disk-io.c 108 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include <linux/migrate.h>
  31. #include <linux/ratelimit.h>
  32. #include <linux/uuid.h>
  33. #include <asm/unaligned.h>
  34. #include "compat.h"
  35. #include "ctree.h"
  36. #include "disk-io.h"
  37. #include "transaction.h"
  38. #include "btrfs_inode.h"
  39. #include "volumes.h"
  40. #include "print-tree.h"
  41. #include "async-thread.h"
  42. #include "locking.h"
  43. #include "tree-log.h"
  44. #include "free-space-cache.h"
  45. #include "inode-map.h"
  46. #include "check-integrity.h"
  47. #include "rcu-string.h"
  48. #include "dev-replace.h"
  49. #include "raid56.h"
  50. #ifdef CONFIG_X86
  51. #include <asm/cpufeature.h>
  52. #endif
  53. static struct extent_io_ops btree_extent_io_ops;
  54. static void end_workqueue_fn(struct btrfs_work *work);
  55. static void free_fs_root(struct btrfs_root *root);
  56. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  57. int read_only);
  58. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  59. struct btrfs_root *root);
  60. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  61. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  62. struct btrfs_root *root);
  63. static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
  64. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  65. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  66. struct extent_io_tree *dirty_pages,
  67. int mark);
  68. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  69. struct extent_io_tree *pinned_extents);
  70. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  71. static void btrfs_error_commit_super(struct btrfs_root *root);
  72. /*
  73. * end_io_wq structs are used to do processing in task context when an IO is
  74. * complete. This is used during reads to verify checksums, and it is used
  75. * by writes to insert metadata for new file extents after IO is complete.
  76. */
  77. struct end_io_wq {
  78. struct bio *bio;
  79. bio_end_io_t *end_io;
  80. void *private;
  81. struct btrfs_fs_info *info;
  82. int error;
  83. int metadata;
  84. struct list_head list;
  85. struct btrfs_work work;
  86. };
  87. /*
  88. * async submit bios are used to offload expensive checksumming
  89. * onto the worker threads. They checksum file and metadata bios
  90. * just before they are sent down the IO stack.
  91. */
  92. struct async_submit_bio {
  93. struct inode *inode;
  94. struct bio *bio;
  95. struct list_head list;
  96. extent_submit_bio_hook_t *submit_bio_start;
  97. extent_submit_bio_hook_t *submit_bio_done;
  98. int rw;
  99. int mirror_num;
  100. unsigned long bio_flags;
  101. /*
  102. * bio_offset is optional, can be used if the pages in the bio
  103. * can't tell us where in the file the bio should go
  104. */
  105. u64 bio_offset;
  106. struct btrfs_work work;
  107. int error;
  108. };
  109. /*
  110. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  111. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  112. * the level the eb occupies in the tree.
  113. *
  114. * Different roots are used for different purposes and may nest inside each
  115. * other and they require separate keysets. As lockdep keys should be
  116. * static, assign keysets according to the purpose of the root as indicated
  117. * by btrfs_root->objectid. This ensures that all special purpose roots
  118. * have separate keysets.
  119. *
  120. * Lock-nesting across peer nodes is always done with the immediate parent
  121. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  122. * subclass to avoid triggering lockdep warning in such cases.
  123. *
  124. * The key is set by the readpage_end_io_hook after the buffer has passed
  125. * csum validation but before the pages are unlocked. It is also set by
  126. * btrfs_init_new_buffer on freshly allocated blocks.
  127. *
  128. * We also add a check to make sure the highest level of the tree is the
  129. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  130. * needs update as well.
  131. */
  132. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  133. # if BTRFS_MAX_LEVEL != 8
  134. # error
  135. # endif
  136. static struct btrfs_lockdep_keyset {
  137. u64 id; /* root objectid */
  138. const char *name_stem; /* lock name stem */
  139. char names[BTRFS_MAX_LEVEL + 1][20];
  140. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  141. } btrfs_lockdep_keysets[] = {
  142. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  143. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  144. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  145. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  146. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  147. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  148. { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
  149. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  150. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  151. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  152. { .id = 0, .name_stem = "tree" },
  153. };
  154. void __init btrfs_init_lockdep(void)
  155. {
  156. int i, j;
  157. /* initialize lockdep class names */
  158. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  159. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  160. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  161. snprintf(ks->names[j], sizeof(ks->names[j]),
  162. "btrfs-%s-%02d", ks->name_stem, j);
  163. }
  164. }
  165. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  166. int level)
  167. {
  168. struct btrfs_lockdep_keyset *ks;
  169. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  170. /* find the matching keyset, id 0 is the default entry */
  171. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  172. if (ks->id == objectid)
  173. break;
  174. lockdep_set_class_and_name(&eb->lock,
  175. &ks->keys[level], ks->names[level]);
  176. }
  177. #endif
  178. /*
  179. * extents on the btree inode are pretty simple, there's one extent
  180. * that covers the entire device
  181. */
  182. static struct extent_map *btree_get_extent(struct inode *inode,
  183. struct page *page, size_t pg_offset, u64 start, u64 len,
  184. int create)
  185. {
  186. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  187. struct extent_map *em;
  188. int ret;
  189. read_lock(&em_tree->lock);
  190. em = lookup_extent_mapping(em_tree, start, len);
  191. if (em) {
  192. em->bdev =
  193. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  194. read_unlock(&em_tree->lock);
  195. goto out;
  196. }
  197. read_unlock(&em_tree->lock);
  198. em = alloc_extent_map();
  199. if (!em) {
  200. em = ERR_PTR(-ENOMEM);
  201. goto out;
  202. }
  203. em->start = 0;
  204. em->len = (u64)-1;
  205. em->block_len = (u64)-1;
  206. em->block_start = 0;
  207. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  208. write_lock(&em_tree->lock);
  209. ret = add_extent_mapping(em_tree, em, 0);
  210. if (ret == -EEXIST) {
  211. free_extent_map(em);
  212. em = lookup_extent_mapping(em_tree, start, len);
  213. if (!em)
  214. em = ERR_PTR(-EIO);
  215. } else if (ret) {
  216. free_extent_map(em);
  217. em = ERR_PTR(ret);
  218. }
  219. write_unlock(&em_tree->lock);
  220. out:
  221. return em;
  222. }
  223. u32 btrfs_csum_data(char *data, u32 seed, size_t len)
  224. {
  225. return crc32c(seed, data, len);
  226. }
  227. void btrfs_csum_final(u32 crc, char *result)
  228. {
  229. put_unaligned_le32(~crc, result);
  230. }
  231. /*
  232. * compute the csum for a btree block, and either verify it or write it
  233. * into the csum field of the block.
  234. */
  235. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  236. int verify)
  237. {
  238. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  239. char *result = NULL;
  240. unsigned long len;
  241. unsigned long cur_len;
  242. unsigned long offset = BTRFS_CSUM_SIZE;
  243. char *kaddr;
  244. unsigned long map_start;
  245. unsigned long map_len;
  246. int err;
  247. u32 crc = ~(u32)0;
  248. unsigned long inline_result;
  249. len = buf->len - offset;
  250. while (len > 0) {
  251. err = map_private_extent_buffer(buf, offset, 32,
  252. &kaddr, &map_start, &map_len);
  253. if (err)
  254. return 1;
  255. cur_len = min(len, map_len - (offset - map_start));
  256. crc = btrfs_csum_data(kaddr + offset - map_start,
  257. crc, cur_len);
  258. len -= cur_len;
  259. offset += cur_len;
  260. }
  261. if (csum_size > sizeof(inline_result)) {
  262. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  263. if (!result)
  264. return 1;
  265. } else {
  266. result = (char *)&inline_result;
  267. }
  268. btrfs_csum_final(crc, result);
  269. if (verify) {
  270. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  271. u32 val;
  272. u32 found = 0;
  273. memcpy(&found, result, csum_size);
  274. read_extent_buffer(buf, &val, 0, csum_size);
  275. printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
  276. "failed on %llu wanted %X found %X "
  277. "level %d\n",
  278. root->fs_info->sb->s_id,
  279. (unsigned long long)buf->start, val, found,
  280. btrfs_header_level(buf));
  281. if (result != (char *)&inline_result)
  282. kfree(result);
  283. return 1;
  284. }
  285. } else {
  286. write_extent_buffer(buf, result, 0, csum_size);
  287. }
  288. if (result != (char *)&inline_result)
  289. kfree(result);
  290. return 0;
  291. }
  292. /*
  293. * we can't consider a given block up to date unless the transid of the
  294. * block matches the transid in the parent node's pointer. This is how we
  295. * detect blocks that either didn't get written at all or got written
  296. * in the wrong place.
  297. */
  298. static int verify_parent_transid(struct extent_io_tree *io_tree,
  299. struct extent_buffer *eb, u64 parent_transid,
  300. int atomic)
  301. {
  302. struct extent_state *cached_state = NULL;
  303. int ret;
  304. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  305. return 0;
  306. if (atomic)
  307. return -EAGAIN;
  308. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  309. 0, &cached_state);
  310. if (extent_buffer_uptodate(eb) &&
  311. btrfs_header_generation(eb) == parent_transid) {
  312. ret = 0;
  313. goto out;
  314. }
  315. printk_ratelimited("parent transid verify failed on %llu wanted %llu "
  316. "found %llu\n",
  317. (unsigned long long)eb->start,
  318. (unsigned long long)parent_transid,
  319. (unsigned long long)btrfs_header_generation(eb));
  320. ret = 1;
  321. clear_extent_buffer_uptodate(eb);
  322. out:
  323. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  324. &cached_state, GFP_NOFS);
  325. return ret;
  326. }
  327. /*
  328. * Return 0 if the superblock checksum type matches the checksum value of that
  329. * algorithm. Pass the raw disk superblock data.
  330. */
  331. static int btrfs_check_super_csum(char *raw_disk_sb)
  332. {
  333. struct btrfs_super_block *disk_sb =
  334. (struct btrfs_super_block *)raw_disk_sb;
  335. u16 csum_type = btrfs_super_csum_type(disk_sb);
  336. int ret = 0;
  337. if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
  338. u32 crc = ~(u32)0;
  339. const int csum_size = sizeof(crc);
  340. char result[csum_size];
  341. /*
  342. * The super_block structure does not span the whole
  343. * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
  344. * is filled with zeros and is included in the checkum.
  345. */
  346. crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
  347. crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  348. btrfs_csum_final(crc, result);
  349. if (memcmp(raw_disk_sb, result, csum_size))
  350. ret = 1;
  351. if (ret && btrfs_super_generation(disk_sb) < 10) {
  352. printk(KERN_WARNING "btrfs: super block crcs don't match, older mkfs detected\n");
  353. ret = 0;
  354. }
  355. }
  356. if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
  357. printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n",
  358. csum_type);
  359. ret = 1;
  360. }
  361. return ret;
  362. }
  363. /*
  364. * helper to read a given tree block, doing retries as required when
  365. * the checksums don't match and we have alternate mirrors to try.
  366. */
  367. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  368. struct extent_buffer *eb,
  369. u64 start, u64 parent_transid)
  370. {
  371. struct extent_io_tree *io_tree;
  372. int failed = 0;
  373. int ret;
  374. int num_copies = 0;
  375. int mirror_num = 0;
  376. int failed_mirror = 0;
  377. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  378. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  379. while (1) {
  380. ret = read_extent_buffer_pages(io_tree, eb, start,
  381. WAIT_COMPLETE,
  382. btree_get_extent, mirror_num);
  383. if (!ret) {
  384. if (!verify_parent_transid(io_tree, eb,
  385. parent_transid, 0))
  386. break;
  387. else
  388. ret = -EIO;
  389. }
  390. /*
  391. * This buffer's crc is fine, but its contents are corrupted, so
  392. * there is no reason to read the other copies, they won't be
  393. * any less wrong.
  394. */
  395. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  396. break;
  397. num_copies = btrfs_num_copies(root->fs_info,
  398. eb->start, eb->len);
  399. if (num_copies == 1)
  400. break;
  401. if (!failed_mirror) {
  402. failed = 1;
  403. failed_mirror = eb->read_mirror;
  404. }
  405. mirror_num++;
  406. if (mirror_num == failed_mirror)
  407. mirror_num++;
  408. if (mirror_num > num_copies)
  409. break;
  410. }
  411. if (failed && !ret && failed_mirror)
  412. repair_eb_io_failure(root, eb, failed_mirror);
  413. return ret;
  414. }
  415. /*
  416. * checksum a dirty tree block before IO. This has extra checks to make sure
  417. * we only fill in the checksum field in the first page of a multi-page block
  418. */
  419. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  420. {
  421. struct extent_io_tree *tree;
  422. u64 start = page_offset(page);
  423. u64 found_start;
  424. struct extent_buffer *eb;
  425. tree = &BTRFS_I(page->mapping->host)->io_tree;
  426. eb = (struct extent_buffer *)page->private;
  427. if (page != eb->pages[0])
  428. return 0;
  429. found_start = btrfs_header_bytenr(eb);
  430. if (found_start != start) {
  431. WARN_ON(1);
  432. return 0;
  433. }
  434. if (!PageUptodate(page)) {
  435. WARN_ON(1);
  436. return 0;
  437. }
  438. csum_tree_block(root, eb, 0);
  439. return 0;
  440. }
  441. static int check_tree_block_fsid(struct btrfs_root *root,
  442. struct extent_buffer *eb)
  443. {
  444. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  445. u8 fsid[BTRFS_UUID_SIZE];
  446. int ret = 1;
  447. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  448. BTRFS_FSID_SIZE);
  449. while (fs_devices) {
  450. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  451. ret = 0;
  452. break;
  453. }
  454. fs_devices = fs_devices->seed;
  455. }
  456. return ret;
  457. }
  458. #define CORRUPT(reason, eb, root, slot) \
  459. printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
  460. "root=%llu, slot=%d\n", reason, \
  461. (unsigned long long)btrfs_header_bytenr(eb), \
  462. (unsigned long long)root->objectid, slot)
  463. static noinline int check_leaf(struct btrfs_root *root,
  464. struct extent_buffer *leaf)
  465. {
  466. struct btrfs_key key;
  467. struct btrfs_key leaf_key;
  468. u32 nritems = btrfs_header_nritems(leaf);
  469. int slot;
  470. if (nritems == 0)
  471. return 0;
  472. /* Check the 0 item */
  473. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  474. BTRFS_LEAF_DATA_SIZE(root)) {
  475. CORRUPT("invalid item offset size pair", leaf, root, 0);
  476. return -EIO;
  477. }
  478. /*
  479. * Check to make sure each items keys are in the correct order and their
  480. * offsets make sense. We only have to loop through nritems-1 because
  481. * we check the current slot against the next slot, which verifies the
  482. * next slot's offset+size makes sense and that the current's slot
  483. * offset is correct.
  484. */
  485. for (slot = 0; slot < nritems - 1; slot++) {
  486. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  487. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  488. /* Make sure the keys are in the right order */
  489. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  490. CORRUPT("bad key order", leaf, root, slot);
  491. return -EIO;
  492. }
  493. /*
  494. * Make sure the offset and ends are right, remember that the
  495. * item data starts at the end of the leaf and grows towards the
  496. * front.
  497. */
  498. if (btrfs_item_offset_nr(leaf, slot) !=
  499. btrfs_item_end_nr(leaf, slot + 1)) {
  500. CORRUPT("slot offset bad", leaf, root, slot);
  501. return -EIO;
  502. }
  503. /*
  504. * Check to make sure that we don't point outside of the leaf,
  505. * just incase all the items are consistent to eachother, but
  506. * all point outside of the leaf.
