */
  1114. return prep_emulate_rd12rn16rm0_wflags(insn, asi);
  1115. }
  1116. static enum kprobe_insn __kprobes
  1117. space_cccc_0111__1(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1118. {
  1119. /* Undef : cccc 0111 1111 xxxx xxxx xxxx 1111 xxxx */
  1120. if ((insn & 0x0ff000f0) == 0x03f000f0)
  1121. return INSN_REJECTED;
  1122. /* USADA8 : cccc 0111 1000 xxxx xxxx xxxx 0001 xxxx */
  1123. /* USAD8 : cccc 0111 1000 xxxx 1111 xxxx 0001 xxxx */
  1124. if ((insn & 0x0ff000f0) == 0x07800010)
  1125. return prep_emulate_rd16rn12rs8rm0_wflags(insn, asi);
  1126. /* SMLALD : cccc 0111 0100 xxxx xxxx xxxx 00x1 xxxx */
  1127. /* SMLSLD : cccc 0111 0100 xxxx xxxx xxxx 01x1 xxxx */
  1128. if ((insn & 0x0ff00090) == 0x07400010)
  1129. return prep_emulate_rdhi16rdlo12rs8rm0_wflags(insn, asi);
  1130. /* SMLAD : cccc 0111 0000 xxxx xxxx xxxx 00x1 xxxx :Q */
  1131. /* SMLSD : cccc 0111 0000 xxxx xxxx xxxx 01x1 xxxx :Q */
  1132. /* SMMLA : cccc 0111 0101 xxxx xxxx xxxx 00x1 xxxx : */
  1133. /* SMMLS : cccc 0111 0101 xxxx xxxx xxxx 11x1 xxxx : */
  1134. if ((insn & 0x0ff00090) == 0x07000010 ||
  1135. (insn & 0x0ff000d0) == 0x07500010 ||
  1136. (insn & 0x0ff000d0) == 0x075000d0)
  1137. return prep_emulate_rd16rn12rs8rm0_wflags(insn, asi);
  1138. /* SMUSD : cccc 0111 0000 xxxx xxxx xxxx 01x1 xxxx : */
  1139. /* SMUAD : cccc 0111 0000 xxxx 1111 xxxx 00x1 xxxx :Q */
  1140. /* SMMUL : cccc 0111 0101 xxxx 1111 xxxx 00x1 xxxx : */
  1141. return prep_emulate_rd16rs8rm0_wflags(insn, asi);
  1142. }
  1143. static enum kprobe_insn __kprobes
  1144. space_cccc_01xx(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1145. {
  1146. /* LDR : cccc 01xx x0x1 xxxx xxxx xxxx xxxx xxxx */
  1147. /* LDRB : cccc 01xx x1x1 xxxx xxxx xxxx xxxx xxxx */
  1148. /* LDRBT : cccc 01x0 x111 xxxx xxxx xxxx xxxx xxxx */
  1149. /* LDRT : cccc 01x0 x011 xxxx xxxx xxxx xxxx xxxx */
  1150. /* STR : cccc 01xx x0x0 xxxx xxxx xxxx xxxx xxxx */
  1151. /* STRB : cccc 01xx x1x0 xxxx xxxx xxxx xxxx xxxx */
  1152. /* STRBT : cccc 01x0 x110 xxxx xxxx xxxx xxxx xxxx */
  1153. /* STRT : cccc 01x0 x010 xxxx xxxx xxxx xxxx xxxx */
  1154. return prep_emulate_ldr_str(insn, asi);
  1155. }
  1156. static enum kprobe_insn __kprobes
  1157. space_cccc_100x(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1158. {
  1159. /* LDM(2) : cccc 100x x101 xxxx 0xxx xxxx xxxx xxxx */
  1160. /* LDM(3) : cccc 100x x1x1 xxxx 1xxx xxxx xxxx xxxx */
  1161. if ((insn & 0x0e708000) == 0x85000000 ||
  1162. (insn & 0x0e508000) == 0x85010000)
  1163. return INSN_REJECTED;
  1164. /* LDM(1) : cccc 100x x0x1 xxxx xxxx xxxx xxxx xxxx */
