inode.c 103 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566
  1. /*
  2. * linux/fs/ext4/inode.c
  3. *
  4. * Copyright (C) 1992, 1993, 1994, 1995
  5. * Remy Card (card@masi.ibp.fr)
  6. * Laboratoire MASI - Institut Blaise Pascal
  7. * Universite Pierre et Marie Curie (Paris VI)
  8. *
  9. * from
  10. *
  11. * linux/fs/minix/inode.c
  12. *
  13. * Copyright (C) 1991, 1992 Linus Torvalds
  14. *
  15. * Goal-directed block allocation by Stephen Tweedie
  16. * (sct@redhat.com), 1993, 1998
  17. * Big-endian to little-endian byte-swapping/bitmaps by
  18. * David S. Miller (davem@caip.rutgers.edu), 1995
  19. * 64-bit file support on 64-bit platforms by Jakub Jelinek
  20. * (jj@sunsite.ms.mff.cuni.cz)
  21. *
  22. * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  23. */
  24. #include <linux/module.h>
  25. #include <linux/fs.h>
  26. #include <linux/time.h>
  27. #include <linux/jbd2.h>
  28. #include <linux/highuid.h>
  29. #include <linux/pagemap.h>
  30. #include <linux/quotaops.h>
  31. #include <linux/string.h>
  32. #include <linux/buffer_head.h>
  33. #include <linux/writeback.h>
  34. #include <linux/mpage.h>
  35. #include <linux/uio.h>
  36. #include <linux/bio.h>
  37. #include "ext4_jbd2.h"
  38. #include "xattr.h"
  39. #include "acl.h"
  40. /*
  41. * Test whether an inode is a fast symlink.
  42. */
  43. static int ext4_inode_is_fast_symlink(struct inode *inode)
  44. {
  45. int ea_blocks = EXT4_I(inode)->i_file_acl ?
  46. (inode->i_sb->s_blocksize >> 9) : 0;
  47. return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
  48. }
  49. /*
  50. * The ext4 forget function must perform a revoke if we are freeing data
  51. * which has been journaled. Metadata (eg. indirect blocks) must be
  52. * revoked in all cases.
  53. *
  54. * "bh" may be NULL: a metadata block may have been freed from memory
  55. * but there may still be a record of it in the journal, and that record
  56. * still needs to be revoked.
  57. */
  58. int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
  59. struct buffer_head *bh, ext4_fsblk_t blocknr)
  60. {
  61. int err;
  62. might_sleep();
  63. BUFFER_TRACE(bh, "enter");
  64. jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
  65. "data mode %lx\n",
  66. bh, is_metadata, inode->i_mode,
  67. test_opt(inode->i_sb, DATA_FLAGS));
  68. /* Never use the revoke function if we are doing full data
  69. * journaling: there is no need to, and a V1 superblock won't
  70. * support it. Otherwise, only skip the revoke on un-journaled
  71. * data blocks. */
  72. if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
  73. (!is_metadata && !ext4_should_journal_data(inode))) {
  74. if (bh) {
  75. BUFFER_TRACE(bh, "call jbd2_journal_forget");
  76. return ext4_journal_forget(handle, bh);
  77. }
  78. return 0;
  79. }
  80. /*
  81. * data!=journal && (is_metadata || should_journal_data(inode))
  82. */
  83. BUFFER_TRACE(bh, "call ext4_journal_revoke");
  84. err = ext4_journal_revoke(handle, blocknr, bh);
  85. if (err)
  86. ext4_abort(inode->i_sb, __func__,
  87. "error %d when attempting revoke", err);
  88. BUFFER_TRACE(bh, "exit");
  89. return err;
  90. }
  91. /*
  92. * Work out how many blocks we need to proceed with the next chunk of a
  93. * truncate transaction.
  94. */
  95. static unsigned long blocks_for_truncate(struct inode *inode)
  96. {
  97. ext4_lblk_t needed;
  98. needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
  99. /* Give ourselves just enough room to cope with inodes in which
  100. * i_blocks is corrupt: we've seen disk corruptions in the past
  101. * which resulted in random data in an inode which looked enough
  102. * like a regular file for ext4 to try to delete it. Things
  103. * will go a bit crazy if that happens, but at least we should
  104. * try not to panic the whole kernel. */
  105. if (needed < 2)
  106. needed = 2;
  107. /* But we need to bound the transaction so we don't overflow the
  108. * journal. */
  109. if (needed > EXT4_MAX_TRANS_DATA)
  110. needed = EXT4_MAX_TRANS_DATA;
  111. return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
  112. }
  113. /*
  114. * Truncate transactions can be complex and absolutely huge. So we need to
  115. * be able to restart the transaction at a conventient checkpoint to make
  116. * sure we don't overflow the journal.
  117. *
  118. * start_transaction gets us a new handle for a truncate transaction,
  119. * and extend_transaction tries to extend the existing one a bit. If
  120. * extend fails, we need to propagate the failure up and restart the
  121. * transaction in the top-level truncate loop. --sct
  122. */
  123. static handle_t *start_transaction(struct inode *inode)
  124. {
  125. handle_t *result;
  126. result = ext4_journal_start(inode, blocks_for_truncate(inode));
  127. if (!IS_ERR(result))
  128. return result;
  129. ext4_std_error(inode->i_sb, PTR_ERR(result));
  130. return result;
  131. }
  132. /*
  133. * Try to extend this transaction for the purposes of truncation.
  134. *
  135. * Returns 0 if we managed to create more room. If we can't create more
  136. * room, and the transaction must be restarted we return 1.
  137. */
  138. static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
  139. {
  140. if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
  141. return 0;
  142. if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
  143. return 0;
  144. return 1;
  145. }
  146. /*
  147. * Restart the transaction associated with *handle. This does a commit,
  148. * so before we call here everything must be consistently dirtied against
  149. * this transaction.
  150. */
  151. static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
  152. {
  153. jbd_debug(2, "restarting handle %p\n", handle);
  154. return ext4_journal_restart(handle, blocks_for_truncate(inode));
  155. }
  156. /*
  157. * Called at the last iput() if i_nlink is zero.
  158. */
  159. void ext4_delete_inode (struct inode * inode)
  160. {
  161. handle_t *handle;
  162. truncate_inode_pages(&inode->i_data, 0);
  163. if (is_bad_inode(inode))
  164. goto no_delete;
  165. handle = start_transaction(inode);
  166. if (IS_ERR(handle)) {
  167. /*
  168. * If we're going to skip the normal cleanup, we still need to
  169. * make sure that the in-core orphan linked list is properly
  170. * cleaned up.
  171. */
  172. ext4_orphan_del(NULL, inode);
  173. goto no_delete;
  174. }
  175. if (IS_SYNC(inode))
  176. handle->h_sync = 1;
  177. inode->i_size = 0;
  178. if (inode->i_blocks)
  179. ext4_truncate(inode);
  180. /*
  181. * Kill off the orphan record which ext4_truncate created.
  182. * AKPM: I think this can be inside the above `if'.
  183. * Note that ext4_orphan_del() has to be able to cope with the
  184. * deletion of a non-existent orphan - this is because we don't
  185. * know if ext4_truncate() actually created an orphan record.
  186. * (Well, we could do this if we need to, but heck - it works)
  187. */
  188. ext4_orphan_del(handle, inode);
  189. EXT4_I(inode)->i_dtime = get_seconds();
  190. /*
  191. * One subtle ordering requirement: if anything has gone wrong
  192. * (transaction abort, IO errors, whatever), then we can still
  193. * do these next steps (the fs will already have been marked as
  194. * having errors), but we can't free the inode if the mark_dirty
  195. * fails.
  196. */
  197. if (ext4_mark_inode_dirty(handle, inode))
  198. /* If that failed, just do the required in-core inode clear. */
  199. clear_inode(inode);
  200. else
  201. ext4_free_inode(handle, inode);
  202. ext4_journal_stop(handle);
  203. return;
  204. no_delete:
  205. clear_inode(inode); /* We must guarantee clearing of inode... */
  206. }
  207. typedef struct {
  208. __le32 *p;
  209. __le32 key;
  210. struct buffer_head *bh;
  211. } Indirect;
  212. static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
  213. {
  214. p->key = *(p->p = v);
  215. p->bh = bh;
  216. }
  217. /**
  218. * ext4_block_to_path - parse the block number into array of offsets
  219. * @inode: inode in question (we are only interested in its superblock)
  220. * @i_block: block number to be parsed
  221. * @offsets: array to store the offsets in
  222. * @boundary: set this non-zero if the referred-to block is likely to be
  223. * followed (on disk) by an indirect block.
  224. *
  225. * To store the locations of file's data ext4 uses a data structure common
  226. * for UNIX filesystems - tree of pointers anchored in the inode, with
  227. * data blocks at leaves and indirect blocks in intermediate nodes.
  228. * This function translates the block number into path in that tree -
  229. * return value is the path length and @offsets[n] is the offset of
  230. * pointer to (n+1)th node in the nth one. If @block is out of range
  231. * (negative or too large) warning is printed and zero returned.
  232. *
  233. * Note: function doesn't find node addresses, so no IO is needed. All
  234. * we need to know is the capacity of indirect blocks (taken from the
  235. * inode->i_sb).
  236. */
  237. /*
  238. * Portability note: the last comparison (check that we fit into triple
  239. * indirect block) is spelled differently, because otherwise on an
  240. * architecture with 32-bit longs and 8Kb pages we might get into trouble
  241. * if our filesystem had 8Kb blocks. We might use long long, but that would
  242. * kill us on x86. Oh, well, at least the sign propagation does not matter -
  243. * i_block would have to be negative in the very beginning, so we would not
  244. * get there at all.
  245. */
  246. static int ext4_block_to_path(struct inode *inode,
  247. ext4_lblk_t i_block,
  248. ext4_lblk_t offsets[4], int *boundary)
  249. {
  250. int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  251. int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
  252. const long direct_blocks = EXT4_NDIR_BLOCKS,
  253. indirect_blocks = ptrs,
  254. double_blocks = (1 << (ptrs_bits * 2));
  255. int n = 0;
  256. int final = 0;
  257. if (i_block < 0) {
  258. ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
  259. } else if (i_block < direct_blocks) {
  260. offsets[n++] = i_block;
  261. final = direct_blocks;
  262. } else if ( (i_block -= direct_blocks) < indirect_blocks) {
  263. offsets[n++] = EXT4_IND_BLOCK;
  264. offsets[n++] = i_block;
  265. final = ptrs;
  266. } else if ((i_block -= indirect_blocks) < double_blocks) {
  267. offsets[n++] = EXT4_DIND_BLOCK;
  268. offsets[n++] = i_block >> ptrs_bits;
  269. offsets[n++] = i_block & (ptrs - 1);
  270. final = ptrs;
  271. } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
  272. offsets[n++] = EXT4_TIND_BLOCK;
  273. offsets[n++] = i_block >> (ptrs_bits * 2);
  274. offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
  275. offsets[n++] = i_block & (ptrs - 1);
  276. final = ptrs;
  277. } else {
  278. ext4_warning(inode->i_sb, "ext4_block_to_path",
  279. "block %lu > max",
  280. i_block + direct_blocks +
  281. indirect_blocks + double_blocks);
  282. }
  283. if (boundary)
  284. *boundary = final - 1 - (i_block & (ptrs - 1));
  285. return n;
  286. }
  287. /**
  288. * ext4_get_branch - read the chain of indirect blocks leading to data
  289. * @inode: inode in question
  290. * @depth: depth of the chain (1 - direct pointer, etc.)
  291. * @offsets: offsets of pointers in inode/indirect blocks
  292. * @chain: place to store the result
  293. * @err: here we store the error value
  294. *
  295. * Function fills the array of triples <key, p, bh> and returns %NULL
  296. * if everything went OK or the pointer to the last filled triple
  297. * (incomplete one) otherwise. Upon the return chain[i].key contains
  298. * the number of (i+1)-th block in the chain (as it is stored in memory,
  299. * i.e. little-endian 32-bit), chain[i].p contains the address of that
  300. * number (it points into struct inode for i==0 and into the bh->b_data
  301. * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
  302. * block for i>0 and NULL for i==0. In other words, it holds the block
  303. * numbers of the chain, addresses they were taken from (and where we can
  304. * verify that chain did not change) and buffer_heads hosting these
  305. * numbers.
  306. *
  307. * Function stops when it stumbles upon zero pointer (absent block)
  308. * (pointer to last triple returned, *@err == 0)
  309. * or when it gets an IO error reading an indirect block
  310. * (ditto, *@err == -EIO)
  311. * or when it reads all @depth-1 indirect blocks successfully and finds
  312. * the whole chain, all way to the data (returns %NULL, *err == 0).
  313. *
  314. * Need to be called with
  315. * down_read(&EXT4_I(inode)->i_data_sem)
  316. */
  317. static Indirect *ext4_get_branch(struct inode *inode, int depth,
  318. ext4_lblk_t *offsets,
  319. Indirect chain[4], int *err)
  320. {
  321. struct super_block *sb = inode->i_sb;
  322. Indirect *p = chain;
  323. struct buffer_head *bh;
  324. *err = 0;
  325. /* i_data is not going away, no lock needed */
  326. add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
  327. if (!p->key)
  328. goto no_block;
  329. while (--depth) {
  330. bh = sb_bread(sb, le32_to_cpu(p->key));
  331. if (!bh)
  332. goto failure;
  333. add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
  334. /* Reader: end */
  335. if (!p->key)
  336. goto no_block;
  337. }
  338. return NULL;
  339. failure:
  340. *err = -EIO;
  341. no_block:
  342. return p;
  343. }
  344. /**
  345. * ext4_find_near - find a place for allocation with sufficient locality
  346. * @inode: owner
  347. * @ind: descriptor of indirect block.
  348. *
  349. * This function returns the preferred place for block allocation.
  350. * It is used when heuristic for sequential allocation fails.
  351. * Rules are:
  352. * + if there is a block to the left of our position - allocate near it.
  353. * + if pointer will live in indirect block - allocate near that block.
  354. * + if pointer will live in inode - allocate in the same
  355. * cylinder group.
  356. *
  357. * In the latter case we colour the starting block by the callers PID to
  358. * prevent it from clashing with concurrent allocations for a different inode
  359. * in the same block group. The PID is used here so that functionally related
  360. * files will be close-by on-disk.
  361. *
  362. * Caller must make sure that @ind is valid and will stay that way.
  363. */
  364. static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
  365. {
  366. struct ext4_inode_info *ei = EXT4_I(inode);
  367. __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
  368. __le32 *p;
  369. ext4_fsblk_t bg_start;
  370. ext4_fsblk_t last_block;
  371. ext4_grpblk_t colour;
  372. /* Try to find previous block */
  373. for (p = ind->p - 1; p >= start; p--) {
  374. if (*p)
  375. return le32_to_cpu(*p);
  376. }
  377. /* No such thing, so let's try location of indirect block */
  378. if (ind->bh)
  379. return ind->bh->b_blocknr;
  380. /*
  381. * It is going to be referred to from the inode itself? OK, just put it
  382. * into the same cylinder group then.
  383. */
  384. bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
  385. last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
  386. if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
  387. colour = (current->pid % 16) *
  388. (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
  389. else
  390. colour = (current->pid % 16) * ((last_block - bg_start) / 16);
  391. return bg_start + colour;
  392. }
  393. /**
  394. * ext4_find_goal - find a preferred place for allocation.
  395. * @inode: owner
  396. * @block: block we want
  397. * @partial: pointer to the last triple within a chain
  398. *
  399. * Normally this function find the preferred place for block allocation,
  400. * returns it.
  401. */
  402. static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
  403. Indirect *partial)
  404. {
  405. struct ext4_block_alloc_info *block_i;
  406. block_i = EXT4_I(inode)->i_block_alloc_info;
  407. /*
  408. * try the heuristic for sequential allocation,
  409. * failing that at least try to get decent locality.
