random.c 49 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641
  1. /*
  2. * random.c -- A strong random number generator
  3. *
  4. * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
  5. *
  6. * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
  7. * rights reserved.
  8. *
  9. * Redistribution and use in source and binary forms, with or without
  10. * modification, are permitted provided that the following conditions
  11. * are met:
  12. * 1. Redistributions of source code must retain the above copyright
  13. * notice, and the entire permission notice in its entirety,
  14. * including the disclaimer of warranties.
  15. * 2. Redistributions in binary form must reproduce the above copyright
  16. * notice, this list of conditions and the following disclaimer in the
  17. * documentation and/or other materials provided with the distribution.
  18. * 3. The name of the author may not be used to endorse or promote
  19. * products derived from this software without specific prior
  20. * written permission.
  21. *
  22. * ALTERNATIVELY, this product may be distributed under the terms of
  23. * the GNU General Public License, in which case the provisions of the GPL are
  24. * required INSTEAD OF the above restrictions. (This clause is
  25. * necessary due to a potential bad interaction between the GPL and
  26. * the restrictions contained in a BSD-style copyright.)
  27. *
  28. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  29. * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  30. * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
  31. * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
  32. * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  33. * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
  34. * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  35. * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  36. * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  37. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  38. * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
  39. * DAMAGE.
  40. */
  41. /*
  42. * (now, with legal B.S. out of the way.....)
  43. *
  44. * This routine gathers environmental noise from device drivers, etc.,
  45. * and returns good random numbers, suitable for cryptographic use.
  46. * Besides the obvious cryptographic uses, these numbers are also good
  47. * for seeding TCP sequence numbers, and other places where it is
  48. * desirable to have numbers which are not only random, but hard to
  49. * predict by an attacker.
  50. *
  51. * Theory of operation
  52. * ===================
  53. *
  54. * Computers are very predictable devices. Hence it is extremely hard
  55. * to produce truly random numbers on a computer --- as opposed to
  56. * pseudo-random numbers, which can easily generated by using a
  57. * algorithm. Unfortunately, it is very easy for attackers to guess
  58. * the sequence of pseudo-random number generators, and for some
  59. * applications this is not acceptable. So instead, we must try to
  60. * gather "environmental noise" from the computer's environment, which
  61. * must be hard for outside attackers to observe, and use that to
  62. * generate random numbers. In a Unix environment, this is best done
  63. * from inside the kernel.
  64. *
  65. * Sources of randomness from the environment include inter-keyboard
  66. * timings, inter-interrupt timings from some interrupts, and other
  67. * events which are both (a) non-deterministic and (b) hard for an
  68. * outside observer to measure. Randomness from these sources are
  69. * added to an "entropy pool", which is mixed using a CRC-like function.
  70. * This is not cryptographically strong, but it is adequate assuming
  71. * the randomness is not chosen maliciously, and it is fast enough that
  72. * the overhead of doing it on every interrupt is very reasonable.
  73. * As random bytes are mixed into the entropy pool, the routines keep
  74. * an *estimate* of how many bits of randomness have been stored into
  75. * the random number generator's internal state.
  76. *
  77. * When random bytes are desired, they are obtained by taking the SHA
  78. * hash of the contents of the "entropy pool". The SHA hash avoids
  79. * exposing the internal state of the entropy pool. It is believed to
  80. * be computationally infeasible to derive any useful information
  81. * about the input of SHA from its output. Even if it is possible to
  82. * analyze SHA in some clever way, as long as the amount of data
  83. * returned from the generator is less than the inherent entropy in
  84. * the pool, the output data is totally unpredictable. For this
  85. * reason, the routine decreases its internal estimate of how many
  86. * bits of "true randomness" are contained in the entropy pool as it
  87. * outputs random numbers.
  88. *
  89. * If this estimate goes to zero, the routine can still generate
  90. * random numbers; however, an attacker may (at least in theory) be
  91. * able to infer the future output of the generator from prior
  92. * outputs. This requires successful cryptanalysis of SHA, which is
  93. * not believed to be feasible, but there is a remote possibility.
  94. * Nonetheless, these numbers should be useful for the vast majority
  95. * of purposes.
  96. *
  97. * Exported interfaces ---- output
  98. * ===============================
  99. *
  100. * There are three exported interfaces; the first is one designed to
  101. * be used from within the kernel:
  102. *
  103. * void get_random_bytes(void *buf, int nbytes);
  104. *
  105. * This interface will return the requested number of random bytes,
  106. * and place it in the requested buffer.
  107. *
  108. * The two other interfaces are two character devices /dev/random and
  109. * /dev/urandom. /dev/random is suitable for use when very high
  110. * quality randomness is desired (for example, for key generation or
  111. * one-time pads), as it will only return a maximum of the number of
  112. * bits of randomness (as estimated by the random number generator)
  113. * contained in the entropy pool.
  114. *
  115. * The /dev/urandom device does not have this limit, and will return
  116. * as many bytes as are requested. As more and more random bytes are
  117. * requested without giving time for the entropy pool to recharge,
  118. * this will result in random numbers that are merely cryptographically
  119. * strong. For many applications, however, this is acceptable.
  120. *
  121. * Exported interfaces ---- input
  122. * ==============================
  123. *
  124. * The current exported interfaces for gathering environmental noise
  125. * from the devices are:
  126. *
  127. * void add_device_randomness(const void *buf, unsigned int size);
  128. * void add_input_randomness(unsigned int type, unsigned int code,
  129. * unsigned int value);
  130. * void add_interrupt_randomness(int irq, int irq_flags);
  131. * void add_disk_randomness(struct gendisk *disk);
  132. *
  133. * add_device_randomness() is for adding data to the random pool that
  134. * is likely to differ between two devices (or possibly even per boot).
  135. * This would be things like MAC addresses or serial numbers, or the
  136. * read-out of the RTC. This does *not* add any actual entropy to the
  137. * pool, but it initializes the pool to different values for devices
  138. * that might otherwise be identical and have very little entropy
  139. * available to them (particularly common in the embedded world).
  140. *
  141. * add_input_randomness() uses the input layer interrupt timing, as well as
  142. * the event type information from the hardware.
  143. *
  144. * add_interrupt_randomness() uses the interrupt timing as random
  145. * inputs to the entropy pool. Using the cycle counters and the irq source
  146. * as inputs, it feeds the randomness roughly once a second.
  147. *
  148. * add_disk_randomness() uses what amounts to the seek time of block
  149. * layer request events, on a per-disk_devt basis, as input to the
  150. * entropy pool. Note that high-speed solid state drives with very low
  151. * seek times do not make for good sources of entropy, as their seek
  152. * times are usually fairly consistent.
  153. *
  154. * All of these routines try to estimate how many bits of randomness a
  155. * particular randomness source. They do this by keeping track of the
  156. * first and second order deltas of the event timings.
  157. *
  158. * Ensuring unpredictability at system startup
  159. * ============================================
  160. *
  161. * When any operating system starts up, it will go through a sequence
  162. * of actions that are fairly predictable by an adversary, especially
  163. * if the start-up does not involve interaction with a human operator.
  164. * This reduces the actual number of bits of unpredictability in the
  165. * entropy pool below the value in entropy_count. In order to
  166. * counteract this effect, it helps to carry information in the
  167. * entropy pool across shut-downs and start-ups. To do this, put the
  168. * following lines an appropriate script which is run during the boot
  169. * sequence:
  170. *
  171. * echo "Initializing random number generator..."
