extents_status.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492
  1. /*
  2. * fs/ext4/extents_status.c
  3. *
  4. * Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
  5. * Modified by
  6. * Allison Henderson <achender@linux.vnet.ibm.com>
  7. * Hugh Dickins <hughd@google.com>
  8. * Zheng Liu <wenqing.lz@taobao.com>
  9. *
  10. * Ext4 extents status tree core functions.
  11. */
  12. #include <linux/rbtree.h>
  13. #include "ext4.h"
  14. #include "extents_status.h"
  15. #include "ext4_extents.h"
  16. /*
  17. * According to previous discussion in Ext4 Developer Workshop, we
  18. * will introduce a new structure called io tree to track all extent
  19. * status in order to solve some problems that we have met
  20. * (e.g. Reservation space warning), and provide extent-level locking.
  21. * Delay extent tree is the first step to achieve this goal. It is
  22. * original built by Yongqiang Yang. At that time it is called delay
  23. * extent tree, whose goal is only track delay extent in memory to
  24. * simplify the implementation of fiemap and bigalloc, and introduce
  25. * lseek SEEK_DATA/SEEK_HOLE support. That is why it is still called
  26. * delay extent tree at the following comment. But for better
  27. * understand what it does, it has been rename to extent status tree.
  28. *
  29. * Currently the first step has been done. All delay extents are
  30. * tracked in the tree. It maintains the delay extent when a delay
  31. * allocation is issued, and the delay extent is written out or
  32. * invalidated. Therefore the implementation of fiemap and bigalloc
  33. * are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
  34. *
  35. * The following comment describes the implemenmtation of extent
  36. * status tree and future works.
  37. */
  38. /*
  39. * extents status tree implementation for ext4.
  40. *
  41. *
  42. * ==========================================================================
  43. * Extents status encompass delayed extents and extent locks
  44. *
  45. * 1. Why delayed extent implementation ?
  46. *
  47. * Without delayed extent, ext4 identifies a delayed extent by looking
  48. * up page cache, this has several deficiencies - complicated, buggy,
  49. * and inefficient code.
  50. *
  51. * FIEMAP, SEEK_HOLE/DATA, bigalloc, punch hole and writeout all need
  52. * to know if a block or a range of blocks are belonged to a delayed
  53. * extent.
  54. *
  55. * Let us have a look at how they do without delayed extents implementation.
  56. * -- FIEMAP
  57. * FIEMAP looks up page cache to identify delayed allocations from holes.
  58. *
  59. * -- SEEK_HOLE/DATA
  60. * SEEK_HOLE/DATA has the same problem as FIEMAP.
  61. *
  62. * -- bigalloc
  63. * bigalloc looks up page cache to figure out if a block is
  64. * already under delayed allocation or not to determine whether
  65. * quota reserving is needed for the cluster.
  66. *
  67. * -- punch hole
  68. * punch hole looks up page cache to identify a delayed extent.
  69. *
  70. * -- writeout
  71. * Writeout looks up whole page cache to see if a buffer is
  72. * mapped, If there are not very many delayed buffers, then it is
  73. * time comsuming.
  74. *
  75. * With delayed extents implementation, FIEMAP, SEEK_HOLE/DATA,
  76. * bigalloc and writeout can figure out if a block or a range of
  77. * blocks is under delayed allocation(belonged to a delayed extent) or
  78. * not by searching the delayed extent tree.
  79. *
  80. *
  81. * ==========================================================================
  82. * 2. ext4 delayed extents impelmentation
  83. *
  84. * -- delayed extent
  85. * A delayed extent is a range of blocks which are contiguous
  86. * logically and under delayed allocation. Unlike extent in
  87. * ext4, delayed extent in ext4 is a in-memory struct, there is
  88. * no corresponding on-disk data. There is no limit on length of
  89. * delayed extent, so a delayed extent can contain as many blocks
  90. * as they are contiguous logically.
  91. *
  92. * -- delayed extent tree
  93. * Every inode has a delayed extent tree and all under delayed
  94. * allocation blocks are added to the tree as delayed extents.
  95. * Delayed extents in the tree are ordered by logical block no.
  96. *
  97. * -- operations on a delayed extent tree
  98. * There are three operations on a delayed extent tree: find next
  99. * delayed extent, adding a space(a range of blocks) and removing
  100. * a space.