  410. */
  411. if (block_i && (block == block_i->last_alloc_logical_block + 1)
  412. && (block_i->last_alloc_physical_block != 0)) {
  413. return block_i->last_alloc_physical_block + 1;
  414. }
  415. return ext4_find_near(inode, partial);
  416. }
  417. /**
  418. * ext4_blks_to_allocate: Look up the block map and count the number
  419. * of direct blocks need to be allocated for the given branch.
  420. *
  421. * @branch: chain of indirect blocks
  422. * @k: number of blocks need for indirect blocks
  423. * @blks: number of data blocks to be mapped.
  424. * @blocks_to_boundary: the offset in the indirect block
  425. *
  426. * return the total number of blocks to be allocate, including the
  427. * direct and indirect blocks.
  428. */
  429. static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
  430. int blocks_to_boundary)
  431. {
  432. unsigned long count = 0;
  433. /*
  434. * Simple case, [t,d]Indirect block(s) has not allocated yet
  435. * then it's clear blocks on that path have not allocated
  436. */
  437. if (k > 0) {
  438. /* right now we don't handle cross boundary allocation */
  439. if (blks < blocks_to_boundary + 1)
  440. count += blks;
  441. else
  442. count += blocks_to_boundary + 1;
  443. return count;
  444. }
  445. count++;
  446. while (count < blks && count <= blocks_to_boundary &&
  447. le32_to_cpu(*(branch[0].p + count)) == 0) {
  448. count++;
  449. }
  450. return count;
  451. }
  452. /**
  453. * ext4_alloc_blocks: multiple allocate blocks needed for a branch
  454. * @indirect_blks: the number of blocks need to allocate for indirect
  455. * blocks
  456. *
  457. * @new_blocks: on return it will store the new block numbers for
  458. * the indirect blocks(if needed) and the first direct block,
  459. * @blks: on return it will store the total number of allocated
  460. * direct blocks
  461. */
  462. static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
  463. ext4_lblk_t iblock, ext4_fsblk_t goal,
  464. int indirect_blks, int blks,
  465. ext4_fsblk_t new_blocks[4], int *err)
  466. {
  467. int target, i;
  468. unsigned long count = 0, blk_allocated = 0;
  469. int index = 0;
  470. ext4_fsblk_t current_block = 0;
  471. int ret = 0;
  472. /*
  473. * Here we try to allocate the requested multiple blocks at once,
  474. * on a best-effort basis.
  475. * To build a branch, we should allocate blocks for
  476. * the indirect blocks(if not allocated yet), and at least
  477. * the first direct block of this branch. That's the
  478. * minimum number of blocks need to allocate(required)
  479. */
  480. /* first we try to allocate the indirect blocks */
  481. target = indirect_blks;
  482. while (target > 0) {
  483. count = target;
  484. /* allocating blocks for indirect blocks and direct blocks */
  485. current_block = ext4_new_meta_blocks(handle, inode,
  486. goal, &count, err);
  487. if (*err)
  488. goto failed_out;
  489. target -= count;
  490. /* allocate blocks for indirect blocks */
  491. while (index < indirect_blks && count) {
  492. new_blocks[index++] = current_block++;
  493. count--;
  494. }
  495. if (count > 0) {
  496. /*
  497. * save the new block number
  498. * for the first direct block
  499. */
  500. new_blocks[index] = current_block;
  501. printk(KERN_INFO "%s returned more blocks than "
  502. "requested\n", __func__);
  503. WARN_ON(1);
  504. break;
  505. }
  506. }
  507. target = blks - count ;
  508. blk_allocated = count;
  509. if (!target)
  510. goto allocated;
  511. /* Now allocate data blocks */
  512. count = target;
  513. /* allocating blocks for data blocks */
  514. current_block = ext4_new_blocks(handle, inode, iblock,
  515. goal, &count, err);
  516. if (*err && (target == blks)) {
  517. /*
  518. * if the allocation failed and we didn't allocate
  519. * any blocks before
  520. */
  521. goto failed_out;
  522. }
  523. if (!*err) {
  524. if (target == blks) {
  525. /*
  526. * save the new block number
  527. * for the first direct block
  528. */
  529. new_blocks[index] = current_block;
  530. }
  531. blk_allocated += count;
  532. }
  533. allocated:
  534. /* total number of blocks allocated for direct blocks */
  535. ret = blk_allocated;
  536. *err = 0;
  537. return ret;
  538. failed_out:
  539. for (i = 0; i <index; i++)
  540. ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
  541. return ret;
  542. }
  543. /**
  544. * ext4_alloc_branch - allocate and set up a chain of blocks.
  545. * @inode: owner
  546. * @indirect_blks: number of allocated indirect blocks
  547. * @blks: number of allocated direct blocks
  548. * @offsets: offsets (in the blocks) to store the pointers to next.
  549. * @branch: place to store the chain in.
  550. *
  551. * This function allocates blocks, zeroes out all but the last one,
  552. * links them into chain and (if we are synchronous) writes them to disk.
  553. * In other words, it prepares a branch that can be spliced onto the
  554. * inode. It stores the information about that chain in the branch[], in
  555. * the same format as ext4_get_branch() would do. We are calling it after
  556. * we had read the existing part of chain and partial points to the last
  557. * triple of that (one with zero ->key). Upon the exit we have the same
  558. * picture as after the successful ext4_get_block(), except that in one
  559. * place chain is disconnected - *branch->p is still zero (we did not
  560. * set the last link), but branch->key contains the number that should
  561. * be placed into *branch->p to fill that gap.
  562. *
  563. * If allocation fails we free all blocks we've allocated (and forget
  564. * their buffer_heads) and return the error value the from failed
  565. * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
  566. * as described above and return 0.
  567. */
  568. static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
  569. ext4_lblk_t iblock, int indirect_blks,
  570. int *blks, ext4_fsblk_t goal,
  571. ext4_lblk_t *offsets, Indirect *branch)
  572. {
  573. int blocksize = inode->i_sb->s_blocksize;
  574. int i, n = 0;
  575. int err = 0;
  576. struct buffer_head *bh;
  577. int num;
  578. ext4_fsblk_t new_blocks[4];
  579. ext4_fsblk_t current_block;
  580. num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
  581. *blks, new_blocks, &err);
  582. if (err)
  583. return err;
  584. branch[0].key = cpu_to_le32(new_blocks[0]);
  585. /*
  586. * metadata blocks and data blocks are allocated.
  587. */
  588. for (n = 1; n <= indirect_blks; n++) {
  589. /*
  590. * Get buffer_head for parent block, zero it out
  591. * and set the pointer to new one, then send
  592. * parent to disk.
  593. */
  594. bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
  595. branch[n].bh = bh;
  596. lock_buffer(bh);
  597. BUFFER_TRACE(bh, "call get_create_access");
  598. err = ext4_journal_get_create_access(handle, bh);
  599. if (err) {
  600. unlock_buffer(bh);
  601. brelse(bh);
  602. goto failed;
  603. }
  604. memset(bh->b_data, 0, blocksize);
  605. branch[n].p = (__le32 *) bh->b_data + offsets[n];
  606. branch[n].key = cpu_to_le32(new_blocks[n]);
  607. *branch[n].p = branch[n].key;
  608. if ( n == indirect_blks) {
  609. current_block = new_blocks[n];
  610. /*
  611. * End of chain, update the last new metablock of
  612. * the chain to point to the new allocated
  613. * data blocks numbers
  614. */
  615. for (i=1; i < num; i++)
  616. *(branch[n].p + i) = cpu_to_le32(++current_block);
  617. }
  618. BUFFER_TRACE(bh, "marking uptodate");
  619. set_buffer_uptodate(bh);
  620. unlock_buffer(bh);
  621. BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
  622. err = ext4_journal_dirty_metadata(handle, bh);
  623. if (err)
  624. goto failed;
  625. }
  626. *blks = num;
  627. return err;
  628. failed:
  629. /* Allocation failed, free what we already allocated */
  630. for (i = 1; i <= n ; i++) {
  631. BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
  632. ext4_journal_forget(handle, branch[i].bh);
  633. }
  634. for (i = 0; i <indirect_blks; i++)
  635. ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
  636. ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
  637. return err;
  638. }
  639. /**
  640. * ext4_splice_branch - splice the allocated branch onto inode.
  641. * @inode: owner
  642. * @block: (logical) number of block we are adding
  643. * @chain: chain of indirect blocks (with a missing link - see
  644. * ext4_alloc_branch)
  645. * @where: location of missing link
  646. * @num: number of indirect blocks we are adding
  647. * @blks: number of direct blocks we are adding
  648. *
  649. * This function fills the missing link and does all housekeeping needed in
  650. * inode (->i_blocks, etc.). In case of success we end up with the full
  651. * chain to new block and return 0.
  652. */
  653. static int ext4_splice_branch(handle_t *handle, struct inode *inode,
  654. ext4_lblk_t block, Indirect *where, int num, int blks)
  655. {
  656. int i;
  657. int err = 0;
  658. struct ext4_block_alloc_info *block_i;
  659. ext4_fsblk_t current_block;
  660. block_i = EXT4_I(inode)->i_block_alloc_info;
  661. /*
  662. * If we're splicing into a [td]indirect block (as opposed to the
  663. * inode) then we need to get write access to the [td]indirect block
  664. * before the splice.
  665. */
  666. if (where->bh) {
  667. BUFFER_TRACE(where->bh, "get_write_access");
  668. err = ext4_journal_get_write_access(handle, where->bh);
  669. if (err)
  670. goto err_out;
  671. }
  672. /* That's it */
  673. *where->p = where->key;
  674. /*
  675. * Update the host buffer_head or inode to point to more just allocated
  676. * direct blocks blocks
  677. */
  678. if (num == 0 && blks > 1) {
  679. current_block = le32_to_cpu(where->key) + 1;
  680. for (i = 1; i < blks; i++)
  681. *(where->p + i ) = cpu_to_le32(current_block++);
  682. }
  683. /*
  684. * update the most recently allocated logical & physical block
  685. * in i_block_alloc_info, to assist find the proper goal block for next
  686. * allocation
  687. */
  688. if (block_i) {
  689. block_i->last_alloc_logical_block = block + blks - 1;
  690. block_i->last_alloc_physical_block =
  691. le32_to_cpu(where[num].key) + blks - 1;
  692. }
  693. /* We are done with atomic stuff, now do the rest of housekeeping */
  694. inode->i_ctime = ext4_current_time(inode);
  695. ext4_mark_inode_dirty(handle, inode);
  696. /* had we spliced it onto indirect block? */
  697. if (where->bh) {
  698. /*
  699. * If we spliced it onto an indirect block, we haven't
  700. * altered the inode. Note however that if it is being spliced
  701. * onto an indirect block at the very end of the file (the
  702. * file is growing) then we *will* alter the inode to reflect
  703. * the new i_size. But that is not done here - it is done in
  704. * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
  705. */
  706. jbd_debug(5, "splicing indirect only\n");
  707. BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
  708. err = ext4_journal_dirty_metadata(handle, where->bh);
  709. if (err)
  710. goto err_out;
  711. } else {
  712. /*
  713. * OK, we spliced it into the inode itself on a direct block.
  714. * Inode was dirtied above.
  715. */
  716. jbd_debug(5, "splicing direct\n");
  717. }
  718. return err;
  719. err_out:
  720. for (i = 1; i <= num; i++) {
  721. BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
  722. ext4_journal_forget(handle, where[i].bh);
  723. ext4_free_blocks(handle, inode,
  724. le32_to_cpu(where[i-1].key), 1, 0);
  725. }
  726. ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
  727. return err;
  728. }
  729. /*
  730. * Allocation strategy is simple: if we have to allocate something, we will
  731. * have to go the whole way to leaf. So let's do it before attaching anything
  732. * to tree, set linkage between the newborn blocks, write them if sync is
  733. * required, recheck the path, free and repeat if check fails, otherwise
  734. * set the last missing link (that will protect us from any truncate-generated
  735. * removals - all blocks on the path are immune now) and possibly force the
  736. * write on the parent block.
  737. * That has a nice additional property: no special recovery from the failed
  738. * allocations is needed - we simply release blocks and do not touch anything
  739. * reachable from inode.
  740. *
  741. * `handle' can be NULL if create == 0.
  742. *
  743. * return > 0, # of blocks mapped or allocated.
  744. * return = 0, if plain lookup failed.
  745. * return < 0, error case.
  746. *
  747. *
  748. * Need to be called with
  749. * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
  750. * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
  751. */
  752. int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
  753. ext4_lblk_t iblock, unsigned long maxblocks,
  754. struct buffer_head *bh_result,
  755. int create, int extend_disksize)
  756. {
  757. int err = -EIO;
  758. ext4_lblk_t offsets[4];
  759. Indirect chain[4];
  760. Indirect *partial;
  761. ext4_fsblk_t goal;
  762. int indirect_blks;
  763. int blocks_to_boundary = 0;
  764. int depth;
  765. struct ext4_inode_info *ei = EXT4_I(inode);
  766. int count = 0;
  767. ext4_fsblk_t first_block = 0;
  768. J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
  769. J_ASSERT(handle != NULL || create == 0);
  770. depth = ext4_block_to_path(inode, iblock, offsets,
  771. &blocks_to_boundary);
  772. if (depth == 0)
  773. goto out;
  774. partial = ext4_get_branch(inode, depth, offsets, chain, &err);
  775. /* Simplest case - block found, no allocation needed */
  776. if (!partial) {
  777. first_block = le32_to_cpu(chain[depth - 1].key);
  778. clear_buffer_new(bh_result);
  779. count++;
  780. /*map more blocks*/
  781. while (count < maxblocks && count <= blocks_to_boundary) {
  782. ext4_fsblk_t blk;
  783. blk = le32_to_cpu(*(chain[depth-1].p + count));
  784. if (blk == first_block + count)
  785. count++;
  786. else
  787. break;
  788. }
  789. goto got_it;
  790. }
  791. /* Next simple case - plain lookup or failed read of indirect block */
  792. if (!create || err == -EIO)
  793. goto cleanup;
  794. /*
  795. * Okay, we need to do block allocation. Lazily initialize the block
  796. * allocation info here if necessary
  797. */
  798. if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
  799. ext4_init_block_alloc_info(inode);
  800. goal = ext4_find_goal(inode, iblock, partial);
  801. /* the number of blocks need to allocate for [d,t]indirect blocks */
  802. indirect_blks = (chain + depth) - partial - 1;
  803. /*
  804. * Next look up the indirect map to count the totoal number of
  805. * direct blocks to allocate for this branch.
  806. */
  807. count = ext4_blks_to_allocate(partial, indirect_blks,
  808. maxblocks, blocks_to_boundary);
  809. /*
  810. * Block out ext4_truncate while we alter the tree
  811. */
  812. err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
  813. &count, goal,
  814. offsets + (partial - chain), partial);
  815. /*
  816. * The ext4_splice_branch call will free and forget any buffers
  817. * on the new chain if there is a failure, but that risks using
  818. * up transaction credits, especially for bitmaps where the
  819. * credits cannot be returned. Can we handle this somehow? We
  820. * may need to return -EAGAIN upwards in the worst case. --sct
  821. */
  822. if (!err)
  823. err = ext4_splice_branch(handle, inode, iblock,
  824. partial, indirect_blks, count);
  825. /*
  826. * i_disksize growing is protected by i_data_sem. Don't forget to
  827. * protect it if you're about to implement concurrent
  828. * ext4_get_block() -bzzz
  829. */
  830. if (!err && extend_disksize && inode->i_size > ei->i_disksize)
  831. ei->i_disksize = inode->i_size;
  832. if (err)
  833. goto cleanup;
  834. set_buffer_new(bh_result);
  835. got_it:
  836. map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
  837. if (count > blocks_to_boundary)
  838. set_buffer_boundary(bh_result);
  839. err = count;
  840. /* Clean up and exit */
  841. partial = chain + depth - 1; /* the whole chain */
  842. cleanup:
  843. while (partial > chain) {
  844. BUFFER_TRACE(partial->bh, "call brelse");
  845. brelse(partial->bh);
  846. partial--;
  847. }
  848. BUFFER_TRACE(bh_result, "returned");
  849. out:
  850. return err;
  851. }
  852. /* Maximum number of blocks we map for direct IO at once. */
  853. #define DIO_MAX_BLOCKS 4096
  854. /*
  855. * Number of credits we need for writing DIO_MAX_BLOCKS:
  856. * We need sb + group descriptor + bitmap + inode -> 4
  857. * For B blocks with A block pointers per block we need:
  858. * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
  859. * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
  860. */
  861. #define DIO_CREDITS 25
  862. /*
  863. *
  864. *
  865. * ext4_ext4 get_block() wrapper function
  866. * It will do a look up first, and returns if the blocks already mapped.