  172. * random_seed=/var/run/random-seed
  173. * # Carry a random seed from start-up to start-up
  174. * # Load and then save the whole entropy pool
  175. * if [ -f $random_seed ]; then
  176. * cat $random_seed >/dev/urandom
  177. * else
  178. * touch $random_seed
  179. * fi
  180. * chmod 600 $random_seed
  181. * dd if=/dev/urandom of=$random_seed count=1 bs=512
  182. *
  183. * and the following lines in an appropriate script which is run as
  184. * the system is shutdown:
  185. *
  186. * # Carry a random seed from shut-down to start-up
  187. * # Save the whole entropy pool
  188. * echo "Saving random seed..."
  189. * random_seed=/var/run/random-seed
  190. * touch $random_seed
  191. * chmod 600 $random_seed
  192. * dd if=/dev/urandom of=$random_seed count=1 bs=512
  193. *
  194. * For example, on most modern systems using the System V init
  195. * scripts, such code fragments would be found in
  196. * /etc/rc.d/init.d/random. On older Linux systems, the correct script
  197. * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
  198. *
  199. * Effectively, these commands cause the contents of the entropy pool
  200. * to be saved at shut-down time and reloaded into the entropy pool at
  201. * start-up. (The 'dd' in the addition to the bootup script is to
  202. * make sure that /etc/random-seed is different for every start-up,
  203. * even if the system crashes without executing rc.0.) Even with
  204. * complete knowledge of the start-up activities, predicting the state
  205. * of the entropy pool requires knowledge of the previous history of
  206. * the system.
  207. *
  208. * Configuring the /dev/random driver under Linux
  209. * ==============================================
  210. *
  211. * The /dev/random driver under Linux uses minor numbers 8 and 9 of
  212. * the /dev/mem major number (#1). So if your system does not have
  213. * /dev/random and /dev/urandom created already, they can be created
  214. * by using the commands:
  215. *
  216. * mknod /dev/random c 1 8
  217. * mknod /dev/urandom c 1 9
  218. *
  219. * Acknowledgements:
  220. * =================
  221. *
  222. * Ideas for constructing this random number generator were derived
  223. * from Pretty Good Privacy's random number generator, and from private
  224. * discussions with Phil Karn. Colin Plumb provided a faster random
  225. * number generator, which speed up the mixing function of the entropy
  226. * pool, taken from PGPfone. Dale Worley has also contributed many
  227. * useful ideas and suggestions to improve this driver.
  228. *
  229. * Any flaws in the design are solely my responsibility, and should
  230. * not be attributed to the Phil, Colin, or any of authors of PGP.
  231. *
  232. * Further background information on this topic may be obtained from
  233. * RFC 1750, "Randomness Recommendations for Security", by Donald
  234. * Eastlake, Steve Crocker, and Jeff Schiller.
  235. */
  236. #include <linux/utsname.h>
  237. #include <linux/module.h>
  238. #include <linux/kernel.h>
  239. #include <linux/major.h>
  240. #include <linux/string.h>
  241. #include <linux/fcntl.h>
  242. #include <linux/slab.h>
  243. #include <linux/random.h>
  244. #include <linux/poll.h>
  245. #include <linux/init.h>
  246. #include <linux/fs.h>
  247. #include <linux/genhd.h>
  248. #include <linux/interrupt.h>
  249. #include <linux/mm.h>
  250. #include <linux/spinlock.h>
  251. #include <linux/percpu.h>
  252. #include <linux/cryptohash.h>
  253. #include <linux/fips.h>
  254. #include <linux/ptrace.h>
  255. #include <linux/kmemcheck.h>
  256. #ifdef CONFIG_GENERIC_HARDIRQS
  257. # include <linux/irq.h>
  258. #endif
  259. #include <asm/processor.h>
  260. #include <asm/uaccess.h>
  261. #include <asm/irq.h>
  262. #include <asm/irq_regs.h>
  263. #include <asm/io.h>
  264. #define CREATE_TRACE_POINTS
  265. #include <trace/events/random.h>
  266. /*
  267. * Configuration information
  268. */
  269. #define INPUT_POOL_SHIFT 12
  270. #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
  271. #define OUTPUT_POOL_SHIFT 10
  272. #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
  273. #define SEC_XFER_SIZE 512
  274. #define EXTRACT_SIZE 10
  275. #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
  276. /*
  277. * To allow fractional bits to be tracked, the following fields contain
  278. * this many fractional bits:
  279. *
  280. * entropy_count, trickle_thresh
  281. *
  282. * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
  283. * credit_entropy_bits() needs to be 64 bits wide.
  284. */
  285. #define ENTROPY_SHIFT 3
  286. #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
  287. /*
  288. * The minimum number of bits of entropy before we wake up a read on
  289. * /dev/random. Should be enough to do a significant reseed.
  290. */
  291. static int random_read_wakeup_thresh = 64;
  292. /*
  293. * If the entropy count falls under this number of bits, then we
  294. * should wake up processes which are selecting or polling on write
  295. * access to /dev/random.
  296. */
  297. static int random_write_wakeup_thresh = 128;
  298. /*
  299. * The minimum number of seconds between urandom pool resending. We
  300. * do this to limit the amount of entropy that can be drained from the
  301. * input pool even if there are heavy demands on /dev/urandom.
  302. */
  303. static int random_min_urandom_seed = 60;
  304. /*
  305. * When the input pool goes over trickle_thresh, start dropping most
  306. * samples to avoid wasting CPU time and reduce lock contention.
  307. */
  308. static const int trickle_thresh = (INPUT_POOL_WORDS * 28) << ENTROPY_SHIFT;
  309. static DEFINE_PER_CPU(int, trickle_count);
  310. /*
  311. * A pool of size .poolwords is stirred with a primitive polynomial
  312. * of degree .poolwords over GF(2). The taps for various sizes are
  313. * defined below. They are chosen to be evenly spaced (minimum RMS
  314. * distance from evenly spaced; the numbers in the comments are a
  315. * scaled squared error sum) except for the last tap, which is 1 to
  316. * get the twisting happening as fast as possible.
  317. */
  318. static struct poolinfo {
  319. int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
  320. #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
  321. int tap1, tap2, tap3, tap4, tap5;
  322. } poolinfo_table[] = {
  323. /* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
  324. { S(128), 103, 76, 51, 25, 1 },
  325. /* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
  326. { S(32), 26, 20, 14, 7, 1 },
  327. #if 0
  328. /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
  329. { S(2048), 1638, 1231, 819, 411, 1 },
  330. /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
  331. { S(1024), 817, 615, 412, 204, 1 },
  332. /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
  333. { S(1024), 819, 616, 410, 207, 2 },
  334. /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
  335. { S(512), 411, 308, 208, 104, 1 },
  336. /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
  337. { S(512), 409, 307, 206, 102, 2 },
  338. /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
  339. { S(512), 409, 309, 205, 103, 2 },
  340. /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
  341. { S(256), 205, 155, 101, 52, 1 },
  342. /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
  343. { S(128), 103, 78, 51, 27, 2 },
  344. /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
  345. { S(64), 52, 39, 26, 14, 1 },
  346. #endif
  347. };
  348. /*
  349. * For the purposes of better mixing, we use the CRC-32 polynomial as
  350. * well to make a twisted Generalized Feedback Shift Reigster
  351. *
  352. * (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM
  353. * Transactions on Modeling and Computer Simulation 2(3):179-194.
