vmx.c 56 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "vmx.h"
  19. #include <linux/module.h>
  20. #include <linux/kernel.h>
  21. #include <linux/mm.h>
  22. #include <linux/highmem.h>
  23. #include <linux/profile.h>
  24. #include <linux/sched.h>
  25. #include <asm/io.h>
  26. #include <asm/desc.h>
  27. #include "segment_descriptor.h"
  28. MODULE_AUTHOR("Qumranet");
  29. MODULE_LICENSE("GPL");
  30. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  31. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  32. static struct page *vmx_io_bitmap_a;
  33. static struct page *vmx_io_bitmap_b;
  34. #ifdef CONFIG_X86_64
  35. #define HOST_IS_64 1
  36. #else
  37. #define HOST_IS_64 0
  38. #endif
  39. static struct vmcs_descriptor {
  40. int size;
  41. int order;
  42. u32 revision_id;
  43. } vmcs_descriptor;
  44. #define VMX_SEGMENT_FIELD(seg) \
  45. [VCPU_SREG_##seg] = { \
  46. .selector = GUEST_##seg##_SELECTOR, \
  47. .base = GUEST_##seg##_BASE, \
  48. .limit = GUEST_##seg##_LIMIT, \
  49. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  50. }
  51. static struct kvm_vmx_segment_field {
  52. unsigned selector;
  53. unsigned base;
  54. unsigned limit;
  55. unsigned ar_bytes;
  56. } kvm_vmx_segment_fields[] = {
  57. VMX_SEGMENT_FIELD(CS),
  58. VMX_SEGMENT_FIELD(DS),
  59. VMX_SEGMENT_FIELD(ES),
  60. VMX_SEGMENT_FIELD(FS),
  61. VMX_SEGMENT_FIELD(GS),
  62. VMX_SEGMENT_FIELD(SS),
  63. VMX_SEGMENT_FIELD(TR),
  64. VMX_SEGMENT_FIELD(LDTR),
  65. };
  66. /*
  67. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  68. * away by decrementing the array size.
  69. */
  70. static const u32 vmx_msr_index[] = {
  71. #ifdef CONFIG_X86_64
  72. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  73. #endif
  74. MSR_EFER, MSR_K6_STAR,
  75. };
  76. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  77. #ifdef CONFIG_X86_64
  78. static unsigned msr_offset_kernel_gs_base;
  79. #define NR_64BIT_MSRS 4
  80. /*
  81. * avoid save/load MSR_SYSCALL_MASK and MSR_LSTAR by std vt
  82. * mechanism (cpu bug AA24)
  83. */
  84. #define NR_BAD_MSRS 2
  85. #else
  86. #define NR_64BIT_MSRS 0
  87. #define NR_BAD_MSRS 0
  88. #endif
  89. static inline int is_page_fault(u32 intr_info)
  90. {
  91. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  92. INTR_INFO_VALID_MASK)) ==
  93. (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  94. }
  95. static inline int is_no_device(u32 intr_info)
  96. {
  97. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  98. INTR_INFO_VALID_MASK)) ==
  99. (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  100. }
  101. static inline int is_external_interrupt(u32 intr_info)
  102. {
  103. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  104. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  105. }
  106. static struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr)
  107. {
  108. int i;
  109. for (i = 0; i < vcpu->nmsrs; ++i)
  110. if (vcpu->guest_msrs[i].index == msr)
  111. return &vcpu->guest_msrs[i];
  112. return NULL;
  113. }
  114. static void vmcs_clear(struct vmcs *vmcs)
  115. {
  116. u64 phys_addr = __pa(vmcs);
  117. u8 error;
  118. asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
  119. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  120. : "cc", "memory");
  121. if (error)
  122. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  123. vmcs, phys_addr);
  124. }
  125. static void __vcpu_clear(void *arg)
  126. {
  127. struct kvm_vcpu *vcpu = arg;
  128. int cpu = raw_smp_processor_id();
  129. if (vcpu->cpu == cpu)
  130. vmcs_clear(vcpu->vmcs);
  131. if (per_cpu(current_vmcs, cpu) == vcpu->vmcs)
  132. per_cpu(current_vmcs, cpu) = NULL;
  133. }
  134. static void vcpu_clear(struct kvm_vcpu *vcpu)
  135. {
  136. if (vcpu->cpu != raw_smp_processor_id() && vcpu->cpu != -1)
  137. smp_call_function_single(vcpu->cpu, __vcpu_clear, vcpu, 0, 1);
  138. else
  139. __vcpu_clear(vcpu);
  140. vcpu->launched = 0;
  141. }
  142. static unsigned long vmcs_readl(unsigned long field)
  143. {
  144. unsigned long value;
  145. asm volatile (ASM_VMX_VMREAD_RDX_RAX
  146. : "=a"(value) : "d"(field) : "cc");
  147. return value;
  148. }
  149. static u16 vmcs_read16(unsigned long field)
  150. {
  151. return vmcs_readl(field);
  152. }
  153. static u32 vmcs_read32(unsigned long field)
  154. {
  155. return vmcs_readl(field);
  156. }
  157. static u64 vmcs_read64(unsigned long field)
  158. {
  159. #ifdef CONFIG_X86_64
  160. return vmcs_readl(field);
  161. #else
  162. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  163. #endif
  164. }
  165. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  166. {
  167. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  168. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  169. dump_stack();
  170. }
  171. static void vmcs_writel(unsigned long field, unsigned long value)
  172. {
  173. u8 error;
  174. asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
  175. : "=q"(error) : "a"(value), "d"(field) : "cc" );
  176. if (unlikely(error))
  177. vmwrite_error(field, value);
  178. }
  179. static void vmcs_write16(unsigned long field, u16 value)
  180. {
  181. vmcs_writel(field, value);
  182. }
  183. static void vmcs_write32(unsigned long field, u32 value)
  184. {
  185. vmcs_writel(field, value);
  186. }
  187. static void vmcs_write64(unsigned long field, u64 value)
  188. {
  189. #ifdef CONFIG_X86_64
  190. vmcs_writel(field, value);
  191. #else
  192. vmcs_writel(field, value);
  193. asm volatile ("");
  194. vmcs_writel(field+1, value >> 32);
  195. #endif
  196. }
  197. static void vmcs_clear_bits(unsigned long field, u32 mask)
  198. {
  199. vmcs_writel(field, vmcs_readl(field) & ~mask);
  200. }
  201. static void vmcs_set_bits(unsigned long field, u32 mask)
  202. {
  203. vmcs_writel(field, vmcs_readl(field) | mask);
  204. }
  205. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  206. {
  207. u32 eb;
  208. eb = 1u << PF_VECTOR;
  209. if (!vcpu->fpu_active)
  210. eb |= 1u << NM_VECTOR;
  211. if (vcpu->guest_debug.enabled)
  212. eb |= 1u << 1;
  213. if (vcpu->rmode.active)
  214. eb = ~0;
  215. vmcs_write32(EXCEPTION_BITMAP, eb);
  216. }
  217. static void reload_tss(void)
  218. {
  219. #ifndef CONFIG_X86_64
  220. /*
  221. * VT restores TR but not its size. Useless.