  867. * Otherwise it takes the write lock of the i_data_sem and allocate blocks
  868. * and store the allocated blocks in the result buffer head and mark it
  869. * mapped.
  870. *
  871. * If file type is extents based, it will call ext4_ext_get_blocks(),
  872. * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
  873. * based files
  874. *
  875. * On success, it returns the number of blocks being mapped or allocate.
  876. * if create==0 and the blocks are pre-allocated and uninitialized block,
  877. * the result buffer head is unmapped. If the create ==1, it will make sure
  878. * the buffer head is mapped.
  879. *
  880. * It returns 0 if plain look up failed (blocks have not been allocated), in
  881. * that casem, buffer head is unmapped
  882. *
  883. * It returns the error in case of allocation failure.
  884. */
  885. int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
  886. unsigned long max_blocks, struct buffer_head *bh,
  887. int create, int extend_disksize)
  888. {
  889. int retval;
  890. clear_buffer_mapped(bh);
  891. /*
  892. * Try to see if we can get the block without requesting
  893. * for new file system block.
  894. */
  895. down_read((&EXT4_I(inode)->i_data_sem));
  896. if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
  897. retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
  898. bh, 0, 0);
  899. } else {
  900. retval = ext4_get_blocks_handle(handle,
  901. inode, block, max_blocks, bh, 0, 0);
  902. }
  903. up_read((&EXT4_I(inode)->i_data_sem));
  904. /* If it is only a block(s) look up */
  905. if (!create)
  906. return retval;
  907. /*
  908. * Returns if the blocks have already allocated
  909. *
  910. * Note that if blocks have been preallocated
  911. * ext4_ext_get_block() returns th create = 0
  912. * with buffer head unmapped.
  913. */
  914. if (retval > 0 && buffer_mapped(bh))
  915. return retval;
  916. /*
  917. * New blocks allocate and/or writing to uninitialized extent
  918. * will possibly result in updating i_data, so we take
  919. * the write lock of i_data_sem, and call get_blocks()
  920. * with create == 1 flag.
  921. */
  922. down_write((&EXT4_I(inode)->i_data_sem));
  923. /*
  924. * We need to check for EXT4 here because migrate
  925. * could have changed the inode type in between
  926. */
  927. if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
  928. retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
  929. bh, create, extend_disksize);
  930. } else {
  931. retval = ext4_get_blocks_handle(handle, inode, block,
  932. max_blocks, bh, create, extend_disksize);
  933. if (retval > 0 && buffer_new(bh)) {
  934. /*
  935. * We allocated new blocks which will result in
  936. * i_data's format changing. Force the migrate
  937. * to fail by clearing migrate flags
  938. */
  939. EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
  940. ~EXT4_EXT_MIGRATE;
  941. }
  942. }
  943. up_write((&EXT4_I(inode)->i_data_sem));
  944. return retval;
  945. }
  946. static int ext4_get_block(struct inode *inode, sector_t iblock,
  947. struct buffer_head *bh_result, int create)
  948. {
  949. handle_t *handle = ext4_journal_current_handle();
  950. int ret = 0, started = 0;
  951. unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
  952. if (create && !handle) {
  953. /* Direct IO write... */
  954. if (max_blocks > DIO_MAX_BLOCKS)
  955. max_blocks = DIO_MAX_BLOCKS;
  956. handle = ext4_journal_start(inode, DIO_CREDITS +
  957. 2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb));
  958. if (IS_ERR(handle)) {
  959. ret = PTR_ERR(handle);
  960. goto out;
  961. }
  962. started = 1;
  963. }
  964. ret = ext4_get_blocks_wrap(handle, inode, iblock,
  965. max_blocks, bh_result, create, 0);
  966. if (ret > 0) {
  967. bh_result->b_size = (ret << inode->i_blkbits);
  968. ret = 0;
  969. }
  970. if (started)
  971. ext4_journal_stop(handle);
  972. out:
  973. return ret;
  974. }
  975. /*
  976. * `handle' can be NULL if create is zero
  977. */
  978. struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
  979. ext4_lblk_t block, int create, int *errp)
  980. {
  981. struct buffer_head dummy;
  982. int fatal = 0, err;
  983. J_ASSERT(handle != NULL || create == 0);
  984. dummy.b_state = 0;
  985. dummy.b_blocknr = -1000;
  986. buffer_trace_init(&dummy.b_history);
  987. err = ext4_get_blocks_wrap(handle, inode, block, 1,
  988. &dummy, create, 1);
  989. /*
  990. * ext4_get_blocks_handle() returns number of blocks
  991. * mapped. 0 in case of a HOLE.
  992. */
  993. if (err > 0) {
  994. if (err > 1)
  995. WARN_ON(1);
  996. err = 0;
  997. }
  998. *errp = err;
  999. if (!err && buffer_mapped(&dummy)) {
  1000. struct buffer_head *bh;
  1001. bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
  1002. if (!bh) {
  1003. *errp = -EIO;
  1004. goto err;
  1005. }
  1006. if (buffer_new(&dummy)) {
  1007. J_ASSERT(create != 0);
  1008. J_ASSERT(handle != NULL);
  1009. /*
  1010. * Now that we do not always journal data, we should
  1011. * keep in mind whether this should always journal the
  1012. * new buffer as metadata. For now, regular file
  1013. * writes use ext4_get_block instead, so it's not a
  1014. * problem.
  1015. */
  1016. lock_buffer(bh);
  1017. BUFFER_TRACE(bh, "call get_create_access");
  1018. fatal = ext4_journal_get_create_access(handle, bh);
  1019. if (!fatal && !buffer_uptodate(bh)) {
  1020. memset(bh->b_data,0,inode->i_sb->s_blocksize);
  1021. set_buffer_uptodate(bh);
  1022. }
  1023. unlock_buffer(bh);
  1024. BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
  1025. err = ext4_journal_dirty_metadata(handle, bh);
  1026. if (!fatal)
  1027. fatal = err;
  1028. } else {
  1029. BUFFER_TRACE(bh, "not a new buffer");
  1030. }
  1031. if (fatal) {
  1032. *errp = fatal;
  1033. brelse(bh);
  1034. bh = NULL;
  1035. }
  1036. return bh;
  1037. }
  1038. err:
  1039. return NULL;
  1040. }
  1041. struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
  1042. ext4_lblk_t block, int create, int *err)
  1043. {
  1044. struct buffer_head * bh;
  1045. bh = ext4_getblk(handle, inode, block, create, err);
  1046. if (!bh)
  1047. return bh;
  1048. if (buffer_uptodate(bh))
  1049. return bh;
  1050. ll_rw_block(READ_META, 1, &bh);
  1051. wait_on_buffer(bh);
  1052. if (buffer_uptodate(bh))
  1053. return bh;
  1054. put_bh(bh);
  1055. *err = -EIO;
  1056. return NULL;
  1057. }
  1058. static int walk_page_buffers( handle_t *handle,
  1059. struct buffer_head *head,
  1060. unsigned from,
  1061. unsigned to,
  1062. int *partial,
  1063. int (*fn)( handle_t *handle,
  1064. struct buffer_head *bh))
  1065. {
  1066. struct buffer_head *bh;
  1067. unsigned block_start, block_end;
  1068. unsigned blocksize = head->b_size;
  1069. int err, ret = 0;
  1070. struct buffer_head *next;
  1071. for ( bh = head, block_start = 0;
  1072. ret == 0 && (bh != head || !block_start);
  1073. block_start = block_end, bh = next)
  1074. {
  1075. next = bh->b_this_page;
  1076. block_end = block_start + blocksize;
  1077. if (block_end <= from || block_start >= to) {
  1078. if (partial && !buffer_uptodate(bh))
  1079. *partial = 1;
  1080. continue;
  1081. }
  1082. err = (*fn)(handle, bh);
  1083. if (!ret)
  1084. ret = err;
  1085. }
  1086. return ret;
  1087. }
  1088. /*
  1089. * To preserve ordering, it is essential that the hole instantiation and
  1090. * the data write be encapsulated in a single transaction. We cannot
  1091. * close off a transaction and start a new one between the ext4_get_block()
  1092. * and the commit_write(). So doing the jbd2_journal_start at the start of
  1093. * prepare_write() is the right place.
  1094. *
  1095. * Also, this function can nest inside ext4_writepage() ->
  1096. * block_write_full_page(). In that case, we *know* that ext4_writepage()
  1097. * has generated enough buffer credits to do the whole page. So we won't
  1098. * block on the journal in that case, which is good, because the caller may
  1099. * be PF_MEMALLOC.
  1100. *
  1101. * By accident, ext4 can be reentered when a transaction is open via
  1102. * quota file writes. If we were to commit the transaction while thus
  1103. * reentered, there can be a deadlock - we would be holding a quota
  1104. * lock, and the commit would never complete if another thread had a
  1105. * transaction open and was blocking on the quota lock - a ranking
  1106. * violation.
  1107. *
  1108. * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
  1109. * will _not_ run commit under these circumstances because handle->h_ref
  1110. * is elevated. We'll still have enough credits for the tiny quotafile
  1111. * write.
  1112. */
  1113. static int do_journal_get_write_access(handle_t *handle,
  1114. struct buffer_head *bh)
  1115. {
  1116. if (!buffer_mapped(bh) || buffer_freed(bh))
  1117. return 0;
  1118. return ext4_journal_get_write_access(handle, bh);
  1119. }
  1120. static int ext4_write_begin(struct file *file, struct address_space *mapping,
  1121. loff_t pos, unsigned len, unsigned flags,
  1122. struct page **pagep, void **fsdata)
  1123. {
  1124. struct inode *inode = mapping->host;
  1125. int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
  1126. handle_t *handle;
  1127. int retries = 0;
  1128. struct page *page;
  1129. pgoff_t index;
  1130. unsigned from, to;
  1131. index = pos >> PAGE_CACHE_SHIFT;
  1132. from = pos & (PAGE_CACHE_SIZE - 1);
  1133. to = from + len;
  1134. retry:
  1135. page = __grab_cache_page(mapping, index);
  1136. if (!page)
  1137. return -ENOMEM;
  1138. *pagep = page;
  1139. handle = ext4_journal_start(inode, needed_blocks);
  1140. if (IS_ERR(handle)) {
  1141. unlock_page(page);
  1142. page_cache_release(page);
  1143. ret = PTR_ERR(handle);
  1144. goto out;
  1145. }
  1146. ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
  1147. ext4_get_block);
  1148. if (!ret && ext4_should_journal_data(inode)) {
  1149. ret = walk_page_buffers(handle, page_buffers(page),
  1150. from, to, NULL, do_journal_get_write_access);
  1151. }
  1152. if (ret) {
  1153. ext4_journal_stop(handle);
  1154. unlock_page(page);
  1155. page_cache_release(page);
  1156. }
  1157. if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
  1158. goto retry;
  1159. out:
  1160. return ret;
  1161. }
  1162. int ext4_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
  1163. {
  1164. int err = jbd2_journal_dirty_data(handle, bh);
  1165. if (err)
  1166. ext4_journal_abort_handle(__func__, __func__,
  1167. bh, handle, err);
  1168. return err;
  1169. }
  1170. /* For write_end() in data=journal mode */
  1171. static int write_end_fn(handle_t *handle, struct buffer_head *bh)
  1172. {
  1173. if (!buffer_mapped(bh) || buffer_freed(bh))
  1174. return 0;
  1175. set_buffer_uptodate(bh);
  1176. return ext4_journal_dirty_metadata(handle, bh);
  1177. }
  1178. /*
  1179. * Generic write_end handler for ordered and writeback ext4 journal modes.
  1180. * We can't use generic_write_end, because that unlocks the page and we need to
  1181. * unlock the page after ext4_journal_stop, but ext4_journal_stop must run
  1182. * after block_write_end.
  1183. */
  1184. static int ext4_generic_write_end(struct file *file,
  1185. struct address_space *mapping,
  1186. loff_t pos, unsigned len, unsigned copied,
  1187. struct page *page, void *fsdata)
  1188. {
  1189. struct inode *inode = file->f_mapping->host;
  1190. copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
  1191. if (pos+copied > inode->i_size) {
  1192. i_size_write(inode, pos+copied);
  1193. mark_inode_dirty(inode);
  1194. }
  1195. return copied;
  1196. }
  1197. /*
  1198. * We need to pick up the new inode size which generic_commit_write gave us
  1199. * `file' can be NULL - eg, when called from page_symlink().
  1200. *
  1201. * ext4 never places buffers on inode->i_mapping->private_list. metadata
  1202. * buffers are managed internally.
  1203. */
  1204. static int ext4_ordered_write_end(struct file *file,
  1205. struct address_space *mapping,
  1206. loff_t pos, unsigned len, unsigned copied,
  1207. struct page *page, void *fsdata)
  1208. {
  1209. handle_t *handle = ext4_journal_current_handle();
  1210. struct inode *inode = file->f_mapping->host;
  1211. unsigned from, to;
  1212. int ret = 0, ret2;
  1213. from = pos & (PAGE_CACHE_SIZE - 1);
  1214. to = from + len;
  1215. ret = walk_page_buffers(handle, page_buffers(page),
  1216. from, to, NULL, ext4_journal_dirty_data);
  1217. if (ret == 0) {
  1218. /*
  1219. * generic_write_end() will run mark_inode_dirty() if i_size
  1220. * changes. So let's piggyback the i_disksize mark_inode_dirty
  1221. * into that.