  507. */
  508. if (btrfs_item_end_nr(leaf, slot) >
  509. BTRFS_LEAF_DATA_SIZE(root)) {
  510. CORRUPT("slot end outside of leaf", leaf, root, slot);
  511. return -EIO;
  512. }
  513. }
  514. return 0;
  515. }
  516. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  517. struct extent_state *state, int mirror)
  518. {
  519. struct extent_io_tree *tree;
  520. u64 found_start;
  521. int found_level;
  522. struct extent_buffer *eb;
  523. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  524. int ret = 0;
  525. int reads_done;
  526. if (!page->private)
  527. goto out;
  528. tree = &BTRFS_I(page->mapping->host)->io_tree;
  529. eb = (struct extent_buffer *)page->private;
  530. /* the pending IO might have been the only thing that kept this buffer
  531. * in memory. Make sure we have a ref for all this other checks
  532. */
  533. extent_buffer_get(eb);
  534. reads_done = atomic_dec_and_test(&eb->io_pages);
  535. if (!reads_done)
  536. goto err;
  537. eb->read_mirror = mirror;
  538. if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
  539. ret = -EIO;
  540. goto err;
  541. }
  542. found_start = btrfs_header_bytenr(eb);
  543. if (found_start != eb->start) {
  544. printk_ratelimited(KERN_INFO "btrfs bad tree block start "
  545. "%llu %llu\n",
  546. (unsigned long long)found_start,
  547. (unsigned long long)eb->start);
  548. ret = -EIO;
  549. goto err;
  550. }
  551. if (check_tree_block_fsid(root, eb)) {
  552. printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
  553. (unsigned long long)eb->start);
  554. ret = -EIO;
  555. goto err;
  556. }
  557. found_level = btrfs_header_level(eb);
  558. if (found_level >= BTRFS_MAX_LEVEL) {
  559. btrfs_info(root->fs_info, "bad tree block level %d\n",
  560. (int)btrfs_header_level(eb));
  561. ret = -EIO;
  562. goto err;
  563. }
  564. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  565. eb, found_level);
  566. ret = csum_tree_block(root, eb, 1);
  567. if (ret) {
  568. ret = -EIO;
  569. goto err;
  570. }
  571. /*
  572. * If this is a leaf block and it is corrupt, set the corrupt bit so
  573. * that we don't try and read the other copies of this block, just
  574. * return -EIO.
  575. */
  576. if (found_level == 0 && check_leaf(root, eb)) {
  577. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  578. ret = -EIO;
  579. }
  580. if (!ret)
  581. set_extent_buffer_uptodate(eb);
  582. err:
  583. if (reads_done &&
  584. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  585. btree_readahead_hook(root, eb, eb->start, ret);
  586. if (ret) {
  587. /*
  588. * our io error hook is going to dec the io pages
  589. * again, we have to make sure it has something
  590. * to decrement
  591. */
  592. atomic_inc(&eb->io_pages);
  593. clear_extent_buffer_uptodate(eb);
  594. }
  595. free_extent_buffer(eb);
  596. out:
  597. return ret;
  598. }
  599. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  600. {
  601. struct extent_buffer *eb;
  602. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  603. eb = (struct extent_buffer *)page->private;
  604. set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
  605. eb->read_mirror = failed_mirror;
  606. atomic_dec(&eb->io_pages);
  607. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  608. btree_readahead_hook(root, eb, eb->start, -EIO);
  609. return -EIO; /* we fixed nothing */
  610. }
  611. static void end_workqueue_bio(struct bio *bio, int err)
  612. {
  613. struct end_io_wq *end_io_wq = bio->bi_private;
  614. struct btrfs_fs_info *fs_info;
  615. fs_info = end_io_wq->info;
  616. end_io_wq->error = err;
  617. end_io_wq->work.func = end_workqueue_fn;
  618. end_io_wq->work.flags = 0;
  619. if (bio->bi_rw & REQ_WRITE) {
  620. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
  621. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  622. &end_io_wq->work);
  623. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
  624. btrfs_queue_worker(&fs_info->endio_freespace_worker,
  625. &end_io_wq->work);
  626. else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  627. btrfs_queue_worker(&fs_info->endio_raid56_workers,
  628. &end_io_wq->work);
  629. else
  630. btrfs_queue_worker(&fs_info->endio_write_workers,
  631. &end_io_wq->work);
  632. } else {
  633. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
  634. btrfs_queue_worker(&fs_info->endio_raid56_workers,
  635. &end_io_wq->work);
  636. else if (end_io_wq->metadata)
  637. btrfs_queue_worker(&fs_info->endio_meta_workers,
  638. &end_io_wq->work);
  639. else
  640. btrfs_queue_worker(&fs_info->endio_workers,
  641. &end_io_wq->work);
  642. }
  643. }
  644. /*
  645. * For the metadata arg you want
  646. *
  647. * 0 - if data
  648. * 1 - if normal metadta
  649. * 2 - if writing to the free space cache area
  650. * 3 - raid parity work
  651. */
  652. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  653. int metadata)
  654. {
  655. struct end_io_wq *end_io_wq;
  656. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  657. if (!end_io_wq)
  658. return -ENOMEM;
  659. end_io_wq->private = bio->bi_private;
  660. end_io_wq->end_io = bio->bi_end_io;
  661. end_io_wq->info = info;
  662. end_io_wq->error = 0;
  663. end_io_wq->bio = bio;
  664. end_io_wq->metadata = metadata;
  665. bio->bi_private = end_io_wq;
  666. bio->bi_end_io = end_workqueue_bio;
  667. return 0;
  668. }
  669. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  670. {
  671. unsigned long limit = min_t(unsigned long,
  672. info->workers.max_workers,
  673. info->fs_devices->open_devices);
  674. return 256 * limit;
  675. }
  676. static void run_one_async_start(struct btrfs_work *work)
  677. {
  678. struct async_submit_bio *async;
  679. int ret;
  680. async = container_of(work, struct async_submit_bio, work);
  681. ret = async->submit_bio_start(async->inode, async->rw, async->bio,
  682. async->mirror_num, async->bio_flags,
  683. async->bio_offset);
  684. if (ret)
  685. async->error = ret;
  686. }
  687. static void run_one_async_done(struct btrfs_work *work)
  688. {
  689. struct btrfs_fs_info *fs_info;
  690. struct async_submit_bio *async;
  691. int limit;
  692. async = container_of(work, struct async_submit_bio, work);
  693. fs_info = BTRFS_I(async->inode)->root->fs_info;
  694. limit = btrfs_async_submit_limit(fs_info);
  695. limit = limit * 2 / 3;
  696. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  697. waitqueue_active(&fs_info->async_submit_wait))
  698. wake_up(&fs_info->async_submit_wait);
  699. /* If an error occured we just want to clean up the bio and move on */
  700. if (async->error) {
  701. bio_endio(async->bio, async->error);
  702. return;
  703. }
  704. async->submit_bio_done(async->inode, async->rw, async->bio,
  705. async->mirror_num, async->bio_flags,
  706. async->bio_offset);
  707. }
  708. static void run_one_async_free(struct btrfs_work *work)
  709. {
  710. struct async_submit_bio *async;
  711. async = container_of(work, struct async_submit_bio, work);
  712. kfree(async);
  713. }
  714. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  715. int rw, struct bio *bio, int mirror_num,
  716. unsigned long bio_flags,
  717. u64 bio_offset,
  718. extent_submit_bio_hook_t *submit_bio_start,
  719. extent_submit_bio_hook_t *submit_bio_done)
  720. {
  721. struct async_submit_bio *async;
  722. async = kmalloc(sizeof(*async), GFP_NOFS);
  723. if (!async)
  724. return -ENOMEM;
  725. async->inode = inode;
  726. async->rw = rw;
  727. async->bio = bio;
  728. async->mirror_num = mirror_num;
  729. async->submit_bio_start = submit_bio_start;
  730. async->submit_bio_done = submit_bio_done;
  731. async->work.func = run_one_async_start;
  732. async->work.ordered_func = run_one_async_done;
  733. async->work.ordered_free = run_one_async_free;
  734. async->work.flags = 0;
  735. async->bio_flags = bio_flags;
  736. async->bio_offset = bio_offset;
  737. async->error = 0;
  738. atomic_inc(&fs_info->nr_async_submits);
  739. if (rw & REQ_SYNC)
  740. btrfs_set_work_high_prio(&async->work);
  741. btrfs_queue_worker(&fs_info->workers, &async->work);
  742. while (atomic_read(&fs_info->async_submit_draining) &&
  743. atomic_read(&fs_info->nr_async_submits)) {
  744. wait_event(fs_info->async_submit_wait,
  745. (atomic_read(&fs_info->nr_async_submits) == 0));
  746. }
  747. return 0;
  748. }
  749. static int btree_csum_one_bio(struct bio *bio)
  750. {
  751. struct bio_vec *bvec = bio->bi_io_vec;
  752. int bio_index = 0;
  753. struct btrfs_root *root;
  754. int ret = 0;
  755. WARN_ON(bio->bi_vcnt <= 0);
  756. while (bio_index < bio->bi_vcnt) {
  757. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  758. ret = csum_dirty_buffer(root, bvec->bv_page);
  759. if (ret)
  760. break;
  761. bio_index++;
  762. bvec++;
  763. }
  764. return ret;
  765. }
  766. static int __btree_submit_bio_start(struct inode *inode, int rw,
  767. struct bio *bio, int mirror_num,
  768. unsigned long bio_flags,
  769. u64 bio_offset)
  770. {
  771. /*
  772. * when we're called for a write, we're already in the async
  773. * submission context. Just jump into btrfs_map_bio
  774. */
  775. return btree_csum_one_bio(bio);
  776. }
  777. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  778. int mirror_num, unsigned long bio_flags,
  779. u64 bio_offset)
  780. {
  781. int ret;
  782. /*
  783. * when we're called for a write, we're already in the async
  784. * submission context. Just jump into btrfs_map_bio
  785. */
  786. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  787. if (ret)
  788. bio_endio(bio, ret);
  789. return ret;
  790. }
  791. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  792. {
  793. if (bio_flags & EXTENT_BIO_TREE_LOG)
  794. return 0;
  795. #ifdef CONFIG_X86
  796. if (cpu_has_xmm4_2)
  797. return 0;
  798. #endif
  799. return 1;
  800. }
  801. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  802. int mirror_num, unsigned long bio_flags,
  803. u64 bio_offset)
  804. {
  805. int async = check_async_write(inode, bio_flags);
  806. int ret;
  807. if (!(rw & REQ_WRITE)) {
  808. /*
  809. * called for a read, do the setup so that checksum validation
  810. * can happen in the async kernel threads
  811. */
  812. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  813. bio, 1);
  814. if (ret)
  815. goto out_w_error;
  816. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  817. mirror_num, 0);
  818. } else if (!async) {
  819. ret = btree_csum_one_bio(bio);
  820. if (ret)
  821. goto out_w_error;
  822. ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  823. mirror_num, 0);
  824. } else {
  825. /*
  826. * kthread helpers are used to submit writes so that
  827. * checksumming can happen in parallel across all CPUs
  828. */
  829. ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  830. inode, rw, bio, mirror_num, 0,
  831. bio_offset,
  832. __btree_submit_bio_start,
  833. __btree_submit_bio_done);
  834. }
  835. if (ret) {
  836. out_w_error:
  837. bio_endio(bio, ret);
  838. }
  839. return ret;
  840. }
  841. #ifdef CONFIG_MIGRATION
  842. static int btree_migratepage(struct address_space *mapping,
  843. struct page *newpage, struct page *page,
  844. enum migrate_mode mode)
  845. {
  846. /*
  847. * we can't safely write a btree page from here,
  848. * we haven't done the locking hook
  849. */
  850. if (PageDirty(page))
  851. return -EAGAIN;
  852. /*
  853. * Buffers may be managed in a filesystem specific way.
  854. * We must have no buffers or drop them.