  354. * Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators
  355. * II. ACM Transactions on Mdeling and Computer Simulation 4:254-266)
  356. *
  357. * Thanks to Colin Plumb for suggesting this.
  358. *
  359. * We have not analyzed the resultant polynomial to prove it primitive;
  360. * in fact it almost certainly isn't. Nonetheless, the irreducible factors
  361. * of a random large-degree polynomial over GF(2) are more than large enough
  362. * that periodicity is not a concern.
  363. *
  364. * The input hash is much less sensitive than the output hash. All
  365. * that we want of it is that it be a good non-cryptographic hash;
  366. * i.e. it not produce collisions when fed "random" data of the sort
  367. * we expect to see. As long as the pool state differs for different
  368. * inputs, we have preserved the input entropy and done a good job.
  369. * The fact that an intelligent attacker can construct inputs that
  370. * will produce controlled alterations to the pool's state is not
  371. * important because we don't consider such inputs to contribute any
  372. * randomness. The only property we need with respect to them is that
  373. * the attacker can't increase his/her knowledge of the pool's state.
  374. * Since all additions are reversible (knowing the final state and the
  375. * input, you can reconstruct the initial state), if an attacker has
  376. * any uncertainty about the initial state, he/she can only shuffle
  377. * that uncertainty about, but never cause any collisions (which would
  378. * decrease the uncertainty).
  379. *
  380. * The chosen system lets the state of the pool be (essentially) the input
  381. * modulo the generator polymnomial. Now, for random primitive polynomials,
  382. * this is a universal class of hash functions, meaning that the chance
  383. * of a collision is limited by the attacker's knowledge of the generator
  384. * polynomail, so if it is chosen at random, an attacker can never force
  385. * a collision. Here, we use a fixed polynomial, but we *can* assume that
  386. * ###--> it is unknown to the processes generating the input entropy. <-###
  387. * Because of this important property, this is a good, collision-resistant
  388. * hash; hash collisions will occur no more often than chance.
  389. */
  390. /*
  391. * Static global variables
  392. */
  393. static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
  394. static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
  395. static struct fasync_struct *fasync;
  396. static bool debug;
  397. module_param(debug, bool, 0644);
  398. #define DEBUG_ENT(fmt, arg...) do { \
  399. if (debug) \
  400. printk(KERN_DEBUG "random %04d %04d %04d: " \
  401. fmt,\
  402. input_pool.entropy_count,\
  403. blocking_pool.entropy_count,\
  404. nonblocking_pool.entropy_count,\
  405. ## arg); } while (0)
  406. /**********************************************************************
  407. *
  408. * OS independent entropy store. Here are the functions which handle
  409. * storing entropy in an entropy pool.
  410. *
  411. **********************************************************************/
  412. struct entropy_store;
  413. struct entropy_store {
  414. /* read-only data: */
  415. const struct poolinfo *poolinfo;
  416. __u32 *pool;
  417. const char *name;
  418. struct entropy_store *pull;
  419. /* read-write data: */
  420. unsigned long last_pulled;
  421. spinlock_t lock;
  422. unsigned short add_ptr;
  423. unsigned short input_rotate;
  424. int entropy_count;
  425. int entropy_total;
  426. unsigned int initialized:1;
  427. unsigned int limit:1;
  428. unsigned int last_data_init:1;
  429. __u8 last_data[EXTRACT_SIZE];
  430. };
  431. static __u32 input_pool_data[INPUT_POOL_WORDS];
  432. static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
  433. static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
  434. static struct entropy_store input_pool = {
  435. .poolinfo = &poolinfo_table[0],
  436. .name = "input",
  437. .limit = 1,
  438. .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
  439. .pool = input_pool_data
  440. };
  441. static struct entropy_store blocking_pool = {
  442. .poolinfo = &poolinfo_table[1],
  443. .name = "blocking",
  444. .limit = 1,
  445. .pull = &input_pool,
  446. .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
  447. .pool = blocking_pool_data
  448. };
  449. static struct entropy_store nonblocking_pool = {
  450. .poolinfo = &poolinfo_table[1],
  451. .name = "nonblocking",
  452. .pull = &input_pool,
  453. .lock = __SPIN_LOCK_UNLOCKED(nonblocking_pool.lock),
  454. .pool = nonblocking_pool_data
  455. };
  456. static __u32 const twist_table[8] = {
  457. 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
  458. 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
  459. /*
  460. * This function adds bytes into the entropy "pool". It does not
  461. * update the entropy estimate. The caller should call
  462. * credit_entropy_bits if this is appropriate.
  463. *
  464. * The pool is stirred with a primitive polynomial of the appropriate
  465. * degree, and then twisted. We twist by three bits at a time because
  466. * it's cheap to do so and helps slightly in the expected case where
  467. * the entropy is concentrated in the low-order bits.
  468. */
  469. static void _mix_pool_bytes(struct entropy_store *r, const void *in,
  470. int nbytes, __u8 out[64])
  471. {
  472. unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
  473. int input_rotate;
  474. int wordmask = r->poolinfo->poolwords - 1;
  475. const char *bytes = in;
  476. __u32 w;
  477. tap1 = r->poolinfo->tap1;
  478. tap2 = r->poolinfo->tap2;
  479. tap3 = r->poolinfo->tap3;
  480. tap4 = r->poolinfo->tap4;
  481. tap5 = r->poolinfo->tap5;
  482. smp_rmb();
  483. input_rotate = ACCESS_ONCE(r->input_rotate);
  484. i = ACCESS_ONCE(r->add_ptr);
  485. /* mix one byte at a time to simplify size handling and churn faster */
  486. while (nbytes--) {
  487. w = rol32(*bytes++, input_rotate);
  488. i = (i - 1) & wordmask;
  489. /* XOR in the various taps */
  490. w ^= r->pool[i];
  491. w ^= r->pool[(i + tap1) & wordmask];
  492. w ^= r->pool[(i + tap2) & wordmask];
  493. w ^= r->pool[(i + tap3) & wordmask];
  494. w ^= r->pool[(i + tap4) & wordmask];
  495. w ^= r->pool[(i + tap5) & wordmask];
  496. /* Mix the result back in with a twist */
  497. r->pool[i] = (w >> 3) ^ twist_table[w & 7];
  498. /*
  499. * Normally, we add 7 bits of rotation to the pool.
  500. * At the beginning of the pool, add an extra 7 bits
  501. * rotation, so that successive passes spread the
  502. * input bits across the pool evenly.
  503. */
  504. input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
  505. }
  506. ACCESS_ONCE(r->input_rotate) = input_rotate;
  507. ACCESS_ONCE(r->add_ptr) = i;
  508. smp_wmb();
  509. if (out)
  510. for (j = 0; j < 16; j++)
  511. ((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
  512. }
  513. static void __mix_pool_bytes(struct entropy_store *r, const void *in,
  514. int nbytes, __u8 out[64])
  515. {
  516. trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
  517. _mix_pool_bytes(r, in, nbytes, out);
  518. }
  519. static void mix_pool_bytes(struct entropy_store *r, const void *in,
  520. int nbytes, __u8 out[64])
  521. {
  522. unsigned long flags;
  523. trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
  524. spin_lock_irqsave(&r->lock, flags);
  525. _mix_pool_bytes(r, in, nbytes, out);
  526. spin_unlock_irqrestore(&r->lock, flags);
  527. }
  528. struct fast_pool {
  529. __u32 pool[4];
  530. unsigned long last;
  531. unsigned short count;
  532. unsigned char rotate;
  533. unsigned char last_timer_intr;
  534. };
  535. /*
  536. * This is a fast mixing routine used by the interrupt randomness
  537. * collector. It's hardcoded for an 128 bit pool and assumes that any
  538. * locks that might be needed are taken by the caller.