  1222. */
  1223. loff_t new_i_size;
  1224. new_i_size = pos + copied;
  1225. if (new_i_size > EXT4_I(inode)->i_disksize)
  1226. EXT4_I(inode)->i_disksize = new_i_size;
  1227. ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
  1228. page, fsdata);
  1229. copied = ret2;
  1230. if (ret2 < 0)
  1231. ret = ret2;
  1232. }
  1233. ret2 = ext4_journal_stop(handle);
  1234. if (!ret)
  1235. ret = ret2;
  1236. unlock_page(page);
  1237. page_cache_release(page);
  1238. return ret ? ret : copied;
  1239. }
  1240. static int ext4_writeback_write_end(struct file *file,
  1241. struct address_space *mapping,
  1242. loff_t pos, unsigned len, unsigned copied,
  1243. struct page *page, void *fsdata)
  1244. {
  1245. handle_t *handle = ext4_journal_current_handle();
  1246. struct inode *inode = file->f_mapping->host;
  1247. int ret = 0, ret2;
  1248. loff_t new_i_size;
  1249. new_i_size = pos + copied;
  1250. if (new_i_size > EXT4_I(inode)->i_disksize)
  1251. EXT4_I(inode)->i_disksize = new_i_size;
  1252. ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
  1253. page, fsdata);
  1254. copied = ret2;
  1255. if (ret2 < 0)
  1256. ret = ret2;
  1257. ret2 = ext4_journal_stop(handle);
  1258. if (!ret)
  1259. ret = ret2;
  1260. unlock_page(page);
  1261. page_cache_release(page);
  1262. return ret ? ret : copied;
  1263. }
  1264. static int ext4_journalled_write_end(struct file *file,
  1265. struct address_space *mapping,
  1266. loff_t pos, unsigned len, unsigned copied,
  1267. struct page *page, void *fsdata)
  1268. {
  1269. handle_t *handle = ext4_journal_current_handle();
  1270. struct inode *inode = mapping->host;
  1271. int ret = 0, ret2;
  1272. int partial = 0;
  1273. unsigned from, to;
  1274. from = pos & (PAGE_CACHE_SIZE - 1);
  1275. to = from + len;
  1276. if (copied < len) {
  1277. if (!PageUptodate(page))
  1278. copied = 0;
  1279. page_zero_new_buffers(page, from+copied, to);
  1280. }
  1281. ret = walk_page_buffers(handle, page_buffers(page), from,
  1282. to, &partial, write_end_fn);
  1283. if (!partial)
  1284. SetPageUptodate(page);
  1285. if (pos+copied > inode->i_size)
  1286. i_size_write(inode, pos+copied);
  1287. EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
  1288. if (inode->i_size > EXT4_I(inode)->i_disksize) {
  1289. EXT4_I(inode)->i_disksize = inode->i_size;
  1290. ret2 = ext4_mark_inode_dirty(handle, inode);
  1291. if (!ret)
  1292. ret = ret2;
  1293. }
  1294. ret2 = ext4_journal_stop(handle);
  1295. if (!ret)
  1296. ret = ret2;
  1297. unlock_page(page);
  1298. page_cache_release(page);
  1299. return ret ? ret : copied;
  1300. }
  1301. /*
  1302. * bmap() is special. It gets used by applications such as lilo and by
  1303. * the swapper to find the on-disk block of a specific piece of data.
  1304. *
  1305. * Naturally, this is dangerous if the block concerned is still in the
  1306. * journal. If somebody makes a swapfile on an ext4 data-journaling
  1307. * filesystem and enables swap, then they may get a nasty shock when the
  1308. * data getting swapped to that swapfile suddenly gets overwritten by
  1309. * the original zero's written out previously to the journal and
  1310. * awaiting writeback in the kernel's buffer cache.
  1311. *
  1312. * So, if we see any bmap calls here on a modified, data-journaled file,
  1313. * take extra steps to flush any blocks which might be in the cache.
  1314. */
  1315. static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
  1316. {
  1317. struct inode *inode = mapping->host;
  1318. journal_t *journal;
  1319. int err;
  1320. if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
  1321. /*
  1322. * This is a REALLY heavyweight approach, but the use of
  1323. * bmap on dirty files is expected to be extremely rare:
  1324. * only if we run lilo or swapon on a freshly made file
  1325. * do we expect this to happen.
  1326. *
  1327. * (bmap requires CAP_SYS_RAWIO so this does not
  1328. * represent an unprivileged user DOS attack --- we'd be
  1329. * in trouble if mortal users could trigger this path at
  1330. * will.)
  1331. *
  1332. * NB. EXT4_STATE_JDATA is not set on files other than
  1333. * regular files. If somebody wants to bmap a directory
  1334. * or symlink and gets confused because the buffer
  1335. * hasn't yet been flushed to disk, they deserve
  1336. * everything they get.
  1337. */
  1338. EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
  1339. journal = EXT4_JOURNAL(inode);
  1340. jbd2_journal_lock_updates(journal);
  1341. err = jbd2_journal_flush(journal);
  1342. jbd2_journal_unlock_updates(journal);
  1343. if (err)
  1344. return 0;
  1345. }
  1346. return generic_block_bmap(mapping,block,ext4_get_block);
  1347. }
  1348. static int bget_one(handle_t *handle, struct buffer_head *bh)
  1349. {
  1350. get_bh(bh);
  1351. return 0;
  1352. }
  1353. static int bput_one(handle_t *handle, struct buffer_head *bh)
  1354. {
  1355. put_bh(bh);
  1356. return 0;
  1357. }
  1358. static int jbd2_journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
  1359. {
  1360. if (buffer_mapped(bh))
  1361. return ext4_journal_dirty_data(handle, bh);
  1362. return 0;
  1363. }
  1364. /*
  1365. * Note that we always start a transaction even if we're not journalling
  1366. * data. This is to preserve ordering: any hole instantiation within
  1367. * __block_write_full_page -> ext4_get_block() should be journalled
  1368. * along with the data so we don't crash and then get metadata which
  1369. * refers to old data.
  1370. *
  1371. * In all journalling modes block_write_full_page() will start the I/O.
  1372. *
  1373. * Problem:
  1374. *
  1375. * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
  1376. * ext4_writepage()
  1377. *
  1378. * Similar for:
  1379. *
  1380. * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
  1381. *
  1382. * Same applies to ext4_get_block(). We will deadlock on various things like
  1383. * lock_journal and i_data_sem
  1384. *
  1385. * Setting PF_MEMALLOC here doesn't work - too many internal memory
  1386. * allocations fail.
  1387. *
  1388. * 16May01: If we're reentered then journal_current_handle() will be
  1389. * non-zero. We simply *return*.
  1390. *
  1391. * 1 July 2001: @@@ FIXME:
  1392. * In journalled data mode, a data buffer may be metadata against the
  1393. * current transaction. But the same file is part of a shared mapping
  1394. * and someone does a writepage() on it.
  1395. *
  1396. * We will move the buffer onto the async_data list, but *after* it has
  1397. * been dirtied. So there's a small window where we have dirty data on
  1398. * BJ_Metadata.
  1399. *
  1400. * Note that this only applies to the last partial page in the file. The
  1401. * bit which block_write_full_page() uses prepare/commit for. (That's
  1402. * broken code anyway: it's wrong for msync()).
  1403. *
  1404. * It's a rare case: affects the final partial page, for journalled data
  1405. * where the file is subject to bith write() and writepage() in the same
  1406. * transction. To fix it we'll need a custom block_write_full_page().
  1407. * We'll probably need that anyway for journalling writepage() output.
  1408. *
  1409. * We don't honour synchronous mounts for writepage(). That would be
  1410. * disastrous. Any write() or metadata operation will sync the fs for
  1411. * us.
  1412. *
  1413. * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
  1414. * we don't need to open a transaction here.
  1415. */
  1416. static int ext4_ordered_writepage(struct page *page,
  1417. struct writeback_control *wbc)
  1418. {
  1419. struct inode *inode = page->mapping->host;
  1420. struct buffer_head *page_bufs;
  1421. handle_t *handle = NULL;
  1422. int ret = 0;
  1423. int err;
  1424. J_ASSERT(PageLocked(page));
  1425. /*
  1426. * We give up here if we're reentered, because it might be for a
  1427. * different filesystem.
  1428. */
  1429. if (ext4_journal_current_handle())
  1430. goto out_fail;
  1431. handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
  1432. if (IS_ERR(handle)) {
  1433. ret = PTR_ERR(handle);
  1434. goto out_fail;
  1435. }
  1436. if (!page_has_buffers(page)) {
  1437. create_empty_buffers(page, inode->i_sb->s_blocksize,
  1438. (1 << BH_Dirty)|(1 << BH_Uptodate));
  1439. }
  1440. page_bufs = page_buffers(page);
  1441. walk_page_buffers(handle, page_bufs, 0,
  1442. PAGE_CACHE_SIZE, NULL, bget_one);
  1443. ret = block_write_full_page(page, ext4_get_block, wbc);
  1444. /*
  1445. * The page can become unlocked at any point now, and
  1446. * truncate can then come in and change things. So we
  1447. * can't touch *page from now on. But *page_bufs is
  1448. * safe due to elevated refcount.
  1449. */
  1450. /*
  1451. * And attach them to the current transaction. But only if
  1452. * block_write_full_page() succeeded. Otherwise they are unmapped,
  1453. * and generally junk.
  1454. */
  1455. if (ret == 0) {
  1456. err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
  1457. NULL, jbd2_journal_dirty_data_fn);
  1458. if (!ret)
  1459. ret = err;
  1460. }
  1461. walk_page_buffers(handle, page_bufs, 0,
  1462. PAGE_CACHE_SIZE, NULL, bput_one);
  1463. err = ext4_journal_stop(handle);
  1464. if (!ret)
  1465. ret = err;
  1466. return ret;
  1467. out_fail:
  1468. redirty_page_for_writepage(wbc, page);
  1469. unlock_page(page);
  1470. return ret;
  1471. }
  1472. static int ext4_writeback_writepage(struct page *page,
  1473. struct writeback_control *wbc)
  1474. {
  1475. struct inode *inode = page->mapping->host;
  1476. handle_t *handle = NULL;
  1477. int ret = 0;
  1478. int err;
  1479. if (ext4_journal_current_handle())
  1480. goto out_fail;
  1481. handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
  1482. if (IS_ERR(handle)) {
  1483. ret = PTR_ERR(handle);
  1484. goto out_fail;
  1485. }
  1486. if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
  1487. ret = nobh_writepage(page, ext4_get_block, wbc);
  1488. else
  1489. ret = block_write_full_page(page, ext4_get_block, wbc);
  1490. err = ext4_journal_stop(handle);
  1491. if (!ret)
  1492. ret = err;
  1493. return ret;
  1494. out_fail:
  1495. redirty_page_for_writepage(wbc, page);
  1496. unlock_page(page);
  1497. return ret;
  1498. }
  1499. static int ext4_journalled_writepage(struct page *page,
  1500. struct writeback_control *wbc)
  1501. {
  1502. struct inode *inode = page->mapping->host;
  1503. handle_t *handle = NULL;
  1504. int ret = 0;
  1505. int err;
  1506. if (ext4_journal_current_handle())
  1507. goto no_write;
  1508. handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
  1509. if (IS_ERR(handle)) {
  1510. ret = PTR_ERR(handle);
  1511. goto no_write;
  1512. }
  1513. if (!page_has_buffers(page) || PageChecked(page)) {
  1514. /*
  1515. * It's mmapped pagecache. Add buffers and journal it. There
  1516. * doesn't seem much point in redirtying the page here.
  1517. */
  1518. ClearPageChecked(page);
  1519. ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
  1520. ext4_get_block);
  1521. if (ret != 0) {
  1522. ext4_journal_stop(handle);
  1523. goto out_unlock;
  1524. }
  1525. ret = walk_page_buffers(handle, page_buffers(page), 0,
  1526. PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
  1527. err = walk_page_buffers(handle, page_buffers(page), 0,
  1528. PAGE_CACHE_SIZE, NULL, write_end_fn);
  1529. if (ret == 0)
  1530. ret = err;
  1531. EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
  1532. unlock_page(page);
  1533. } else {
  1534. /*
  1535. * It may be a page full of checkpoint-mode buffers. We don't
  1536. * really know unless we go poke around in the buffer_heads.
  1537. * But block_write_full_page will do the right thing.
  1538. */
  1539. ret = block_write_full_page(page, ext4_get_block, wbc);
  1540. }
  1541. err = ext4_journal_stop(handle);
  1542. if (!ret)
  1543. ret = err;
  1544. out:
  1545. return ret;
  1546. no_write:
  1547. redirty_page_for_writepage(wbc, page);
  1548. out_unlock:
  1549. unlock_page(page);
  1550. goto out;
  1551. }
  1552. static int ext4_readpage(struct file *file, struct page *page)
  1553. {
  1554. return mpage_readpage(page, ext4_get_block);
  1555. }
  1556. static int
  1557. ext4_readpages(struct file *file, struct address_space *mapping,
  1558. struct list_head *pages, unsigned nr_pages)
  1559. {
  1560. return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
  1561. }
  1562. static void ext4_invalidatepage(struct page *page, unsigned long offset)
  1563. {
  1564. journal_t *journal = EXT4_JOURNAL(page->mapping->host);
  1565. /*
  1566. * If it's a full truncate we just forget about the pending dirtying
  1567. */
  1568. if (offset == 0)
  1569. ClearPageChecked(page);
  1570. jbd2_journal_invalidatepage(journal, page, offset);
  1571. }
  1572. static int ext4_releasepage(struct page *page, gfp_t wait)
  1573. {
  1574. journal_t *journal = EXT4_JOURNAL(page->mapping->host);
  1575. WARN_ON(PageChecked(page));
  1576. if (!page_has_buffers(page))
  1577. return 0;
  1578. return jbd2_journal_try_to_free_buffers(journal, page, wait);
  1579. }
  1580. /*
  1581. * If the O_DIRECT write will extend the file then add this inode to the
  1582. * orphan list. So recovery will truncate it back to the original size
  1583. * if the machine crashes during the write.
  1584. *
  1585. * If the O_DIRECT write is intantiating holes inside i_size and the machine
  1586. * crashes then stale disk data _may_ be exposed inside the file. But current
  1587. * VFS code falls back into buffered path in that case so we are safe.
  1588. */
  1589. static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
  1590. const struct iovec *iov, loff_t offset,
  1591. unsigned long nr_segs)
  1592. {
  1593. struct file *file = iocb->ki_filp;
  1594. struct inode *inode = file->f_mapping->host;
  1595. struct ext4_inode_info *ei = EXT4_I(inode);
  1596. handle_t *handle;
  1597. ssize_t ret;
  1598. int orphan = 0;
  1599. size_t count = iov_length(iov, nr_segs);
  1600. if (rw == WRITE) {
  1601. loff_t final_size = offset + count;
  1602. if (final_size > inode->i_size) {
  1603. /* Credits for sb + inode write */
  1604. handle = ext4_journal_start(inode, 2);
  1605. if (IS_ERR(handle)) {
  1606. ret = PTR_ERR(handle);
  1607. goto out;
  1608. }
  1609. ret = ext4_orphan_add(handle, inode);
  1610. if (ret) {
  1611. ext4_journal_stop(handle);
  1612. goto out;
  1613. }
  1614. orphan = 1;
  1615. ei->i_disksize = inode->i_size;
  1616. ext4_journal_stop(handle);
  1617. }
  1618. }
  1619. ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
  1620. offset, nr_segs,
  1621. ext4_get_block, NULL);
  1622. if (orphan) {
  1623. int err;
  1624. /* Credits for sb + inode write */
  1625. handle = ext4_journal_start(inode, 2);
  1626. if (IS_ERR(handle)) {
  1627. /* This is really bad luck. We've written the data
  1628. * but cannot extend i_size. Bail out and pretend
  1629. * the write failed... */
  1630. ret = PTR_ERR(handle);
  1631. goto out;
  1632. }
  1633. if (inode->i_nlink)
  1634. ext4_orphan_del(handle, inode);
  1635. if (ret > 0) {
  1636. loff_t end = offset + ret;
  1637. if (end > inode->i_size) {
  1638. ei->i_disksize = end;
  1639. i_size_write(inode, end);
  1640. /*
  1641. * We're going to return a positive `ret'
  1642. * here due to non-zero-length I/O, so there's
  1643. * no way of reporting error returns from
  1644. * ext4_mark_inode_dirty() to userspace. So
  1645. * ignore it.
  1646. */
  1647. ext4_mark_inode_dirty(handle, inode);
  1648. }
  1649. }
  1650. err = ext4_journal_stop(handle);
  1651. if (ret == 0)
  1652. ret = err;
  1653. }
  1654. out:
  1655. return ret;
  1656. }
  1657. /*
  1658. * Pages can be marked dirty completely asynchronously from ext4's journalling
  1659. * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
  1660. * much here because ->set_page_dirty is called under VFS locks. The page is
  1661. * not necessarily locked.
  1662. *
  1663. * We cannot just dirty the page and leave attached buffers clean, because the
  1664. * buffers' dirty state is "definitive". We cannot just set the buffers dirty
  1665. * or jbddirty because all the journalling code will explode.