  855. */
  856. if (page_has_private(page) &&
  857. !try_to_release_page(page, GFP_KERNEL))
  858. return -EAGAIN;
  859. return migrate_page(mapping, newpage, page, mode);
  860. }
  861. #endif
  862. static int btree_writepages(struct address_space *mapping,
  863. struct writeback_control *wbc)
  864. {
  865. struct extent_io_tree *tree;
  866. struct btrfs_fs_info *fs_info;
  867. int ret;
  868. tree = &BTRFS_I(mapping->host)->io_tree;
  869. if (wbc->sync_mode == WB_SYNC_NONE) {
  870. if (wbc->for_kupdate)
  871. return 0;
  872. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  873. /* this is a bit racy, but that's ok */
  874. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  875. BTRFS_DIRTY_METADATA_THRESH);
  876. if (ret < 0)
  877. return 0;
  878. }
  879. return btree_write_cache_pages(mapping, wbc);
  880. }
  881. static int btree_readpage(struct file *file, struct page *page)
  882. {
  883. struct extent_io_tree *tree;
  884. tree = &BTRFS_I(page->mapping->host)->io_tree;
  885. return extent_read_full_page(tree, page, btree_get_extent, 0);
  886. }
  887. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  888. {
  889. if (PageWriteback(page) || PageDirty(page))
  890. return 0;
  891. return try_release_extent_buffer(page);
  892. }
  893. static void btree_invalidatepage(struct page *page, unsigned long offset)
  894. {
  895. struct extent_io_tree *tree;
  896. tree = &BTRFS_I(page->mapping->host)->io_tree;
  897. extent_invalidatepage(tree, page, offset);
  898. btree_releasepage(page, GFP_NOFS);
  899. if (PagePrivate(page)) {
  900. printk(KERN_WARNING "btrfs warning page private not zero "
  901. "on page %llu\n", (unsigned long long)page_offset(page));
  902. ClearPagePrivate(page);
  903. set_page_private(page, 0);
  904. page_cache_release(page);
  905. }
  906. }
  907. static int btree_set_page_dirty(struct page *page)
  908. {
  909. #ifdef DEBUG
  910. struct extent_buffer *eb;
  911. BUG_ON(!PagePrivate(page));
  912. eb = (struct extent_buffer *)page->private;
  913. BUG_ON(!eb);
  914. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  915. BUG_ON(!atomic_read(&eb->refs));
  916. btrfs_assert_tree_locked(eb);
  917. #endif
  918. return __set_page_dirty_nobuffers(page);
  919. }
  920. static const struct address_space_operations btree_aops = {
  921. .readpage = btree_readpage,
  922. .writepages = btree_writepages,
  923. .releasepage = btree_releasepage,
  924. .invalidatepage = btree_invalidatepage,
  925. #ifdef CONFIG_MIGRATION
  926. .migratepage = btree_migratepage,
  927. #endif
  928. .set_page_dirty = btree_set_page_dirty,
  929. };
  930. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  931. u64 parent_transid)
  932. {
  933. struct extent_buffer *buf = NULL;
  934. struct inode *btree_inode = root->fs_info->btree_inode;
  935. int ret = 0;
  936. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  937. if (!buf)
  938. return 0;
  939. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  940. buf, 0, WAIT_NONE, btree_get_extent, 0);
  941. free_extent_buffer(buf);
  942. return ret;
  943. }
  944. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  945. int mirror_num, struct extent_buffer **eb)
  946. {
  947. struct extent_buffer *buf = NULL;
  948. struct inode *btree_inode = root->fs_info->btree_inode;
  949. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  950. int ret;
  951. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  952. if (!buf)
  953. return 0;
  954. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  955. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  956. btree_get_extent, mirror_num);
  957. if (ret) {
  958. free_extent_buffer(buf);
  959. return ret;
  960. }
  961. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  962. free_extent_buffer(buf);
  963. return -EIO;
  964. } else if (extent_buffer_uptodate(buf)) {
  965. *eb = buf;
  966. } else {
  967. free_extent_buffer(buf);
  968. }
  969. return 0;
  970. }
  971. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  972. u64 bytenr, u32 blocksize)
  973. {
  974. struct inode *btree_inode = root->fs_info->btree_inode;
  975. struct extent_buffer *eb;
  976. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  977. bytenr, blocksize);
  978. return eb;
  979. }
  980. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  981. u64 bytenr, u32 blocksize)
  982. {
  983. struct inode *btree_inode = root->fs_info->btree_inode;
  984. struct extent_buffer *eb;
  985. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  986. bytenr, blocksize);
  987. return eb;
  988. }
  989. int btrfs_write_tree_block(struct extent_buffer *buf)
  990. {
  991. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  992. buf->start + buf->len - 1);
  993. }
  994. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  995. {
  996. return filemap_fdatawait_range(buf->pages[0]->mapping,
  997. buf->start, buf->start + buf->len - 1);
  998. }
  999. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  1000. u32 blocksize, u64 parent_transid)
  1001. {
  1002. struct extent_buffer *buf = NULL;
  1003. int ret;
  1004. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  1005. if (!buf)
  1006. return NULL;
  1007. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  1008. return buf;
  1009. }
  1010. void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  1011. struct extent_buffer *buf)
  1012. {
  1013. struct btrfs_fs_info *fs_info = root->fs_info;
  1014. if (btrfs_header_generation(buf) ==
  1015. fs_info->running_transaction->transid) {
  1016. btrfs_assert_tree_locked(buf);
  1017. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  1018. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  1019. -buf->len,
  1020. fs_info->dirty_metadata_batch);
  1021. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1022. btrfs_set_lock_blocking(buf);
  1023. clear_extent_buffer_dirty(buf);
  1024. }
  1025. }
  1026. }
  1027. static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  1028. u32 stripesize, struct btrfs_root *root,
  1029. struct btrfs_fs_info *fs_info,
  1030. u64 objectid)
  1031. {
  1032. root->node = NULL;
  1033. root->commit_root = NULL;
  1034. root->sectorsize = sectorsize;
  1035. root->nodesize = nodesize;
  1036. root->leafsize = leafsize;
  1037. root->stripesize = stripesize;
  1038. root->ref_cows = 0;
  1039. root->track_dirty = 0;
  1040. root->in_radix = 0;
  1041. root->orphan_item_inserted = 0;
  1042. root->orphan_cleanup_state = 0;
  1043. root->objectid = objectid;
  1044. root->last_trans = 0;
  1045. root->highest_objectid = 0;
  1046. root->name = NULL;
  1047. root->inode_tree = RB_ROOT;
  1048. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1049. root->block_rsv = NULL;
  1050. root->orphan_block_rsv = NULL;
  1051. INIT_LIST_HEAD(&root->dirty_list);
  1052. INIT_LIST_HEAD(&root->root_list);
  1053. INIT_LIST_HEAD(&root->logged_list[0]);
  1054. INIT_LIST_HEAD(&root->logged_list[1]);
  1055. spin_lock_init(&root->orphan_lock);
  1056. spin_lock_init(&root->inode_lock);
  1057. spin_lock_init(&root->accounting_lock);
  1058. spin_lock_init(&root->log_extents_lock[0]);
  1059. spin_lock_init(&root->log_extents_lock[1]);
  1060. mutex_init(&root->objectid_mutex);
  1061. mutex_init(&root->log_mutex);
  1062. init_waitqueue_head(&root->log_writer_wait);
  1063. init_waitqueue_head(&root->log_commit_wait[0]);
  1064. init_waitqueue_head(&root->log_commit_wait[1]);
  1065. atomic_set(&root->log_commit[0], 0);
  1066. atomic_set(&root->log_commit[1], 0);
  1067. atomic_set(&root->log_writers, 0);
  1068. atomic_set(&root->log_batch, 0);
  1069. atomic_set(&root->orphan_inodes, 0);
  1070. root->log_transid = 0;
  1071. root->last_log_commit = 0;
  1072. extent_io_tree_init(&root->dirty_log_pages,
  1073. fs_info->btree_inode->i_mapping);
  1074. memset(&root->root_key, 0, sizeof(root->root_key));
  1075. memset(&root->root_item, 0, sizeof(root->root_item));
  1076. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1077. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  1078. root->defrag_trans_start = fs_info->generation;
  1079. init_completion(&root->kobj_unregister);
  1080. root->defrag_running = 0;
  1081. root->root_key.objectid = objectid;
  1082. root->anon_dev = 0;
  1083. spin_lock_init(&root->root_item_lock);
  1084. }
  1085. static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
  1086. struct btrfs_fs_info *fs_info,
  1087. u64 objectid,
  1088. struct btrfs_root *root)
  1089. {
  1090. int ret;
  1091. u32 blocksize;
  1092. u64 generation;
  1093. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1094. tree_root->sectorsize, tree_root->stripesize,
  1095. root, fs_info, objectid);
  1096. ret = btrfs_find_last_root(tree_root, objectid,
  1097. &root->root_item, &root->root_key);
  1098. if (ret > 0)
  1099. return -ENOENT;
  1100. else if (ret < 0)
  1101. return ret;
  1102. generation = btrfs_root_generation(&root->root_item);
  1103. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1104. root->commit_root = NULL;
  1105. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1106. blocksize, generation);
  1107. if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
  1108. free_extent_buffer(root->node);
  1109. root->node = NULL;
  1110. return -EIO;
  1111. }
  1112. root->commit_root = btrfs_root_node(root);
  1113. return 0;
  1114. }
  1115. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
  1116. {
  1117. struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
  1118. if (root)
  1119. root->fs_info = fs_info;
  1120. return root;
  1121. }
  1122. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1123. struct btrfs_fs_info *fs_info,
  1124. u64 objectid)
  1125. {
  1126. struct extent_buffer *leaf;
  1127. struct btrfs_root *tree_root = fs_info->tree_root;
  1128. struct btrfs_root *root;
  1129. struct btrfs_key key;
  1130. int ret = 0;
  1131. u64 bytenr;
  1132. uuid_le uuid;
  1133. root = btrfs_alloc_root(fs_info);
  1134. if (!root)
  1135. return ERR_PTR(-ENOMEM);
  1136. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1137. tree_root->sectorsize, tree_root->stripesize,
  1138. root, fs_info, objectid);
  1139. root->root_key.objectid = objectid;
  1140. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1141. root->root_key.offset = 0;
  1142. leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
  1143. 0, objectid, NULL, 0, 0, 0);
  1144. if (IS_ERR(leaf)) {
  1145. ret = PTR_ERR(leaf);
  1146. leaf = NULL;
  1147. goto fail;
  1148. }
  1149. bytenr = leaf->start;
  1150. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1151. btrfs_set_header_bytenr(leaf, leaf->start);
  1152. btrfs_set_header_generation(leaf, trans->transid);
  1153. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1154. btrfs_set_header_owner(leaf, objectid);
  1155. root->node = leaf;
  1156. write_extent_buffer(leaf, fs_info->fsid,
  1157. (unsigned long)btrfs_header_fsid(leaf),
  1158. BTRFS_FSID_SIZE);
  1159. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1160. (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
  1161. BTRFS_UUID_SIZE);
  1162. btrfs_mark_buffer_dirty(leaf);
  1163. root->commit_root = btrfs_root_node(root);
  1164. root->track_dirty = 1;
  1165. root->root_item.flags = 0;
  1166. root->root_item.byte_limit = 0;
  1167. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1168. btrfs_set_root_generation(&root->root_item, trans->transid);
  1169. btrfs_set_root_level(&root->root_item, 0);
  1170. btrfs_set_root_refs(&root->root_item, 1);
  1171. btrfs_set_root_used(&root->root_item, leaf->len);
  1172. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1173. btrfs_set_root_dirid(&root->root_item, 0);
  1174. uuid_le_gen(&uuid);
  1175. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1176. root->root_item.drop_level = 0;
  1177. key.objectid = objectid;
  1178. key.type = BTRFS_ROOT_ITEM_KEY;
  1179. key.offset = 0;
  1180. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1181. if (ret)
  1182. goto fail;
  1183. btrfs_tree_unlock(leaf);
  1184. return root;
  1185. fail:
  1186. if (leaf) {
  1187. btrfs_tree_unlock(leaf);
  1188. free_extent_buffer(leaf);
  1189. }
  1190. kfree(root);
  1191. return ERR_PTR(ret);
  1192. }
  1193. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1194. struct btrfs_fs_info *fs_info)
  1195. {
  1196. struct btrfs_root *root;
  1197. struct btrfs_root *tree_root = fs_info->tree_root;
  1198. struct extent_buffer *leaf;
  1199. root = btrfs_alloc_root(fs_info);
  1200. if (!root)
  1201. return ERR_PTR(-ENOMEM);
  1202. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1203. tree_root->sectorsize, tree_root->stripesize,
  1204. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1205. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1206. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1207. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1208. /*
  1209. * log trees do not get reference counted because they go away
  1210. * before a real commit is actually done. They do store pointers
  1211. * to file data extents, and those reference counts still get
  1212. * updated (along with back refs to the log tree).
  1213. */
  1214. root->ref_cows = 0;
  1215. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1216. BTRFS_TREE_LOG_OBJECTID, NULL,
  1217. 0, 0, 0);
  1218. if (IS_ERR(leaf)) {
  1219. kfree(root);
  1220. return ERR_CAST(leaf);
  1221. }
  1222. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1223. btrfs_set_header_bytenr(leaf, leaf->start);
  1224. btrfs_set_header_generation(leaf, trans->transid);
  1225. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1226. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1227. root->node = leaf;
  1228. write_extent_buffer(root->node, root->fs_info->fsid,
  1229. (unsigned long)btrfs_header_fsid(root->node),
  1230. BTRFS_FSID_SIZE);
  1231. btrfs_mark_buffer_dirty(root->node);
  1232. btrfs_tree_unlock(root->node);
  1233. return root;
  1234. }
  1235. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1236. struct btrfs_fs_info *fs_info)
  1237. {
  1238. struct btrfs_root *log_root;
  1239. log_root = alloc_log_tree(trans, fs_info);
  1240. if (IS_ERR(log_root))
  1241. return PTR_ERR(log_root);
  1242. WARN_ON(fs_info->log_root_tree);
  1243. fs_info->log_root_tree = log_root;
  1244. return 0;
  1245. }
  1246. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1247. struct btrfs_root *root)
  1248. {
  1249. struct btrfs_root *log_root;
  1250. struct btrfs_inode_item *inode_item;
  1251. log_root = alloc_log_tree(trans, root->fs_info);
  1252. if (IS_ERR(log_root))
  1253. return PTR_ERR(log_root);
  1254. log_root->last_trans = trans->transid;
  1255. log_root->root_key.offset = root->root_key.objectid;
  1256. inode_item = &log_root->root_item.inode;
  1257. inode_item->generation = cpu_to_le64(1);
  1258. inode_item->size = cpu_to_le64(3);
  1259. inode_item->nlink = cpu_to_le32(1);
  1260. inode_item->nbytes = cpu_to_le64(root->leafsize);
  1261. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  1262. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1263. WARN_ON(root->log_root);
  1264. root->log_root = log_root;
  1265. root->log_transid = 0;
  1266. root->last_log_commit = 0;
  1267. return 0;
  1268. }
  1269. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  1270. struct btrfs_key *location)
  1271. {
  1272. struct btrfs_root *root;
  1273. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1274. struct btrfs_path *path;
  1275. struct extent_buffer *l;
  1276. u64 generation;
  1277. u32 blocksize;
  1278. int ret = 0;
  1279. int slot;
  1280. root = btrfs_alloc_root(fs_info);
  1281. if (!root)
  1282. return ERR_PTR(-ENOMEM);
  1283. if (location->offset == (u64)-1) {
  1284. ret = find_and_setup_root(tree_root, fs_info,
  1285. location->objectid, root);
  1286. if (ret) {
  1287. kfree(root);
  1288. return ERR_PTR(ret);
  1289. }
  1290. goto out;
  1291. }
  1292. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1293. tree_root->sectorsize, tree_root->stripesize,
  1294. root, fs_info, location->objectid);
  1295. path = btrfs_alloc_path();
  1296. if (!path) {
  1297. kfree(root);
  1298. return ERR_PTR(-ENOMEM);
  1299. }
  1300. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  1301. if (ret == 0) {
  1302. l = path->nodes[0];
  1303. slot = path->slots[0];
  1304. btrfs_read_root_item(l, slot, &root->root_item);
  1305. memcpy(&root->root_key, location, sizeof(*location));
  1306. }
  1307. btrfs_free_path(path);
  1308. if (ret) {
  1309. kfree(root);
  1310. if (ret > 0)
  1311. ret = -ENOENT;
  1312. return ERR_PTR(ret);
  1313. }
  1314. generation = btrfs_root_generation(&root->root_item);
  1315. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1316. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1317. blocksize, generation);
  1318. if (!root->node || !extent_buffer_uptodate(root->node)) {
  1319. ret = (!root->node) ? -ENOMEM : -EIO;
  1320. free_extent_buffer(root->node);
  1321. kfree(root);
  1322. return ERR_PTR(ret);
  1323. }
  1324. root->commit_root = btrfs_root_node(root);
  1325. out:
  1326. if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
  1327. root->ref_cows = 1;
  1328. btrfs_check_and_init_root_item(&root->root_item);
  1329. }
  1330. return root;
  1331. }
  1332. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1333. struct btrfs_key *location)
  1334. {
  1335. struct btrfs_root *root;
  1336. int ret;
  1337. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1338. return fs_info->tree_root;
  1339. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1340. return fs_info->extent_root;
  1341. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1342. return fs_info->chunk_root;
  1343. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1344. return fs_info->dev_root;
  1345. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1346. return fs_info->csum_root;
  1347. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1348. return fs_info->quota_root ? fs_info->quota_root :
  1349. ERR_PTR(-ENOENT);
  1350. again:
  1351. spin_lock(&fs_info->fs_roots_radix_lock);
  1352. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1353. (unsigned long)location->objectid);
  1354. spin_unlock(&fs_info->fs_roots_radix_lock);
  1355. if (root)
  1356. return root;
  1357. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  1358. if (IS_ERR(root))
  1359. return root;
  1360. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1361. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1362. GFP_NOFS);
  1363. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1364. ret = -ENOMEM;
  1365. goto fail;
  1366. }
  1367. btrfs_init_free_ino_ctl(root);
  1368. mutex_init(&root->fs_commit_mutex);
  1369. spin_lock_init(&root->cache_lock);
  1370. init_waitqueue_head(&root->cache_wait);
  1371. ret = get_anon_bdev(&root->anon_dev);
  1372. if (ret)
  1373. goto fail;
  1374. if (btrfs_root_refs(&root->root_item) == 0) {
  1375. ret = -ENOENT;
  1376. goto fail;
  1377. }
  1378. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1379. if (ret < 0)
  1380. goto fail;
  1381. if (ret == 0)
  1382. root->orphan_item_inserted = 1;
  1383. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1384. if (ret)
  1385. goto fail;
  1386. spin_lock(&fs_info->fs_roots_radix_lock);
  1387. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1388. (unsigned long)root->root_key.objectid,
  1389. root);
  1390. if (ret == 0)
  1391. root->in_radix = 1;
  1392. spin_unlock(&fs_info->fs_roots_radix_lock);
  1393. radix_tree_preload_end();
  1394. if (ret) {
  1395. if (ret == -EEXIST) {
  1396. free_fs_root(root);
  1397. goto again;
  1398. }
  1399. goto fail;
  1400. }
  1401. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1402. root->root_key.objectid);
  1403. WARN_ON(ret);
  1404. return root;
  1405. fail:
  1406. free_fs_root(root);
  1407. return ERR_PTR(ret);
  1408. }
  1409. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1410. {
  1411. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1412. int ret = 0;
  1413. struct btrfs_device *device;
  1414. struct backing_dev_info *bdi;
  1415. rcu_read_lock();
  1416. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1417. if (!device->bdev)
  1418. continue;
  1419. bdi = blk_get_backing_dev_info(device->bdev);
  1420. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1421. ret = 1;
  1422. break;
  1423. }
  1424. }
  1425. rcu_read_unlock();
  1426. return ret;
  1427. }
  1428. /*
  1429. * If this fails, caller must call bdi_destroy() to get rid of the
  1430. * bdi again.