  101. *
  102. * -- race on a delayed extent tree
  103. * Delayed extent tree is protected inode->i_es_lock.
  104. *
  105. *
  106. * ==========================================================================
  107. * 3. performance analysis
  108. * -- overhead
  109. * 1. There is a cache extent for write access, so if writes are
  110. * not very random, adding space operaions are in O(1) time.
  111. *
  112. * -- gain
  113. * 2. Code is much simpler, more readable, more maintainable and
  114. * more efficient.
  115. *
  116. *
  117. * ==========================================================================
  118. * 4. TODO list
  119. * -- Track all extent status
  120. *
  121. * -- Improve get block process
  122. *
  123. * -- Extent-level locking
  124. */
  125. static struct kmem_cache *ext4_es_cachep;
  126. int __init ext4_init_es(void)
  127. {
  128. ext4_es_cachep = KMEM_CACHE(extent_status, SLAB_RECLAIM_ACCOUNT);
  129. if (ext4_es_cachep == NULL)
  130. return -ENOMEM;
  131. return 0;
  132. }
  133. void ext4_exit_es(void)
  134. {
  135. if (ext4_es_cachep)
  136. kmem_cache_destroy(ext4_es_cachep);
  137. }
  138. void ext4_es_init_tree(struct ext4_es_tree *tree)
  139. {
  140. tree->root = RB_ROOT;
  141. tree->cache_es = NULL;
  142. }
  143. #ifdef ES_DEBUG__
  144. static void ext4_es_print_tree(struct inode *inode)
  145. {
  146. struct ext4_es_tree *tree;
  147. struct rb_node *node;
  148. printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino);
  149. tree = &EXT4_I(inode)->i_es_tree;
  150. node = rb_first(&tree->root);
  151. while (node) {
  152. struct extent_status *es;
  153. es = rb_entry(node, struct extent_status, rb_node);
  154. printk(KERN_DEBUG " [%u/%u)", es->start, es->len);
  155. node = rb_next(node);
  156. }
  157. printk(KERN_DEBUG "\n");
  158. }
  159. #else
  160. #define ext4_es_print_tree(inode)
  161. #endif
  162. static inline ext4_lblk_t extent_status_end(struct extent_status *es)
  163. {
  164. BUG_ON(es->start + es->len < es->start);
  165. return es->start + es->len - 1;
  166. }
  167. /*
  168. * search through the tree for an delayed extent with a given offset. If
  169. * it can't be found, try to find next extent.
  170. */
  171. static struct extent_status *__es_tree_search(struct rb_root *root,
  172. ext4_lblk_t offset)
  173. {
  174. struct rb_node *node = root->rb_node;
  175. struct extent_status *es = NULL;
  176. while (node) {
  177. es = rb_entry(node, struct extent_status, rb_node);
  178. if (offset < es->start)
  179. node = node->rb_left;
  180. else if (offset > extent_status_end(es))
  181. node = node->rb_right;
  182. else
  183. return es;
  184. }
  185. if (es && offset < es->start)
  186. return es;
  187. if (es && offset > extent_status_end(es)) {
  188. node = rb_next(&es->rb_node);
  189. return node ? rb_entry(node, struct extent_status, rb_node) :
  190. NULL;
  191. }
  192. return NULL;
  193. }
  194. /*
  195. * ext4_es_find_extent: find the 1st delayed extent covering @es->start
  196. * if it exists, otherwise, the next extent after @es->start.
  197. *
  198. * @inode: the inode which owns delayed extents
  199. * @es: delayed extent that we found
  200. *
  201. * Returns the first block of the next extent after es, otherwise
  202. * EXT_MAX_BLOCKS if no delay extent is found.
  203. * Delayed extent is returned via @es.