  539. */
  540. static void fast_mix(struct fast_pool *f, __u32 input[4])
  541. {
  542. __u32 w;
  543. unsigned input_rotate = f->rotate;
  544. w = rol32(input[0], input_rotate) ^ f->pool[0] ^ f->pool[3];
  545. f->pool[0] = (w >> 3) ^ twist_table[w & 7];
  546. input_rotate = (input_rotate + 14) & 31;
  547. w = rol32(input[1], input_rotate) ^ f->pool[1] ^ f->pool[0];
  548. f->pool[1] = (w >> 3) ^ twist_table[w & 7];
  549. input_rotate = (input_rotate + 7) & 31;
  550. w = rol32(input[2], input_rotate) ^ f->pool[2] ^ f->pool[1];
  551. f->pool[2] = (w >> 3) ^ twist_table[w & 7];
  552. input_rotate = (input_rotate + 7) & 31;
  553. w = rol32(input[3], input_rotate) ^ f->pool[3] ^ f->pool[2];
  554. f->pool[3] = (w >> 3) ^ twist_table[w & 7];
  555. input_rotate = (input_rotate + 7) & 31;
  556. f->rotate = input_rotate;
  557. f->count++;
  558. }
  559. /*
  560. * Credit (or debit) the entropy store with n bits of entropy.
  561. * Use credit_entropy_bits_safe() if the value comes from userspace
  562. * or otherwise should be checked for extreme values.
  563. */
  564. static void credit_entropy_bits(struct entropy_store *r, int nbits)
  565. {
  566. int entropy_count, orig;
  567. const int pool_size = r->poolinfo->poolfracbits;
  568. int nfrac = nbits << ENTROPY_SHIFT;
  569. if (!nbits)
  570. return;
  571. DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name);
  572. retry:
  573. entropy_count = orig = ACCESS_ONCE(r->entropy_count);
  574. if (nfrac < 0) {
  575. /* Debit */
  576. entropy_count += nfrac;
  577. } else {
  578. /*
  579. * Credit: we have to account for the possibility of
  580. * overwriting already present entropy. Even in the
  581. * ideal case of pure Shannon entropy, new contributions
  582. * approach the full value asymptotically:
  583. *
  584. * entropy <- entropy + (pool_size - entropy) *
  585. * (1 - exp(-add_entropy/pool_size))
  586. *
  587. * For add_entropy <= pool_size/2 then
  588. * (1 - exp(-add_entropy/pool_size)) >=
  589. * (add_entropy/pool_size)*0.7869...
  590. * so we can approximate the exponential with
  591. * 3/4*add_entropy/pool_size and still be on the
  592. * safe side by adding at most pool_size/2 at a time.
  593. *
  594. * The use of pool_size-2 in the while statement is to
  595. * prevent rounding artifacts from making the loop
  596. * arbitrarily long; this limits the loop to log2(pool_size)*2
  597. * turns no matter how large nbits is.
  598. */
  599. int pnfrac = nfrac;
  600. const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
  601. /* The +2 corresponds to the /4 in the denominator */
  602. do {
  603. unsigned int anfrac = min(pnfrac, pool_size/2);
  604. unsigned int add =
  605. ((pool_size - entropy_count)*anfrac*3) >> s;
  606. entropy_count += add;
  607. pnfrac -= anfrac;
  608. } while (unlikely(entropy_count < pool_size-2 && pnfrac));
  609. }
  610. if (entropy_count < 0) {
  611. DEBUG_ENT("negative entropy/overflow\n");
  612. entropy_count = 0;
  613. } else if (entropy_count > pool_size)
  614. entropy_count = pool_size;
  615. if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
  616. goto retry;
  617. if (!r->initialized && nbits > 0) {
  618. r->entropy_total += nbits;
  619. if (r->entropy_total > 128)
  620. r->initialized = 1;
  621. }
  622. trace_credit_entropy_bits(r->name, nbits,
  623. entropy_count >> ENTROPY_SHIFT,
  624. r->entropy_total, _RET_IP_);
  625. /* should we wake readers? */
  626. if (r == &input_pool &&
  627. (entropy_count >> ENTROPY_SHIFT) >= random_read_wakeup_thresh) {
  628. wake_up_interruptible(&random_read_wait);
  629. kill_fasync(&fasync, SIGIO, POLL_IN);
  630. }
  631. }
  632. static void credit_entropy_bits_safe(struct entropy_store *r, int nbits)
  633. {
  634. const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1));
  635. /* Cap the value to avoid overflows */
  636. nbits = min(nbits, nbits_max);
  637. nbits = max(nbits, -nbits_max);
  638. credit_entropy_bits(r, nbits);
  639. }
  640. /*********************************************************************
  641. *
  642. * Entropy input management
  643. *
  644. *********************************************************************/
  645. /* There is one of these per entropy source */
  646. struct timer_rand_state {
  647. cycles_t last_time;
  648. long last_delta, last_delta2;
  649. unsigned dont_count_entropy:1;
  650. };
  651. /*
  652. * Add device- or boot-specific data to the input and nonblocking
  653. * pools to help initialize them to unique values.
  654. *
  655. * None of this adds any entropy, it is meant to avoid the
  656. * problem of the nonblocking pool having similar initial state
  657. * across largely identical devices.
  658. */
  659. void add_device_randomness(const void *buf, unsigned int size)
  660. {
  661. unsigned long time = random_get_entropy() ^ jiffies;
  662. unsigned long flags;
  663. trace_add_device_randomness(size, _RET_IP_);
  664. spin_lock_irqsave(&input_pool.lock, flags);
  665. _mix_pool_bytes(&input_pool, buf, size, NULL);
  666. _mix_pool_bytes(&input_pool, &time, sizeof(time), NULL);
  667. spin_unlock_irqrestore(&input_pool.lock, flags);
  668. spin_lock_irqsave(&nonblocking_pool.lock, flags);
  669. _mix_pool_bytes(&nonblocking_pool, buf, size, NULL);
  670. _mix_pool_bytes(&nonblocking_pool, &time, sizeof(time), NULL);
  671. spin_unlock_irqrestore(&nonblocking_pool.lock, flags);
  672. }
  673. EXPORT_SYMBOL(add_device_randomness);
  674. static struct timer_rand_state input_timer_state;
  675. /*
  676. * This function adds entropy to the entropy "pool" by using timing
  677. * delays. It uses the timer_rand_state structure to make an estimate
  678. * of how many bits of entropy this call has added to the pool.
  679. *
  680. * The number "num" is also added to the pool - it should somehow describe
  681. * the type of event which just happened. This is currently 0-255 for
  682. * keyboard scan codes, and 256 upwards for interrupts.