  1431. */
  1432. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1433. {
  1434. int err;
  1435. bdi->capabilities = BDI_CAP_MAP_COPY;
  1436. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1437. if (err)
  1438. return err;
  1439. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1440. bdi->congested_fn = btrfs_congested_fn;
  1441. bdi->congested_data = info;
  1442. return 0;
  1443. }
  1444. /*
  1445. * called by the kthread helper functions to finally call the bio end_io
  1446. * functions. This is where read checksum verification actually happens
  1447. */
  1448. static void end_workqueue_fn(struct btrfs_work *work)
  1449. {
  1450. struct bio *bio;
  1451. struct end_io_wq *end_io_wq;
  1452. struct btrfs_fs_info *fs_info;
  1453. int error;
  1454. end_io_wq = container_of(work, struct end_io_wq, work);
  1455. bio = end_io_wq->bio;
  1456. fs_info = end_io_wq->info;
  1457. error = end_io_wq->error;
  1458. bio->bi_private = end_io_wq->private;
  1459. bio->bi_end_io = end_io_wq->end_io;
  1460. kfree(end_io_wq);
  1461. bio_endio(bio, error);
  1462. }
  1463. static int cleaner_kthread(void *arg)
  1464. {
  1465. struct btrfs_root *root = arg;
  1466. do {
  1467. int again = 0;
  1468. if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
  1469. down_read_trylock(&root->fs_info->sb->s_umount)) {
  1470. if (mutex_trylock(&root->fs_info->cleaner_mutex)) {
  1471. btrfs_run_delayed_iputs(root);
  1472. again = btrfs_clean_one_deleted_snapshot(root);
  1473. mutex_unlock(&root->fs_info->cleaner_mutex);
  1474. }
  1475. btrfs_run_defrag_inodes(root->fs_info);
  1476. up_read(&root->fs_info->sb->s_umount);
  1477. }
  1478. if (!try_to_freeze() && !again) {
  1479. set_current_state(TASK_INTERRUPTIBLE);
  1480. if (!kthread_should_stop())
  1481. schedule();
  1482. __set_current_state(TASK_RUNNING);
  1483. }
  1484. } while (!kthread_should_stop());
  1485. return 0;
  1486. }
  1487. static int transaction_kthread(void *arg)
  1488. {
  1489. struct btrfs_root *root = arg;
  1490. struct btrfs_trans_handle *trans;
  1491. struct btrfs_transaction *cur;
  1492. u64 transid;
  1493. unsigned long now;
  1494. unsigned long delay;
  1495. bool cannot_commit;
  1496. do {
  1497. cannot_commit = false;
  1498. delay = HZ * 30;
  1499. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1500. spin_lock(&root->fs_info->trans_lock);
  1501. cur = root->fs_info->running_transaction;
  1502. if (!cur) {
  1503. spin_unlock(&root->fs_info->trans_lock);
  1504. goto sleep;
  1505. }
  1506. now = get_seconds();
  1507. if (!cur->blocked &&
  1508. (now < cur->start_time || now - cur->start_time < 30)) {
  1509. spin_unlock(&root->fs_info->trans_lock);
  1510. delay = HZ * 5;
  1511. goto sleep;
  1512. }
  1513. transid = cur->transid;
  1514. spin_unlock(&root->fs_info->trans_lock);
  1515. /* If the file system is aborted, this will always fail. */
  1516. trans = btrfs_attach_transaction(root);
  1517. if (IS_ERR(trans)) {
  1518. if (PTR_ERR(trans) != -ENOENT)
  1519. cannot_commit = true;
  1520. goto sleep;
  1521. }
  1522. if (transid == trans->transid) {
  1523. btrfs_commit_transaction(trans, root);
  1524. } else {
  1525. btrfs_end_transaction(trans, root);
  1526. }
  1527. sleep:
  1528. wake_up_process(root->fs_info->cleaner_kthread);
  1529. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1530. if (!try_to_freeze()) {
  1531. set_current_state(TASK_INTERRUPTIBLE);
  1532. if (!kthread_should_stop() &&
  1533. (!btrfs_transaction_blocked(root->fs_info) ||
  1534. cannot_commit))
  1535. schedule_timeout(delay);
  1536. __set_current_state(TASK_RUNNING);
  1537. }
  1538. } while (!kthread_should_stop());
  1539. return 0;
  1540. }
  1541. /*
  1542. * this will find the highest generation in the array of
  1543. * root backups. The index of the highest array is returned,
  1544. * or -1 if we can't find anything.
  1545. *
  1546. * We check to make sure the array is valid by comparing the
  1547. * generation of the latest root in the array with the generation
  1548. * in the super block. If they don't match we pitch it.
  1549. */
  1550. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1551. {
  1552. u64 cur;
  1553. int newest_index = -1;
  1554. struct btrfs_root_backup *root_backup;
  1555. int i;
  1556. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1557. root_backup = info->super_copy->super_roots + i;
  1558. cur = btrfs_backup_tree_root_gen(root_backup);
  1559. if (cur == newest_gen)
  1560. newest_index = i;
  1561. }
  1562. /* check to see if we actually wrapped around */
  1563. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1564. root_backup = info->super_copy->super_roots;
  1565. cur = btrfs_backup_tree_root_gen(root_backup);
  1566. if (cur == newest_gen)
  1567. newest_index = 0;
  1568. }
  1569. return newest_index;
  1570. }
  1571. /*
  1572. * find the oldest backup so we know where to store new entries
  1573. * in the backup array. This will set the backup_root_index
  1574. * field in the fs_info struct
  1575. */
  1576. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1577. u64 newest_gen)
  1578. {
  1579. int newest_index = -1;
  1580. newest_index = find_newest_super_backup(info, newest_gen);
  1581. /* if there was garbage in there, just move along */
  1582. if (newest_index == -1) {
  1583. info->backup_root_index = 0;
  1584. } else {
  1585. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1586. }
  1587. }
  1588. /*
  1589. * copy all the root pointers into the super backup array.
  1590. * this will bump the backup pointer by one when it is
  1591. * done
  1592. */
  1593. static void backup_super_roots(struct btrfs_fs_info *info)
  1594. {
  1595. int next_backup;
  1596. struct btrfs_root_backup *root_backup;
  1597. int last_backup;
  1598. next_backup = info->backup_root_index;
  1599. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1600. BTRFS_NUM_BACKUP_ROOTS;
  1601. /*
  1602. * just overwrite the last backup if we're at the same generation
  1603. * this happens only at umount
  1604. */
  1605. root_backup = info->super_for_commit->super_roots + last_backup;
  1606. if (btrfs_backup_tree_root_gen(root_backup) ==
  1607. btrfs_header_generation(info->tree_root->node))
  1608. next_backup = last_backup;
  1609. root_backup = info->super_for_commit->super_roots + next_backup;
  1610. /*
  1611. * make sure all of our padding and empty slots get zero filled
  1612. * regardless of which ones we use today
  1613. */
  1614. memset(root_backup, 0, sizeof(*root_backup));
  1615. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1616. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1617. btrfs_set_backup_tree_root_gen(root_backup,
  1618. btrfs_header_generation(info->tree_root->node));
  1619. btrfs_set_backup_tree_root_level(root_backup,
  1620. btrfs_header_level(info->tree_root->node));
  1621. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1622. btrfs_set_backup_chunk_root_gen(root_backup,
  1623. btrfs_header_generation(info->chunk_root->node));
  1624. btrfs_set_backup_chunk_root_level(root_backup,
  1625. btrfs_header_level(info->chunk_root->node));
  1626. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1627. btrfs_set_backup_extent_root_gen(root_backup,
  1628. btrfs_header_generation(info->extent_root->node));
  1629. btrfs_set_backup_extent_root_level(root_backup,
  1630. btrfs_header_level(info->extent_root->node));
  1631. /*
  1632. * we might commit during log recovery, which happens before we set
  1633. * the fs_root. Make sure it is valid before we fill it in.
  1634. */
  1635. if (info->fs_root && info->fs_root->node) {
  1636. btrfs_set_backup_fs_root(root_backup,
  1637. info->fs_root->node->start);
  1638. btrfs_set_backup_fs_root_gen(root_backup,
  1639. btrfs_header_generation(info->fs_root->node));
  1640. btrfs_set_backup_fs_root_level(root_backup,
  1641. btrfs_header_level(info->fs_root->node));
  1642. }
  1643. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1644. btrfs_set_backup_dev_root_gen(root_backup,
  1645. btrfs_header_generation(info->dev_root->node));
  1646. btrfs_set_backup_dev_root_level(root_backup,
  1647. btrfs_header_level(info->dev_root->node));
  1648. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1649. btrfs_set_backup_csum_root_gen(root_backup,
  1650. btrfs_header_generation(info->csum_root->node));
  1651. btrfs_set_backup_csum_root_level(root_backup,
  1652. btrfs_header_level(info->csum_root->node));
  1653. btrfs_set_backup_total_bytes(root_backup,
  1654. btrfs_super_total_bytes(info->super_copy));
  1655. btrfs_set_backup_bytes_used(root_backup,
  1656. btrfs_super_bytes_used(info->super_copy));
  1657. btrfs_set_backup_num_devices(root_backup,
  1658. btrfs_super_num_devices(info->super_copy));
  1659. /*
  1660. * if we don't copy this out to the super_copy, it won't get remembered
  1661. * for the next commit
  1662. */
  1663. memcpy(&info->super_copy->super_roots,
  1664. &info->super_for_commit->super_roots,
  1665. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1666. }
  1667. /*
  1668. * this copies info out of the root backup array and back into
  1669. * the in-memory super block. It is meant to help iterate through
  1670. * the array, so you send it the number of backups you've already
  1671. * tried and the last backup index you used.
  1672. *
  1673. * this returns -1 when it has tried all the backups
  1674. */
  1675. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1676. struct btrfs_super_block *super,
  1677. int *num_backups_tried, int *backup_index)
  1678. {
  1679. struct btrfs_root_backup *root_backup;
  1680. int newest = *backup_index;
  1681. if (*num_backups_tried == 0) {
  1682. u64 gen = btrfs_super_generation(super);
  1683. newest = find_newest_super_backup(info, gen);
  1684. if (newest == -1)
  1685. return -1;
  1686. *backup_index = newest;
  1687. *num_backups_tried = 1;
  1688. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1689. /* we've tried all the backups, all done */
  1690. return -1;
  1691. } else {
  1692. /* jump to the next oldest backup */
  1693. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1694. BTRFS_NUM_BACKUP_ROOTS;
  1695. *backup_index = newest;
  1696. *num_backups_tried += 1;
  1697. }
  1698. root_backup = super->super_roots + newest;
  1699. btrfs_set_super_generation(super,
  1700. btrfs_backup_tree_root_gen(root_backup));
  1701. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1702. btrfs_set_super_root_level(super,
  1703. btrfs_backup_tree_root_level(root_backup));
  1704. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1705. /*
  1706. * fixme: the total bytes and num_devices need to match or we should
  1707. * need a fsck
  1708. */
  1709. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1710. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1711. return 0;
  1712. }
  1713. /* helper to cleanup workers */
  1714. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1715. {
  1716. btrfs_stop_workers(&fs_info->generic_worker);
  1717. btrfs_stop_workers(&fs_info->fixup_workers);
  1718. btrfs_stop_workers(&fs_info->delalloc_workers);
  1719. btrfs_stop_workers(&fs_info->workers);
  1720. btrfs_stop_workers(&fs_info->endio_workers);
  1721. btrfs_stop_workers(&fs_info->endio_meta_workers);
  1722. btrfs_stop_workers(&fs_info->endio_raid56_workers);
  1723. btrfs_stop_workers(&fs_info->rmw_workers);
  1724. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  1725. btrfs_stop_workers(&fs_info->endio_write_workers);
  1726. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  1727. btrfs_stop_workers(&fs_info->submit_workers);
  1728. btrfs_stop_workers(&fs_info->delayed_workers);
  1729. btrfs_stop_workers(&fs_info->caching_workers);
  1730. btrfs_stop_workers(&fs_info->readahead_workers);
  1731. btrfs_stop_workers(&fs_info->flush_workers);
  1732. btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
  1733. }
  1734. /* helper to cleanup tree roots */
  1735. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1736. {
  1737. free_extent_buffer(info->tree_root->node);
  1738. free_extent_buffer(info->tree_root->commit_root);
  1739. info->tree_root->node = NULL;
  1740. info->tree_root->commit_root = NULL;
  1741. if (info->dev_root) {
  1742. free_extent_buffer(info->dev_root->node);
  1743. free_extent_buffer(info->dev_root->commit_root);
  1744. info->dev_root->node = NULL;
  1745. info->dev_root->commit_root = NULL;
  1746. }
  1747. if (info->extent_root) {
  1748. free_extent_buffer(info->extent_root->node);
  1749. free_extent_buffer(info->extent_root->commit_root);
  1750. info->extent_root->node = NULL;
  1751. info->extent_root->commit_root = NULL;
  1752. }
  1753. if (info->csum_root) {
  1754. free_extent_buffer(info->csum_root->node);
  1755. free_extent_buffer(info->csum_root->commit_root);
  1756. info->csum_root->node = NULL;
  1757. info->csum_root->commit_root = NULL;
  1758. }
  1759. if (info->quota_root) {
  1760. free_extent_buffer(info->quota_root->node);
  1761. free_extent_buffer(info->quota_root->commit_root);
  1762. info->quota_root->node = NULL;
  1763. info->quota_root->commit_root = NULL;
  1764. }
  1765. if (chunk_root) {
  1766. free_extent_buffer(info->chunk_root->node);
  1767. free_extent_buffer(info->chunk_root->commit_root);
  1768. info->chunk_root->node = NULL;
  1769. info->chunk_root->commit_root = NULL;
  1770. }
  1771. }
  1772. static void del_fs_roots(struct btrfs_fs_info *fs_info)
  1773. {
  1774. int ret;
  1775. struct btrfs_root *gang[8];
  1776. int i;
  1777. while (!list_empty(&fs_info->dead_roots)) {
  1778. gang[0] = list_entry(fs_info->dead_roots.next,
  1779. struct btrfs_root, root_list);
  1780. list_del(&gang[0]->root_list);
  1781. if (gang[0]->in_radix) {
  1782. btrfs_free_fs_root(fs_info, gang[0]);
  1783. } else {
  1784. free_extent_buffer(gang[0]->node);
  1785. free_extent_buffer(gang[0]->commit_root);
  1786. kfree(gang[0]);
  1787. }
  1788. }
  1789. while (1) {
  1790. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1791. (void **)gang, 0,
  1792. ARRAY_SIZE(gang));
  1793. if (!ret)
  1794. break;
  1795. for (i = 0; i < ret; i++)
  1796. btrfs_free_fs_root(fs_info, gang[i]);
  1797. }
  1798. }
  1799. int open_ctree(struct super_block *sb,
  1800. struct btrfs_fs_devices *fs_devices,
  1801. char *options)
  1802. {
  1803. u32 sectorsize;
  1804. u32 nodesize;
  1805. u32 leafsize;
  1806. u32 blocksize;
  1807. u32 stripesize;
  1808. u64 generation;
  1809. u64 features;
  1810. struct btrfs_key location;
  1811. struct buffer_head *bh;
  1812. struct btrfs_super_block *disk_super;
  1813. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  1814. struct btrfs_root *tree_root;
  1815. struct btrfs_root *extent_root;
  1816. struct btrfs_root *csum_root;
  1817. struct btrfs_root *chunk_root;
  1818. struct btrfs_root *dev_root;
  1819. struct btrfs_root *quota_root;
  1820. struct btrfs_root *log_tree_root;
  1821. int ret;
  1822. int err = -EINVAL;
  1823. int num_backups_tried = 0;
  1824. int backup_index = 0;
  1825. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
  1826. extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
  1827. csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
  1828. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
  1829. dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
  1830. quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
  1831. if (!tree_root || !extent_root || !csum_root ||
  1832. !chunk_root || !dev_root || !quota_root) {
  1833. err = -ENOMEM;
  1834. goto fail;
  1835. }
  1836. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1837. if (ret) {
  1838. err = ret;
  1839. goto fail;
  1840. }
  1841. ret = setup_bdi(fs_info, &fs_info->bdi);