  1165. /* STM(1) : cccc 100x x0x0 xxxx xxxx xxxx xxxx xxxx */
  1166. asi->insn[0] = truecc_insn(insn);
  1167. asi->insn_handler = ((insn & 0x108000) == 0x008000) ? /* STM & R15 */
  1168. simulate_stm1_pc : simulate_ldm1stm1;
  1169. return INSN_GOOD;
  1170. }
  1171. static enum kprobe_insn __kprobes
  1172. space_cccc_101x(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1173. {
  1174. /* B : cccc 1010 xxxx xxxx xxxx xxxx xxxx xxxx */
  1175. /* BL : cccc 1011 xxxx xxxx xxxx xxxx xxxx xxxx */
  1176. asi->insn[0] = truecc_insn(insn);
  1177. asi->insn_handler = simulate_bbl;
  1178. return INSN_GOOD;
  1179. }
  1180. static enum kprobe_insn __kprobes
  1181. space_cccc_1100_010x(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1182. {
  1183. /* MCRR : cccc 1100 0100 xxxx xxxx xxxx xxxx xxxx : (Rd!=Rn) */
  1184. /* MRRC : cccc 1100 0101 xxxx xxxx xxxx xxxx xxxx : (Rd!=Rn) */
  1185. insn &= 0xfff00fff;
  1186. insn |= 0x00001000; /* Rn = r0, Rd = r1 */
  1187. asi->insn[0] = insn;
  1188. asi->insn_handler = (insn & (1 << 20)) ? emulate_mrrc : emulate_mcrr;
  1189. return INSN_GOOD;
  1190. }
  1191. static enum kprobe_insn __kprobes
  1192. space_cccc_110x(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1193. {
  1194. /* LDC : cccc 110x xxx1 xxxx xxxx xxxx xxxx xxxx */
  1195. /* STC : cccc 110x xxx0 xxxx xxxx xxxx xxxx xxxx */
  1196. insn &= 0xfff0ffff; /* Rn = r0 */
  1197. asi->insn[0] = insn;
  1198. asi->insn_handler = emulate_ldcstc;
  1199. return INSN_GOOD;
  1200. }
  1201. static enum kprobe_insn __kprobes
  1202. space_cccc_111x(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1203. {
  1204. /* BKPT : 1110 0001 0010 xxxx xxxx xxxx 0111 xxxx */
  1205. /* SWI : cccc 1111 xxxx xxxx xxxx xxxx xxxx xxxx */
  1206. if ((insn & 0xfff000f0) == 0xe1200070 ||
  1207. (insn & 0x0f000000) == 0x0f000000)
  1208. return INSN_REJECTED;
  1209. /* CDP : cccc 1110 xxxx xxxx xxxx xxxx xxx0 xxxx */
  1210. if ((insn & 0x0f000010) == 0x0e000000) {
  1211. asi->insn[0] = insn;
  1212. asi->insn_handler = emulate_none;
  1213. return INSN_GOOD;
  1214. }
  1215. /* MCR : cccc 1110 xxx0 xxxx xxxx xxxx xxx1 xxxx */
  1216. /* MRC : cccc 1110 xxx1 xxxx xxxx xxxx xxx1 xxxx */
  1217. insn &= 0xffff0fff; /* Rd = r0 */
  1218. asi->insn[0] = insn;
  1219. asi->insn_handler = (insn & (1 << 20)) ? emulate_rd12 : emulate_ird12;
  1220. return INSN_GOOD;
  1221. }
  1222. /* Return:
  1223. * INSN_REJECTED If instruction is one not allowed to kprobe,
  1224. * INSN_GOOD If instruction is supported and uses instruction slot,
  1225. * INSN_GOOD_NO_SLOT If instruction is supported but doesn't use its slot.