  222. */
  223. struct descriptor_table gdt;
  224. struct segment_descriptor *descs;
  225. get_gdt(&gdt);
  226. descs = (void *)gdt.base;
  227. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  228. load_TR_desc();
  229. #endif
  230. }
  231. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  232. {
  233. struct vmx_host_state *hs = &vcpu->vmx_host_state;
  234. if (hs->loaded)
  235. return;
  236. hs->loaded = 1;
  237. /*
  238. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  239. * allow segment selectors with cpl > 0 or ti == 1.
  240. */
  241. hs->ldt_sel = read_ldt();
  242. hs->fs_gs_ldt_reload_needed = hs->ldt_sel;
  243. hs->fs_sel = read_fs();
  244. if (!(hs->fs_sel & 7))
  245. vmcs_write16(HOST_FS_SELECTOR, hs->fs_sel);
  246. else {
  247. vmcs_write16(HOST_FS_SELECTOR, 0);
  248. hs->fs_gs_ldt_reload_needed = 1;
  249. }
  250. hs->gs_sel = read_gs();
  251. if (!(hs->gs_sel & 7))
  252. vmcs_write16(HOST_GS_SELECTOR, hs->gs_sel);
  253. else {
  254. vmcs_write16(HOST_GS_SELECTOR, 0);
  255. hs->fs_gs_ldt_reload_needed = 1;
  256. }
  257. #ifdef CONFIG_X86_64
  258. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  259. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  260. #else
  261. vmcs_writel(HOST_FS_BASE, segment_base(hs->fs_sel));
  262. vmcs_writel(HOST_GS_BASE, segment_base(hs->gs_sel));
  263. #endif
  264. #ifdef CONFIG_X86_64
  265. if (is_long_mode(vcpu)) {
  266. save_msrs(vcpu->host_msrs + msr_offset_kernel_gs_base, 1);
  267. load_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
  268. }
  269. #endif
  270. }
  271. static void vmx_load_host_state(struct kvm_vcpu *vcpu)
  272. {
  273. struct vmx_host_state *hs = &vcpu->vmx_host_state;
  274. if (!hs->loaded)
  275. return;
  276. hs->loaded = 0;
  277. if (hs->fs_gs_ldt_reload_needed) {
  278. load_ldt(hs->ldt_sel);
  279. load_fs(hs->fs_sel);
  280. /*
  281. * If we have to reload gs, we must take care to
  282. * preserve our gs base.
  283. */
  284. local_irq_disable();
  285. load_gs(hs->gs_sel);
  286. #ifdef CONFIG_X86_64
  287. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  288. #endif
  289. local_irq_enable();
  290. reload_tss();
  291. }
  292. #ifdef CONFIG_X86_64
  293. if (is_long_mode(vcpu)) {
  294. save_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
  295. load_msrs(vcpu->host_msrs, NR_BAD_MSRS);
  296. }
  297. #endif
  298. }
  299. /*
  300. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  301. * vcpu mutex is already taken.
  302. */
  303. static void vmx_vcpu_load(struct kvm_vcpu *vcpu)
  304. {
  305. u64 phys_addr = __pa(vcpu->vmcs);
  306. int cpu;
  307. cpu = get_cpu();
  308. if (vcpu->cpu != cpu)
  309. vcpu_clear(vcpu);
  310. if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) {
  311. u8 error;
  312. per_cpu(current_vmcs, cpu) = vcpu->vmcs;
  313. asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
  314. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  315. : "cc");
  316. if (error)
  317. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  318. vcpu->vmcs, phys_addr);
  319. }
  320. if (vcpu->cpu != cpu) {
  321. struct descriptor_table dt;
  322. unsigned long sysenter_esp;
  323. vcpu->cpu = cpu;
  324. /*
  325. * Linux uses per-cpu TSS and GDT, so set these when switching
  326. * processors.
  327. */
  328. vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
  329. get_gdt(&dt);
  330. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  331. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  332. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  333. }
  334. }
  335. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  336. {
  337. vmx_load_host_state(vcpu);
  338. kvm_put_guest_fpu(vcpu);
  339. put_cpu();
  340. }
  341. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  342. {
  343. if (vcpu->fpu_active)
  344. return;
  345. vcpu->fpu_active = 1;
  346. vmcs_clear_bits(GUEST_CR0, CR0_TS_MASK);
  347. if (vcpu->cr0 & CR0_TS_MASK)
  348. vmcs_set_bits(GUEST_CR0, CR0_TS_MASK);
  349. update_exception_bitmap(vcpu);
  350. }
  351. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  352. {
  353. if (!vcpu->fpu_active)
  354. return;
  355. vcpu->fpu_active = 0;
  356. vmcs_set_bits(GUEST_CR0, CR0_TS_MASK);
  357. update_exception_bitmap(vcpu);
  358. }
  359. static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
  360. {
  361. vcpu_clear(vcpu);
  362. }
  363. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  364. {
  365. return vmcs_readl(GUEST_RFLAGS);
  366. }
  367. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  368. {
  369. vmcs_writel(GUEST_RFLAGS, rflags);
  370. }
  371. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  372. {
  373. unsigned long rip;
  374. u32 interruptibility;
  375. rip = vmcs_readl(GUEST_RIP);
  376. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  377. vmcs_writel(GUEST_RIP, rip);
  378. /*
  379. * We emulated an instruction, so temporary interrupt blocking
  380. * should be removed, if set.
  381. */
  382. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  383. if (interruptibility & 3)
  384. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  385. interruptibility & ~3);
  386. vcpu->interrupt_window_open = 1;
  387. }
  388. static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
  389. {
  390. printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
  391. vmcs_readl(GUEST_RIP));
  392. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  393. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  394. GP_VECTOR |
  395. INTR_TYPE_EXCEPTION |
  396. INTR_INFO_DELIEVER_CODE_MASK |
  397. INTR_INFO_VALID_MASK);
  398. }
  399. /*
  400. * Set up the vmcs to automatically save and restore system
  401. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  402. * mode, as fiddling with msrs is very expensive.
  403. */
  404. static void setup_msrs(struct kvm_vcpu *vcpu)
  405. {
  406. int nr_skip, nr_good_msrs;
  407. if (is_long_mode(vcpu))
  408. nr_skip = NR_BAD_MSRS;
  409. else
  410. nr_skip = NR_64BIT_MSRS;
  411. nr_good_msrs = vcpu->nmsrs - nr_skip;
  412. /*
  413. * MSR_K6_STAR is only needed on long mode guests, and only
  414. * if efer.sce is enabled.