  1842. if (ret) {
  1843. err = ret;
  1844. goto fail_srcu;
  1845. }
  1846. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
  1847. if (ret) {
  1848. err = ret;
  1849. goto fail_bdi;
  1850. }
  1851. fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
  1852. (1 + ilog2(nr_cpu_ids));
  1853. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
  1854. if (ret) {
  1855. err = ret;
  1856. goto fail_dirty_metadata_bytes;
  1857. }
  1858. fs_info->btree_inode = new_inode(sb);
  1859. if (!fs_info->btree_inode) {
  1860. err = -ENOMEM;
  1861. goto fail_delalloc_bytes;
  1862. }
  1863. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1864. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1865. INIT_LIST_HEAD(&fs_info->trans_list);
  1866. INIT_LIST_HEAD(&fs_info->dead_roots);
  1867. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1868. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1869. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1870. spin_lock_init(&fs_info->delalloc_lock);
  1871. spin_lock_init(&fs_info->trans_lock);
  1872. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1873. spin_lock_init(&fs_info->delayed_iput_lock);
  1874. spin_lock_init(&fs_info->defrag_inodes_lock);
  1875. spin_lock_init(&fs_info->free_chunk_lock);
  1876. spin_lock_init(&fs_info->tree_mod_seq_lock);
  1877. spin_lock_init(&fs_info->super_lock);
  1878. rwlock_init(&fs_info->tree_mod_log_lock);
  1879. mutex_init(&fs_info->reloc_mutex);
  1880. seqlock_init(&fs_info->profiles_lock);
  1881. init_completion(&fs_info->kobj_unregister);
  1882. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1883. INIT_LIST_HEAD(&fs_info->space_info);
  1884. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  1885. btrfs_mapping_init(&fs_info->mapping_tree);
  1886. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  1887. BTRFS_BLOCK_RSV_GLOBAL);
  1888. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  1889. BTRFS_BLOCK_RSV_DELALLOC);
  1890. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  1891. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  1892. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  1893. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  1894. BTRFS_BLOCK_RSV_DELOPS);
  1895. atomic_set(&fs_info->nr_async_submits, 0);
  1896. atomic_set(&fs_info->async_delalloc_pages, 0);
  1897. atomic_set(&fs_info->async_submit_draining, 0);
  1898. atomic_set(&fs_info->nr_async_bios, 0);
  1899. atomic_set(&fs_info->defrag_running, 0);
  1900. atomic64_set(&fs_info->tree_mod_seq, 0);
  1901. fs_info->sb = sb;
  1902. fs_info->max_inline = 8192 * 1024;
  1903. fs_info->metadata_ratio = 0;
  1904. fs_info->defrag_inodes = RB_ROOT;
  1905. fs_info->trans_no_join = 0;
  1906. fs_info->free_chunk_space = 0;
  1907. fs_info->tree_mod_log = RB_ROOT;
  1908. /* readahead state */
  1909. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  1910. spin_lock_init(&fs_info->reada_lock);
  1911. fs_info->thread_pool_size = min_t(unsigned long,
  1912. num_online_cpus() + 2, 8);
  1913. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1914. spin_lock_init(&fs_info->ordered_extent_lock);
  1915. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1916. GFP_NOFS);
  1917. if (!fs_info->delayed_root) {
  1918. err = -ENOMEM;
  1919. goto fail_iput;
  1920. }
  1921. btrfs_init_delayed_root(fs_info->delayed_root);
  1922. mutex_init(&fs_info->scrub_lock);
  1923. atomic_set(&fs_info->scrubs_running, 0);
  1924. atomic_set(&fs_info->scrub_pause_req, 0);
  1925. atomic_set(&fs_info->scrubs_paused, 0);
  1926. atomic_set(&fs_info->scrub_cancel_req, 0);
  1927. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1928. init_rwsem(&fs_info->scrub_super_lock);
  1929. fs_info->scrub_workers_refcnt = 0;
  1930. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  1931. fs_info->check_integrity_print_mask = 0;
  1932. #endif
  1933. spin_lock_init(&fs_info->balance_lock);
  1934. mutex_init(&fs_info->balance_mutex);
  1935. atomic_set(&fs_info->balance_running, 0);
  1936. atomic_set(&fs_info->balance_pause_req, 0);
  1937. atomic_set(&fs_info->balance_cancel_req, 0);
  1938. fs_info->balance_ctl = NULL;
  1939. init_waitqueue_head(&fs_info->balance_wait_q);
  1940. sb->s_blocksize = 4096;
  1941. sb->s_blocksize_bits = blksize_bits(4096);
  1942. sb->s_bdi = &fs_info->bdi;
  1943. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1944. set_nlink(fs_info->btree_inode, 1);
  1945. /*
  1946. * we set the i_size on the btree inode to the max possible int.
  1947. * the real end of the address space is determined by all of
  1948. * the devices in the system
  1949. */
  1950. fs_info->btree_inode->i_size = OFFSET_MAX;
  1951. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1952. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1953. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1954. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1955. fs_info->btree_inode->i_mapping);
  1956. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  1957. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1958. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1959. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1960. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1961. sizeof(struct btrfs_key));
  1962. set_bit(BTRFS_INODE_DUMMY,
  1963. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  1964. insert_inode_hash(fs_info->btree_inode);
  1965. spin_lock_init(&fs_info->block_group_cache_lock);
  1966. fs_info->block_group_cache_tree = RB_ROOT;
  1967. fs_info->first_logical_byte = (u64)-1;
  1968. extent_io_tree_init(&fs_info->freed_extents[0],
  1969. fs_info->btree_inode->i_mapping);
  1970. extent_io_tree_init(&fs_info->freed_extents[1],
  1971. fs_info->btree_inode->i_mapping);
  1972. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1973. fs_info->do_barriers = 1;
  1974. mutex_init(&fs_info->ordered_operations_mutex);
  1975. mutex_init(&fs_info->tree_log_mutex);
  1976. mutex_init(&fs_info->chunk_mutex);
  1977. mutex_init(&fs_info->transaction_kthread_mutex);
  1978. mutex_init(&fs_info->cleaner_mutex);
  1979. mutex_init(&fs_info->volume_mutex);
  1980. init_rwsem(&fs_info->extent_commit_sem);
  1981. init_rwsem(&fs_info->cleanup_work_sem);
  1982. init_rwsem(&fs_info->subvol_sem);
  1983. fs_info->dev_replace.lock_owner = 0;
  1984. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  1985. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  1986. mutex_init(&fs_info->dev_replace.lock_management_lock);
  1987. mutex_init(&fs_info->dev_replace.lock);
  1988. spin_lock_init(&fs_info->qgroup_lock);
  1989. mutex_init(&fs_info->qgroup_ioctl_lock);
  1990. fs_info->qgroup_tree = RB_ROOT;
  1991. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  1992. fs_info->qgroup_seq = 1;
  1993. fs_info->quota_enabled = 0;
  1994. fs_info->pending_quota_state = 0;
  1995. mutex_init(&fs_info->qgroup_rescan_lock);
  1996. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  1997. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  1998. init_waitqueue_head(&fs_info->transaction_throttle);
  1999. init_waitqueue_head(&fs_info->transaction_wait);
  2000. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  2001. init_waitqueue_head(&fs_info->async_submit_wait);
  2002. ret = btrfs_alloc_stripe_hash_table(fs_info);
  2003. if (ret) {
  2004. err = ret;
  2005. goto fail_alloc;
  2006. }
  2007. __setup_root(4096, 4096, 4096, 4096, tree_root,
  2008. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2009. invalidate_bdev(fs_devices->latest_bdev);
  2010. /*
  2011. * Read super block and check the signature bytes only
  2012. */
  2013. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2014. if (!bh) {
  2015. err = -EINVAL;
  2016. goto fail_alloc;
  2017. }
  2018. /*
  2019. * We want to check superblock checksum, the type is stored inside.
  2020. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
  2021. */
  2022. if (btrfs_check_super_csum(bh->b_data)) {
  2023. printk(KERN_ERR "btrfs: superblock checksum mismatch\n");
  2024. err = -EINVAL;
  2025. goto fail_alloc;
  2026. }
  2027. /*
  2028. * super_copy is zeroed at allocation time and we never touch the
  2029. * following bytes up to INFO_SIZE, the checksum is calculated from
  2030. * the whole block of INFO_SIZE
  2031. */
  2032. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2033. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2034. sizeof(*fs_info->super_for_commit));
  2035. brelse(bh);
  2036. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2037. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  2038. if (ret) {
  2039. printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
  2040. err = -EINVAL;
  2041. goto fail_alloc;
  2042. }
  2043. disk_super = fs_info->super_copy;
  2044. if (!btrfs_super_root(disk_super))
  2045. goto fail_alloc;
  2046. /* check FS state, whether FS is broken. */
  2047. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2048. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2049. /*
  2050. * run through our array of backup supers and setup
  2051. * our ring pointer to the oldest one
  2052. */
  2053. generation = btrfs_super_generation(disk_super);
  2054. find_oldest_super_backup(fs_info, generation);
  2055. /*
  2056. * In the long term, we'll store the compression type in the super
  2057. * block, and it'll be used for per file compression control.
  2058. */
  2059. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2060. ret = btrfs_parse_options(tree_root, options);
  2061. if (ret) {
  2062. err = ret;
  2063. goto fail_alloc;
  2064. }
  2065. features = btrfs_super_incompat_flags(disk_super) &
  2066. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2067. if (features) {
  2068. printk(KERN_ERR "BTRFS: couldn't mount because of "
  2069. "unsupported optional features (%Lx).\n",
  2070. (unsigned long long)features);
  2071. err = -EINVAL;
  2072. goto fail_alloc;
  2073. }
  2074. if (btrfs_super_leafsize(disk_super) !=
  2075. btrfs_super_nodesize(disk_super)) {
  2076. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2077. "blocksizes don't match. node %d leaf %d\n",
  2078. btrfs_super_nodesize(disk_super),
  2079. btrfs_super_leafsize(disk_super));
  2080. err = -EINVAL;
  2081. goto fail_alloc;
  2082. }
  2083. if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
  2084. printk(KERN_ERR "BTRFS: couldn't mount because metadata "
  2085. "blocksize (%d) was too large\n",
  2086. btrfs_super_leafsize(disk_super));
  2087. err = -EINVAL;
  2088. goto fail_alloc;
  2089. }
  2090. features = btrfs_super_incompat_flags(disk_super);
  2091. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2092. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2093. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2094. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2095. printk(KERN_ERR "btrfs: has skinny extents\n");
  2096. /*
  2097. * flag our filesystem as having big metadata blocks if
  2098. * they are bigger than the page size
  2099. */
  2100. if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
  2101. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2102. printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
  2103. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2104. }
  2105. nodesize = btrfs_super_nodesize(disk_super);
  2106. leafsize = btrfs_super_leafsize(disk_super);
  2107. sectorsize = btrfs_super_sectorsize(disk_super);
  2108. stripesize = btrfs_super_stripesize(disk_super);
  2109. fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
  2110. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2111. /*
  2112. * mixed block groups end up with duplicate but slightly offset
  2113. * extent buffers for the same range. It leads to corruptions
  2114. */
  2115. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2116. (sectorsize != leafsize)) {
  2117. printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
  2118. "are not allowed for mixed block groups on %s\n",
  2119. sb->s_id);
  2120. goto fail_alloc;
  2121. }
  2122. /*
  2123. * Needn't use the lock because there is no other task which will
  2124. * update the flag.
  2125. */
  2126. btrfs_set_super_incompat_flags(disk_super, features);
  2127. features = btrfs_super_compat_ro_flags(disk_super) &
  2128. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2129. if (!(sb->s_flags & MS_RDONLY) && features) {
  2130. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  2131. "unsupported option features (%Lx).\n",
  2132. (unsigned long long)features);
  2133. err = -EINVAL;
  2134. goto fail_alloc;
  2135. }
  2136. btrfs_init_workers(&fs_info->generic_worker,
  2137. "genwork", 1, NULL);
  2138. btrfs_init_workers(&fs_info->workers, "worker",
  2139. fs_info->thread_pool_size,
  2140. &fs_info->generic_worker);
  2141. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  2142. fs_info->thread_pool_size,
  2143. &fs_info->generic_worker);
  2144. btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
  2145. fs_info->thread_pool_size,
  2146. &fs_info->generic_worker);
  2147. btrfs_init_workers(&fs_info->submit_workers, "submit",
  2148. min_t(u64, fs_devices->num_devices,
  2149. fs_info->thread_pool_size),
  2150. &fs_info->generic_worker);
  2151. btrfs_init_workers(&fs_info->caching_workers, "cache",
  2152. 2, &fs_info->generic_worker);
  2153. /* a higher idle thresh on the submit workers makes it much more
  2154. * likely that bios will be send down in a sane order to the
  2155. * devices
  2156. */
  2157. fs_info->submit_workers.idle_thresh = 64;
  2158. fs_info->workers.idle_thresh = 16;
  2159. fs_info->workers.ordered = 1;
  2160. fs_info->delalloc_workers.idle_thresh = 2;
  2161. fs_info->delalloc_workers.ordered = 1;
  2162. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  2163. &fs_info->generic_worker);
  2164. btrfs_init_workers(&fs_info->endio_workers, "endio",
  2165. fs_info->thread_pool_size,
  2166. &fs_info->generic_worker);
  2167. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  2168. fs_info->thread_pool_size,
  2169. &fs_info->generic_worker);
  2170. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  2171. "endio-meta-write", fs_info->thread_pool_size,
  2172. &fs_info->generic_worker);
  2173. btrfs_init_workers(&fs_info->endio_raid56_workers,
  2174. "endio-raid56", fs_info->thread_pool_size,
  2175. &fs_info->generic_worker);
  2176. btrfs_init_workers(&fs_info->rmw_workers,
  2177. "rmw", fs_info->thread_pool_size,
  2178. &fs_info->generic_worker);
  2179. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  2180. fs_info->thread_pool_size,
  2181. &fs_info->generic_worker);
  2182. btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
  2183. 1, &fs_info->generic_worker);
  2184. btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
  2185. fs_info->thread_pool_size,
  2186. &fs_info->generic_worker);
  2187. btrfs_init_workers(&fs_info->readahead_workers, "readahead",
  2188. fs_info->thread_pool_size,
  2189. &fs_info->generic_worker);
  2190. btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
  2191. &fs_info->generic_worker);
  2192. /*
  2193. * endios are largely parallel and should have a very
  2194. * low idle thresh
  2195. */
  2196. fs_info->endio_workers.idle_thresh = 4;
  2197. fs_info->endio_meta_workers.idle_thresh = 4;
  2198. fs_info->endio_raid56_workers.idle_thresh = 4;
  2199. fs_info->rmw_workers.idle_thresh = 2;
  2200. fs_info->endio_write_workers.idle_thresh = 2;
  2201. fs_info->endio_meta_write_workers.idle_thresh = 2;
  2202. fs_info->readahead_workers.idle_thresh = 2;
  2203. /*
  2204. * btrfs_start_workers can really only fail because of ENOMEM so just
  2205. * return -ENOMEM if any of these fail.