  1226. *
  1227. * For instructions we don't want to kprobe (INSN_REJECTED return result):
  1228. * These are generally ones that modify the processor state making
  1229. * them "hard" to simulate such as switches processor modes or
  1230. * make accesses in alternate modes. Any of these could be simulated
  1231. * if the work was put into it, but low return considering they
  1232. * should also be very rare.
  1233. */
  1234. enum kprobe_insn __kprobes
  1235. arm_kprobe_decode_insn(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1236. {
  1237. asi->insn[1] = KPROBE_RETURN_INSTRUCTION;
  1238. if ((insn & 0xf0000000) == 0xf0000000) {
  1239. return space_1111(insn, asi);
  1240. } else if ((insn & 0x0e000000) == 0x00000000) {
  1241. return space_cccc_000x(insn, asi);
  1242. } else if ((insn & 0x0e000000) == 0x02000000) {
  1243. return space_cccc_001x(insn, asi);
  1244. } else if ((insn & 0x0f000010) == 0x06000010) {
  1245. return space_cccc_0110__1(insn, asi);
  1246. } else if ((insn & 0x0f000010) == 0x07000010) {
  1247. return space_cccc_0111__1(insn, asi);
  1248. } else if ((insn & 0x0c000000) == 0x04000000) {
  1249. return space_cccc_01xx(insn, asi);
  1250. } else if ((insn & 0x0e000000) == 0x08000000) {
  1251. return space_cccc_100x(insn, asi);
  1252. } else if ((insn & 0x0e000000) == 0x0a000000) {
  1253. return space_cccc_101x(insn, asi);
  1254. } else if ((insn & 0x0fe00000) == 0x0c400000) {
  1255. return space_cccc_1100_010x(insn, asi);
  1256. } else if ((insn & 0x0e000000) == 0x0c400000) {
  1257. return space_cccc_110x(insn, asi);
  1258. }
  1259. return space_cccc_111x(insn, asi);
  1260. }
  1261. void __init arm_kprobe_decode_init(void)
  1262. {
  1263. find_str_pc_offset();
  1264. }
  1265. /*
  1266. * All ARM instructions listed below.
  1267. *
  1268. * Instructions and their general purpose registers are given.
  1269. * If a particular register may not use R15, it is prefixed with a "!".
  1270. * If marked with a "*" means the value returned by reading R15
  1271. * is implementation defined.
  1272. *
  1273. * ADC/ADD/AND/BIC/CMN/CMP/EOR/MOV/MVN/ORR/RSB/RSC/SBC/SUB/TEQ
  1274. * TST: Rd, Rn, Rm, !Rs
  1275. * BX: Rm
  1276. * BLX(2): !Rm
  1277. * BX: Rm (R15 legal, but discouraged)
  1278. * BXJ: !Rm,
  1279. * CLZ: !Rd, !Rm
  1280. * CPY: Rd, Rm
  1281. * LDC/2,STC/2 immediate offset & unindex: Rn
  1282. * LDC/2,STC/2 immediate pre/post-indexed: !Rn
  1283. * LDM(1/3): !Rn, register_list
  1284. * LDM(2): !Rn, !register_list
  1285. * LDR,STR,PLD immediate offset: Rd, Rn
  1286. * LDR,STR,PLD register offset: Rd, Rn, !Rm
  1287. * LDR,STR,PLD scaled register offset: Rd, !Rn, !Rm
