process.c 4.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185
  1. /*
  2. * Copyright (C) 2000-2003 Axis Communications AB
  3. *
  4. * Authors: Bjorn Wesen (bjornw@axis.com)
  5. * Mikael Starvik (starvik@axis.com)
  6. * Tobias Anderberg (tobiasa@axis.com), CRISv32 port.
  7. *
  8. * This file handles the architecture-dependent parts of process handling..
  9. */
  10. #include <linux/sched.h>
  11. #include <linux/slab.h>
  12. #include <linux/err.h>
  13. #include <linux/fs.h>
  14. #include <hwregs/reg_rdwr.h>
  15. #include <hwregs/reg_map.h>
  16. #include <hwregs/timer_defs.h>
  17. #include <hwregs/intr_vect_defs.h>
  18. #include <linux/ptrace.h>
  19. extern void stop_watchdog(void);
  20. /* We use this if we don't have any better idle routine. */
  21. void default_idle(void)
  22. {
  23. local_irq_disable();
  24. if (!need_resched()) {
  25. /* Halt until exception. */
  26. __asm__ volatile("ei \n\t"
  27. "halt ");
  28. }
  29. local_irq_enable();
  30. }
  31. /*
  32. * Free current thread data structures etc..
  33. */
  34. extern void deconfigure_bp(long pid);
  35. void exit_thread(void)
  36. {
  37. deconfigure_bp(current->pid);
  38. }
  39. /*
  40. * If the watchdog is enabled, disable interrupts and enter an infinite loop.
  41. * The watchdog will reset the CPU after 0.1s. If the watchdog isn't enabled
  42. * then enable it and wait.
  43. */
  44. extern void arch_enable_nmi(void);
  45. void
  46. hard_reset_now(void)
  47. {
  48. /*
  49. * Don't declare this variable elsewhere. We don't want any other
  50. * code to know about it than the watchdog handler in entry.S and
  51. * this code, implementing hard reset through the watchdog.
  52. */
  53. #if defined(CONFIG_ETRAX_WATCHDOG)
  54. extern int cause_of_death;
  55. #endif
  56. printk("*** HARD RESET ***\n");
  57. local_irq_disable();
  58. #if defined(CONFIG_ETRAX_WATCHDOG)
  59. cause_of_death = 0xbedead;
  60. #else
  61. {
  62. reg_timer_rw_wd_ctrl wd_ctrl = {0};
  63. stop_watchdog();
  64. wd_ctrl.key = 16; /* Arbitrary key. */
  65. wd_ctrl.cnt = 1; /* Minimum time. */
  66. wd_ctrl.cmd = regk_timer_start;
  67. arch_enable_nmi();
  68. REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl);
  69. }
  70. #endif
  71. while (1)
  72. ; /* Wait for reset. */
  73. }
  74. /*
  75. * Return saved PC of a blocked thread.
  76. */
  77. unsigned long thread_saved_pc(struct task_struct *t)
  78. {
  79. return task_pt_regs(t)->erp;
  80. }
  81. /*
  82. * Setup the child's kernel stack with a pt_regs and call switch_stack() on it.
  83. * It will be unnested during _resume and _ret_from_sys_call when the new thread
  84. * is scheduled.
  85. *
  86. * Also setup the thread switching structure which is used to keep
  87. * thread-specific data during _resumes.
  88. */
  89. extern asmlinkage void ret_from_fork(void);
  90. extern asmlinkage void ret_from_kernel_thread(void);
  91. int
  92. copy_thread(unsigned long clone_flags, unsigned long usp,
  93. unsigned long arg, struct task_struct *p)
  94. {
  95. struct pt_regs *childregs = task_pt_regs(p);
  96. struct switch_stack *swstack = ((struct switch_stack *) childregs) - 1;
  97. /*
  98. * Put the pt_regs structure at the end of the new kernel stack page and
  99. * fix it up. Note: the task_struct doubles as the kernel stack for the
  100. * task.
  101. */
  102. if (unlikely(p->flags & PF_KTHREAD)) {
  103. memset(swstack, 0,
  104. sizeof(struct switch_stack) + sizeof(struct pt_regs));
  105. swstack->r1 = usp;
  106. swstack->r2 = arg;
  107. childregs->ccs = 1 << (I_CCS_BITNR + CCS_SHIFT);
  108. swstack->return_ip = (unsigned long) ret_from_kernel_thread;
  109. p->thread.ksp = (unsigned long) swstack;
  110. p->thread.usp = 0;
  111. return 0;
  112. }
  113. *childregs = *current_pt_regs(); /* Struct copy of pt_regs. */
  114. childregs->r10 = 0; /* Child returns 0 after a fork/clone. */
  115. /* Set a new TLS ?
  116. * The TLS is in $mof because it is the 5th argument to sys_clone.
  117. */
  118. if (p->mm && (clone_flags & CLONE_SETTLS)) {
  119. task_thread_info(p)->tls = childregs->mof;
  120. }
  121. /* Put the switch stack right below the pt_regs. */
  122. /* Parameter to ret_from_sys_call. 0 is don't restart the syscall. */
  123. swstack->r9 = 0;
  124. /*
  125. * We want to return into ret_from_sys_call after the _resume.
  126. * ret_from_fork will call ret_from_sys_call.
  127. */
  128. swstack->return_ip = (unsigned long) ret_from_fork;
  129. /* Fix the user-mode and kernel-mode stackpointer. */
  130. p->thread.usp = usp ?: rdusp();
  131. p->thread.ksp = (unsigned long) swstack;
  132. return 0;
  133. }
  134. unsigned long
  135. get_wchan(struct task_struct *p)
  136. {
  137. /* TODO */
  138. return 0;
  139. }
  140. #undef last_sched
  141. #undef first_sched
  142. void show_regs(struct pt_regs * regs)
  143. {
  144. unsigned long usp = rdusp();
  145. printk("ERP: %08lx SRP: %08lx CCS: %08lx USP: %08lx MOF: %08lx\n",
  146. regs->erp, regs->srp, regs->ccs, usp, regs->mof);
  147. printk(" r0: %08lx r1: %08lx r2: %08lx r3: %08lx\n",
  148. regs->r0, regs->r1, regs->r2, regs->r3);
  149. printk(" r4: %08lx r5: %08lx r6: %08lx r7: %08lx\n",
  150. regs->r4, regs->r5, regs->r6, regs->r7);
  151. printk(" r8: %08lx r9: %08lx r10: %08lx r11: %08lx\n",
  152. regs->r8, regs->r9, regs->r10, regs->r11);
  153. printk("r12: %08lx r13: %08lx oR10: %08lx\n",
  154. regs->r12, regs->r13, regs->orig_r10);
  155. }