  415. */
  416. if (find_msr_entry(vcpu, MSR_K6_STAR)) {
  417. --nr_good_msrs;
  418. #ifdef CONFIG_X86_64
  419. if (is_long_mode(vcpu) && (vcpu->shadow_efer & EFER_SCE))
  420. ++nr_good_msrs;
  421. #endif
  422. }
  423. vmcs_writel(VM_ENTRY_MSR_LOAD_ADDR,
  424. virt_to_phys(vcpu->guest_msrs + nr_skip));
  425. vmcs_writel(VM_EXIT_MSR_STORE_ADDR,
  426. virt_to_phys(vcpu->guest_msrs + nr_skip));
  427. vmcs_writel(VM_EXIT_MSR_LOAD_ADDR,
  428. virt_to_phys(vcpu->host_msrs + nr_skip));
  429. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, nr_good_msrs); /* 22.2.2 */
  430. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
  431. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
  432. }
  433. /*
  434. * reads and returns guest's timestamp counter "register"
  435. * guest_tsc = host_tsc + tsc_offset -- 21.3
  436. */
  437. static u64 guest_read_tsc(void)
  438. {
  439. u64 host_tsc, tsc_offset;
  440. rdtscll(host_tsc);
  441. tsc_offset = vmcs_read64(TSC_OFFSET);
  442. return host_tsc + tsc_offset;
  443. }
  444. /*
  445. * writes 'guest_tsc' into guest's timestamp counter "register"
  446. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  447. */
  448. static void guest_write_tsc(u64 guest_tsc)
  449. {
  450. u64 host_tsc;
  451. rdtscll(host_tsc);
  452. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  453. }
  454. /*
  455. * Reads an msr value (of 'msr_index') into 'pdata'.
  456. * Returns 0 on success, non-0 otherwise.
  457. * Assumes vcpu_load() was already called.
  458. */
  459. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  460. {
  461. u64 data;
  462. struct vmx_msr_entry *msr;
  463. if (!pdata) {
  464. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  465. return -EINVAL;
  466. }
  467. switch (msr_index) {
  468. #ifdef CONFIG_X86_64
  469. case MSR_FS_BASE:
  470. data = vmcs_readl(GUEST_FS_BASE);
  471. break;
  472. case MSR_GS_BASE:
  473. data = vmcs_readl(GUEST_GS_BASE);
  474. break;
  475. case MSR_EFER:
  476. return kvm_get_msr_common(vcpu, msr_index, pdata);
  477. #endif
  478. case MSR_IA32_TIME_STAMP_COUNTER:
  479. data = guest_read_tsc();
  480. break;
  481. case MSR_IA32_SYSENTER_CS:
  482. data = vmcs_read32(GUEST_SYSENTER_CS);
  483. break;
  484. case MSR_IA32_SYSENTER_EIP:
  485. data = vmcs_readl(GUEST_SYSENTER_EIP);
  486. break;
  487. case MSR_IA32_SYSENTER_ESP:
  488. data = vmcs_readl(GUEST_SYSENTER_ESP);
  489. break;
  490. default:
  491. msr = find_msr_entry(vcpu, msr_index);
  492. if (msr) {
  493. data = msr->data;
  494. break;
  495. }
  496. return kvm_get_msr_common(vcpu, msr_index, pdata);
  497. }
  498. *pdata = data;
  499. return 0;
  500. }
  501. /*
  502. * Writes msr value into into the appropriate "register".
  503. * Returns 0 on success, non-0 otherwise.
  504. * Assumes vcpu_load() was already called.
  505. */
  506. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  507. {
  508. struct vmx_msr_entry *msr;
  509. switch (msr_index) {
  510. #ifdef CONFIG_X86_64
  511. case MSR_EFER:
  512. return kvm_set_msr_common(vcpu, msr_index, data);
  513. case MSR_FS_BASE:
  514. vmcs_writel(GUEST_FS_BASE, data);
  515. break;
  516. case MSR_GS_BASE:
  517. vmcs_writel(GUEST_GS_BASE, data);
  518. break;
  519. case MSR_LSTAR:
  520. case MSR_SYSCALL_MASK:
  521. msr = find_msr_entry(vcpu, msr_index);
  522. if (msr)
  523. msr->data = data;
  524. if (vcpu->vmx_host_state.loaded)
  525. load_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
  526. break;
  527. #endif
  528. case MSR_IA32_SYSENTER_CS:
  529. vmcs_write32(GUEST_SYSENTER_CS, data);
  530. break;
  531. case MSR_IA32_SYSENTER_EIP:
  532. vmcs_writel(GUEST_SYSENTER_EIP, data);
  533. break;
  534. case MSR_IA32_SYSENTER_ESP:
  535. vmcs_writel(GUEST_SYSENTER_ESP, data);
  536. break;
  537. case MSR_IA32_TIME_STAMP_COUNTER:
  538. guest_write_tsc(data);
  539. break;
  540. default:
  541. msr = find_msr_entry(vcpu, msr_index);
  542. if (msr) {
  543. msr->data = data;
  544. break;
  545. }
  546. return kvm_set_msr_common(vcpu, msr_index, data);
  547. msr->data = data;
  548. break;
  549. }
  550. return 0;
  551. }
  552. /*
  553. * Sync the rsp and rip registers into the vcpu structure. This allows
  554. * registers to be accessed by indexing vcpu->regs.
  555. */
  556. static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
  557. {
  558. vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  559. vcpu->rip = vmcs_readl(GUEST_RIP);
  560. }
  561. /*
  562. * Syncs rsp and rip back into the vmcs. Should be called after possible
  563. * modification.