  1666. *
  1667. * So what we do is to mark the page "pending dirty" and next time writepage
  1668. * is called, propagate that into the buffers appropriately.
  1669. */
  1670. static int ext4_journalled_set_page_dirty(struct page *page)
  1671. {
  1672. SetPageChecked(page);
  1673. return __set_page_dirty_nobuffers(page);
  1674. }
  1675. static const struct address_space_operations ext4_ordered_aops = {
  1676. .readpage = ext4_readpage,
  1677. .readpages = ext4_readpages,
  1678. .writepage = ext4_ordered_writepage,
  1679. .sync_page = block_sync_page,
  1680. .write_begin = ext4_write_begin,
  1681. .write_end = ext4_ordered_write_end,
  1682. .bmap = ext4_bmap,
  1683. .invalidatepage = ext4_invalidatepage,
  1684. .releasepage = ext4_releasepage,
  1685. .direct_IO = ext4_direct_IO,
  1686. .migratepage = buffer_migrate_page,
  1687. };
  1688. static const struct address_space_operations ext4_writeback_aops = {
  1689. .readpage = ext4_readpage,
  1690. .readpages = ext4_readpages,
  1691. .writepage = ext4_writeback_writepage,
  1692. .sync_page = block_sync_page,
  1693. .write_begin = ext4_write_begin,
  1694. .write_end = ext4_writeback_write_end,
  1695. .bmap = ext4_bmap,
  1696. .invalidatepage = ext4_invalidatepage,
  1697. .releasepage = ext4_releasepage,
  1698. .direct_IO = ext4_direct_IO,
  1699. .migratepage = buffer_migrate_page,
  1700. };
  1701. static const struct address_space_operations ext4_journalled_aops = {
  1702. .readpage = ext4_readpage,
  1703. .readpages = ext4_readpages,
  1704. .writepage = ext4_journalled_writepage,
  1705. .sync_page = block_sync_page,
  1706. .write_begin = ext4_write_begin,
  1707. .write_end = ext4_journalled_write_end,
  1708. .set_page_dirty = ext4_journalled_set_page_dirty,
  1709. .bmap = ext4_bmap,
  1710. .invalidatepage = ext4_invalidatepage,
  1711. .releasepage = ext4_releasepage,
  1712. };
  1713. void ext4_set_aops(struct inode *inode)
  1714. {
  1715. if (ext4_should_order_data(inode))
  1716. inode->i_mapping->a_ops = &ext4_ordered_aops;
  1717. else if (ext4_should_writeback_data(inode))
  1718. inode->i_mapping->a_ops = &ext4_writeback_aops;
  1719. else
  1720. inode->i_mapping->a_ops = &ext4_journalled_aops;
  1721. }
  1722. /*
  1723. * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
  1724. * up to the end of the block which corresponds to `from'.
  1725. * This required during truncate. We need to physically zero the tail end
  1726. * of that block so it doesn't yield old data if the file is later grown.
  1727. */
  1728. int ext4_block_truncate_page(handle_t *handle, struct page *page,
  1729. struct address_space *mapping, loff_t from)
  1730. {
  1731. ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
  1732. unsigned offset = from & (PAGE_CACHE_SIZE-1);
  1733. unsigned blocksize, length, pos;
  1734. ext4_lblk_t iblock;
  1735. struct inode *inode = mapping->host;
  1736. struct buffer_head *bh;
  1737. int err = 0;
  1738. blocksize = inode->i_sb->s_blocksize;
  1739. length = blocksize - (offset & (blocksize - 1));
  1740. iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
  1741. /*
  1742. * For "nobh" option, we can only work if we don't need to
  1743. * read-in the page - otherwise we create buffers to do the IO.
  1744. */
  1745. if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
  1746. ext4_should_writeback_data(inode) && PageUptodate(page)) {
  1747. zero_user(page, offset, length);
  1748. set_page_dirty(page);
  1749. goto unlock;
  1750. }
  1751. if (!page_has_buffers(page))
  1752. create_empty_buffers(page, blocksize, 0);
  1753. /* Find the buffer that contains "offset" */
  1754. bh = page_buffers(page);
  1755. pos = blocksize;
  1756. while (offset >= pos) {
  1757. bh = bh->b_this_page;
  1758. iblock++;
  1759. pos += blocksize;
  1760. }
  1761. err = 0;
  1762. if (buffer_freed(bh)) {
  1763. BUFFER_TRACE(bh, "freed: skip");
  1764. goto unlock;
  1765. }
  1766. if (!buffer_mapped(bh)) {
  1767. BUFFER_TRACE(bh, "unmapped");
  1768. ext4_get_block(inode, iblock, bh, 0);
  1769. /* unmapped? It's a hole - nothing to do */
  1770. if (!buffer_mapped(bh)) {
  1771. BUFFER_TRACE(bh, "still unmapped");
  1772. goto unlock;
  1773. }
  1774. }
  1775. /* Ok, it's mapped. Make sure it's up-to-date */
  1776. if (PageUptodate(page))
  1777. set_buffer_uptodate(bh);
  1778. if (!buffer_uptodate(bh)) {
  1779. err = -EIO;
  1780. ll_rw_block(READ, 1, &bh);
  1781. wait_on_buffer(bh);
  1782. /* Uhhuh. Read error. Complain and punt. */
  1783. if (!buffer_uptodate(bh))
  1784. goto unlock;
  1785. }
  1786. if (ext4_should_journal_data(inode)) {
  1787. BUFFER_TRACE(bh, "get write access");
  1788. err = ext4_journal_get_write_access(handle, bh);
  1789. if (err)
  1790. goto unlock;
  1791. }
  1792. zero_user(page, offset, length);
  1793. BUFFER_TRACE(bh, "zeroed end of block");
  1794. err = 0;
  1795. if (ext4_should_journal_data(inode)) {
  1796. err = ext4_journal_dirty_metadata(handle, bh);
  1797. } else {
  1798. if (ext4_should_order_data(inode))
  1799. err = ext4_journal_dirty_data(handle, bh);
  1800. mark_buffer_dirty(bh);
  1801. }
  1802. unlock:
  1803. unlock_page(page);
  1804. page_cache_release(page);
  1805. return err;
  1806. }
  1807. /*
  1808. * Probably it should be a library function... search for first non-zero word
  1809. * or memcmp with zero_page, whatever is better for particular architecture.
  1810. * Linus?
  1811. */
  1812. static inline int all_zeroes(__le32 *p, __le32 *q)
  1813. {
  1814. while (p < q)
  1815. if (*p++)
  1816. return 0;
  1817. return 1;
  1818. }
  1819. /**
  1820. * ext4_find_shared - find the indirect blocks for partial truncation.
  1821. * @inode: inode in question
  1822. * @depth: depth of the affected branch
  1823. * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
  1824. * @chain: place to store the pointers to partial indirect blocks
  1825. * @top: place to the (detached) top of branch
  1826. *
  1827. * This is a helper function used by ext4_truncate().
  1828. *
  1829. * When we do truncate() we may have to clean the ends of several
  1830. * indirect blocks but leave the blocks themselves alive. Block is
  1831. * partially truncated if some data below the new i_size is refered
  1832. * from it (and it is on the path to the first completely truncated
  1833. * data block, indeed). We have to free the top of that path along
  1834. * with everything to the right of the path. Since no allocation
  1835. * past the truncation point is possible until ext4_truncate()
  1836. * finishes, we may safely do the latter, but top of branch may
  1837. * require special attention - pageout below the truncation point
  1838. * might try to populate it.
  1839. *
  1840. * We atomically detach the top of branch from the tree, store the
  1841. * block number of its root in *@top, pointers to buffer_heads of
  1842. * partially truncated blocks - in @chain[].bh and pointers to
  1843. * their last elements that should not be removed - in
  1844. * @chain[].p. Return value is the pointer to last filled element
  1845. * of @chain.
  1846. *
  1847. * The work left to caller to do the actual freeing of subtrees:
  1848. * a) free the subtree starting from *@top
  1849. * b) free the subtrees whose roots are stored in
  1850. * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
  1851. * c) free the subtrees growing from the inode past the @chain[0].
  1852. * (no partially truncated stuff there). */
  1853. static Indirect *ext4_find_shared(struct inode *inode, int depth,
  1854. ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
  1855. {
  1856. Indirect *partial, *p;
  1857. int k, err;
  1858. *top = 0;
  1859. /* Make k index the deepest non-null offest + 1 */
  1860. for (k = depth; k > 1 && !offsets[k-1]; k--)
  1861. ;
  1862. partial = ext4_get_branch(inode, k, offsets, chain, &err);
  1863. /* Writer: pointers */
  1864. if (!partial)
  1865. partial = chain + k-1;
  1866. /*
  1867. * If the branch acquired continuation since we've looked at it -
  1868. * fine, it should all survive and (new) top doesn't belong to us.
  1869. */
  1870. if (!partial->key && *partial->p)
  1871. /* Writer: end */
  1872. goto no_top;
  1873. for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
  1874. ;
  1875. /*
  1876. * OK, we've found the last block that must survive. The rest of our
  1877. * branch should be detached before unlocking. However, if that rest
  1878. * of branch is all ours and does not grow immediately from the inode
  1879. * it's easier to cheat and just decrement partial->p.
  1880. */
  1881. if (p == chain + k - 1 && p > chain) {
  1882. p->p--;
  1883. } else {
  1884. *top = *p->p;
  1885. /* Nope, don't do this in ext4. Must leave the tree intact */
  1886. #if 0
  1887. *p->p = 0;
  1888. #endif
  1889. }
  1890. /* Writer: end */
  1891. while(partial > p) {
  1892. brelse(partial->bh);
  1893. partial--;
  1894. }
  1895. no_top:
  1896. return partial;
  1897. }
  1898. /*
  1899. * Zero a number of block pointers in either an inode or an indirect block.
  1900. * If we restart the transaction we must again get write access to the
  1901. * indirect block for further modification.
  1902. *
  1903. * We release `count' blocks on disk, but (last - first) may be greater
  1904. * than `count' because there can be holes in there.
  1905. */
  1906. static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
  1907. struct buffer_head *bh, ext4_fsblk_t block_to_free,
  1908. unsigned long count, __le32 *first, __le32 *last)
  1909. {
  1910. __le32 *p;
  1911. if (try_to_extend_transaction(handle, inode)) {
  1912. if (bh) {
  1913. BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
  1914. ext4_journal_dirty_metadata(handle, bh);
  1915. }
  1916. ext4_mark_inode_dirty(handle, inode);
  1917. ext4_journal_test_restart(handle, inode);
  1918. if (bh) {
  1919. BUFFER_TRACE(bh, "retaking write access");
  1920. ext4_journal_get_write_access(handle, bh);
  1921. }
  1922. }
  1923. /*
  1924. * Any buffers which are on the journal will be in memory. We find
  1925. * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
  1926. * on them. We've already detached each block from the file, so
  1927. * bforget() in jbd2_journal_forget() should be safe.
  1928. *
  1929. * AKPM: turn on bforget in jbd2_journal_forget()!!!
  1930. */
  1931. for (p = first; p < last; p++) {
  1932. u32 nr = le32_to_cpu(*p);
  1933. if (nr) {
  1934. struct buffer_head *tbh;
  1935. *p = 0;
  1936. tbh = sb_find_get_block(inode->i_sb, nr);
  1937. ext4_forget(handle, 0, inode, tbh, nr);
  1938. }
  1939. }
  1940. ext4_free_blocks(handle, inode, block_to_free, count, 0);
  1941. }
  1942. /**
  1943. * ext4_free_data - free a list of data blocks
  1944. * @handle: handle for this transaction
  1945. * @inode: inode we are dealing with
  1946. * @this_bh: indirect buffer_head which contains *@first and *@last
  1947. * @first: array of block numbers
  1948. * @last: points immediately past the end of array
  1949. *
  1950. * We are freeing all blocks refered from that array (numbers are stored as
  1951. * little-endian 32-bit) and updating @inode->i_blocks appropriately.
  1952. *
  1953. * We accumulate contiguous runs of blocks to free. Conveniently, if these
  1954. * blocks are contiguous then releasing them at one time will only affect one
  1955. * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
  1956. * actually use a lot of journal space.
  1957. *
  1958. * @this_bh will be %NULL if @first and @last point into the inode's direct
  1959. * block pointers.
  1960. */
  1961. static void ext4_free_data(handle_t *handle, struct inode *inode,
  1962. struct buffer_head *this_bh,
  1963. __le32 *first, __le32 *last)
  1964. {
  1965. ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
  1966. unsigned long count = 0; /* Number of blocks in the run */
  1967. __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
  1968. corresponding to
  1969. block_to_free */
  1970. ext4_fsblk_t nr; /* Current block # */
  1971. __le32 *p; /* Pointer into inode/ind
  1972. for current block */
  1973. int err;
  1974. if (this_bh) { /* For indirect block */
  1975. BUFFER_TRACE(this_bh, "get_write_access");
  1976. err = ext4_journal_get_write_access(handle, this_bh);
  1977. /* Important: if we can't update the indirect pointers
  1978. * to the blocks, we can't free them. */
  1979. if (err)
  1980. return;
  1981. }
  1982. for (p = first; p < last; p++) {
  1983. nr = le32_to_cpu(*p);
  1984. if (nr) {
  1985. /* accumulate blocks to free if they're contiguous */
  1986. if (count == 0) {
  1987. block_to_free = nr;
  1988. block_to_free_p = p;
  1989. count = 1;
  1990. } else if (nr == block_to_free + count) {
  1991. count++;
  1992. } else {
  1993. ext4_clear_blocks(handle, inode, this_bh,
  1994. block_to_free,
  1995. count, block_to_free_p, p);
  1996. block_to_free = nr;
  1997. block_to_free_p = p;
  1998. count = 1;
  1999. }
  2000. }
  2001. }
  2002. if (count > 0)
  2003. ext4_clear_blocks(handle, inode, this_bh, block_to_free,
  2004. count, block_to_free_p, p);
  2005. if (this_bh) {
  2006. BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
  2007. /*
  2008. * The buffer head should have an attached journal head at this
  2009. * point. However, if the data is corrupted and an indirect
  2010. * block pointed to itself, it would have been detached when
  2011. * the block was cleared. Check for this instead of OOPSing.
  2012. */
  2013. if (bh2jh(this_bh))
  2014. ext4_journal_dirty_metadata(handle, this_bh);
  2015. else
  2016. ext4_error(inode->i_sb, __func__,
  2017. "circular indirect block detected, "
  2018. "inode=%lu, block=%llu",
  2019. inode->i_ino,
  2020. (unsigned long long) this_bh->b_blocknr);
  2021. }
  2022. }
  2023. /**
  2024. * ext4_free_branches - free an array of branches
  2025. * @handle: JBD handle for this transaction
  2026. * @inode: inode we are dealing with
  2027. * @parent_bh: the buffer_head which contains *@first and *@last
  2028. * @first: array of block numbers
  2029. * @last: pointer immediately past the end of array
  2030. * @depth: depth of the branches to free
  2031. *
  2032. * We are freeing all blocks refered from these branches (numbers are
  2033. * stored as little-endian 32-bit) and updating @inode->i_blocks
  2034. * appropriately.
  2035. */
  2036. static void ext4_free_branches(handle_t *handle, struct inode *inode,
  2037. struct buffer_head *parent_bh,
  2038. __le32 *first, __le32 *last, int depth)
  2039. {
  2040. ext4_fsblk_t nr;
  2041. __le32 *p;
  2042. if (is_handle_aborted(handle))
  2043. return;
  2044. if (depth--) {
  2045. struct buffer_head *bh;
  2046. int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  2047. p = last;
  2048. while (--p >= first) {
  2049. nr = le32_to_cpu(*p);
  2050. if (!nr)
  2051. continue; /* A hole */
  2052. /* Go read the buffer for the next level down */
  2053. bh = sb_bread(inode->i_sb, nr);
  2054. /*
  2055. * A read failure? Report error and clear slot
  2056. * (should be rare).