  683. *
  684. */
  685. static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
  686. {
  687. struct {
  688. long jiffies;
  689. unsigned cycles;
  690. unsigned num;
  691. } sample;
  692. long delta, delta2, delta3;
  693. preempt_disable();
  694. /* if over the trickle threshold, use only 1 in 4096 samples */
  695. if (ENTROPY_BITS(&input_pool) > trickle_thresh &&
  696. ((__this_cpu_inc_return(trickle_count) - 1) & 0xfff))
  697. goto out;
  698. sample.jiffies = jiffies;
  699. sample.cycles = random_get_entropy();
  700. sample.num = num;
  701. mix_pool_bytes(&input_pool, &sample, sizeof(sample), NULL);
  702. /*
  703. * Calculate number of bits of randomness we probably added.
  704. * We take into account the first, second and third-order deltas
  705. * in order to make our estimate.
  706. */
  707. if (!state->dont_count_entropy) {
  708. delta = sample.jiffies - state->last_time;
  709. state->last_time = sample.jiffies;
  710. delta2 = delta - state->last_delta;
  711. state->last_delta = delta;
  712. delta3 = delta2 - state->last_delta2;
  713. state->last_delta2 = delta2;
  714. if (delta < 0)
  715. delta = -delta;
  716. if (delta2 < 0)
  717. delta2 = -delta2;
  718. if (delta3 < 0)
  719. delta3 = -delta3;
  720. if (delta > delta2)
  721. delta = delta2;
  722. if (delta > delta3)
  723. delta = delta3;
  724. /*
  725. * delta is now minimum absolute delta.
  726. * Round down by 1 bit on general principles,
  727. * and limit entropy entimate to 12 bits.
  728. */
  729. credit_entropy_bits(&input_pool,
  730. min_t(int, fls(delta>>1), 11));
  731. }
  732. out:
  733. preempt_enable();
  734. }
  735. void add_input_randomness(unsigned int type, unsigned int code,
  736. unsigned int value)
  737. {
  738. static unsigned char last_value;
  739. /* ignore autorepeat and the like */
  740. if (value == last_value)
  741. return;
  742. DEBUG_ENT("input event\n");
  743. last_value = value;
  744. add_timer_randomness(&input_timer_state,
  745. (type << 4) ^ code ^ (code >> 4) ^ value);
  746. }
  747. EXPORT_SYMBOL_GPL(add_input_randomness);
  748. static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
  749. void add_interrupt_randomness(int irq, int irq_flags)
  750. {
  751. struct entropy_store *r;
  752. struct fast_pool *fast_pool = &__get_cpu_var(irq_randomness);
  753. struct pt_regs *regs = get_irq_regs();
  754. unsigned long now = jiffies;
  755. cycles_t cycles = random_get_entropy();
  756. __u32 input[4], c_high, j_high;
  757. __u64 ip;
  758. c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
  759. j_high = (sizeof(now) > 4) ? now >> 32 : 0;
  760. input[0] = cycles ^ j_high ^ irq;
  761. input[1] = now ^ c_high;
  762. ip = regs ? instruction_pointer(regs) : _RET_IP_;
  763. input[2] = ip;
  764. input[3] = ip >> 32;
  765. fast_mix(fast_pool, input);
  766. if ((fast_pool->count & 63) && !time_after(now, fast_pool->last + HZ))
  767. return;
  768. fast_pool->last = now;
  769. r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
  770. __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool), NULL);
  771. /*
  772. * If we don't have a valid cycle counter, and we see
  773. * back-to-back timer interrupts, then skip giving credit for
  774. * any entropy.
  775. */
  776. if (cycles == 0) {
  777. if (irq_flags & __IRQF_TIMER) {
  778. if (fast_pool->last_timer_intr)
  779. return;
  780. fast_pool->last_timer_intr = 1;
  781. } else
  782. fast_pool->last_timer_intr = 0;
  783. }
  784. credit_entropy_bits(r, 1);
  785. }
  786. #ifdef CONFIG_BLOCK
  787. void add_disk_randomness(struct gendisk *disk)
  788. {
  789. if (!disk || !disk->random)
  790. return;
  791. /* first major is 1, so we get >= 0x200 here */
  792. DEBUG_ENT("disk event %d:%d\n",
  793. MAJOR(disk_devt(disk)), MINOR(disk_devt(disk)));
  794. add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
  795. }
  796. #endif
  797. /*********************************************************************
  798. *
  799. * Entropy extraction routines
  800. *
  801. *********************************************************************/
  802. static ssize_t extract_entropy(struct entropy_store *r, void *buf,
  803. size_t nbytes, int min, int rsvd);
  804. /*
  805. * This utility inline function is responsible for transferring entropy
  806. * from the primary pool to the secondary extraction pool. We make
  807. * sure we pull enough for a 'catastrophic reseed'.
  808. */
  809. static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
  810. {
  811. __u32 tmp[OUTPUT_POOL_WORDS];
  812. if (r->limit == 0 && random_min_urandom_seed) {
  813. unsigned long now = jiffies;
  814. if (time_before(now,
  815. r->last_pulled + random_min_urandom_seed * HZ))
  816. return;
  817. r->last_pulled = now;
  818. }
  819. if (r->pull &&
  820. r->entropy_count < (nbytes << (ENTROPY_SHIFT + 3)) &&
  821. r->entropy_count < r->poolinfo->poolfracbits) {
  822. /* If we're limited, always leave two wakeup worth's BITS */
  823. int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
  824. int bytes = nbytes;
  825. /* pull at least as many as BYTES as wakeup BITS */
  826. bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
  827. /* but never more than the buffer size */
  828. bytes = min_t(int, bytes, sizeof(tmp));
  829. DEBUG_ENT("going to reseed %s with %d bits "
  830. "(%zu of %d requested)\n",
  831. r->name, bytes * 8, nbytes * 8,
  832. r->entropy_count >> ENTROPY_SHIFT);
  833. bytes = extract_entropy(r->pull, tmp, bytes,
  834. random_read_wakeup_thresh / 8, rsvd);
  835. mix_pool_bytes(r, tmp, bytes, NULL);
  836. credit_entropy_bits(r, bytes*8);
  837. }
  838. }
  839. /*
  840. * These functions extracts randomness from the "entropy pool", and
  841. * returns it in a buffer.
  842. *
  843. * The min parameter specifies the minimum amount we can pull before
  844. * failing to avoid races that defeat catastrophic reseeding while the
  845. * reserved parameter indicates how much entropy we must leave in the
  846. * pool after each pull to avoid starving other readers.