  564. */
  565. static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
  566. {
  567. vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
  568. vmcs_writel(GUEST_RIP, vcpu->rip);
  569. }
  570. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  571. {
  572. unsigned long dr7 = 0x400;
  573. int old_singlestep;
  574. old_singlestep = vcpu->guest_debug.singlestep;
  575. vcpu->guest_debug.enabled = dbg->enabled;
  576. if (vcpu->guest_debug.enabled) {
  577. int i;
  578. dr7 |= 0x200; /* exact */
  579. for (i = 0; i < 4; ++i) {
  580. if (!dbg->breakpoints[i].enabled)
  581. continue;
  582. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  583. dr7 |= 2 << (i*2); /* global enable */
  584. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  585. }
  586. vcpu->guest_debug.singlestep = dbg->singlestep;
  587. } else
  588. vcpu->guest_debug.singlestep = 0;
  589. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  590. unsigned long flags;
  591. flags = vmcs_readl(GUEST_RFLAGS);
  592. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  593. vmcs_writel(GUEST_RFLAGS, flags);
  594. }
  595. update_exception_bitmap(vcpu);
  596. vmcs_writel(GUEST_DR7, dr7);
  597. return 0;
  598. }
  599. static __init int cpu_has_kvm_support(void)
  600. {
  601. unsigned long ecx = cpuid_ecx(1);
  602. return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
  603. }
  604. static __init int vmx_disabled_by_bios(void)
  605. {
  606. u64 msr;
  607. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  608. return (msr & 5) == 1; /* locked but not enabled */
  609. }
  610. static void hardware_enable(void *garbage)
  611. {
  612. int cpu = raw_smp_processor_id();
  613. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  614. u64 old;
  615. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  616. if ((old & 5) != 5)
  617. /* enable and lock */
  618. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5);
  619. write_cr4(read_cr4() | CR4_VMXE); /* FIXME: not cpu hotplug safe */
  620. asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
  621. : "memory", "cc");
  622. }
  623. static void hardware_disable(void *garbage)
  624. {
  625. asm volatile (ASM_VMX_VMXOFF : : : "cc");
  626. }
  627. static __init void setup_vmcs_descriptor(void)
  628. {
  629. u32 vmx_msr_low, vmx_msr_high;
  630. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  631. vmcs_descriptor.size = vmx_msr_high & 0x1fff;
  632. vmcs_descriptor.order = get_order(vmcs_descriptor.size);
  633. vmcs_descriptor.revision_id = vmx_msr_low;
  634. }
  635. static struct vmcs *alloc_vmcs_cpu(int cpu)
  636. {
  637. int node = cpu_to_node(cpu);
  638. struct page *pages;
  639. struct vmcs *vmcs;
  640. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order);
  641. if (!pages)
  642. return NULL;
  643. vmcs = page_address(pages);
  644. memset(vmcs, 0, vmcs_descriptor.size);
  645. vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */
  646. return vmcs;
  647. }
  648. static struct vmcs *alloc_vmcs(void)
  649. {
  650. return alloc_vmcs_cpu(raw_smp_processor_id());
  651. }
  652. static void free_vmcs(struct vmcs *vmcs)
  653. {
  654. free_pages((unsigned long)vmcs, vmcs_descriptor.order);
  655. }
  656. static void free_kvm_area(void)
  657. {
  658. int cpu;
  659. for_each_online_cpu(cpu)
  660. free_vmcs(per_cpu(vmxarea, cpu));
  661. }
  662. extern struct vmcs *alloc_vmcs_cpu(int cpu);
  663. static __init int alloc_kvm_area(void)
  664. {
  665. int cpu;
  666. for_each_online_cpu(cpu) {
  667. struct vmcs *vmcs;
  668. vmcs = alloc_vmcs_cpu(cpu);
  669. if (!vmcs) {
  670. free_kvm_area();
  671. return -ENOMEM;
  672. }
  673. per_cpu(vmxarea, cpu) = vmcs;
  674. }
  675. return 0;
  676. }
  677. static __init int hardware_setup(void)
  678. {
  679. setup_vmcs_descriptor();
  680. return alloc_kvm_area();
  681. }
  682. static __exit void hardware_unsetup(void)
  683. {
  684. free_kvm_area();
  685. }
  686. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  687. {
  688. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  689. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  690. vmcs_write16(sf->selector, save->selector);
  691. vmcs_writel(sf->base, save->base);
  692. vmcs_write32(sf->limit, save->limit);
  693. vmcs_write32(sf->ar_bytes, save->ar);
  694. } else {
  695. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  696. << AR_DPL_SHIFT;
  697. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  698. }
  699. }
  700. static void enter_pmode(struct kvm_vcpu *vcpu)
  701. {
  702. unsigned long flags;
  703. vcpu->rmode.active = 0;
  704. vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
  705. vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
  706. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
  707. flags = vmcs_readl(GUEST_RFLAGS);
  708. flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
  709. flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
  710. vmcs_writel(GUEST_RFLAGS, flags);
  711. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~CR4_VME_MASK) |
  712. (vmcs_readl(CR4_READ_SHADOW) & CR4_VME_MASK));
  713. update_exception_bitmap(vcpu);
  714. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
  715. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
  716. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
  717. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
  718. vmcs_write16(GUEST_SS_SELECTOR, 0);
  719. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  720. vmcs_write16(GUEST_CS_SELECTOR,
  721. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  722. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  723. }
  724. static int rmode_tss_base(struct kvm* kvm)
  725. {
  726. gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
  727. return base_gfn << PAGE_SHIFT;
  728. }
  729. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  730. {
  731. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  732. save->selector = vmcs_read16(sf->selector);
  733. save->base = vmcs_readl(sf->base);
  734. save->limit = vmcs_read32(sf->limit);
  735. save->ar = vmcs_read32(sf->ar_bytes);
  736. vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
  737. vmcs_write32(sf->limit, 0xffff);
  738. vmcs_write32(sf->ar_bytes, 0xf3);
  739. }
  740. static void enter_rmode(struct kvm_vcpu *vcpu)
  741. {
  742. unsigned long flags;
  743. vcpu->rmode.active = 1;
  744. vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  745. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  746. vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  747. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  748. vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  749. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  750. flags = vmcs_readl(GUEST_RFLAGS);
  751. vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
  752. flags |= IOPL_MASK | X86_EFLAGS_VM;
  753. vmcs_writel(GUEST_RFLAGS, flags);
  754. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | CR4_VME_MASK);
  755. update_exception_bitmap(vcpu);
  756. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  757. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  758. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  759. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  760. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  761. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  762. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  763. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  764. fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
  765. fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
  766. fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