  2206. */
  2207. ret = btrfs_start_workers(&fs_info->workers);
  2208. ret |= btrfs_start_workers(&fs_info->generic_worker);
  2209. ret |= btrfs_start_workers(&fs_info->submit_workers);
  2210. ret |= btrfs_start_workers(&fs_info->delalloc_workers);
  2211. ret |= btrfs_start_workers(&fs_info->fixup_workers);
  2212. ret |= btrfs_start_workers(&fs_info->endio_workers);
  2213. ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
  2214. ret |= btrfs_start_workers(&fs_info->rmw_workers);
  2215. ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
  2216. ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
  2217. ret |= btrfs_start_workers(&fs_info->endio_write_workers);
  2218. ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
  2219. ret |= btrfs_start_workers(&fs_info->delayed_workers);
  2220. ret |= btrfs_start_workers(&fs_info->caching_workers);
  2221. ret |= btrfs_start_workers(&fs_info->readahead_workers);
  2222. ret |= btrfs_start_workers(&fs_info->flush_workers);
  2223. ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
  2224. if (ret) {
  2225. err = -ENOMEM;
  2226. goto fail_sb_buffer;
  2227. }
  2228. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2229. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2230. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  2231. tree_root->nodesize = nodesize;
  2232. tree_root->leafsize = leafsize;
  2233. tree_root->sectorsize = sectorsize;
  2234. tree_root->stripesize = stripesize;
  2235. sb->s_blocksize = sectorsize;
  2236. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2237. if (disk_super->magic != cpu_to_le64(BTRFS_MAGIC)) {
  2238. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  2239. goto fail_sb_buffer;
  2240. }
  2241. if (sectorsize != PAGE_SIZE) {
  2242. printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
  2243. "found on %s\n", (unsigned long)sectorsize, sb->s_id);
  2244. goto fail_sb_buffer;
  2245. }
  2246. mutex_lock(&fs_info->chunk_mutex);
  2247. ret = btrfs_read_sys_array(tree_root);
  2248. mutex_unlock(&fs_info->chunk_mutex);
  2249. if (ret) {
  2250. printk(KERN_WARNING "btrfs: failed to read the system "
  2251. "array on %s\n", sb->s_id);
  2252. goto fail_sb_buffer;
  2253. }
  2254. blocksize = btrfs_level_size(tree_root,
  2255. btrfs_super_chunk_root_level(disk_super));
  2256. generation = btrfs_super_chunk_root_generation(disk_super);
  2257. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2258. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2259. chunk_root->node = read_tree_block(chunk_root,
  2260. btrfs_super_chunk_root(disk_super),
  2261. blocksize, generation);
  2262. if (!chunk_root->node ||
  2263. !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  2264. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  2265. sb->s_id);
  2266. goto fail_tree_roots;
  2267. }
  2268. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2269. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2270. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2271. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  2272. BTRFS_UUID_SIZE);
  2273. ret = btrfs_read_chunk_tree(chunk_root);
  2274. if (ret) {
  2275. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  2276. sb->s_id);
  2277. goto fail_tree_roots;
  2278. }
  2279. /*
  2280. * keep the device that is marked to be the target device for the
  2281. * dev_replace procedure
  2282. */
  2283. btrfs_close_extra_devices(fs_info, fs_devices, 0);
  2284. if (!fs_devices->latest_bdev) {
  2285. printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
  2286. sb->s_id);
  2287. goto fail_tree_roots;
  2288. }
  2289. retry_root_backup:
  2290. blocksize = btrfs_level_size(tree_root,
  2291. btrfs_super_root_level(disk_super));
  2292. generation = btrfs_super_generation(disk_super);
  2293. tree_root->node = read_tree_block(tree_root,
  2294. btrfs_super_root(disk_super),
  2295. blocksize, generation);
  2296. if (!tree_root->node ||
  2297. !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  2298. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  2299. sb->s_id);
  2300. goto recovery_tree_root;
  2301. }
  2302. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2303. tree_root->commit_root = btrfs_root_node(tree_root);
  2304. ret = find_and_setup_root(tree_root, fs_info,
  2305. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  2306. if (ret)
  2307. goto recovery_tree_root;
  2308. extent_root->track_dirty = 1;
  2309. ret = find_and_setup_root(tree_root, fs_info,
  2310. BTRFS_DEV_TREE_OBJECTID, dev_root);
  2311. if (ret)
  2312. goto recovery_tree_root;
  2313. dev_root->track_dirty = 1;
  2314. ret = find_and_setup_root(tree_root, fs_info,
  2315. BTRFS_CSUM_TREE_OBJECTID, csum_root);
  2316. if (ret)
  2317. goto recovery_tree_root;
  2318. csum_root->track_dirty = 1;
  2319. ret = find_and_setup_root(tree_root, fs_info,
  2320. BTRFS_QUOTA_TREE_OBJECTID, quota_root);
  2321. if (ret) {
  2322. kfree(quota_root);
  2323. quota_root = fs_info->quota_root = NULL;
  2324. } else {
  2325. quota_root->track_dirty = 1;
  2326. fs_info->quota_enabled = 1;
  2327. fs_info->pending_quota_state = 1;
  2328. }
  2329. fs_info->generation = generation;
  2330. fs_info->last_trans_committed = generation;
  2331. ret = btrfs_recover_balance(fs_info);
  2332. if (ret) {
  2333. printk(KERN_WARNING "btrfs: failed to recover balance\n");
  2334. goto fail_block_groups;
  2335. }
  2336. ret = btrfs_init_dev_stats(fs_info);
  2337. if (ret) {
  2338. printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
  2339. ret);
  2340. goto fail_block_groups;
  2341. }
  2342. ret = btrfs_init_dev_replace(fs_info);
  2343. if (ret) {
  2344. pr_err("btrfs: failed to init dev_replace: %d\n", ret);
  2345. goto fail_block_groups;
  2346. }
  2347. btrfs_close_extra_devices(fs_info, fs_devices, 1);
  2348. ret = btrfs_init_space_info(fs_info);
  2349. if (ret) {
  2350. printk(KERN_ERR "Failed to initial space info: %d\n", ret);
  2351. goto fail_block_groups;
  2352. }
  2353. ret = btrfs_read_block_groups(extent_root);
  2354. if (ret) {
  2355. printk(KERN_ERR "Failed to read block groups: %d\n", ret);
  2356. goto fail_block_groups;
  2357. }
  2358. fs_info->num_tolerated_disk_barrier_failures =
  2359. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2360. if (fs_info->fs_devices->missing_devices >
  2361. fs_info->num_tolerated_disk_barrier_failures &&
  2362. !(sb->s_flags & MS_RDONLY)) {
  2363. printk(KERN_WARNING
  2364. "Btrfs: too many missing devices, writeable mount is not allowed\n");
  2365. goto fail_block_groups;
  2366. }
  2367. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2368. "btrfs-cleaner");
  2369. if (IS_ERR(fs_info->cleaner_kthread))
  2370. goto fail_block_groups;
  2371. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2372. tree_root,
  2373. "btrfs-transaction");
  2374. if (IS_ERR(fs_info->transaction_kthread))
  2375. goto fail_cleaner;
  2376. if (!btrfs_test_opt(tree_root, SSD) &&
  2377. !btrfs_test_opt(tree_root, NOSSD) &&
  2378. !fs_info->fs_devices->rotating) {
  2379. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  2380. "mode\n");
  2381. btrfs_set_opt(fs_info->mount_opt, SSD);
  2382. }
  2383. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2384. if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
  2385. ret = btrfsic_mount(tree_root, fs_devices,
  2386. btrfs_test_opt(tree_root,
  2387. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2388. 1 : 0,
  2389. fs_info->check_integrity_print_mask);
  2390. if (ret)
  2391. printk(KERN_WARNING "btrfs: failed to initialize"
  2392. " integrity check module %s\n", sb->s_id);
  2393. }
  2394. #endif
  2395. ret = btrfs_read_qgroup_config(fs_info);
  2396. if (ret)
  2397. goto fail_trans_kthread;
  2398. /* do not make disk changes in broken FS */
  2399. if (btrfs_super_log_root(disk_super) != 0) {
  2400. u64 bytenr = btrfs_super_log_root(disk_super);
  2401. if (fs_devices->rw_devices == 0) {
  2402. printk(KERN_WARNING "Btrfs log replay required "
  2403. "on RO media\n");
  2404. err = -EIO;
  2405. goto fail_qgroup;
  2406. }
  2407. blocksize =
  2408. btrfs_level_size(tree_root,
  2409. btrfs_super_log_root_level(disk_super));
  2410. log_tree_root = btrfs_alloc_root(fs_info);
  2411. if (!log_tree_root) {
  2412. err = -ENOMEM;
  2413. goto fail_qgroup;
  2414. }
  2415. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2416. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2417. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2418. blocksize,
  2419. generation + 1);
  2420. if (!log_tree_root->node ||
  2421. !extent_buffer_uptodate(log_tree_root->node)) {
  2422. printk(KERN_ERR "btrfs: failed to read log tree\n");
  2423. free_extent_buffer(log_tree_root->node);
  2424. kfree(log_tree_root);
  2425. goto fail_trans_kthread;
  2426. }
  2427. /* returns with log_tree_root freed on success */
  2428. ret = btrfs_recover_log_trees(log_tree_root);
  2429. if (ret) {
  2430. btrfs_error(tree_root->fs_info, ret,
  2431. "Failed to recover log tree");
  2432. free_extent_buffer(log_tree_root->node);
  2433. kfree(log_tree_root);
  2434. goto fail_trans_kthread;
  2435. }
  2436. if (sb->s_flags & MS_RDONLY) {
  2437. ret = btrfs_commit_super(tree_root);
  2438. if (ret)
  2439. goto fail_trans_kthread;
  2440. }
  2441. }
  2442. ret = btrfs_find_orphan_roots(tree_root);
  2443. if (ret)
  2444. goto fail_trans_kthread;
  2445. if (!(sb->s_flags & MS_RDONLY)) {
  2446. ret = btrfs_cleanup_fs_roots(fs_info);
  2447. if (ret)
  2448. goto fail_trans_kthread;
  2449. ret = btrfs_recover_relocation(tree_root);
  2450. if (ret < 0) {
  2451. printk(KERN_WARNING
  2452. "btrfs: failed to recover relocation\n");
  2453. err = -EINVAL;
  2454. goto fail_qgroup;
  2455. }
  2456. }
  2457. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2458. location.type = BTRFS_ROOT_ITEM_KEY;
  2459. location.offset = (u64)-1;
  2460. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2461. if (!fs_info->fs_root)
  2462. goto fail_qgroup;
  2463. if (IS_ERR(fs_info->fs_root)) {
  2464. err = PTR_ERR(fs_info->fs_root);
  2465. goto fail_qgroup;
  2466. }
  2467. if (sb->s_flags & MS_RDONLY)
  2468. return 0;
  2469. down_read(&fs_info->cleanup_work_sem);
  2470. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2471. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2472. up_read(&fs_info->cleanup_work_sem);
  2473. close_ctree(tree_root);
  2474. return ret;
  2475. }
  2476. up_read(&fs_info->cleanup_work_sem);
  2477. ret = btrfs_resume_balance_async(fs_info);
  2478. if (ret) {
  2479. printk(KERN_WARNING "btrfs: failed to resume balance\n");
  2480. close_ctree(tree_root);
  2481. return ret;
  2482. }
  2483. ret = btrfs_resume_dev_replace_async(fs_info);
  2484. if (ret) {
  2485. pr_warn("btrfs: failed to resume dev_replace\n");
  2486. close_ctree(tree_root);
  2487. return ret;
  2488. }
  2489. return 0;
  2490. fail_qgroup:
  2491. btrfs_free_qgroup_config(fs_info);
  2492. fail_trans_kthread:
  2493. kthread_stop(fs_info->transaction_kthread);
  2494. del_fs_roots(fs_info);
  2495. btrfs_cleanup_transaction(fs_info->tree_root);
  2496. fail_cleaner:
  2497. kthread_stop(fs_info->cleaner_kthread);
  2498. /*
  2499. * make sure we're done with the btree inode before we stop our
  2500. * kthreads
  2501. */
  2502. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2503. fail_block_groups:
  2504. btrfs_put_block_group_cache(fs_info);
  2505. btrfs_free_block_groups(fs_info);
  2506. fail_tree_roots:
  2507. free_root_pointers(fs_info, 1);
  2508. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2509. fail_sb_buffer:
  2510. btrfs_stop_all_workers(fs_info);
  2511. fail_alloc:
  2512. fail_iput:
  2513. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2514. iput(fs_info->btree_inode);
  2515. fail_delalloc_bytes:
  2516. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2517. fail_dirty_metadata_bytes:
  2518. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2519. fail_bdi:
  2520. bdi_destroy(&fs_info->bdi);
  2521. fail_srcu:
  2522. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2523. fail:
  2524. btrfs_free_stripe_hash_table(fs_info);
  2525. btrfs_close_devices(fs_info->fs_devices);
  2526. return err;
  2527. recovery_tree_root:
  2528. if (!btrfs_test_opt(tree_root, RECOVERY))
  2529. goto fail_tree_roots;
  2530. free_root_pointers(fs_info, 0);
  2531. /* don't use the log in recovery mode, it won't be valid */
  2532. btrfs_set_super_log_root(disk_super, 0);
  2533. /* we can't trust the free space cache either */
  2534. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2535. ret = next_root_backup(fs_info, fs_info->super_copy,
  2536. &num_backups_tried, &backup_index);
  2537. if (ret == -1)
  2538. goto fail_block_groups;
  2539. goto retry_root_backup;
  2540. }
  2541. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2542. {
  2543. if (uptodate) {
  2544. set_buffer_uptodate(bh);
  2545. } else {
  2546. struct btrfs_device *device = (struct btrfs_device *)
  2547. bh->b_private;
  2548. printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
  2549. "I/O error on %s\n",
  2550. rcu_str_deref(device->name));
  2551. /* note, we dont' set_buffer_write_io_error because we have
  2552. * our own ways of dealing with the IO errors
  2553. */
  2554. clear_buffer_uptodate(bh);
  2555. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2556. }
  2557. unlock_buffer(bh);
  2558. put_bh(bh);
  2559. }
  2560. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2561. {
  2562. struct buffer_head *bh;
  2563. struct buffer_head *latest = NULL;
  2564. struct btrfs_super_block *super;
  2565. int i;
  2566. u64 transid = 0;
  2567. u64 bytenr;
  2568. /* we would like to check all the supers, but that would make
  2569. * a btrfs mount succeed after a mkfs from a different FS.