  847. *
  848. * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
  849. */
  850. static size_t account(struct entropy_store *r, size_t nbytes, int min,
  851. int reserved)
  852. {
  853. unsigned long flags;
  854. int wakeup_write = 0;
  855. int have_bytes;
  856. int entropy_count, orig;
  857. size_t ibytes;
  858. /* Hold lock while accounting */
  859. spin_lock_irqsave(&r->lock, flags);
  860. BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
  861. DEBUG_ENT("trying to extract %zu bits from %s\n",
  862. nbytes * 8, r->name);
  863. /* Can we pull enough? */
  864. retry:
  865. entropy_count = orig = ACCESS_ONCE(r->entropy_count);
  866. have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
  867. ibytes = nbytes;
  868. if (have_bytes < min + reserved) {
  869. ibytes = 0;
  870. } else {
  871. /* If limited, never pull more than available */
  872. if (r->limit && ibytes + reserved >= have_bytes)
  873. ibytes = have_bytes - reserved;
  874. if (have_bytes >= ibytes + reserved)
  875. entropy_count -= ibytes << (ENTROPY_SHIFT + 3);
  876. else
  877. entropy_count = reserved << (ENTROPY_SHIFT + 3);
  878. if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
  879. goto retry;
  880. if ((r->entropy_count >> ENTROPY_SHIFT)
  881. < random_write_wakeup_thresh)
  882. wakeup_write = 1;
  883. }
  884. DEBUG_ENT("debiting %zu entropy credits from %s%s\n",
  885. ibytes * 8, r->name, r->limit ? "" : " (unlimited)");
  886. spin_unlock_irqrestore(&r->lock, flags);
  887. if (wakeup_write) {
  888. wake_up_interruptible(&random_write_wait);
  889. kill_fasync(&fasync, SIGIO, POLL_OUT);
  890. }
  891. return ibytes;
  892. }
  893. static void extract_buf(struct entropy_store *r, __u8 *out)
  894. {
  895. int i;
  896. union {
  897. __u32 w[5];
  898. unsigned long l[LONGS(20)];
  899. } hash;
  900. __u32 workspace[SHA_WORKSPACE_WORDS];
  901. __u8 extract[64];
  902. unsigned long flags;
  903. /* Generate a hash across the pool, 16 words (512 bits) at a time */
  904. sha_init(hash.w);
  905. spin_lock_irqsave(&r->lock, flags);
  906. for (i = 0; i < r->poolinfo->poolwords; i += 16)
  907. sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
  908. /*
  909. * If we have a architectural hardware random number
  910. * generator, mix that in, too.
  911. */
  912. for (i = 0; i < LONGS(20); i++) {
  913. unsigned long v;
  914. if (!arch_get_random_long(&v))
  915. break;
  916. hash.l[i] ^= v;
  917. }
  918. /*
  919. * We mix the hash back into the pool to prevent backtracking
  920. * attacks (where the attacker knows the state of the pool
  921. * plus the current outputs, and attempts to find previous
  922. * ouputs), unless the hash function can be inverted. By
  923. * mixing at least a SHA1 worth of hash data back, we make
  924. * brute-forcing the feedback as hard as brute-forcing the
  925. * hash.
  926. */
  927. __mix_pool_bytes(r, hash.w, sizeof(hash.w), extract);
  928. spin_unlock_irqrestore(&r->lock, flags);
  929. /*
  930. * To avoid duplicates, we atomically extract a portion of the
  931. * pool while mixing, and hash one final time.
  932. */
  933. sha_transform(hash.w, extract, workspace);
  934. memset(extract, 0, sizeof(extract));
  935. memset(workspace, 0, sizeof(workspace));
  936. /*
  937. * In case the hash function has some recognizable output
  938. * pattern, we fold it in half. Thus, we always feed back
  939. * twice as much data as we output.
  940. */
  941. hash.w[0] ^= hash.w[3];
  942. hash.w[1] ^= hash.w[4];
  943. hash.w[2] ^= rol32(hash.w[2], 16);
  944. memcpy(out, &hash, EXTRACT_SIZE);
  945. memset(&hash, 0, sizeof(hash));
  946. }
  947. static ssize_t extract_entropy(struct entropy_store *r, void *buf,
  948. size_t nbytes, int min, int reserved)
  949. {
  950. ssize_t ret = 0, i;
  951. __u8 tmp[EXTRACT_SIZE];
  952. unsigned long flags;
  953. /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
  954. if (fips_enabled) {
  955. spin_lock_irqsave(&r->lock, flags);
  956. if (!r->last_data_init) {
  957. r->last_data_init = 1;
  958. spin_unlock_irqrestore(&r->lock, flags);
  959. trace_extract_entropy(r->name, EXTRACT_SIZE,
  960. ENTROPY_BITS(r), _RET_IP_);
  961. xfer_secondary_pool(r, EXTRACT_SIZE);
  962. extract_buf(r, tmp);
  963. spin_lock_irqsave(&r->lock, flags);
  964. memcpy(r->last_data, tmp, EXTRACT_SIZE);
  965. }
  966. spin_unlock_irqrestore(&r->lock, flags);
  967. }
  968. trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
  969. xfer_secondary_pool(r, nbytes);
  970. nbytes = account(r, nbytes, min, reserved);
  971. while (nbytes) {
  972. extract_buf(r, tmp);
  973. if (fips_enabled) {
  974. spin_lock_irqsave(&r->lock, flags);
  975. if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
  976. panic("Hardware RNG duplicated output!\n");
  977. memcpy(r->last_data, tmp, EXTRACT_SIZE);
  978. spin_unlock_irqrestore(&r->lock, flags);
  979. }
  980. i = min_t(int, nbytes, EXTRACT_SIZE);
  981. memcpy(buf, tmp, i);
  982. nbytes -= i;
  983. buf += i;
  984. ret += i;
  985. }
  986. /* Wipe data just returned from memory */
  987. memset(tmp, 0, sizeof(tmp));
  988. return ret;
  989. }
  990. static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
  991. size_t nbytes)
  992. {
  993. ssize_t ret = 0, i;
  994. __u8 tmp[EXTRACT_SIZE];
  995. trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
  996. xfer_secondary_pool(r, nbytes);
  997. nbytes = account(r, nbytes, 0, 0);
  998. while (nbytes) {
  999. if (need_resched()) {
  1000. if (signal_pending(current)) {
  1001. if (ret == 0)
  1002. ret = -ERESTARTSYS;
  1003. break;
  1004. }
  1005. schedule();
  1006. }
  1007. extract_buf(r, tmp);
  1008. i = min_t(int, nbytes, EXTRACT_SIZE);
  1009. if (copy_to_user(buf, tmp, i)) {
  1010. ret = -EFAULT;
  1011. break;
  1012. }
  1013. nbytes -= i;
  1014. buf += i;
  1015. ret += i;
  1016. }
  1017. /* Wipe data just returned from memory */
  1018. memset(tmp, 0, sizeof(tmp));
  1019. return ret;
  1020. }
  1021. /*
  1022. * This function is the exported kernel interface. It returns some
  1023. * number of good random numbers, suitable for key generation, seeding
  1024. * TCP sequence numbers, etc. It does not use the hw random number
  1025. * generator, if available; use get_random_bytes_arch() for that.
  1026. */
  1027. void get_random_bytes(void *buf, int nbytes)
  1028. {
  1029. trace_get_random_bytes(nbytes, _RET_IP_);
  1030. extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
  1031. }
  1032. EXPORT_SYMBOL(get_random_bytes);
  1033. /*
  1034. * This function will use the architecture-specific hardware random
  1035. * number generator if it is available. The arch-specific hw RNG will
  1036. * almost certainly be faster than what we can do in software, but it
  1037. * is impossible to verify that it is implemented securely (as
  1038. * opposed, to, say, the AES encryption of a sequence number using a
  1039. * key known by the NSA). So it's useful if we need the speed, but
  1040. * only if we're willing to trust the hardware manufacturer not to
  1041. * have put in a back door.