  767. fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
  768. }
  769. #ifdef CONFIG_X86_64
  770. static void enter_lmode(struct kvm_vcpu *vcpu)
  771. {
  772. u32 guest_tr_ar;
  773. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  774. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  775. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  776. __FUNCTION__);
  777. vmcs_write32(GUEST_TR_AR_BYTES,
  778. (guest_tr_ar & ~AR_TYPE_MASK)
  779. | AR_TYPE_BUSY_64_TSS);
  780. }
  781. vcpu->shadow_efer |= EFER_LMA;
  782. find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME;
  783. vmcs_write32(VM_ENTRY_CONTROLS,
  784. vmcs_read32(VM_ENTRY_CONTROLS)
  785. | VM_ENTRY_CONTROLS_IA32E_MASK);
  786. }
  787. static void exit_lmode(struct kvm_vcpu *vcpu)
  788. {
  789. vcpu->shadow_efer &= ~EFER_LMA;
  790. vmcs_write32(VM_ENTRY_CONTROLS,
  791. vmcs_read32(VM_ENTRY_CONTROLS)
  792. & ~VM_ENTRY_CONTROLS_IA32E_MASK);
  793. }
  794. #endif
  795. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  796. {
  797. vcpu->cr4 &= KVM_GUEST_CR4_MASK;
  798. vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  799. }
  800. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  801. {
  802. vmx_fpu_deactivate(vcpu);
  803. if (vcpu->rmode.active && (cr0 & CR0_PE_MASK))
  804. enter_pmode(vcpu);
  805. if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
  806. enter_rmode(vcpu);
  807. #ifdef CONFIG_X86_64
  808. if (vcpu->shadow_efer & EFER_LME) {
  809. if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK))
  810. enter_lmode(vcpu);
  811. if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK))
  812. exit_lmode(vcpu);
  813. }
  814. #endif
  815. vmcs_writel(CR0_READ_SHADOW, cr0);
  816. vmcs_writel(GUEST_CR0,
  817. (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
  818. vcpu->cr0 = cr0;
  819. if (!(cr0 & CR0_TS_MASK) || !(cr0 & CR0_PE_MASK))
  820. vmx_fpu_activate(vcpu);
  821. }
  822. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  823. {
  824. vmcs_writel(GUEST_CR3, cr3);
  825. if (vcpu->cr0 & CR0_PE_MASK)
  826. vmx_fpu_deactivate(vcpu);
  827. }
  828. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  829. {
  830. vmcs_writel(CR4_READ_SHADOW, cr4);
  831. vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
  832. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
  833. vcpu->cr4 = cr4;
  834. }
  835. #ifdef CONFIG_X86_64
  836. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  837. {
  838. struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER);
  839. vcpu->shadow_efer = efer;
  840. if (efer & EFER_LMA) {
  841. vmcs_write32(VM_ENTRY_CONTROLS,
  842. vmcs_read32(VM_ENTRY_CONTROLS) |
  843. VM_ENTRY_CONTROLS_IA32E_MASK);
  844. msr->data = efer;
  845. } else {
  846. vmcs_write32(VM_ENTRY_CONTROLS,
  847. vmcs_read32(VM_ENTRY_CONTROLS) &
  848. ~VM_ENTRY_CONTROLS_IA32E_MASK);
  849. msr->data = efer & ~EFER_LME;
  850. }
  851. setup_msrs(vcpu);
  852. }
  853. #endif
  854. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  855. {
  856. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  857. return vmcs_readl(sf->base);
  858. }
  859. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  860. struct kvm_segment *var, int seg)
  861. {
  862. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  863. u32 ar;
  864. var->base = vmcs_readl(sf->base);
  865. var->limit = vmcs_read32(sf->limit);
  866. var->selector = vmcs_read16(sf->selector);
  867. ar = vmcs_read32(sf->ar_bytes);
  868. if (ar & AR_UNUSABLE_MASK)
  869. ar = 0;
  870. var->type = ar & 15;
  871. var->s = (ar >> 4) & 1;
  872. var->dpl = (ar >> 5) & 3;
  873. var->present = (ar >> 7) & 1;
  874. var->avl = (ar >> 12) & 1;
  875. var->l = (ar >> 13) & 1;
  876. var->db = (ar >> 14) & 1;
  877. var->g = (ar >> 15) & 1;
  878. var->unusable = (ar >> 16) & 1;
  879. }
  880. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  881. {
  882. u32 ar;
  883. if (var->unusable)
  884. ar = 1 << 16;
  885. else {
  886. ar = var->type & 15;
  887. ar |= (var->s & 1) << 4;
  888. ar |= (var->dpl & 3) << 5;
  889. ar |= (var->present & 1) << 7;
  890. ar |= (var->avl & 1) << 12;
  891. ar |= (var->l & 1) << 13;
  892. ar |= (var->db & 1) << 14;
  893. ar |= (var->g & 1) << 15;
  894. }
  895. if (ar == 0) /* a 0 value means unusable */
  896. ar = AR_UNUSABLE_MASK;
  897. return ar;
  898. }
  899. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  900. struct kvm_segment *var, int seg)
  901. {
  902. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  903. u32 ar;
  904. if (vcpu->rmode.active && seg == VCPU_SREG_TR) {
  905. vcpu->rmode.tr.selector = var->selector;
  906. vcpu->rmode.tr.base = var->base;
  907. vcpu->rmode.tr.limit = var->limit;
  908. vcpu->rmode.tr.ar = vmx_segment_access_rights(var);
  909. return;
  910. }
  911. vmcs_writel(sf->base, var->base);
  912. vmcs_write32(sf->limit, var->limit);
  913. vmcs_write16(sf->selector, var->selector);
  914. if (vcpu->rmode.active && var->s) {
  915. /*
  916. * Hack real-mode segments into vm86 compatibility.
  917. */
  918. if (var->base == 0xffff0000 && var->selector == 0xf000)
  919. vmcs_writel(sf->base, 0xf0000);
  920. ar = 0xf3;
  921. } else
  922. ar = vmx_segment_access_rights(var);
  923. vmcs_write32(sf->ar_bytes, ar);
  924. }
  925. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  926. {
  927. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  928. *db = (ar >> 14) & 1;
  929. *l = (ar >> 13) & 1;
  930. }
  931. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  932. {
  933. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  934. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  935. }
  936. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  937. {
  938. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  939. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  940. }
  941. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  942. {
  943. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  944. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  945. }
  946. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  947. {
  948. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  949. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  950. }
  951. static int init_rmode_tss(struct kvm* kvm)
  952. {
  953. struct page *p1, *p2, *p3;
  954. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  955. char *page;
  956. p1 = gfn_to_page(kvm, fn++);
  957. p2 = gfn_to_page(kvm, fn++);
  958. p3 = gfn_to_page(kvm, fn);
  959. if (!p1 || !p2 || !p3) {
  960. kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
  961. return 0;
  962. }
  963. page = kmap_atomic(p1, KM_USER0);
  964. memset(page, 0, PAGE_SIZE);
  965. *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  966. kunmap_atomic(page, KM_USER0);
  967. page = kmap_atomic(p2, KM_USER0);
  968. memset(page, 0, PAGE_SIZE);
  969. kunmap_atomic(page, KM_USER0);
  970. page = kmap_atomic(p3, KM_USER0);
  971. memset(page, 0, PAGE_SIZE);
  972. *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
  973. kunmap_atomic(page, KM_USER0);
  974. return 1;
  975. }
  976. static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val)
  977. {
  978. u32 msr_high, msr_low;
  979. rdmsr(msr, msr_low, msr_high);
  980. val &= msr_high;
  981. val |= msr_low;
  982. vmcs_write32(vmcs_field, val);
  983. }
  984. static void seg_setup(int seg)
  985. {
  986. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  987. vmcs_write16(sf->selector, 0);
  988. vmcs_writel(sf->base, 0);
  989. vmcs_write32(sf->limit, 0xffff);
  990. vmcs_write32(sf->ar_bytes, 0x93);
  991. }
  992. /*
  993. * Sets up the vmcs for emulated real mode.