  204. */
  205. ext4_lblk_t ext4_es_find_extent(struct inode *inode, struct extent_status *es)
  206. {
  207. struct ext4_es_tree *tree = NULL;
  208. struct extent_status *es1 = NULL;
  209. struct rb_node *node;
  210. ext4_lblk_t ret = EXT_MAX_BLOCKS;
  211. read_lock(&EXT4_I(inode)->i_es_lock);
  212. tree = &EXT4_I(inode)->i_es_tree;
  213. /* find delay extent in cache firstly */
  214. if (tree->cache_es) {
  215. es1 = tree->cache_es;
  216. if (in_range(es->start, es1->start, es1->len)) {
  217. es_debug("%u cached by [%u/%u)\n",
  218. es->start, es1->start, es1->len);
  219. goto out;
  220. }
  221. }
  222. es->len = 0;
  223. es1 = __es_tree_search(&tree->root, es->start);
  224. out:
  225. if (es1) {
  226. tree->cache_es = es1;
  227. es->start = es1->start;
  228. es->len = es1->len;
  229. node = rb_next(&es1->rb_node);
  230. if (node) {
  231. es1 = rb_entry(node, struct extent_status, rb_node);
  232. ret = es1->start;
  233. }
  234. }
  235. read_unlock(&EXT4_I(inode)->i_es_lock);
  236. return ret;
  237. }
  238. static struct extent_status *
  239. ext4_es_alloc_extent(ext4_lblk_t start, ext4_lblk_t len)
  240. {
  241. struct extent_status *es;
  242. es = kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC);
  243. if (es == NULL)
  244. return NULL;
  245. es->start = start;
  246. es->len = len;
  247. return es;
  248. }
  249. static void ext4_es_free_extent(struct extent_status *es)
  250. {
  251. kmem_cache_free(ext4_es_cachep, es);
  252. }
  253. static struct extent_status *
  254. ext4_es_try_to_merge_left(struct ext4_es_tree *tree, struct extent_status *es)
  255. {
  256. struct extent_status *es1;
  257. struct rb_node *node;
  258. node = rb_prev(&es->rb_node);
  259. if (!node)
  260. return es;
  261. es1 = rb_entry(node, struct extent_status, rb_node);
  262. if (es->start == extent_status_end(es1) + 1) {
  263. es1->len += es->len;
  264. rb_erase(&es->rb_node, &tree->root);
  265. ext4_es_free_extent(es);
  266. es = es1;
  267. }
  268. return es;
  269. }
  270. static struct extent_status *
  271. ext4_es_try_to_merge_right(struct ext4_es_tree *tree, struct extent_status *es)
  272. {
  273. struct extent_status *es1;
  274. struct rb_node *node;
  275. node = rb_next(&es->rb_node);
  276. if (!node)
  277. return es;
  278. es1 = rb_entry(node, struct extent_status, rb_node);
  279. if (es1->start == extent_status_end(es) + 1) {
  280. es->len += es1->len;
  281. rb_erase(node, &tree->root);
  282. ext4_es_free_extent(es1);
  283. }
  284. return es;
  285. }
  286. static int __es_insert_extent(struct ext4_es_tree *tree, ext4_lblk_t offset,
  287. ext4_lblk_t len)
  288. {
  289. struct rb_node **p = &tree->root.rb_node;
  290. struct rb_node *parent = NULL;
  291. struct extent_status *es;
  292. ext4_lblk_t end = offset + len - 1;
  293. BUG_ON(end < offset);
  294. es = tree->cache_es;
  295. if (es && offset == (extent_status_end(es) + 1)) {
  296. es_debug("cached by [%u/%u)\n", es->start, es->len);
  297. es->len += len;
  298. es = ext4_es_try_to_merge_right(tree, es);
  299. goto out;
  300. } else if (es && es->start == end + 1) {
  301. es_debug("cached by [%u/%u)\n", es->start, es->len);
  302. es->start = offset;
  303. es->len += len;
  304. es = ext4_es_try_to_merge_left(tree, es);
  305. goto out;
  306. } else if (es && es->start <= offset &&
  307. end <= extent_status_end(es)) {
  308. es_debug("cached by [%u/%u)\n", es->start, es->len);
  309. goto out;
  310. }
  311. while (*p) {
  312. parent = *p;
  313. es = rb_entry(parent, struct extent_status, rb_node);
  314. if (offset < es->start) {
  315. if (es->start == end + 1) {
  316. es->start = offset;
  317. es->len += len;
  318. es = ext4_es_try_to_merge_left(tree, es);
  319. goto out;
  320. }
  321. p = &(*p)->rb_left;
  322. } else if (offset > extent_status_end(es)) {
  323. if (offset == extent_status_end(es) + 1) {
  324. es->len += len;
  325. es = ext4_es_try_to_merge_right(tree, es);
  326. goto out;
  327. }
  328. p = &(*p)->rb_right;
  329. } else {
  330. if (extent_status_end(es) <= end)
  331. es->len = offset - es->start + len;
  332. goto out;
  333. }
  334. }
  335. es = ext4_es_alloc_extent(offset, len);
  336. if (!es)
  337. return -ENOMEM;
  338. rb_link_node(&es->rb_node, parent, p);
  339. rb_insert_color(&es->rb_node, &tree->root);
  340. out:
  341. tree->cache_es = es;
  342. return 0;
  343. }
  344. /*
  345. * ext4_es_insert_extent() adds a space to a delayed extent tree.