  1042. */
  1043. void get_random_bytes_arch(void *buf, int nbytes)
  1044. {
  1045. char *p = buf;
  1046. trace_get_random_bytes_arch(nbytes, _RET_IP_);
  1047. while (nbytes) {
  1048. unsigned long v;
  1049. int chunk = min(nbytes, (int)sizeof(unsigned long));
  1050. if (!arch_get_random_long(&v))
  1051. break;
  1052. memcpy(p, &v, chunk);
  1053. p += chunk;
  1054. nbytes -= chunk;
  1055. }
  1056. if (nbytes)
  1057. extract_entropy(&nonblocking_pool, p, nbytes, 0, 0);
  1058. }
  1059. EXPORT_SYMBOL(get_random_bytes_arch);
  1060. /*
  1061. * init_std_data - initialize pool with system data
  1062. *
  1063. * @r: pool to initialize
  1064. *
  1065. * This function clears the pool's entropy count and mixes some system
  1066. * data into the pool to prepare it for use. The pool is not cleared
  1067. * as that can only decrease the entropy in the pool.
  1068. */
  1069. static void init_std_data(struct entropy_store *r)
  1070. {
  1071. int i;
  1072. ktime_t now = ktime_get_real();
  1073. unsigned long rv;
  1074. r->entropy_count = 0;
  1075. r->entropy_total = 0;
  1076. r->last_data_init = 0;
  1077. r->last_pulled = jiffies;
  1078. mix_pool_bytes(r, &now, sizeof(now), NULL);
  1079. for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
  1080. if (!arch_get_random_long(&rv))
  1081. break;
  1082. mix_pool_bytes(r, &rv, sizeof(rv), NULL);
  1083. }
  1084. mix_pool_bytes(r, utsname(), sizeof(*(utsname())), NULL);
  1085. }
  1086. /*
  1087. * Note that setup_arch() may call add_device_randomness()
  1088. * long before we get here. This allows seeding of the pools
  1089. * with some platform dependent data very early in the boot
  1090. * process. But it limits our options here. We must use
  1091. * statically allocated structures that already have all
  1092. * initializations complete at compile time. We should also
  1093. * take care not to overwrite the precious per platform data
  1094. * we were given.
  1095. */
  1096. static int rand_initialize(void)
  1097. {
  1098. init_std_data(&input_pool);
  1099. init_std_data(&blocking_pool);
  1100. init_std_data(&nonblocking_pool);
  1101. return 0;
  1102. }
  1103. module_init(rand_initialize);
  1104. #ifdef CONFIG_BLOCK
  1105. void rand_initialize_disk(struct gendisk *disk)
  1106. {
  1107. struct timer_rand_state *state;
  1108. /*
  1109. * If kzalloc returns null, we just won't use that entropy
  1110. * source.
  1111. */
  1112. state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
  1113. if (state)
  1114. disk->random = state;
  1115. }
  1116. #endif
  1117. static ssize_t
  1118. random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
  1119. {
  1120. ssize_t n, retval = 0, count = 0;
  1121. if (nbytes == 0)
  1122. return 0;
  1123. while (nbytes > 0) {
  1124. n = nbytes;
  1125. if (n > SEC_XFER_SIZE)
  1126. n = SEC_XFER_SIZE;
  1127. DEBUG_ENT("reading %zu bits\n", n*8);
  1128. n = extract_entropy_user(&blocking_pool, buf, n);
  1129. if (n < 0) {
  1130. retval = n;
  1131. break;
  1132. }
  1133. DEBUG_ENT("read got %zd bits (%zd still needed)\n",
  1134. n*8, (nbytes-n)*8);
  1135. if (n == 0) {
  1136. if (file->f_flags & O_NONBLOCK) {
  1137. retval = -EAGAIN;
  1138. break;
  1139. }
  1140. DEBUG_ENT("sleeping?\n");
  1141. wait_event_interruptible(random_read_wait,
  1142. ENTROPY_BITS(&input_pool) >=
  1143. random_read_wakeup_thresh);
  1144. DEBUG_ENT("awake\n");
  1145. if (signal_pending(current)) {
  1146. retval = -ERESTARTSYS;
  1147. break;
  1148. }
  1149. continue;
  1150. }
  1151. count += n;
  1152. buf += n;
  1153. nbytes -= n;
  1154. break; /* This break makes the device work */
  1155. /* like a named pipe */
  1156. }
  1157. return (count ? count : retval);
  1158. }
  1159. static ssize_t
  1160. urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
  1161. {
  1162. return extract_entropy_user(&nonblocking_pool, buf, nbytes);
  1163. }
  1164. static unsigned int
  1165. random_poll(struct file *file, poll_table * wait)
  1166. {
  1167. unsigned int mask;
  1168. poll_wait(file, &random_read_wait, wait);
  1169. poll_wait(file, &random_write_wait, wait);
  1170. mask = 0;
  1171. if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_thresh)
  1172. mask |= POLLIN | POLLRDNORM;
  1173. if (ENTROPY_BITS(&input_pool) < random_write_wakeup_thresh)
  1174. mask |= POLLOUT | POLLWRNORM;
  1175. return mask;
  1176. }
  1177. static int
  1178. write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
  1179. {
  1180. size_t bytes;
  1181. __u32 buf[16];
  1182. const char __user *p = buffer;
  1183. while (count > 0) {
  1184. bytes = min(count, sizeof(buf));
  1185. if (copy_from_user(&buf, p, bytes))
  1186. return -EFAULT;
  1187. count -= bytes;
  1188. p += bytes;
  1189. mix_pool_bytes(r, buf, bytes, NULL);
  1190. cond_resched();
  1191. }
  1192. return 0;
  1193. }
  1194. static ssize_t random_write(struct file *file, const char __user *buffer,
  1195. size_t count, loff_t *ppos)
  1196. {
  1197. size_t ret;
  1198. ret = write_pool(&blocking_pool, buffer, count);
  1199. if (ret)
  1200. return ret;
  1201. ret = write_pool(&nonblocking_pool, buffer, count);
  1202. if (ret)
  1203. return ret;
  1204. return (ssize_t)count;
  1205. }
  1206. static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
  1207. {
  1208. int size, ent_count;
  1209. int __user *p = (int __user *)arg;
  1210. int retval;
  1211. switch (cmd) {
  1212. case RNDGETENTCNT:
  1213. /* inherently racy, no point locking */
  1214. ent_count = ENTROPY_BITS(&input_pool);
  1215. if (put_user(ent_count, p))
  1216. return -EFAULT;
  1217. return 0;
  1218. case RNDADDTOENTCNT:
  1219. if (!capable(CAP_SYS_ADMIN))
  1220. return -EPERM;
  1221. if (get_user(ent_count, p))
  1222. return -EFAULT;
  1223. credit_entropy_bits_safe(&input_pool, ent_count);
  1224. return 0;
  1225. case RNDADDENTROPY:
  1226. if (!capable(CAP_SYS_ADMIN))
  1227. return -EPERM;
  1228. if (get_user(ent_count, p++))
  1229. return -EFAULT;
  1230. if (ent_count < 0)
  1231. return -EINVAL;
  1232. if (get_user(size, p++))
  1233. return -EFAULT;
  1234. retval = write_pool(&input_pool, (const char __user *)p,
  1235. size);
  1236. if (retval < 0)
  1237. return retval;
  1238. credit_entropy_bits_safe(&input_pool, ent_count);
  1239. return 0;
  1240. case RNDZAPENTCNT:
  1241. case RNDCLEARPOOL:
  1242. /* Clear the entropy pool counters. */
  1243. if (!capable(CAP_SYS_ADMIN))
  1244. return -EPERM;
  1245. rand_initialize();
  1246. return 0;
  1247. default:
  1248. return -EINVAL;
  1249. }
  1250. }
  1251. static int random_fasync(int fd, struct file *filp, int on)
  1252. {
  1253. return fasync_helper(fd, filp, on, &fasync);
  1254. }
  1255. const struct file_operations random_fops = {
  1256. .read = random_read,
  1257. .write = random_write,
  1258. .poll = random_poll,
  1259. .unlocked_ioctl = random_ioctl,
  1260. .fasync = random_fasync,
  1261. .llseek = noop_llseek,
  1262. };
  1263. const struct file_operations urandom_fops = {
  1264. .read = urandom_read,
  1265. .write = random_write,
  1266. .unlocked_ioctl = random_ioctl,
  1267. .fasync = random_fasync,
  1268. .llseek = noop_llseek,
  1269. };
  1270. /***************************************************************
  1271. * Random UUID interface
  1272. *
  1273. * Used here for a Boot ID, but can be useful for other kernel
  1274. * drivers.