  2057. */
  2058. if (!bh) {
  2059. ext4_error(inode->i_sb, "ext4_free_branches",
  2060. "Read failure, inode=%lu, block=%llu",
  2061. inode->i_ino, nr);
  2062. continue;
  2063. }
  2064. /* This zaps the entire block. Bottom up. */
  2065. BUFFER_TRACE(bh, "free child branches");
  2066. ext4_free_branches(handle, inode, bh,
  2067. (__le32*)bh->b_data,
  2068. (__le32*)bh->b_data + addr_per_block,
  2069. depth);
  2070. /*
  2071. * We've probably journalled the indirect block several
  2072. * times during the truncate. But it's no longer
  2073. * needed and we now drop it from the transaction via
  2074. * jbd2_journal_revoke().
  2075. *
  2076. * That's easy if it's exclusively part of this
  2077. * transaction. But if it's part of the committing
  2078. * transaction then jbd2_journal_forget() will simply
  2079. * brelse() it. That means that if the underlying
  2080. * block is reallocated in ext4_get_block(),
  2081. * unmap_underlying_metadata() will find this block
  2082. * and will try to get rid of it. damn, damn.
  2083. *
  2084. * If this block has already been committed to the
  2085. * journal, a revoke record will be written. And
  2086. * revoke records must be emitted *before* clearing
  2087. * this block's bit in the bitmaps.
  2088. */
  2089. ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
  2090. /*
  2091. * Everything below this this pointer has been
  2092. * released. Now let this top-of-subtree go.
  2093. *
  2094. * We want the freeing of this indirect block to be
  2095. * atomic in the journal with the updating of the
  2096. * bitmap block which owns it. So make some room in
  2097. * the journal.
  2098. *
  2099. * We zero the parent pointer *after* freeing its
  2100. * pointee in the bitmaps, so if extend_transaction()
  2101. * for some reason fails to put the bitmap changes and
  2102. * the release into the same transaction, recovery
  2103. * will merely complain about releasing a free block,
  2104. * rather than leaking blocks.
  2105. */
  2106. if (is_handle_aborted(handle))
  2107. return;
  2108. if (try_to_extend_transaction(handle, inode)) {
  2109. ext4_mark_inode_dirty(handle, inode);
  2110. ext4_journal_test_restart(handle, inode);
  2111. }
  2112. ext4_free_blocks(handle, inode, nr, 1, 1);
  2113. if (parent_bh) {
  2114. /*
  2115. * The block which we have just freed is
  2116. * pointed to by an indirect block: journal it
  2117. */
  2118. BUFFER_TRACE(parent_bh, "get_write_access");
  2119. if (!ext4_journal_get_write_access(handle,
  2120. parent_bh)){
  2121. *p = 0;
  2122. BUFFER_TRACE(parent_bh,
  2123. "call ext4_journal_dirty_metadata");
  2124. ext4_journal_dirty_metadata(handle,
  2125. parent_bh);
  2126. }
  2127. }
  2128. }
  2129. } else {
  2130. /* We have reached the bottom of the tree. */
  2131. BUFFER_TRACE(parent_bh, "free data blocks");
  2132. ext4_free_data(handle, inode, parent_bh, first, last);
  2133. }
  2134. }
  2135. int ext4_can_truncate(struct inode *inode)
  2136. {
  2137. if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
  2138. return 0;
  2139. if (S_ISREG(inode->i_mode))
  2140. return 1;
  2141. if (S_ISDIR(inode->i_mode))
  2142. return 1;
  2143. if (S_ISLNK(inode->i_mode))
  2144. return !ext4_inode_is_fast_symlink(inode);
  2145. return 0;
  2146. }
  2147. /*
  2148. * ext4_truncate()
  2149. *
  2150. * We block out ext4_get_block() block instantiations across the entire
  2151. * transaction, and VFS/VM ensures that ext4_truncate() cannot run
  2152. * simultaneously on behalf of the same inode.
  2153. *
  2154. * As we work through the truncate and commmit bits of it to the journal there
  2155. * is one core, guiding principle: the file's tree must always be consistent on
  2156. * disk. We must be able to restart the truncate after a crash.
  2157. *
  2158. * The file's tree may be transiently inconsistent in memory (although it
  2159. * probably isn't), but whenever we close off and commit a journal transaction,
  2160. * the contents of (the filesystem + the journal) must be consistent and
  2161. * restartable. It's pretty simple, really: bottom up, right to left (although
  2162. * left-to-right works OK too).
  2163. *
  2164. * Note that at recovery time, journal replay occurs *before* the restart of
  2165. * truncate against the orphan inode list.
  2166. *
  2167. * The committed inode has the new, desired i_size (which is the same as
  2168. * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
  2169. * that this inode's truncate did not complete and it will again call
  2170. * ext4_truncate() to have another go. So there will be instantiated blocks
  2171. * to the right of the truncation point in a crashed ext4 filesystem. But
  2172. * that's fine - as long as they are linked from the inode, the post-crash
  2173. * ext4_truncate() run will find them and release them.
  2174. */
  2175. void ext4_truncate(struct inode *inode)
  2176. {
  2177. handle_t *handle;
  2178. struct ext4_inode_info *ei = EXT4_I(inode);
  2179. __le32 *i_data = ei->i_data;
  2180. int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  2181. struct address_space *mapping = inode->i_mapping;
  2182. ext4_lblk_t offsets[4];
  2183. Indirect chain[4];
  2184. Indirect *partial;
  2185. __le32 nr = 0;
  2186. int n;
  2187. ext4_lblk_t last_block;
  2188. unsigned blocksize = inode->i_sb->s_blocksize;
  2189. struct page *page;
  2190. if (!ext4_can_truncate(inode))
  2191. return;
  2192. /*
  2193. * We have to lock the EOF page here, because lock_page() nests
  2194. * outside jbd2_journal_start().
  2195. */
  2196. if ((inode->i_size & (blocksize - 1)) == 0) {
  2197. /* Block boundary? Nothing to do */
  2198. page = NULL;
  2199. } else {
  2200. page = grab_cache_page(mapping,
  2201. inode->i_size >> PAGE_CACHE_SHIFT);
  2202. if (!page)
  2203. return;
  2204. }
  2205. if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
  2206. ext4_ext_truncate(inode, page);
  2207. return;
  2208. }
  2209. handle = start_transaction(inode);
  2210. if (IS_ERR(handle)) {
  2211. if (page) {
  2212. clear_highpage(page);
  2213. flush_dcache_page(page);
  2214. unlock_page(page);
  2215. page_cache_release(page);
  2216. }
  2217. return; /* AKPM: return what? */
  2218. }
  2219. last_block = (inode->i_size + blocksize-1)
  2220. >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
  2221. if (page)
  2222. ext4_block_truncate_page(handle, page, mapping, inode->i_size);
  2223. n = ext4_block_to_path(inode, last_block, offsets, NULL);
  2224. if (n == 0)
  2225. goto out_stop; /* error */
  2226. /*
  2227. * OK. This truncate is going to happen. We add the inode to the
  2228. * orphan list, so that if this truncate spans multiple transactions,
  2229. * and we crash, we will resume the truncate when the filesystem
  2230. * recovers. It also marks the inode dirty, to catch the new size.
  2231. *
  2232. * Implication: the file must always be in a sane, consistent
  2233. * truncatable state while each transaction commits.
  2234. */
  2235. if (ext4_orphan_add(handle, inode))
  2236. goto out_stop;
  2237. /*
  2238. * The orphan list entry will now protect us from any crash which
  2239. * occurs before the truncate completes, so it is now safe to propagate
  2240. * the new, shorter inode size (held for now in i_size) into the
  2241. * on-disk inode. We do this via i_disksize, which is the value which
  2242. * ext4 *really* writes onto the disk inode.
  2243. */
  2244. ei->i_disksize = inode->i_size;
  2245. /*
  2246. * From here we block out all ext4_get_block() callers who want to
  2247. * modify the block allocation tree.
  2248. */
  2249. down_write(&ei->i_data_sem);
  2250. if (n == 1) { /* direct blocks */
  2251. ext4_free_data(handle, inode, NULL, i_data+offsets[0],
  2252. i_data + EXT4_NDIR_BLOCKS);
  2253. goto do_indirects;
  2254. }
  2255. partial = ext4_find_shared(inode, n, offsets, chain, &nr);
  2256. /* Kill the top of shared branch (not detached) */
  2257. if (nr) {
  2258. if (partial == chain) {
  2259. /* Shared branch grows from the inode */
  2260. ext4_free_branches(handle, inode, NULL,
  2261. &nr, &nr+1, (chain+n-1) - partial);
  2262. *partial->p = 0;
  2263. /*
  2264. * We mark the inode dirty prior to restart,
  2265. * and prior to stop. No need for it here.
  2266. */
  2267. } else {
  2268. /* Shared branch grows from an indirect block */
  2269. BUFFER_TRACE(partial->bh, "get_write_access");
  2270. ext4_free_branches(handle, inode, partial->bh,
  2271. partial->p,
  2272. partial->p+1, (chain+n-1) - partial);
  2273. }
  2274. }
  2275. /* Clear the ends of indirect blocks on the shared branch */
  2276. while (partial > chain) {
  2277. ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
  2278. (__le32*)partial->bh->b_data+addr_per_block,
  2279. (chain+n-1) - partial);
  2280. BUFFER_TRACE(partial->bh, "call brelse");
  2281. brelse (partial->bh);
  2282. partial--;
  2283. }
  2284. do_indirects:
  2285. /* Kill the remaining (whole) subtrees */
  2286. switch (offsets[0]) {
  2287. default:
  2288. nr = i_data[EXT4_IND_BLOCK];
  2289. if (nr) {
  2290. ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
  2291. i_data[EXT4_IND_BLOCK] = 0;
  2292. }
  2293. case EXT4_IND_BLOCK:
  2294. nr = i_data[EXT4_DIND_BLOCK];
  2295. if (nr) {
  2296. ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
  2297. i_data[EXT4_DIND_BLOCK] = 0;
  2298. }
  2299. case EXT4_DIND_BLOCK:
  2300. nr = i_data[EXT4_TIND_BLOCK];
  2301. if (nr) {
  2302. ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
  2303. i_data[EXT4_TIND_BLOCK] = 0;
  2304. }
  2305. case EXT4_TIND_BLOCK:
  2306. ;
  2307. }
  2308. ext4_discard_reservation(inode);
  2309. up_write(&ei->i_data_sem);
  2310. inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
  2311. ext4_mark_inode_dirty(handle, inode);
  2312. /*
  2313. * In a multi-transaction truncate, we only make the final transaction
  2314. * synchronous
  2315. */
  2316. if (IS_SYNC(inode))
  2317. handle->h_sync = 1;
  2318. out_stop:
  2319. /*
  2320. * If this was a simple ftruncate(), and the file will remain alive
  2321. * then we need to clear up the orphan record which we created above.
  2322. * However, if this was a real unlink then we were called by
  2323. * ext4_delete_inode(), and we allow that function to clean up the
  2324. * orphan info for us.
  2325. */
  2326. if (inode->i_nlink)
  2327. ext4_orphan_del(handle, inode);
  2328. ext4_journal_stop(handle);
  2329. }
  2330. static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
  2331. unsigned long ino, struct ext4_iloc *iloc)
  2332. {
  2333. ext4_group_t block_group;
  2334. unsigned long offset;
  2335. ext4_fsblk_t block;
  2336. struct ext4_group_desc *gdp;
  2337. if (!ext4_valid_inum(sb, ino)) {
  2338. /*
  2339. * This error is already checked for in namei.c unless we are
  2340. * looking at an NFS filehandle, in which case no error
  2341. * report is needed
  2342. */
  2343. return 0;
  2344. }
  2345. block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
  2346. gdp = ext4_get_group_desc(sb, block_group, NULL);
  2347. if (!gdp)
  2348. return 0;
  2349. /*
  2350. * Figure out the offset within the block group inode table
  2351. */
  2352. offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
  2353. EXT4_INODE_SIZE(sb);
  2354. block = ext4_inode_table(sb, gdp) +
  2355. (offset >> EXT4_BLOCK_SIZE_BITS(sb));
  2356. iloc->block_group = block_group;
  2357. iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
  2358. return block;
  2359. }
  2360. /*
  2361. * ext4_get_inode_loc returns with an extra refcount against the inode's
  2362. * underlying buffer_head on success. If 'in_mem' is true, we have all
  2363. * data in memory that is needed to recreate the on-disk version of this
  2364. * inode.
  2365. */
  2366. static int __ext4_get_inode_loc(struct inode *inode,
  2367. struct ext4_iloc *iloc, int in_mem)
  2368. {
  2369. ext4_fsblk_t block;
  2370. struct buffer_head *bh;
  2371. block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
  2372. if (!block)
  2373. return -EIO;
  2374. bh = sb_getblk(inode->i_sb, block);
  2375. if (!bh) {
  2376. ext4_error (inode->i_sb, "ext4_get_inode_loc",
  2377. "unable to read inode block - "
  2378. "inode=%lu, block=%llu",
  2379. inode->i_ino, block);
  2380. return -EIO;
  2381. }
  2382. if (!buffer_uptodate(bh)) {
  2383. lock_buffer(bh);
  2384. if (buffer_uptodate(bh)) {
  2385. /* someone brought it uptodate while we waited */
  2386. unlock_buffer(bh);
  2387. goto has_buffer;
  2388. }
  2389. /*
  2390. * If we have all information of the inode in memory and this
  2391. * is the only valid inode in the block, we need not read the
  2392. * block.
  2393. */
  2394. if (in_mem) {
  2395. struct buffer_head *bitmap_bh;
  2396. struct ext4_group_desc *desc;
  2397. int inodes_per_buffer;
  2398. int inode_offset, i;
  2399. ext4_group_t block_group;
  2400. int start;
  2401. block_group = (inode->i_ino - 1) /
  2402. EXT4_INODES_PER_GROUP(inode->i_sb);
  2403. inodes_per_buffer = bh->b_size /
  2404. EXT4_INODE_SIZE(inode->i_sb);
  2405. inode_offset = ((inode->i_ino - 1) %
  2406. EXT4_INODES_PER_GROUP(inode->i_sb));
  2407. start = inode_offset & ~(inodes_per_buffer - 1);
  2408. /* Is the inode bitmap in cache? */
  2409. desc = ext4_get_group_desc(inode->i_sb,
  2410. block_group, NULL);
  2411. if (!desc)
  2412. goto make_io;
  2413. bitmap_bh = sb_getblk(inode->i_sb,
  2414. ext4_inode_bitmap(inode->i_sb, desc));
  2415. if (!bitmap_bh)
  2416. goto make_io;
  2417. /*
  2418. * If the inode bitmap isn't in cache then the
  2419. * optimisation may end up performing two reads instead
  2420. * of one, so skip it.
  2421. */
  2422. if (!buffer_uptodate(bitmap_bh)) {
  2423. brelse(bitmap_bh);
  2424. goto make_io;
  2425. }
  2426. for (i = start; i < start + inodes_per_buffer; i++) {
  2427. if (i == inode_offset)
  2428. continue;
  2429. if (ext4_test_bit(i, bitmap_bh->b_data))
  2430. break;
  2431. }
  2432. brelse(bitmap_bh);
  2433. if (i == start + inodes_per_buffer) {
  2434. /* all other inodes are free, so skip I/O */
  2435. memset(bh->b_data, 0, bh->b_size);
  2436. set_buffer_uptodate(bh);
  2437. unlock_buffer(bh);
  2438. goto has_buffer;
  2439. }
  2440. }
  2441. make_io:
  2442. /*
  2443. * There are other valid inodes in the buffer, this inode
  2444. * has in-inode xattrs, or we don't have this inode in memory.