  994. */
  995. static int vmx_vcpu_setup(struct kvm_vcpu *vcpu)
  996. {
  997. u32 host_sysenter_cs;
  998. u32 junk;
  999. unsigned long a;
  1000. struct descriptor_table dt;
  1001. int i;
  1002. int ret = 0;
  1003. extern asmlinkage void kvm_vmx_return(void);
  1004. if (!init_rmode_tss(vcpu->kvm)) {
  1005. ret = -ENOMEM;
  1006. goto out;
  1007. }
  1008. memset(vcpu->regs, 0, sizeof(vcpu->regs));
  1009. vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val();
  1010. vcpu->cr8 = 0;
  1011. vcpu->apic_base = 0xfee00000 |
  1012. /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
  1013. MSR_IA32_APICBASE_ENABLE;
  1014. fx_init(vcpu);
  1015. /*
  1016. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  1017. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  1018. */
  1019. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  1020. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  1021. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1022. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1023. seg_setup(VCPU_SREG_DS);
  1024. seg_setup(VCPU_SREG_ES);
  1025. seg_setup(VCPU_SREG_FS);
  1026. seg_setup(VCPU_SREG_GS);
  1027. seg_setup(VCPU_SREG_SS);
  1028. vmcs_write16(GUEST_TR_SELECTOR, 0);
  1029. vmcs_writel(GUEST_TR_BASE, 0);
  1030. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  1031. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1032. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  1033. vmcs_writel(GUEST_LDTR_BASE, 0);
  1034. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  1035. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  1036. vmcs_write32(GUEST_SYSENTER_CS, 0);
  1037. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  1038. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  1039. vmcs_writel(GUEST_RFLAGS, 0x02);
  1040. vmcs_writel(GUEST_RIP, 0xfff0);
  1041. vmcs_writel(GUEST_RSP, 0);
  1042. //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
  1043. vmcs_writel(GUEST_DR7, 0x400);
  1044. vmcs_writel(GUEST_GDTR_BASE, 0);
  1045. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  1046. vmcs_writel(GUEST_IDTR_BASE, 0);
  1047. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  1048. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  1049. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  1050. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  1051. /* I/O */
  1052. vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
  1053. vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
  1054. guest_write_tsc(0);
  1055. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1056. /* Special registers */
  1057. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  1058. /* Control */
  1059. vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS,
  1060. PIN_BASED_VM_EXEC_CONTROL,
  1061. PIN_BASED_EXT_INTR_MASK /* 20.6.1 */
  1062. | PIN_BASED_NMI_EXITING /* 20.6.1 */
  1063. );
  1064. vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS,
  1065. CPU_BASED_VM_EXEC_CONTROL,
  1066. CPU_BASED_HLT_EXITING /* 20.6.2 */
  1067. | CPU_BASED_CR8_LOAD_EXITING /* 20.6.2 */
  1068. | CPU_BASED_CR8_STORE_EXITING /* 20.6.2 */
  1069. | CPU_BASED_ACTIVATE_IO_BITMAP /* 20.6.2 */
  1070. | CPU_BASED_MOV_DR_EXITING
  1071. | CPU_BASED_USE_TSC_OFFSETING /* 21.3 */
  1072. );
  1073. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
  1074. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
  1075. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1076. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1077. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1078. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1079. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1080. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1081. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1082. vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
  1083. vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
  1084. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1085. #ifdef CONFIG_X86_64
  1086. rdmsrl(MSR_FS_BASE, a);
  1087. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1088. rdmsrl(MSR_GS_BASE, a);
  1089. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1090. #else
  1091. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1092. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1093. #endif
  1094. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1095. get_idt(&dt);
  1096. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1097. vmcs_writel(HOST_RIP, (unsigned long)kvm_vmx_return); /* 22.2.5 */
  1098. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1099. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1100. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1101. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1102. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1103. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1104. for (i = 0; i < NR_VMX_MSR; ++i) {
  1105. u32 index = vmx_msr_index[i];
  1106. u32 data_low, data_high;
  1107. u64 data;
  1108. int j = vcpu->nmsrs;
  1109. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1110. continue;
  1111. if (wrmsr_safe(index, data_low, data_high) < 0)
  1112. continue;
  1113. data = data_low | ((u64)data_high << 32);
  1114. vcpu->host_msrs[j].index = index;
  1115. vcpu->host_msrs[j].reserved = 0;
  1116. vcpu->host_msrs[j].data = data;
  1117. vcpu->guest_msrs[j] = vcpu->host_msrs[j];
  1118. #ifdef CONFIG_X86_64
  1119. if (index == MSR_KERNEL_GS_BASE)
  1120. msr_offset_kernel_gs_base = j;
  1121. #endif
  1122. ++vcpu->nmsrs;
  1123. }
  1124. setup_msrs(vcpu);
  1125. vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS, VM_EXIT_CONTROLS,
  1126. (HOST_IS_64 << 9)); /* 22.2,1, 20.7.1 */
  1127. /* 22.2.1, 20.8.1 */
  1128. vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS,
  1129. VM_ENTRY_CONTROLS, 0);
  1130. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  1131. #ifdef CONFIG_X86_64
  1132. vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
  1133. vmcs_writel(TPR_THRESHOLD, 0);
  1134. #endif
  1135. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1136. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1137. vcpu->cr0 = 0x60000010;
  1138. vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode
  1139. vmx_set_cr4(vcpu, 0);
  1140. #ifdef CONFIG_X86_64
  1141. vmx_set_efer(vcpu, 0);
  1142. #endif
  1143. vmx_fpu_activate(vcpu);
  1144. update_exception_bitmap(vcpu);
  1145. return 0;
  1146. out:
  1147. return ret;
  1148. }
  1149. static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
  1150. {
  1151. u16 ent[2];
  1152. u16 cs;
  1153. u16 ip;
  1154. unsigned long flags;
  1155. unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
  1156. u16 sp = vmcs_readl(GUEST_RSP);
  1157. u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
  1158. if (sp > ss_limit || sp < 6 ) {
  1159. vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
  1160. __FUNCTION__,
  1161. vmcs_readl(GUEST_RSP),
  1162. vmcs_readl(GUEST_SS_BASE),
  1163. vmcs_read32(GUEST_SS_LIMIT));
  1164. return;
  1165. }
  1166. if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) !=
  1167. sizeof(ent)) {
  1168. vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
  1169. return;
  1170. }
  1171. flags = vmcs_readl(GUEST_RFLAGS);
  1172. cs = vmcs_readl(GUEST_CS_BASE) >> 4;
  1173. ip = vmcs_readl(GUEST_RIP);
  1174. if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 ||
  1175. kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 ||
  1176. kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) {
  1177. vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
  1178. return;
  1179. }
  1180. vmcs_writel(GUEST_RFLAGS, flags &
  1181. ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
  1182. vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
  1183. vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
  1184. vmcs_writel(GUEST_RIP, ent[0]);
  1185. vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
  1186. }
  1187. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1188. {
  1189. int word_index = __ffs(vcpu->irq_summary);
  1190. int bit_index = __ffs(vcpu->irq_pending[word_index]);
  1191. int irq = word_index * BITS_PER_LONG + bit_index;
  1192. clear_bit(bit_index, &vcpu->irq_pending[word_index]);
  1193. if (!vcpu->irq_pending[word_index])
  1194. clear_bit(word_index, &vcpu->irq_summary);
  1195. if (vcpu->rmode.active) {
  1196. inject_rmode_irq(vcpu, irq);
  1197. return;
  1198. }
  1199. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1200. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  1201. }
  1202. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1203. struct kvm_run *kvm_run)
  1204. {
  1205. u32 cpu_based_vm_exec_control;
  1206. vcpu->interrupt_window_open =
  1207. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1208. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1209. if (vcpu->interrupt_window_open &&
  1210. vcpu->irq_summary &&
  1211. !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
  1212. /*
  1213. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1214. */
  1215. kvm_do_inject_irq(vcpu);
  1216. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1217. if (!vcpu->interrupt_window_open &&
  1218. (vcpu->irq_summary || kvm_run->request_interrupt_window))
  1219. /*
  1220. * Interrupts blocked. Wait for unblock.