  1275. ***************************************************************/
  1276. /*
  1277. * Generate random UUID
  1278. */
  1279. void generate_random_uuid(unsigned char uuid_out[16])
  1280. {
  1281. get_random_bytes(uuid_out, 16);
  1282. /* Set UUID version to 4 --- truly random generation */
  1283. uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
  1284. /* Set the UUID variant to DCE */
  1285. uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
  1286. }
  1287. EXPORT_SYMBOL(generate_random_uuid);
  1288. /********************************************************************
  1289. *
  1290. * Sysctl interface
  1291. *
  1292. ********************************************************************/
  1293. #ifdef CONFIG_SYSCTL
  1294. #include <linux/sysctl.h>
  1295. static int min_read_thresh = 8, min_write_thresh;
  1296. static int max_read_thresh = INPUT_POOL_WORDS * 32;
  1297. static int max_write_thresh = INPUT_POOL_WORDS * 32;
  1298. static char sysctl_bootid[16];
  1299. /*
  1300. * These functions is used to return both the bootid UUID, and random
  1301. * UUID. The difference is in whether table->data is NULL; if it is,
  1302. * then a new UUID is generated and returned to the user.
  1303. *
  1304. * If the user accesses this via the proc interface, it will be returned
  1305. * as an ASCII string in the standard UUID format. If accesses via the
  1306. * sysctl system call, it is returned as 16 bytes of binary data.
  1307. */
  1308. static int proc_do_uuid(struct ctl_table *table, int write,
  1309. void __user *buffer, size_t *lenp, loff_t *ppos)
  1310. {
  1311. struct ctl_table fake_table;
  1312. unsigned char buf[64], tmp_uuid[16], *uuid;
  1313. uuid = table->data;
  1314. if (!uuid) {
  1315. uuid = tmp_uuid;
  1316. generate_random_uuid(uuid);
  1317. } else {
  1318. static DEFINE_SPINLOCK(bootid_spinlock);
  1319. spin_lock(&bootid_spinlock);
  1320. if (!uuid[8])
  1321. generate_random_uuid(uuid);
  1322. spin_unlock(&bootid_spinlock);
  1323. }
  1324. sprintf(buf, "%pU", uuid);
  1325. fake_table.data = buf;
  1326. fake_table.maxlen = sizeof(buf);
  1327. return proc_dostring(&fake_table, write, buffer, lenp, ppos);
  1328. }
  1329. /*
  1330. * Return entropy available scaled to integral bits
  1331. */
  1332. static int proc_do_entropy(ctl_table *table, int write,
  1333. void __user *buffer, size_t *lenp, loff_t *ppos)
  1334. {
  1335. ctl_table fake_table;
  1336. int entropy_count;
  1337. entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
  1338. fake_table.data = &entropy_count;
  1339. fake_table.maxlen = sizeof(entropy_count);
  1340. return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
  1341. }
  1342. static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
  1343. extern struct ctl_table random_table[];
  1344. struct ctl_table random_table[] = {
  1345. {
  1346. .procname = "poolsize",
  1347. .data = &sysctl_poolsize,
  1348. .maxlen = sizeof(int),
  1349. .mode = 0444,
  1350. .proc_handler = proc_dointvec,
  1351. },
  1352. {
  1353. .procname = "entropy_avail",
  1354. .maxlen = sizeof(int),
  1355. .mode = 0444,
  1356. .proc_handler = proc_do_entropy,
  1357. .data = &input_pool.entropy_count,
  1358. },
  1359. {
  1360. .procname = "read_wakeup_threshold",
  1361. .data = &random_read_wakeup_thresh,
  1362. .maxlen = sizeof(int),
  1363. .mode = 0644,
  1364. .proc_handler = proc_dointvec_minmax,
  1365. .extra1 = &min_read_thresh,
  1366. .extra2 = &max_read_thresh,
  1367. },
  1368. {
  1369. .procname = "write_wakeup_threshold",
  1370. .data = &random_write_wakeup_thresh,
  1371. .maxlen = sizeof(int),
  1372. .mode = 0644,
  1373. .proc_handler = proc_dointvec_minmax,
  1374. .extra1 = &min_write_thresh,
  1375. .extra2 = &max_write_thresh,
  1376. },
  1377. {
  1378. .procname = "urandom_min_reseed_secs",
  1379. .data = &random_min_urandom_seed,
  1380. .maxlen = sizeof(int),
  1381. .mode = 0644,
  1382. .proc_handler = proc_dointvec,
  1383. },
  1384. {
  1385. .procname = "boot_id",
  1386. .data = &sysctl_bootid,
  1387. .maxlen = 16,
  1388. .mode = 0444,
  1389. .proc_handler = proc_do_uuid,
  1390. },
  1391. {
  1392. .procname = "uuid",
  1393. .maxlen = 16,
  1394. .mode = 0444,
  1395. .proc_handler = proc_do_uuid,
  1396. },
  1397. { }
  1398. };
  1399. #endif /* CONFIG_SYSCTL */
  1400. static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
  1401. int random_int_secret_init(void)
  1402. {
  1403. get_random_bytes(random_int_secret, sizeof(random_int_secret));
  1404. return 0;
  1405. }
  1406. /*
  1407. * Get a random word for internal kernel use only. Similar to urandom but
  1408. * with the goal of minimal entropy pool depletion. As a result, the random
  1409. * value is not cryptographically secure but for several uses the cost of
  1410. * depleting entropy is too high
  1411. */
  1412. static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
  1413. unsigned int get_random_int(void)
  1414. {
  1415. __u32 *hash;
  1416. unsigned int ret;
  1417. if (arch_get_random_int(&ret))
  1418. return ret;
  1419. hash = get_cpu_var(get_random_int_hash);
  1420. hash[0] += current->pid + jiffies + random_get_entropy();
  1421. md5_transform(hash, random_int_secret);
  1422. ret = hash[0];
  1423. put_cpu_var(get_random_int_hash);
  1424. return ret;
  1425. }
  1426. EXPORT_SYMBOL(get_random_int);
  1427. /*
  1428. * randomize_range() returns a start address such that
  1429. *
  1430. * [...... <range> .....]
  1431. * start end
  1432. *
  1433. * a <range> with size "len" starting at the return value is inside in the
  1434. * area defined by [start, end], but is otherwise randomized.
  1435. */
  1436. unsigned long
  1437. randomize_range(unsigned long start, unsigned long end, unsigned long len)
  1438. {
  1439. unsigned long range = end - len - start;
  1440. if (end <= start + len)
  1441. return 0;
  1442. return PAGE_ALIGN(get_random_int() % range + start);
  1443. }