  2445. * Read the block from disk.
  2446. */
  2447. get_bh(bh);
  2448. bh->b_end_io = end_buffer_read_sync;
  2449. submit_bh(READ_META, bh);
  2450. wait_on_buffer(bh);
  2451. if (!buffer_uptodate(bh)) {
  2452. ext4_error(inode->i_sb, "ext4_get_inode_loc",
  2453. "unable to read inode block - "
  2454. "inode=%lu, block=%llu",
  2455. inode->i_ino, block);
  2456. brelse(bh);
  2457. return -EIO;
  2458. }
  2459. }
  2460. has_buffer:
  2461. iloc->bh = bh;
  2462. return 0;
  2463. }
  2464. int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
  2465. {
  2466. /* We have all inode data except xattrs in memory here. */
  2467. return __ext4_get_inode_loc(inode, iloc,
  2468. !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
  2469. }
  2470. void ext4_set_inode_flags(struct inode *inode)
  2471. {
  2472. unsigned int flags = EXT4_I(inode)->i_flags;
  2473. inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
  2474. if (flags & EXT4_SYNC_FL)
  2475. inode->i_flags |= S_SYNC;
  2476. if (flags & EXT4_APPEND_FL)
  2477. inode->i_flags |= S_APPEND;
  2478. if (flags & EXT4_IMMUTABLE_FL)
  2479. inode->i_flags |= S_IMMUTABLE;
  2480. if (flags & EXT4_NOATIME_FL)
  2481. inode->i_flags |= S_NOATIME;
  2482. if (flags & EXT4_DIRSYNC_FL)
  2483. inode->i_flags |= S_DIRSYNC;
  2484. }
  2485. /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
  2486. void ext4_get_inode_flags(struct ext4_inode_info *ei)
  2487. {
  2488. unsigned int flags = ei->vfs_inode.i_flags;
  2489. ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
  2490. EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
  2491. if (flags & S_SYNC)
  2492. ei->i_flags |= EXT4_SYNC_FL;
  2493. if (flags & S_APPEND)
  2494. ei->i_flags |= EXT4_APPEND_FL;
  2495. if (flags & S_IMMUTABLE)
  2496. ei->i_flags |= EXT4_IMMUTABLE_FL;
  2497. if (flags & S_NOATIME)
  2498. ei->i_flags |= EXT4_NOATIME_FL;
  2499. if (flags & S_DIRSYNC)
  2500. ei->i_flags |= EXT4_DIRSYNC_FL;
  2501. }
  2502. static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
  2503. struct ext4_inode_info *ei)
  2504. {
  2505. blkcnt_t i_blocks ;
  2506. struct inode *inode = &(ei->vfs_inode);
  2507. struct super_block *sb = inode->i_sb;
  2508. if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
  2509. EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
  2510. /* we are using combined 48 bit field */
  2511. i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
  2512. le32_to_cpu(raw_inode->i_blocks_lo);
  2513. if (ei->i_flags & EXT4_HUGE_FILE_FL) {
  2514. /* i_blocks represent file system block size */
  2515. return i_blocks << (inode->i_blkbits - 9);
  2516. } else {
  2517. return i_blocks;
  2518. }
  2519. } else {
  2520. return le32_to_cpu(raw_inode->i_blocks_lo);
  2521. }
  2522. }
  2523. struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
  2524. {
  2525. struct ext4_iloc iloc;
  2526. struct ext4_inode *raw_inode;
  2527. struct ext4_inode_info *ei;
  2528. struct buffer_head *bh;
  2529. struct inode *inode;
  2530. long ret;
  2531. int block;
  2532. inode = iget_locked(sb, ino);
  2533. if (!inode)
  2534. return ERR_PTR(-ENOMEM);
  2535. if (!(inode->i_state & I_NEW))
  2536. return inode;
  2537. ei = EXT4_I(inode);
  2538. #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
  2539. ei->i_acl = EXT4_ACL_NOT_CACHED;
  2540. ei->i_default_acl = EXT4_ACL_NOT_CACHED;
  2541. #endif
  2542. ei->i_block_alloc_info = NULL;
  2543. ret = __ext4_get_inode_loc(inode, &iloc, 0);
  2544. if (ret < 0)
  2545. goto bad_inode;
  2546. bh = iloc.bh;
  2547. raw_inode = ext4_raw_inode(&iloc);
  2548. inode->i_mode = le16_to_cpu(raw_inode->i_mode);
  2549. inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
  2550. inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
  2551. if(!(test_opt (inode->i_sb, NO_UID32))) {
  2552. inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
  2553. inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
  2554. }
  2555. inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
  2556. ei->i_state = 0;
  2557. ei->i_dir_start_lookup = 0;
  2558. ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
  2559. /* We now have enough fields to check if the inode was active or not.
  2560. * This is needed because nfsd might try to access dead inodes
  2561. * the test is that same one that e2fsck uses
  2562. * NeilBrown 1999oct15
  2563. */
  2564. if (inode->i_nlink == 0) {
  2565. if (inode->i_mode == 0 ||
  2566. !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
  2567. /* this inode is deleted */
  2568. brelse (bh);
  2569. ret = -ESTALE;
  2570. goto bad_inode;
  2571. }
  2572. /* The only unlinked inodes we let through here have
  2573. * valid i_mode and are being read by the orphan
  2574. * recovery code: that's fine, we're about to complete
  2575. * the process of deleting those. */
  2576. }
  2577. ei->i_flags = le32_to_cpu(raw_inode->i_flags);
  2578. inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
  2579. ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
  2580. if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  2581. cpu_to_le32(EXT4_OS_HURD)) {
  2582. ei->i_file_acl |=
  2583. ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
  2584. }
  2585. inode->i_size = ext4_isize(raw_inode);
  2586. ei->i_disksize = inode->i_size;
  2587. inode->i_generation = le32_to_cpu(raw_inode->i_generation);
  2588. ei->i_block_group = iloc.block_group;
  2589. /*
  2590. * NOTE! The in-memory inode i_data array is in little-endian order
  2591. * even on big-endian machines: we do NOT byteswap the block numbers!
  2592. */
  2593. for (block = 0; block < EXT4_N_BLOCKS; block++)
  2594. ei->i_data[block] = raw_inode->i_block[block];
  2595. INIT_LIST_HEAD(&ei->i_orphan);
  2596. if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  2597. ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
  2598. if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
  2599. EXT4_INODE_SIZE(inode->i_sb)) {
  2600. brelse (bh);
  2601. ret = -EIO;
  2602. goto bad_inode;
  2603. }
  2604. if (ei->i_extra_isize == 0) {
  2605. /* The extra space is currently unused. Use it. */
  2606. ei->i_extra_isize = sizeof(struct ext4_inode) -
  2607. EXT4_GOOD_OLD_INODE_SIZE;
  2608. } else {
  2609. __le32 *magic = (void *)raw_inode +
  2610. EXT4_GOOD_OLD_INODE_SIZE +
  2611. ei->i_extra_isize;
  2612. if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
  2613. ei->i_state |= EXT4_STATE_XATTR;
  2614. }
  2615. } else
  2616. ei->i_extra_isize = 0;
  2617. EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
  2618. EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
  2619. EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
  2620. EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
  2621. inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
  2622. if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  2623. if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
  2624. inode->i_version |=
  2625. (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
  2626. }
  2627. if (S_ISREG(inode->i_mode)) {
  2628. inode->i_op = &ext4_file_inode_operations;
  2629. inode->i_fop = &ext4_file_operations;
  2630. ext4_set_aops(inode);
  2631. } else if (S_ISDIR(inode->i_mode)) {
  2632. inode->i_op = &ext4_dir_inode_operations;
  2633. inode->i_fop = &ext4_dir_operations;
  2634. } else if (S_ISLNK(inode->i_mode)) {
  2635. if (ext4_inode_is_fast_symlink(inode))
  2636. inode->i_op = &ext4_fast_symlink_inode_operations;
  2637. else {
  2638. inode->i_op = &ext4_symlink_inode_operations;
  2639. ext4_set_aops(inode);
  2640. }
  2641. } else {
  2642. inode->i_op = &ext4_special_inode_operations;
  2643. if (raw_inode->i_block[0])
  2644. init_special_inode(inode, inode->i_mode,
  2645. old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
  2646. else
  2647. init_special_inode(inode, inode->i_mode,
  2648. new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
  2649. }
  2650. brelse (iloc.bh);
  2651. ext4_set_inode_flags(inode);
  2652. unlock_new_inode(inode);
  2653. return inode;
  2654. bad_inode:
  2655. iget_failed(inode);
  2656. return ERR_PTR(ret);
  2657. }
  2658. static int ext4_inode_blocks_set(handle_t *handle,
  2659. struct ext4_inode *raw_inode,
  2660. struct ext4_inode_info *ei)
  2661. {
  2662. struct inode *inode = &(ei->vfs_inode);
  2663. u64 i_blocks = inode->i_blocks;
  2664. struct super_block *sb = inode->i_sb;
  2665. int err = 0;
  2666. if (i_blocks <= ~0U) {
  2667. /*
  2668. * i_blocks can be represnted in a 32 bit variable
  2669. * as multiple of 512 bytes
  2670. */
  2671. raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
  2672. raw_inode->i_blocks_high = 0;
  2673. ei->i_flags &= ~EXT4_HUGE_FILE_FL;
  2674. } else if (i_blocks <= 0xffffffffffffULL) {
  2675. /*
  2676. * i_blocks can be represented in a 48 bit variable
  2677. * as multiple of 512 bytes
  2678. */
  2679. err = ext4_update_rocompat_feature(handle, sb,
  2680. EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
  2681. if (err)
  2682. goto err_out;
  2683. /* i_block is stored in the split 48 bit fields */
  2684. raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
  2685. raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
  2686. ei->i_flags &= ~EXT4_HUGE_FILE_FL;
  2687. } else {
  2688. /*
  2689. * i_blocks should be represented in a 48 bit variable
  2690. * as multiple of file system block size
  2691. */
  2692. err = ext4_update_rocompat_feature(handle, sb,
  2693. EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
  2694. if (err)
  2695. goto err_out;
  2696. ei->i_flags |= EXT4_HUGE_FILE_FL;
  2697. /* i_block is stored in file system block size */
  2698. i_blocks = i_blocks >> (inode->i_blkbits - 9);
  2699. raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
  2700. raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
  2701. }
  2702. err_out:
  2703. return err;
  2704. }
  2705. /*
  2706. * Post the struct inode info into an on-disk inode location in the
  2707. * buffer-cache. This gobbles the caller's reference to the
  2708. * buffer_head in the inode location struct.
  2709. *
  2710. * The caller must have write access to iloc->bh.
  2711. */
  2712. static int ext4_do_update_inode(handle_t *handle,
  2713. struct inode *inode,
  2714. struct ext4_iloc *iloc)
  2715. {
  2716. struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
  2717. struct ext4_inode_info *ei = EXT4_I(inode);
  2718. struct buffer_head *bh = iloc->bh;
  2719. int err = 0, rc, block;
  2720. /* For fields not not tracking in the in-memory inode,
  2721. * initialise them to zero for new inodes. */
  2722. if (ei->i_state & EXT4_STATE_NEW)
  2723. memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
  2724. ext4_get_inode_flags(ei);
  2725. raw_inode->i_mode = cpu_to_le16(inode->i_mode);
  2726. if(!(test_opt(inode->i_sb, NO_UID32))) {
  2727. raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
  2728. raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
  2729. /*
  2730. * Fix up interoperability with old kernels. Otherwise, old inodes get
  2731. * re-used with the upper 16 bits of the uid/gid intact
  2732. */
  2733. if(!ei->i_dtime) {
  2734. raw_inode->i_uid_high =
  2735. cpu_to_le16(high_16_bits(inode->i_uid));
  2736. raw_inode->i_gid_high =
  2737. cpu_to_le16(high_16_bits(inode->i_gid));
  2738. } else {
  2739. raw_inode->i_uid_high = 0;
  2740. raw_inode->i_gid_high = 0;
  2741. }
  2742. } else {
  2743. raw_inode->i_uid_low =
  2744. cpu_to_le16(fs_high2lowuid(inode->i_uid));
  2745. raw_inode->i_gid_low =
  2746. cpu_to_le16(fs_high2lowgid(inode->i_gid));
  2747. raw_inode->i_uid_high = 0;
  2748. raw_inode->i_gid_high = 0;
  2749. }
  2750. raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
  2751. EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
  2752. EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
  2753. EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
  2754. EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
  2755. if (ext4_inode_blocks_set(handle, raw_inode, ei))
  2756. goto out_brelse;
  2757. raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
  2758. /* clear the migrate flag in the raw_inode */
  2759. raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
  2760. if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  2761. cpu_to_le32(EXT4_OS_HURD))
  2762. raw_inode->i_file_acl_high =
  2763. cpu_to_le16(ei->i_file_acl >> 32);
  2764. raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
  2765. ext4_isize_set(raw_inode, ei->i_disksize);
  2766. if (ei->i_disksize > 0x7fffffffULL) {
  2767. struct super_block *sb = inode->i_sb;
  2768. if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
  2769. EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
  2770. EXT4_SB(sb)->s_es->s_rev_level ==
  2771. cpu_to_le32(EXT4_GOOD_OLD_REV)) {
  2772. /* If this is the first large file
  2773. * created, add a flag to the superblock.
  2774. */
  2775. err = ext4_journal_get_write_access(handle,
  2776. EXT4_SB(sb)->s_sbh);
  2777. if (err)
  2778. goto out_brelse;
  2779. ext4_update_dynamic_rev(sb);
  2780. EXT4_SET_RO_COMPAT_FEATURE(sb,
  2781. EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
  2782. sb->s_dirt = 1;
  2783. handle->h_sync = 1;
  2784. err = ext4_journal_dirty_metadata(handle,
  2785. EXT4_SB(sb)->s_sbh);
  2786. }
  2787. }
  2788. raw_inode->i_generation = cpu_to_le32(inode->i_generation);
  2789. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  2790. if (old_valid_dev(inode->i_rdev)) {
  2791. raw_inode->i_block[0] =
  2792. cpu_to_le32(old_encode_dev(inode->i_rdev));
  2793. raw_inode->i_block[1] = 0;
  2794. } else {
  2795. raw_inode->i_block[0] = 0;
  2796. raw_inode->i_block[1] =
  2797. cpu_to_le32(new_encode_dev(inode->i_rdev));
  2798. raw_inode->i_block[2] = 0;
  2799. }
  2800. } else for (block = 0; block < EXT4_N_BLOCKS; block++)
  2801. raw_inode->i_block[block] = ei->i_data[block];
  2802. raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
  2803. if (ei->i_extra_isize) {
  2804. if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
  2805. raw_inode->i_version_hi =
  2806. cpu_to_le32(inode->i_version >> 32);
  2807. raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
  2808. }
  2809. BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
  2810. rc = ext4_journal_dirty_metadata(handle, bh);
  2811. if (!err)
  2812. err = rc;
  2813. ei->i_state &= ~EXT4_STATE_NEW;
  2814. out_brelse:
  2815. brelse (bh);
  2816. ext4_std_error(inode->i_sb, err);
  2817. return err;
  2818. }
  2819. /*
  2820. * ext4_write_inode()
  2821. *
  2822. * We are called from a few places:
  2823. *
  2824. * - Within generic_file_write() for O_SYNC files.
  2825. * Here, there will be no transaction running. We wait for any running
  2826. * trasnaction to commit.
  2827. *
  2828. * - Within sys_sync(), kupdate and such.
  2829. * We wait on commit, if tol to.
  2830. *
  2831. * - Within prune_icache() (PF_MEMALLOC == true)
  2832. * Here we simply return. We can't afford to block kswapd on the
  2833. * journal commit.