  1288. * LDR,STR immediate pre/post-indexed: Rd, !Rn
  1289. * LDR,STR register pre/post-indexed: Rd, !Rn, !Rm
  1290. * LDR,STR scaled register pre/post-indexed: Rd, !Rn, !Rm
  1291. * LDRB,STRB immediate offset: !Rd, Rn
  1292. * LDRB,STRB register offset: !Rd, Rn, !Rm
  1293. * LDRB,STRB scaled register offset: !Rd, !Rn, !Rm
  1294. * LDRB,STRB immediate pre/post-indexed: !Rd, !Rn
  1295. * LDRB,STRB register pre/post-indexed: !Rd, !Rn, !Rm
  1296. * LDRB,STRB scaled register pre/post-indexed: !Rd, !Rn, !Rm
  1297. * LDRT,LDRBT,STRBT immediate pre/post-indexed: !Rd, !Rn
  1298. * LDRT,LDRBT,STRBT register pre/post-indexed: !Rd, !Rn, !Rm
  1299. * LDRT,LDRBT,STRBT scaled register pre/post-indexed: !Rd, !Rn, !Rm
  1300. * LDRH/SH/SB/D,STRH/SH/SB/D immediate offset: !Rd, Rn
  1301. * LDRH/SH/SB/D,STRH/SH/SB/D register offset: !Rd, Rn, !Rm
  1302. * LDRH/SH/SB/D,STRH/SH/SB/D immediate pre/post-indexed: !Rd, !Rn
  1303. * LDRH/SH/SB/D,STRH/SH/SB/D register pre/post-indexed: !Rd, !Rn, !Rm
  1304. * LDREX: !Rd, !Rn
  1305. * MCR/2: !Rd
  1306. * MCRR/2,MRRC/2: !Rd, !Rn
  1307. * MLA: !Rd, !Rn, !Rm, !Rs
  1308. * MOV: Rd
  1309. * MRC/2: !Rd (if Rd==15, only changes cond codes, not the register)
  1310. * MRS,MSR: !Rd
  1311. * MUL: !Rd, !Rm, !Rs
  1312. * PKH{BT,TB}: !Rd, !Rn, !Rm
  1313. * QDADD,[U]QADD/16/8/SUBX: !Rd, !Rm, !Rn
  1314. * QDSUB,[U]QSUB/16/8/ADDX: !Rd, !Rm, !Rn
  1315. * REV/16/SH: !Rd, !Rm
  1316. * RFE: !Rn
  1317. * {S,U}[H]ADD{16,8,SUBX},{S,U}[H]SUB{16,8,ADDX}: !Rd, !Rn, !Rm
  1318. * SEL: !Rd, !Rn, !Rm
  1319. * SMLA<x><y>,SMLA{D,W<y>},SMLSD,SMML{A,S}: !Rd, !Rn, !Rm, !Rs
  1320. * SMLAL<x><y>,SMLA{D,LD},SMLSLD,SMMULL,SMULW<y>: !RdHi, !RdLo, !Rm, !Rs
  1321. * SMMUL,SMUAD,SMUL<x><y>,SMUSD: !Rd, !Rm, !Rs
  1322. * SSAT/16: !Rd, !Rm
  1323. * STM(1/2): !Rn, register_list* (R15 in reg list not recommended)
  1324. * STRT immediate pre/post-indexed: Rd*, !Rn
  1325. * STRT register pre/post-indexed: Rd*, !Rn, !Rm
  1326. * STRT scaled register pre/post-indexed: Rd*, !Rn, !Rm
  1327. * STREX: !Rd, !Rn, !Rm
  1328. * SWP/B: !Rd, !Rn, !Rm
  1329. * {S,U}XTA{B,B16,H}: !Rd, !Rn, !Rm
  1330. * {S,U}XT{B,B16,H}: !Rd, !Rm
  1331. * UM{AA,LA,UL}L: !RdHi, !RdLo, !Rm, !Rs
  1332. * USA{D8,A8,T,T16}: !Rd, !Rm, !Rs
  1333. *
  1334. * May transfer control by writing R15 (possible mode changes or alternate
  1335. * mode accesses marked by "*"):
  1336. * ALU op (* with s-bit), B, BL, BKPT, BLX(1/2), BX, BXJ, CPS*, CPY,
  1337. * LDM(1), LDM(2/3)*, LDR, MOV, RFE*, SWI*
  1338. *
  1339. * Instructions that do not take general registers, nor transfer control:
  1340. * CDP/2, SETEND, SRS*
  1341. */