  2570. * So, we need to add a special mount option to scan for
  2571. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2572. */
  2573. for (i = 0; i < 1; i++) {
  2574. bytenr = btrfs_sb_offset(i);
  2575. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  2576. break;
  2577. bh = __bread(bdev, bytenr / 4096, 4096);
  2578. if (!bh)
  2579. continue;
  2580. super = (struct btrfs_super_block *)bh->b_data;
  2581. if (btrfs_super_bytenr(super) != bytenr ||
  2582. super->magic != cpu_to_le64(BTRFS_MAGIC)) {
  2583. brelse(bh);
  2584. continue;
  2585. }
  2586. if (!latest || btrfs_super_generation(super) > transid) {
  2587. brelse(latest);
  2588. latest = bh;
  2589. transid = btrfs_super_generation(super);
  2590. } else {
  2591. brelse(bh);
  2592. }
  2593. }
  2594. return latest;
  2595. }
  2596. /*
  2597. * this should be called twice, once with wait == 0 and
  2598. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2599. * we write are pinned.
  2600. *
  2601. * They are released when wait == 1 is done.
  2602. * max_mirrors must be the same for both runs, and it indicates how
  2603. * many supers on this one device should be written.
  2604. *
  2605. * max_mirrors == 0 means to write them all.
  2606. */
  2607. static int write_dev_supers(struct btrfs_device *device,
  2608. struct btrfs_super_block *sb,
  2609. int do_barriers, int wait, int max_mirrors)
  2610. {
  2611. struct buffer_head *bh;
  2612. int i;
  2613. int ret;
  2614. int errors = 0;
  2615. u32 crc;
  2616. u64 bytenr;
  2617. if (max_mirrors == 0)
  2618. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2619. for (i = 0; i < max_mirrors; i++) {
  2620. bytenr = btrfs_sb_offset(i);
  2621. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  2622. break;
  2623. if (wait) {
  2624. bh = __find_get_block(device->bdev, bytenr / 4096,
  2625. BTRFS_SUPER_INFO_SIZE);
  2626. if (!bh) {
  2627. errors++;
  2628. continue;
  2629. }
  2630. wait_on_buffer(bh);
  2631. if (!buffer_uptodate(bh))
  2632. errors++;
  2633. /* drop our reference */
  2634. brelse(bh);
  2635. /* drop the reference from the wait == 0 run */
  2636. brelse(bh);
  2637. continue;
  2638. } else {
  2639. btrfs_set_super_bytenr(sb, bytenr);
  2640. crc = ~(u32)0;
  2641. crc = btrfs_csum_data((char *)sb +
  2642. BTRFS_CSUM_SIZE, crc,
  2643. BTRFS_SUPER_INFO_SIZE -
  2644. BTRFS_CSUM_SIZE);
  2645. btrfs_csum_final(crc, sb->csum);
  2646. /*
  2647. * one reference for us, and we leave it for the
  2648. * caller
  2649. */
  2650. bh = __getblk(device->bdev, bytenr / 4096,
  2651. BTRFS_SUPER_INFO_SIZE);
  2652. if (!bh) {
  2653. printk(KERN_ERR "btrfs: couldn't get super "
  2654. "buffer head for bytenr %Lu\n", bytenr);
  2655. errors++;
  2656. continue;
  2657. }
  2658. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2659. /* one reference for submit_bh */
  2660. get_bh(bh);
  2661. set_buffer_uptodate(bh);
  2662. lock_buffer(bh);
  2663. bh->b_end_io = btrfs_end_buffer_write_sync;
  2664. bh->b_private = device;
  2665. }
  2666. /*
  2667. * we fua the first super. The others we allow
  2668. * to go down lazy.
  2669. */
  2670. ret = btrfsic_submit_bh(WRITE_FUA, bh);
  2671. if (ret)
  2672. errors++;
  2673. }
  2674. return errors < i ? 0 : -1;
  2675. }
  2676. /*
  2677. * endio for the write_dev_flush, this will wake anyone waiting
  2678. * for the barrier when it is done
  2679. */
  2680. static void btrfs_end_empty_barrier(struct bio *bio, int err)
  2681. {
  2682. if (err) {
  2683. if (err == -EOPNOTSUPP)
  2684. set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
  2685. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2686. }
  2687. if (bio->bi_private)
  2688. complete(bio->bi_private);
  2689. bio_put(bio);
  2690. }
  2691. /*
  2692. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2693. * sent down. With wait == 1, it waits for the previous flush.
  2694. *
  2695. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2696. * capable
  2697. */
  2698. static int write_dev_flush(struct btrfs_device *device, int wait)
  2699. {
  2700. struct bio *bio;
  2701. int ret = 0;
  2702. if (device->nobarriers)
  2703. return 0;
  2704. if (wait) {
  2705. bio = device->flush_bio;
  2706. if (!bio)
  2707. return 0;
  2708. wait_for_completion(&device->flush_wait);
  2709. if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
  2710. printk_in_rcu("btrfs: disabling barriers on dev %s\n",
  2711. rcu_str_deref(device->name));
  2712. device->nobarriers = 1;
  2713. } else if (!bio_flagged(bio, BIO_UPTODATE)) {
  2714. ret = -EIO;
  2715. btrfs_dev_stat_inc_and_print(device,
  2716. BTRFS_DEV_STAT_FLUSH_ERRS);
  2717. }
  2718. /* drop the reference from the wait == 0 run */
  2719. bio_put(bio);
  2720. device->flush_bio = NULL;
  2721. return ret;
  2722. }
  2723. /*
  2724. * one reference for us, and we leave it for the
  2725. * caller
  2726. */
  2727. device->flush_bio = NULL;
  2728. bio = bio_alloc(GFP_NOFS, 0);
  2729. if (!bio)
  2730. return -ENOMEM;
  2731. bio->bi_end_io = btrfs_end_empty_barrier;
  2732. bio->bi_bdev = device->bdev;
  2733. init_completion(&device->flush_wait);
  2734. bio->bi_private = &device->flush_wait;
  2735. device->flush_bio = bio;
  2736. bio_get(bio);
  2737. btrfsic_submit_bio(WRITE_FLUSH, bio);
  2738. return 0;
  2739. }
  2740. /*
  2741. * send an empty flush down to each device in parallel,
  2742. * then wait for them
  2743. */
  2744. static int barrier_all_devices(struct btrfs_fs_info *info)
  2745. {
  2746. struct list_head *head;
  2747. struct btrfs_device *dev;
  2748. int errors_send = 0;
  2749. int errors_wait = 0;
  2750. int ret;
  2751. /* send down all the barriers */
  2752. head = &info->fs_devices->devices;
  2753. list_for_each_entry_rcu(dev, head, dev_list) {
  2754. if (!dev->bdev) {
  2755. errors_send++;
  2756. continue;
  2757. }
  2758. if (!dev->in_fs_metadata || !dev->writeable)
  2759. continue;
  2760. ret = write_dev_flush(dev, 0);
  2761. if (ret)
  2762. errors_send++;
  2763. }
  2764. /* wait for all the barriers */
  2765. list_for_each_entry_rcu(dev, head, dev_list) {
  2766. if (!dev->bdev) {
  2767. errors_wait++;
  2768. continue;
  2769. }
  2770. if (!dev->in_fs_metadata || !dev->writeable)
  2771. continue;
  2772. ret = write_dev_flush(dev, 1);
  2773. if (ret)
  2774. errors_wait++;
  2775. }
  2776. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  2777. errors_wait > info->num_tolerated_disk_barrier_failures)
  2778. return -EIO;
  2779. return 0;
  2780. }
  2781. int btrfs_calc_num_tolerated_disk_barrier_failures(
  2782. struct btrfs_fs_info *fs_info)
  2783. {
  2784. struct btrfs_ioctl_space_info space;
  2785. struct btrfs_space_info *sinfo;
  2786. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  2787. BTRFS_BLOCK_GROUP_SYSTEM,
  2788. BTRFS_BLOCK_GROUP_METADATA,
  2789. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  2790. int num_types = 4;
  2791. int i;
  2792. int c;
  2793. int num_tolerated_disk_barrier_failures =
  2794. (int)fs_info->fs_devices->num_devices;
  2795. for (i = 0; i < num_types; i++) {
  2796. struct btrfs_space_info *tmp;
  2797. sinfo = NULL;
  2798. rcu_read_lock();
  2799. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  2800. if (tmp->flags == types[i]) {
  2801. sinfo = tmp;
  2802. break;
  2803. }
  2804. }
  2805. rcu_read_unlock();
  2806. if (!sinfo)
  2807. continue;
  2808. down_read(&sinfo->groups_sem);
  2809. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  2810. if (!list_empty(&sinfo->block_groups[c])) {
  2811. u64 flags;
  2812. btrfs_get_block_group_info(
  2813. &sinfo->block_groups[c], &space);
  2814. if (space.total_bytes == 0 ||
  2815. space.used_bytes == 0)
  2816. continue;
  2817. flags = space.flags;
  2818. /*
  2819. * return
  2820. * 0: if dup, single or RAID0 is configured for
  2821. * any of metadata, system or data, else
  2822. * 1: if RAID5 is configured, or if RAID1 or
  2823. * RAID10 is configured and only two mirrors
  2824. * are used, else
  2825. * 2: if RAID6 is configured, else
  2826. * num_mirrors - 1: if RAID1 or RAID10 is
  2827. * configured and more than
  2828. * 2 mirrors are used.
  2829. */
  2830. if (num_tolerated_disk_barrier_failures > 0 &&
  2831. ((flags & (BTRFS_BLOCK_GROUP_DUP |
  2832. BTRFS_BLOCK_GROUP_RAID0)) ||
  2833. ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
  2834. == 0)))
  2835. num_tolerated_disk_barrier_failures = 0;
  2836. else if (num_tolerated_disk_barrier_failures > 1) {
  2837. if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  2838. BTRFS_BLOCK_GROUP_RAID5 |
  2839. BTRFS_BLOCK_GROUP_RAID10)) {
  2840. num_tolerated_disk_barrier_failures = 1;
  2841. } else if (flags &
  2842. BTRFS_BLOCK_GROUP_RAID5) {
  2843. num_tolerated_disk_barrier_failures = 2;
  2844. }
  2845. }
  2846. }
  2847. }
  2848. up_read(&sinfo->groups_sem);
  2849. }
  2850. return num_tolerated_disk_barrier_failures;
  2851. }
  2852. static int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2853. {
  2854. struct list_head *head;
  2855. struct btrfs_device *dev;
  2856. struct btrfs_super_block *sb;
  2857. struct btrfs_dev_item *dev_item;
  2858. int ret;
  2859. int do_barriers;
  2860. int max_errors;
  2861. int total_errors = 0;
  2862. u64 flags;
  2863. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  2864. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2865. backup_super_roots(root->fs_info);
  2866. sb = root->fs_info->super_for_commit;
  2867. dev_item = &sb->dev_item;
  2868. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2869. head = &root->fs_info->fs_devices->devices;
  2870. if (do_barriers) {
  2871. ret = barrier_all_devices(root->fs_info);
  2872. if (ret) {
  2873. mutex_unlock(
  2874. &root->fs_info->fs_devices->device_list_mutex);
  2875. btrfs_error(root->fs_info, ret,
  2876. "errors while submitting device barriers.");
  2877. return ret;
  2878. }
  2879. }
  2880. list_for_each_entry_rcu(dev, head, dev_list) {
  2881. if (!dev->bdev) {
  2882. total_errors++;
  2883. continue;
  2884. }
  2885. if (!dev->in_fs_metadata || !dev->writeable)
  2886. continue;
  2887. btrfs_set_stack_device_generation(dev_item, 0);
  2888. btrfs_set_stack_device_type(dev_item, dev->type);
  2889. btrfs_set_stack_device_id(dev_item, dev->devid);
  2890. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2891. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2892. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2893. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2894. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2895. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2896. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2897. flags = btrfs_super_flags(sb);
  2898. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2899. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2900. if (ret)
  2901. total_errors++;
  2902. }
  2903. if (total_errors > max_errors) {
  2904. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2905. total_errors);
  2906. /* This shouldn't happen. FUA is masked off if unsupported */
  2907. BUG();
  2908. }
  2909. total_errors = 0;
  2910. list_for_each_entry_rcu(dev, head, dev_list) {
  2911. if (!dev->bdev)
  2912. continue;
  2913. if (!dev->in_fs_metadata || !dev->writeable)
  2914. continue;
  2915. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  2916. if (ret)
  2917. total_errors++;
  2918. }
  2919. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2920. if (total_errors > max_errors) {
  2921. btrfs_error(root->fs_info, -EIO,
  2922. "%d errors while writing supers", total_errors);
  2923. return -EIO;
  2924. }
  2925. return 0;
  2926. }
  2927. int write_ctree_super(struct btrfs_trans_handle *trans,
  2928. struct btrfs_root *root, int max_mirrors)
  2929. {
  2930. int ret;
  2931. ret = write_all_supers(root, max_mirrors);
  2932. return ret;
  2933. }
  2934. void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  2935. {
  2936. spin_lock(&fs_info->fs_roots_radix_lock);
  2937. radix_tree_delete(&fs_info->fs_roots_radix,
  2938. (unsigned long)root->root_key.objectid);
  2939. spin_unlock(&fs_info->fs_roots_radix_lock);
  2940. if (btrfs_root_refs(&root->root_item) == 0)
  2941. synchronize_srcu(&fs_info->subvol_srcu);
  2942. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  2943. btrfs_free_log(NULL, root);
  2944. btrfs_free_log_root_tree(NULL, fs_info);
  2945. }
  2946. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  2947. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  2948. free_fs_root(root);
  2949. }
  2950. static void free_fs_root(struct btrfs_root *root)
  2951. {
  2952. iput(root->cache_inode);
  2953. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  2954. if (root->anon_dev)
  2955. free_anon_bdev(root->anon_dev);
  2956. free_extent_buffer(root->node);
  2957. free_extent_buffer(root->commit_root);
  2958. kfree(root->free_ino_ctl);
  2959. kfree(root->free_ino_pinned);
  2960. kfree(root->name);
  2961. kfree(root);
  2962. }
  2963. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  2964. {
  2965. u64 root_objectid = 0;
  2966. struct btrfs_root *gang[8];
  2967. int i;
  2968. int ret;
  2969. while (1) {
  2970. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2971. (void **)gang, root_objectid,
  2972. ARRAY_SIZE(gang));
  2973. if (!ret)
  2974. break;
  2975. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  2976. for (i = 0; i < ret; i++) {
  2977. int err;
  2978. root_objectid = gang[i]->root_key.objectid;
  2979. err = btrfs_orphan_cleanup(gang[i]);
  2980. if (err)
  2981. return err;
  2982. }
  2983. root_objectid++;
  2984. }
  2985. return 0;
  2986. }
  2987. int btrfs_commit_super(struct btrfs_root *root)
  2988. {
  2989. struct btrfs_trans_handle *trans;
  2990. int ret;
  2991. mutex_lock(&root->fs_info->cleaner_mutex);
  2992. btrfs_run_delayed_iputs(root);
  2993. mutex_unlock(&root->fs_info->cleaner_mutex);
  2994. wake_up_process(root->fs_info->cleaner_kthread);
  2995. /* wait until ongoing cleanup work done */
  2996. down_write(&root->fs_info->cleanup_work_sem);
  2997. up_write(&root->fs_info->cleanup_work_sem);
  2998. trans = btrfs_join_transaction(root);
  2999. if (IS_ERR(trans))
  3000. return PTR_ERR(trans);
  3001. ret = btrfs_commit_transaction(trans, root);
  3002. if (ret)
  3003. return ret;
  3004. /* run commit again to drop the original snapshot */
  3005. trans = btrfs_join_transaction(root);
  3006. if (IS_ERR(trans))
  3007. return PTR_ERR(trans);
  3008. ret = btrfs_commit_transaction(trans, root);
  3009. if (ret)
  3010. return ret;
  3011. ret = btrfs_write_and_wait_transaction(NULL, root);
  3012. if (ret) {
  3013. btrfs_error(root->fs_info, ret,
  3014. "Failed to sync btree inode to disk.");
  3015. return ret;
  3016. }
  3017. ret = write_ctree_super(NULL, root, 0);