  2834. *
  2835. * In all cases it is actually safe for us to return without doing anything,
  2836. * because the inode has been copied into a raw inode buffer in
  2837. * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
  2838. * knfsd.
  2839. *
  2840. * Note that we are absolutely dependent upon all inode dirtiers doing the
  2841. * right thing: they *must* call mark_inode_dirty() after dirtying info in
  2842. * which we are interested.
  2843. *
  2844. * It would be a bug for them to not do this. The code:
  2845. *
  2846. * mark_inode_dirty(inode)
  2847. * stuff();
  2848. * inode->i_size = expr;
  2849. *
  2850. * is in error because a kswapd-driven write_inode() could occur while
  2851. * `stuff()' is running, and the new i_size will be lost. Plus the inode
  2852. * will no longer be on the superblock's dirty inode list.
  2853. */
  2854. int ext4_write_inode(struct inode *inode, int wait)
  2855. {
  2856. if (current->flags & PF_MEMALLOC)
  2857. return 0;
  2858. if (ext4_journal_current_handle()) {
  2859. jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
  2860. dump_stack();
  2861. return -EIO;
  2862. }
  2863. if (!wait)
  2864. return 0;
  2865. return ext4_force_commit(inode->i_sb);
  2866. }
  2867. /*
  2868. * ext4_setattr()
  2869. *
  2870. * Called from notify_change.
  2871. *
  2872. * We want to trap VFS attempts to truncate the file as soon as
  2873. * possible. In particular, we want to make sure that when the VFS
  2874. * shrinks i_size, we put the inode on the orphan list and modify
  2875. * i_disksize immediately, so that during the subsequent flushing of
  2876. * dirty pages and freeing of disk blocks, we can guarantee that any
  2877. * commit will leave the blocks being flushed in an unused state on
  2878. * disk. (On recovery, the inode will get truncated and the blocks will
  2879. * be freed, so we have a strong guarantee that no future commit will
  2880. * leave these blocks visible to the user.)
  2881. *
  2882. * Called with inode->sem down.
  2883. */
  2884. int ext4_setattr(struct dentry *dentry, struct iattr *attr)
  2885. {
  2886. struct inode *inode = dentry->d_inode;
  2887. int error, rc = 0;
  2888. const unsigned int ia_valid = attr->ia_valid;
  2889. error = inode_change_ok(inode, attr);
  2890. if (error)
  2891. return error;
  2892. if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
  2893. (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
  2894. handle_t *handle;
  2895. /* (user+group)*(old+new) structure, inode write (sb,
  2896. * inode block, ? - but truncate inode update has it) */
  2897. handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
  2898. EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
  2899. if (IS_ERR(handle)) {
  2900. error = PTR_ERR(handle);
  2901. goto err_out;
  2902. }
  2903. error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
  2904. if (error) {
  2905. ext4_journal_stop(handle);
  2906. return error;
  2907. }
  2908. /* Update corresponding info in inode so that everything is in
  2909. * one transaction */
  2910. if (attr->ia_valid & ATTR_UID)
  2911. inode->i_uid = attr->ia_uid;
  2912. if (attr->ia_valid & ATTR_GID)
  2913. inode->i_gid = attr->ia_gid;
  2914. error = ext4_mark_inode_dirty(handle, inode);
  2915. ext4_journal_stop(handle);
  2916. }
  2917. if (attr->ia_valid & ATTR_SIZE) {
  2918. if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
  2919. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  2920. if (attr->ia_size > sbi->s_bitmap_maxbytes) {
  2921. error = -EFBIG;
  2922. goto err_out;
  2923. }
  2924. }
  2925. }
  2926. if (S_ISREG(inode->i_mode) &&
  2927. attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
  2928. handle_t *handle;
  2929. handle = ext4_journal_start(inode, 3);
  2930. if (IS_ERR(handle)) {
  2931. error = PTR_ERR(handle);
  2932. goto err_out;
  2933. }
  2934. error = ext4_orphan_add(handle, inode);
  2935. EXT4_I(inode)->i_disksize = attr->ia_size;
  2936. rc = ext4_mark_inode_dirty(handle, inode);
  2937. if (!error)
  2938. error = rc;
  2939. ext4_journal_stop(handle);
  2940. }
  2941. rc = inode_setattr(inode, attr);
  2942. /* If inode_setattr's call to ext4_truncate failed to get a
  2943. * transaction handle at all, we need to clean up the in-core
  2944. * orphan list manually. */
  2945. if (inode->i_nlink)
  2946. ext4_orphan_del(NULL, inode);
  2947. if (!rc && (ia_valid & ATTR_MODE))
  2948. rc = ext4_acl_chmod(inode);
  2949. err_out:
  2950. ext4_std_error(inode->i_sb, error);
  2951. if (!error)
  2952. error = rc;
  2953. return error;
  2954. }
  2955. /*
  2956. * How many blocks doth make a writepage()?
  2957. *
  2958. * With N blocks per page, it may be:
  2959. * N data blocks
  2960. * 2 indirect block
  2961. * 2 dindirect
  2962. * 1 tindirect
  2963. * N+5 bitmap blocks (from the above)
  2964. * N+5 group descriptor summary blocks
  2965. * 1 inode block
  2966. * 1 superblock.
  2967. * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
  2968. *
  2969. * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
  2970. *
  2971. * With ordered or writeback data it's the same, less the N data blocks.
  2972. *
  2973. * If the inode's direct blocks can hold an integral number of pages then a
  2974. * page cannot straddle two indirect blocks, and we can only touch one indirect
  2975. * and dindirect block, and the "5" above becomes "3".
  2976. *
  2977. * This still overestimates under most circumstances. If we were to pass the
  2978. * start and end offsets in here as well we could do block_to_path() on each
  2979. * block and work out the exact number of indirects which are touched. Pah.
  2980. */
  2981. int ext4_writepage_trans_blocks(struct inode *inode)
  2982. {
  2983. int bpp = ext4_journal_blocks_per_page(inode);
  2984. int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
  2985. int ret;
  2986. if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
  2987. return ext4_ext_writepage_trans_blocks(inode, bpp);
  2988. if (ext4_should_journal_data(inode))
  2989. ret = 3 * (bpp + indirects) + 2;
  2990. else
  2991. ret = 2 * (bpp + indirects) + 2;
  2992. #ifdef CONFIG_QUOTA
  2993. /* We know that structure was already allocated during DQUOT_INIT so
  2994. * we will be updating only the data blocks + inodes */
  2995. ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
  2996. #endif
  2997. return ret;
  2998. }
  2999. /*
  3000. * The caller must have previously called ext4_reserve_inode_write().
  3001. * Give this, we know that the caller already has write access to iloc->bh.
  3002. */
  3003. int ext4_mark_iloc_dirty(handle_t *handle,
  3004. struct inode *inode, struct ext4_iloc *iloc)
  3005. {
  3006. int err = 0;
  3007. if (test_opt(inode->i_sb, I_VERSION))
  3008. inode_inc_iversion(inode);
  3009. /* the do_update_inode consumes one bh->b_count */
  3010. get_bh(iloc->bh);
  3011. /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
  3012. err = ext4_do_update_inode(handle, inode, iloc);
  3013. put_bh(iloc->bh);
  3014. return err;
  3015. }
  3016. /*
  3017. * On success, We end up with an outstanding reference count against
  3018. * iloc->bh. This _must_ be cleaned up later.
  3019. */
  3020. int
  3021. ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
  3022. struct ext4_iloc *iloc)
  3023. {
  3024. int err = 0;
  3025. if (handle) {
  3026. err = ext4_get_inode_loc(inode, iloc);
  3027. if (!err) {
  3028. BUFFER_TRACE(iloc->bh, "get_write_access");
  3029. err = ext4_journal_get_write_access(handle, iloc->bh);
  3030. if (err) {
  3031. brelse(iloc->bh);
  3032. iloc->bh = NULL;
  3033. }
  3034. }
  3035. }
  3036. ext4_std_error(inode->i_sb, err);
  3037. return err;
  3038. }
  3039. /*
  3040. * Expand an inode by new_extra_isize bytes.
  3041. * Returns 0 on success or negative error number on failure.
  3042. */
  3043. static int ext4_expand_extra_isize(struct inode *inode,
  3044. unsigned int new_extra_isize,
  3045. struct ext4_iloc iloc,
  3046. handle_t *handle)
  3047. {
  3048. struct ext4_inode *raw_inode;
  3049. struct ext4_xattr_ibody_header *header;
  3050. struct ext4_xattr_entry *entry;
  3051. if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
  3052. return 0;
  3053. raw_inode = ext4_raw_inode(&iloc);
  3054. header = IHDR(inode, raw_inode);
  3055. entry = IFIRST(header);
  3056. /* No extended attributes present */
  3057. if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
  3058. header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
  3059. memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
  3060. new_extra_isize);
  3061. EXT4_I(inode)->i_extra_isize = new_extra_isize;
  3062. return 0;
  3063. }
  3064. /* try to expand with EAs present */
  3065. return ext4_expand_extra_isize_ea(inode, new_extra_isize,
  3066. raw_inode, handle);
  3067. }
  3068. /*
  3069. * What we do here is to mark the in-core inode as clean with respect to inode
  3070. * dirtiness (it may still be data-dirty).
  3071. * This means that the in-core inode may be reaped by prune_icache
  3072. * without having to perform any I/O. This is a very good thing,
  3073. * because *any* task may call prune_icache - even ones which
  3074. * have a transaction open against a different journal.
  3075. *
  3076. * Is this cheating? Not really. Sure, we haven't written the
  3077. * inode out, but prune_icache isn't a user-visible syncing function.
  3078. * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
  3079. * we start and wait on commits.
  3080. *
  3081. * Is this efficient/effective? Well, we're being nice to the system
  3082. * by cleaning up our inodes proactively so they can be reaped
  3083. * without I/O. But we are potentially leaving up to five seconds'
  3084. * worth of inodes floating about which prune_icache wants us to
  3085. * write out. One way to fix that would be to get prune_icache()
  3086. * to do a write_super() to free up some memory. It has the desired
  3087. * effect.
  3088. */
  3089. int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
  3090. {
  3091. struct ext4_iloc iloc;
  3092. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  3093. static unsigned int mnt_count;
  3094. int err, ret;
  3095. might_sleep();
  3096. err = ext4_reserve_inode_write(handle, inode, &iloc);
  3097. if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
  3098. !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
  3099. /*
  3100. * We need extra buffer credits since we may write into EA block
  3101. * with this same handle. If journal_extend fails, then it will
  3102. * only result in a minor loss of functionality for that inode.
  3103. * If this is felt to be critical, then e2fsck should be run to
  3104. * force a large enough s_min_extra_isize.
  3105. */
  3106. if ((jbd2_journal_extend(handle,
  3107. EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
  3108. ret = ext4_expand_extra_isize(inode,
  3109. sbi->s_want_extra_isize,
  3110. iloc, handle);
  3111. if (ret) {
  3112. EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
  3113. if (mnt_count !=
  3114. le16_to_cpu(sbi->s_es->s_mnt_count)) {
  3115. ext4_warning(inode->i_sb, __func__,
  3116. "Unable to expand inode %lu. Delete"
  3117. " some EAs or run e2fsck.",
  3118. inode->i_ino);
  3119. mnt_count =
  3120. le16_to_cpu(sbi->s_es->s_mnt_count);
  3121. }
  3122. }
  3123. }
  3124. }
  3125. if (!err)
  3126. err = ext4_mark_iloc_dirty(handle, inode, &iloc);
  3127. return err;
  3128. }
  3129. /*
  3130. * ext4_dirty_inode() is called from __mark_inode_dirty()
  3131. *
  3132. * We're really interested in the case where a file is being extended.
  3133. * i_size has been changed by generic_commit_write() and we thus need
  3134. * to include the updated inode in the current transaction.
  3135. *
  3136. * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
  3137. * are allocated to the file.
  3138. *
  3139. * If the inode is marked synchronous, we don't honour that here - doing
  3140. * so would cause a commit on atime updates, which we don't bother doing.
  3141. * We handle synchronous inodes at the highest possible level.
  3142. */
  3143. void ext4_dirty_inode(struct inode *inode)
  3144. {
  3145. handle_t *current_handle = ext4_journal_current_handle();
  3146. handle_t *handle;
  3147. handle = ext4_journal_start(inode, 2);
  3148. if (IS_ERR(handle))
  3149. goto out;
  3150. if (current_handle &&
  3151. current_handle->h_transaction != handle->h_transaction) {
  3152. /* This task has a transaction open against a different fs */
  3153. printk(KERN_EMERG "%s: transactions do not match!\n",
  3154. __func__);
  3155. } else {
  3156. jbd_debug(5, "marking dirty. outer handle=%p\n",
  3157. current_handle);
  3158. ext4_mark_inode_dirty(handle, inode);
  3159. }
  3160. ext4_journal_stop(handle);
  3161. out:
  3162. return;
  3163. }
  3164. #if 0
  3165. /*
  3166. * Bind an inode's backing buffer_head into this transaction, to prevent
  3167. * it from being flushed to disk early. Unlike
  3168. * ext4_reserve_inode_write, this leaves behind no bh reference and
  3169. * returns no iloc structure, so the caller needs to repeat the iloc
  3170. * lookup to mark the inode dirty later.
  3171. */
  3172. static int ext4_pin_inode(handle_t *handle, struct inode *inode)
  3173. {
  3174. struct ext4_iloc iloc;
  3175. int err = 0;
  3176. if (handle) {
  3177. err = ext4_get_inode_loc(inode, &iloc);
  3178. if (!err) {
  3179. BUFFER_TRACE(iloc.bh, "get_write_access");
  3180. err = jbd2_journal_get_write_access(handle, iloc.bh);
  3181. if (!err)
  3182. err = ext4_journal_dirty_metadata(handle,
  3183. iloc.bh);
  3184. brelse(iloc.bh);
  3185. }
  3186. }
  3187. ext4_std_error(inode->i_sb, err);
  3188. return err;
  3189. }
  3190. #endif
  3191. int ext4_change_inode_journal_flag(struct inode *inode, int val)
  3192. {
  3193. journal_t *journal;
  3194. handle_t *handle;
  3195. int err;
  3196. /*
  3197. * We have to be very careful here: changing a data block's
  3198. * journaling status dynamically is dangerous. If we write a
  3199. * data block to the journal, change the status and then delete
  3200. * that block, we risk forgetting to revoke the old log record
  3201. * from the journal and so a subsequent replay can corrupt data.
  3202. * So, first we make sure that the journal is empty and that
  3203. * nobody is changing anything.
  3204. */
  3205. journal = EXT4_JOURNAL(inode);
  3206. if (is_journal_aborted(journal))
  3207. return -EROFS;
  3208. jbd2_journal_lock_updates(journal);
  3209. jbd2_journal_flush(journal);
  3210. /*
  3211. * OK, there are no updates running now, and all cached data is
  3212. * synced to disk. We are now in a completely consistent state
  3213. * which doesn't have anything in the journal, and we know that
  3214. * no filesystem updates are running, so it is safe to modify
  3215. * the inode's in-core data-journaling state flag now.
  3216. */
  3217. if (val)
  3218. EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
  3219. else
  3220. EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
  3221. ext4_set_aops(inode);
  3222. jbd2_journal_unlock_updates(journal);
  3223. /* Finally we can mark the inode as dirty. */
  3224. handle = ext4_journal_start(inode, 1);
  3225. if (IS_ERR(handle))
  3226. return PTR_ERR(handle);
  3227. err = ext4_mark_inode_dirty(handle, inode);
  3228. handle->h_sync = 1;
  3229. ext4_journal_stop(handle);
  3230. ext4_std_error(inode->i_sb, err);
  3231. return err;
  3232. }