  346. * Caller holds inode->i_es_lock.
  347. *
  348. * ext4_es_insert_extent is called by ext4_da_write_begin and
  349. * ext4_es_remove_extent.
  350. *
  351. * Return 0 on success, error code on failure.
  352. */
  353. int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t offset,
  354. ext4_lblk_t len)
  355. {
  356. struct ext4_es_tree *tree;
  357. int err = 0;
  358. es_debug("add [%u/%u) to extent status tree of inode %lu\n",
  359. offset, len, inode->i_ino);
  360. write_lock(&EXT4_I(inode)->i_es_lock);
  361. tree = &EXT4_I(inode)->i_es_tree;
  362. err = __es_insert_extent(tree, offset, len);
  363. write_unlock(&EXT4_I(inode)->i_es_lock);
  364. ext4_es_print_tree(inode);
  365. return err;
  366. }
  367. /*
  368. * ext4_es_remove_extent() removes a space from a delayed extent tree.
  369. * Caller holds inode->i_es_lock.
  370. *
  371. * Return 0 on success, error code on failure.
  372. */
  373. int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t offset,
  374. ext4_lblk_t len)
  375. {
  376. struct rb_node *node;
  377. struct ext4_es_tree *tree;
  378. struct extent_status *es;
  379. struct extent_status orig_es;
  380. ext4_lblk_t len1, len2, end;
  381. int err = 0;
  382. es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
  383. offset, len, inode->i_ino);
  384. end = offset + len - 1;
  385. BUG_ON(end < offset);
  386. write_lock(&EXT4_I(inode)->i_es_lock);
  387. tree = &EXT4_I(inode)->i_es_tree;
  388. es = __es_tree_search(&tree->root, offset);
  389. if (!es)
  390. goto out;
  391. if (es->start > end)
  392. goto out;
  393. /* Simply invalidate cache_es. */
  394. tree->cache_es = NULL;
  395. orig_es.start = es->start;
  396. orig_es.len = es->len;
  397. len1 = offset > es->start ? offset - es->start : 0;
  398. len2 = extent_status_end(es) > end ?
  399. extent_status_end(es) - end : 0;
  400. if (len1 > 0)
  401. es->len = len1;
  402. if (len2 > 0) {
  403. if (len1 > 0) {
  404. err = __es_insert_extent(tree, end + 1, len2);
  405. if (err) {
  406. es->start = orig_es.start;
  407. es->len = orig_es.len;
  408. goto out;
  409. }
  410. } else {
  411. es->start = end + 1;
  412. es->len = len2;
  413. }
  414. goto out;
  415. }
  416. if (len1 > 0) {
  417. node = rb_next(&es->rb_node);
  418. if (node)
  419. es = rb_entry(node, struct extent_status, rb_node);
  420. else
  421. es = NULL;
  422. }
  423. while (es && extent_status_end(es) <= end) {
  424. node = rb_next(&es->rb_node);
  425. rb_erase(&es->rb_node, &tree->root);
  426. ext4_es_free_extent(es);
  427. if (!node) {
  428. es = NULL;
  429. break;
  430. }
  431. es = rb_entry(node, struct extent_status, rb_node);
  432. }
  433. if (es && es->start < end + 1) {
  434. len1 = extent_status_end(es) - end;
  435. es->start = end + 1;
  436. es->len = len1;
  437. }
  438. out:
  439. write_unlock(&EXT4_I(inode)->i_es_lock);
  440. ext4_es_print_tree(inode);
  441. return err;
  442. }