  3018. return ret;
  3019. }
  3020. int close_ctree(struct btrfs_root *root)
  3021. {
  3022. struct btrfs_fs_info *fs_info = root->fs_info;
  3023. int ret;
  3024. fs_info->closing = 1;
  3025. smp_mb();
  3026. /* pause restriper - we want to resume on mount */
  3027. btrfs_pause_balance(fs_info);
  3028. btrfs_dev_replace_suspend_for_unmount(fs_info);
  3029. btrfs_scrub_cancel(fs_info);
  3030. /* wait for any defraggers to finish */
  3031. wait_event(fs_info->transaction_wait,
  3032. (atomic_read(&fs_info->defrag_running) == 0));
  3033. /* clear out the rbtree of defraggable inodes */
  3034. btrfs_cleanup_defrag_inodes(fs_info);
  3035. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  3036. ret = btrfs_commit_super(root);
  3037. if (ret)
  3038. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  3039. }
  3040. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3041. btrfs_error_commit_super(root);
  3042. btrfs_put_block_group_cache(fs_info);
  3043. kthread_stop(fs_info->transaction_kthread);
  3044. kthread_stop(fs_info->cleaner_kthread);
  3045. fs_info->closing = 2;
  3046. smp_mb();
  3047. btrfs_free_qgroup_config(root->fs_info);
  3048. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3049. printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
  3050. percpu_counter_sum(&fs_info->delalloc_bytes));
  3051. }
  3052. free_root_pointers(fs_info, 1);
  3053. btrfs_free_block_groups(fs_info);
  3054. del_fs_roots(fs_info);
  3055. iput(fs_info->btree_inode);
  3056. btrfs_stop_all_workers(fs_info);
  3057. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3058. if (btrfs_test_opt(root, CHECK_INTEGRITY))
  3059. btrfsic_unmount(root, fs_info->fs_devices);
  3060. #endif
  3061. btrfs_close_devices(fs_info->fs_devices);
  3062. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3063. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3064. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3065. bdi_destroy(&fs_info->bdi);
  3066. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3067. btrfs_free_stripe_hash_table(fs_info);
  3068. return 0;
  3069. }
  3070. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3071. int atomic)
  3072. {
  3073. int ret;
  3074. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3075. ret = extent_buffer_uptodate(buf);
  3076. if (!ret)
  3077. return ret;
  3078. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3079. parent_transid, atomic);
  3080. if (ret == -EAGAIN)
  3081. return ret;
  3082. return !ret;
  3083. }
  3084. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  3085. {
  3086. return set_extent_buffer_uptodate(buf);
  3087. }
  3088. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3089. {
  3090. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3091. u64 transid = btrfs_header_generation(buf);
  3092. int was_dirty;
  3093. btrfs_assert_tree_locked(buf);
  3094. if (transid != root->fs_info->generation)
  3095. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
  3096. "found %llu running %llu\n",
  3097. (unsigned long long)buf->start,
  3098. (unsigned long long)transid,
  3099. (unsigned long long)root->fs_info->generation);
  3100. was_dirty = set_extent_buffer_dirty(buf);
  3101. if (!was_dirty)
  3102. __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
  3103. buf->len,
  3104. root->fs_info->dirty_metadata_batch);
  3105. }
  3106. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  3107. int flush_delayed)
  3108. {
  3109. /*
  3110. * looks as though older kernels can get into trouble with
  3111. * this code, they end up stuck in balance_dirty_pages forever
  3112. */
  3113. int ret;
  3114. if (current->flags & PF_MEMALLOC)
  3115. return;
  3116. if (flush_delayed)
  3117. btrfs_balance_delayed_items(root);
  3118. ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
  3119. BTRFS_DIRTY_METADATA_THRESH);
  3120. if (ret > 0) {
  3121. balance_dirty_pages_ratelimited(
  3122. root->fs_info->btree_inode->i_mapping);
  3123. }
  3124. return;
  3125. }
  3126. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  3127. {
  3128. __btrfs_btree_balance_dirty(root, 1);
  3129. }
  3130. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  3131. {
  3132. __btrfs_btree_balance_dirty(root, 0);
  3133. }
  3134. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3135. {
  3136. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3137. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  3138. }
  3139. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3140. int read_only)
  3141. {
  3142. /*
  3143. * Placeholder for checks
  3144. */
  3145. return 0;
  3146. }
  3147. static void btrfs_error_commit_super(struct btrfs_root *root)
  3148. {
  3149. mutex_lock(&root->fs_info->cleaner_mutex);
  3150. btrfs_run_delayed_iputs(root);
  3151. mutex_unlock(&root->fs_info->cleaner_mutex);
  3152. down_write(&root->fs_info->cleanup_work_sem);
  3153. up_write(&root->fs_info->cleanup_work_sem);
  3154. /* cleanup FS via transaction */
  3155. btrfs_cleanup_transaction(root);
  3156. }
  3157. static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
  3158. struct btrfs_root *root)
  3159. {
  3160. struct btrfs_inode *btrfs_inode;
  3161. struct list_head splice;
  3162. INIT_LIST_HEAD(&splice);
  3163. mutex_lock(&root->fs_info->ordered_operations_mutex);
  3164. spin_lock(&root->fs_info->ordered_extent_lock);
  3165. list_splice_init(&t->ordered_operations, &splice);
  3166. while (!list_empty(&splice)) {
  3167. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3168. ordered_operations);
  3169. list_del_init(&btrfs_inode->ordered_operations);
  3170. spin_unlock(&root->fs_info->ordered_extent_lock);
  3171. btrfs_invalidate_inodes(btrfs_inode->root);
  3172. spin_lock(&root->fs_info->ordered_extent_lock);
  3173. }
  3174. spin_unlock(&root->fs_info->ordered_extent_lock);
  3175. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  3176. }
  3177. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3178. {
  3179. struct btrfs_ordered_extent *ordered;
  3180. spin_lock(&root->fs_info->ordered_extent_lock);
  3181. /*
  3182. * This will just short circuit the ordered completion stuff which will
  3183. * make sure the ordered extent gets properly cleaned up.
  3184. */
  3185. list_for_each_entry(ordered, &root->fs_info->ordered_extents,
  3186. root_extent_list)
  3187. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3188. spin_unlock(&root->fs_info->ordered_extent_lock);
  3189. }
  3190. int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3191. struct btrfs_root *root)
  3192. {
  3193. struct rb_node *node;
  3194. struct btrfs_delayed_ref_root *delayed_refs;
  3195. struct btrfs_delayed_ref_node *ref;
  3196. int ret = 0;
  3197. delayed_refs = &trans->delayed_refs;
  3198. spin_lock(&delayed_refs->lock);
  3199. if (delayed_refs->num_entries == 0) {
  3200. spin_unlock(&delayed_refs->lock);
  3201. printk(KERN_INFO "delayed_refs has NO entry\n");
  3202. return ret;
  3203. }
  3204. while ((node = rb_first(&delayed_refs->root)) != NULL) {
  3205. struct btrfs_delayed_ref_head *head = NULL;
  3206. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  3207. atomic_set(&ref->refs, 1);
  3208. if (btrfs_delayed_ref_is_head(ref)) {
  3209. head = btrfs_delayed_node_to_head(ref);
  3210. if (!mutex_trylock(&head->mutex)) {
  3211. atomic_inc(&ref->refs);
  3212. spin_unlock(&delayed_refs->lock);
  3213. /* Need to wait for the delayed ref to run */
  3214. mutex_lock(&head->mutex);
  3215. mutex_unlock(&head->mutex);
  3216. btrfs_put_delayed_ref(ref);
  3217. spin_lock(&delayed_refs->lock);
  3218. continue;
  3219. }
  3220. if (head->must_insert_reserved)
  3221. btrfs_pin_extent(root, ref->bytenr,
  3222. ref->num_bytes, 1);
  3223. btrfs_free_delayed_extent_op(head->extent_op);
  3224. delayed_refs->num_heads--;
  3225. if (list_empty(&head->cluster))
  3226. delayed_refs->num_heads_ready--;
  3227. list_del_init(&head->cluster);
  3228. }
  3229. ref->in_tree = 0;
  3230. rb_erase(&ref->rb_node, &delayed_refs->root);
  3231. delayed_refs->num_entries--;
  3232. if (head)
  3233. mutex_unlock(&head->mutex);
  3234. spin_unlock(&delayed_refs->lock);
  3235. btrfs_put_delayed_ref(ref);
  3236. cond_resched();
  3237. spin_lock(&delayed_refs->lock);
  3238. }
  3239. spin_unlock(&delayed_refs->lock);
  3240. return ret;
  3241. }
  3242. static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
  3243. {
  3244. struct btrfs_pending_snapshot *snapshot;
  3245. struct list_head splice;
  3246. INIT_LIST_HEAD(&splice);
  3247. list_splice_init(&t->pending_snapshots, &splice);
  3248. while (!list_empty(&splice)) {
  3249. snapshot = list_entry(splice.next,
  3250. struct btrfs_pending_snapshot,
  3251. list);
  3252. snapshot->error = -ECANCELED;
  3253. list_del_init(&snapshot->list);
  3254. }
  3255. }
  3256. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3257. {
  3258. struct btrfs_inode *btrfs_inode;
  3259. struct list_head splice;
  3260. INIT_LIST_HEAD(&splice);
  3261. spin_lock(&root->fs_info->delalloc_lock);
  3262. list_splice_init(&root->fs_info->delalloc_inodes, &splice);
  3263. while (!list_empty(&splice)) {
  3264. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  3265. delalloc_inodes);
  3266. list_del_init(&btrfs_inode->delalloc_inodes);
  3267. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3268. &btrfs_inode->runtime_flags);
  3269. spin_unlock(&root->fs_info->delalloc_lock);
  3270. btrfs_invalidate_inodes(btrfs_inode->root);
  3271. spin_lock(&root->fs_info->delalloc_lock);
  3272. }
  3273. spin_unlock(&root->fs_info->delalloc_lock);
  3274. }
  3275. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3276. struct extent_io_tree *dirty_pages,
  3277. int mark)
  3278. {
  3279. int ret;
  3280. struct extent_buffer *eb;
  3281. u64 start = 0;
  3282. u64 end;
  3283. while (1) {
  3284. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3285. mark, NULL);
  3286. if (ret)
  3287. break;
  3288. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  3289. while (start <= end) {
  3290. eb = btrfs_find_tree_block(root, start,
  3291. root->leafsize);
  3292. start += root->leafsize;
  3293. if (!eb)
  3294. continue;
  3295. wait_on_extent_buffer_writeback(eb);
  3296. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3297. &eb->bflags))
  3298. clear_extent_buffer_dirty(eb);
  3299. free_extent_buffer_stale(eb);
  3300. }
  3301. }
  3302. return ret;
  3303. }
  3304. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3305. struct extent_io_tree *pinned_extents)
  3306. {
  3307. struct extent_io_tree *unpin;
  3308. u64 start;
  3309. u64 end;
  3310. int ret;
  3311. bool loop = true;
  3312. unpin = pinned_extents;
  3313. again:
  3314. while (1) {
  3315. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3316. EXTENT_DIRTY, NULL);
  3317. if (ret)
  3318. break;
  3319. /* opt_discard */
  3320. if (btrfs_test_opt(root, DISCARD))
  3321. ret = btrfs_error_discard_extent(root, start,
  3322. end + 1 - start,
  3323. NULL);
  3324. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  3325. btrfs_error_unpin_extent_range(root, start, end);
  3326. cond_resched();
  3327. }
  3328. if (loop) {
  3329. if (unpin == &root->fs_info->freed_extents[0])
  3330. unpin = &root->fs_info->freed_extents[1];
  3331. else
  3332. unpin = &root->fs_info->freed_extents[0];
  3333. loop = false;
  3334. goto again;
  3335. }
  3336. return 0;
  3337. }
  3338. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3339. struct btrfs_root *root)
  3340. {
  3341. btrfs_destroy_delayed_refs(cur_trans, root);
  3342. btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
  3343. cur_trans->dirty_pages.dirty_bytes);
  3344. /* FIXME: cleanup wait for commit */
  3345. cur_trans->in_commit = 1;
  3346. cur_trans->blocked = 1;
  3347. wake_up(&root->fs_info->transaction_blocked_wait);
  3348. btrfs_evict_pending_snapshots(cur_trans);
  3349. cur_trans->blocked = 0;
  3350. wake_up(&root->fs_info->transaction_wait);
  3351. cur_trans->commit_done = 1;
  3352. wake_up(&cur_trans->commit_wait);
  3353. btrfs_destroy_delayed_inodes(root);
  3354. btrfs_assert_delayed_root_empty(root);
  3355. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3356. EXTENT_DIRTY);
  3357. btrfs_destroy_pinned_extent(root,
  3358. root->fs_info->pinned_extents);
  3359. /*
  3360. memset(cur_trans, 0, sizeof(*cur_trans));
  3361. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3362. */
  3363. }
  3364. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  3365. {
  3366. struct btrfs_transaction *t;
  3367. LIST_HEAD(list);
  3368. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3369. spin_lock(&root->fs_info->trans_lock);
  3370. list_splice_init(&root->fs_info->trans_list, &list);
  3371. root->fs_info->trans_no_join = 1;
  3372. spin_unlock(&root->fs_info->trans_lock);
  3373. while (!list_empty(&list)) {
  3374. t = list_entry(list.next, struct btrfs_transaction, list);
  3375. btrfs_destroy_ordered_operations(t, root);
  3376. btrfs_destroy_ordered_extents(root);
  3377. btrfs_destroy_delayed_refs(t, root);
  3378. /* FIXME: cleanup wait for commit */
  3379. t->in_commit = 1;
  3380. t->blocked = 1;
  3381. smp_mb();
  3382. if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
  3383. wake_up(&root->fs_info->transaction_blocked_wait);
  3384. btrfs_evict_pending_snapshots(t);
  3385. t->blocked = 0;
  3386. smp_mb();
  3387. if (waitqueue_active(&root->fs_info->transaction_wait))
  3388. wake_up(&root->fs_info->transaction_wait);
  3389. t->commit_done = 1;
  3390. smp_mb();
  3391. if (waitqueue_active(&t->commit_wait))
  3392. wake_up(&t->commit_wait);
  3393. btrfs_destroy_delayed_inodes(root);
  3394. btrfs_assert_delayed_root_empty(root);
  3395. btrfs_destroy_delalloc_inodes(root);
  3396. spin_lock(&root->fs_info->trans_lock);
  3397. root->fs_info->running_transaction = NULL;
  3398. spin_unlock(&root->fs_info->trans_lock);
  3399. btrfs_destroy_marked_extents(root, &t->dirty_pages,
  3400. EXTENT_DIRTY);
  3401. btrfs_destroy_pinned_extent(root,
  3402. root->fs_info->pinned_extents);
  3403. atomic_set(&t->use_count, 0);
  3404. list_del_init(&t->list);
  3405. memset(t, 0, sizeof(*t));
  3406. kmem_cache_free(btrfs_transaction_cachep, t);
  3407. }
  3408. spin_lock(&root->fs_info->trans_lock);
  3409. root->fs_info->trans_no_join = 0;
  3410. spin_unlock(&root->fs_info->trans_lock);
  3411. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3412. return 0;
  3413. }
  3414. static struct extent_io_ops btree_extent_io_ops = {
  3415. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3416. .readpage_io_failed_hook = btree_io_failed_hook,
  3417. .submit_bio_hook = btree_submit_bio_hook,
  3418. /* note we're sharing with inode.c for the merge bio hook */
  3419. .merge_bio_hook = btrfs_merge_bio_hook,
  3420. };