  1221. */
  1222. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1223. else
  1224. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1225. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1226. }
  1227. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  1228. {
  1229. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  1230. set_debugreg(dbg->bp[0], 0);
  1231. set_debugreg(dbg->bp[1], 1);
  1232. set_debugreg(dbg->bp[2], 2);
  1233. set_debugreg(dbg->bp[3], 3);
  1234. if (dbg->singlestep) {
  1235. unsigned long flags;
  1236. flags = vmcs_readl(GUEST_RFLAGS);
  1237. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  1238. vmcs_writel(GUEST_RFLAGS, flags);
  1239. }
  1240. }
  1241. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  1242. int vec, u32 err_code)
  1243. {
  1244. if (!vcpu->rmode.active)
  1245. return 0;
  1246. if (vec == GP_VECTOR && err_code == 0)
  1247. if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
  1248. return 1;
  1249. return 0;
  1250. }
  1251. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1252. {
  1253. u32 intr_info, error_code;
  1254. unsigned long cr2, rip;
  1255. u32 vect_info;
  1256. enum emulation_result er;
  1257. int r;
  1258. vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1259. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  1260. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  1261. !is_page_fault(intr_info)) {
  1262. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  1263. "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
  1264. }
  1265. if (is_external_interrupt(vect_info)) {
  1266. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  1267. set_bit(irq, vcpu->irq_pending);
  1268. set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
  1269. }
  1270. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
  1271. asm ("int $2");
  1272. return 1;
  1273. }
  1274. if (is_no_device(intr_info)) {
  1275. vmx_fpu_activate(vcpu);
  1276. return 1;
  1277. }
  1278. error_code = 0;
  1279. rip = vmcs_readl(GUEST_RIP);
  1280. if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
  1281. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  1282. if (is_page_fault(intr_info)) {
  1283. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  1284. spin_lock(&vcpu->kvm->lock);
  1285. r = kvm_mmu_page_fault(vcpu, cr2, error_code);
  1286. if (r < 0) {
  1287. spin_unlock(&vcpu->kvm->lock);
  1288. return r;
  1289. }
  1290. if (!r) {
  1291. spin_unlock(&vcpu->kvm->lock);
  1292. return 1;
  1293. }
  1294. er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
  1295. spin_unlock(&vcpu->kvm->lock);
  1296. switch (er) {
  1297. case EMULATE_DONE:
  1298. return 1;
  1299. case EMULATE_DO_MMIO:
  1300. ++vcpu->stat.mmio_exits;
  1301. kvm_run->exit_reason = KVM_EXIT_MMIO;
  1302. return 0;
  1303. case EMULATE_FAIL:
  1304. vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
  1305. break;
  1306. default:
  1307. BUG();
  1308. }
  1309. }
  1310. if (vcpu->rmode.active &&
  1311. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  1312. error_code))
  1313. return 1;
  1314. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
  1315. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1316. return 0;
  1317. }
  1318. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  1319. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  1320. kvm_run->ex.error_code = error_code;
  1321. return 0;
  1322. }
  1323. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  1324. struct kvm_run *kvm_run)
  1325. {
  1326. ++vcpu->stat.irq_exits;
  1327. return 1;
  1328. }
  1329. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1330. {
  1331. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  1332. return 0;
  1333. }
  1334. static int get_io_count(struct kvm_vcpu *vcpu, unsigned long *count)
  1335. {
  1336. u64 inst;
  1337. gva_t rip;
  1338. int countr_size;
  1339. int i, n;
  1340. if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
  1341. countr_size = 2;
  1342. } else {
  1343. u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1344. countr_size = (cs_ar & AR_L_MASK) ? 8:
  1345. (cs_ar & AR_DB_MASK) ? 4: 2;
  1346. }
  1347. rip = vmcs_readl(GUEST_RIP);
  1348. if (countr_size != 8)
  1349. rip += vmcs_readl(GUEST_CS_BASE);
  1350. n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst);
  1351. for (i = 0; i < n; i++) {
  1352. switch (((u8*)&inst)[i]) {
  1353. case 0xf0:
  1354. case 0xf2:
  1355. case 0xf3:
  1356. case 0x2e:
  1357. case 0x36:
  1358. case 0x3e:
  1359. case 0x26:
  1360. case 0x64:
  1361. case 0x65:
  1362. case 0x66:
  1363. break;
  1364. case 0x67:
  1365. countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
  1366. default:
  1367. goto done;
  1368. }
  1369. }
  1370. return 0;
  1371. done:
  1372. countr_size *= 8;
  1373. *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
  1374. //printk("cx: %lx\n", vcpu->regs[VCPU_REGS_RCX]);
  1375. return 1;
  1376. }
  1377. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1378. {
  1379. u64 exit_qualification;
  1380. int size, down, in, string, rep;
  1381. unsigned port;
  1382. unsigned long count;
  1383. gva_t address;
  1384. ++vcpu->stat.io_exits;
  1385. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1386. in = (exit_qualification & 8) != 0;
  1387. size = (exit_qualification & 7) + 1;
  1388. string = (exit_qualification & 16) != 0;
  1389. down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  1390. count = 1;
  1391. rep = (exit_qualification & 32) != 0;
  1392. port = exit_qualification >> 16;
  1393. address = 0;
  1394. if (string) {
  1395. if (rep && !get_io_count(vcpu, &count))
  1396. return 1;
  1397. address = vmcs_readl(GUEST_LINEAR_ADDRESS);
  1398. }
  1399. return kvm_setup_pio(vcpu, kvm_run, in, size, count, string, down,
  1400. address, rep, port);
  1401. }
  1402. static void
  1403. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  1404. {
  1405. /*
  1406. * Patch in the VMCALL instruction:
  1407. */
  1408. hypercall[0] = 0x0f;
  1409. hypercall[1] = 0x01;
  1410. hypercall[2] = 0xc1;
  1411. hypercall[3] = 0xc3;
  1412. }
  1413. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1414. {
  1415. u64 exit_qualification;
  1416. int cr;
  1417. int reg;
  1418. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1419. cr = exit_qualification & 15;
  1420. reg = (exit_qualification >> 8) & 15;
  1421. switch ((exit_qualification >> 4) & 3) {
  1422. case 0: /* mov to cr */
  1423. switch (cr) {
  1424. case 0:
  1425. vcpu_load_rsp_rip(vcpu);
  1426. set_cr0(vcpu, vcpu->regs[reg]);
  1427. skip_emulated_instruction(vcpu);
  1428. return 1;
  1429. case 3:
  1430. vcpu_load_rsp_rip(vcpu);
  1431. set_cr3(vcpu, vcpu->regs[reg]);
  1432. skip_emulated_instruction(vcpu);
  1433. return 1;
  1434. case 4:
  1435. vcpu_load_rsp_rip(vcpu);
  1436. set_cr4(vcpu, vcpu->regs[reg]);
  1437. skip_emulated_instruction(vcpu);
  1438. return 1;
  1439. case 8:
  1440. vcpu_load_rsp_rip(vcpu);
  1441. set_cr8(vcpu, vcpu->regs[reg]);
  1442. skip_emulated_instruction(vcpu);
  1443. return 1;
  1444. };
  1445. break;
  1446. case 2: /* clts */
  1447. vcpu_load_rsp_rip(vcpu);
  1448. vmx_fpu_deactivate(vcpu);
  1449. vcpu->cr0 &= ~CR0_TS_MASK;
  1450. vmcs_writel(CR0_READ_SHADOW, vcpu->cr0);
  1451. vmx_fpu_activate(vcpu);
  1452. skip_emulated_instruction(vcpu);
  1453. return 1;
  1454. case 1: /*mov from cr*/
  1455. switch (cr) {
  1456. case 3:
  1457. vcpu_load_rsp_rip(vcpu);
  1458. vcpu->regs[reg] = vcpu->cr3;
  1459. vcpu_put_rsp_rip(vcpu);
  1460. skip_emulated_instruction(vcpu);
  1461. return 1;
  1462. case 8:
  1463. vcpu_load_rsp_rip(vcpu);
  1464. vcpu->regs[reg] = vcpu->cr8;
  1465. vcpu_put_rsp_rip(vcpu);
  1466. skip_emulated_instruction(vcpu);
  1467. return 1;
  1468. }
  1469. break;
  1470. case 3: /* lmsw */
  1471. lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  1472. skip_emulated_instruction(vcpu);
  1473. return 1;
  1474. default:
  1475. break;
  1476. }
  1477. kvm_run->exit_reason = 0;
  1478. printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
  1479. (int)(exit_qualification >> 4) & 3, cr);
  1480. return 0;
  1481. }
  1482. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1483. {
  1484. u64 exit_qualification;
  1485. unsigned long val;
  1486. int dr, reg;
  1487. /*
  1488. * FIXME: this code assumes the host is debugging the guest.
  1489. * need to deal with guest debugging itself too.
  1490. */
  1491. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1492. dr = exit_qualification & 7;
  1493. reg = (exit_qualification >> 8) & 15;
  1494. vcpu_load_rsp_rip(vcpu);
  1495. if (exit_qualification & 16) {
  1496. /* mov from dr */
  1497. switch (dr) {
  1498. case 6:
  1499. val = 0xffff0ff0;
  1500. break;
  1501. case 7:
  1502. val = 0x400;
  1503. break;
  1504. default:
  1505. val = 0;
  1506. }
  1507. vcpu->regs[reg] = val;
  1508. } else {
  1509. /* mov to dr */
  1510. }
  1511. vcpu_put_rsp_rip(vcpu);
  1512. skip_emulated_instruction(vcpu);
  1513. return 1;
  1514. }
  1515. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1516. {
  1517. kvm_emulate_cpuid(vcpu);
  1518. return 1;
  1519. }
  1520. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1521. {
  1522. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1523. u64 data;
  1524. if (vmx_get_msr(vcpu, ecx, &data)) {
  1525. vmx_inject_gp(vcpu, 0);
  1526. return 1;
  1527. }
  1528. /* FIXME: handling of bits 32:63 of rax, rdx */
  1529. vcpu->regs[VCPU_REGS_RAX] = data & -1u;
  1530. vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  1531. skip_emulated_instruction(vcpu);
  1532. return 1;
  1533. }
  1534. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1535. {
  1536. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1537. u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
  1538. | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
  1539. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  1540. vmx_inject_gp(vcpu, 0);
  1541. return 1;
  1542. }
  1543. skip_emulated_instruction(vcpu);
  1544. return 1;
  1545. }
  1546. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  1547. struct kvm_run *kvm_run)
  1548. {
  1549. kvm_run->if_flag = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) != 0;
  1550. kvm_run->cr8 = vcpu->cr8;
  1551. kvm_run->apic_base = vcpu->apic_base;
  1552. kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
  1553. vcpu->irq_summary == 0);
  1554. }
  1555. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  1556. struct kvm_run *kvm_run)
  1557. {
  1558. /*
  1559. * If the user space waits to inject interrupts, exit as soon as
  1560. * possible
  1561. */
  1562. if (kvm_run->request_interrupt_window &&
  1563. !vcpu->irq_summary) {
  1564. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  1565. ++vcpu->stat.irq_window_exits;
  1566. return 0;
  1567. }
  1568. return 1;
  1569. }
  1570. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1571. {
  1572. skip_emulated_instruction(vcpu);
  1573. if (vcpu->irq_summary)
  1574. return 1;
  1575. kvm_run->exit_reason = KVM_EXIT_HLT;
  1576. ++vcpu->stat.halt_exits;
  1577. return 0;
  1578. }
  1579. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1580. {
  1581. skip_emulated_instruction(vcpu);
  1582. return kvm_hypercall(vcpu, kvm_run);
  1583. }
  1584. /*
  1585. * The exit handlers return 1 if the exit was handled fully and guest execution
  1586. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  1587. * to be done to userspace and return 0.
  1588. */
  1589. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  1590. struct kvm_run *kvm_run) = {
  1591. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  1592. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  1593. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  1594. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  1595. [EXIT_REASON_CR_ACCESS] = handle_cr,
  1596. [EXIT_REASON_DR_ACCESS] = handle_dr,
  1597. [EXIT_REASON_CPUID] = handle_cpuid,
  1598. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  1599. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  1600. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  1601. [EXIT_REASON_HLT] = handle_halt,
  1602. [EXIT_REASON_VMCALL] = handle_vmcall,
  1603. };
  1604. static const int kvm_vmx_max_exit_handlers =
  1605. sizeof(kvm_vmx_exit_handlers) / sizeof(*kvm_vmx_exit_handlers);
  1606. /*
  1607. * The guest has exited. See if we can fix it or if we need userspace
  1608. * assistance.
  1609. */
  1610. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1611. {
  1612. u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1613. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  1614. if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
  1615. exit_reason != EXIT_REASON_EXCEPTION_NMI )
  1616. printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
  1617. "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
  1618. if (exit_reason < kvm_vmx_max_exit_handlers
  1619. && kvm_vmx_exit_handlers[exit_reason])
  1620. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  1621. else {
  1622. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  1623. kvm_run->hw.hardware_exit_reason = exit_reason;
  1624. }
  1625. return 0;
  1626. }
  1627. /*
  1628. * Check if userspace requested an interrupt window, and that the
  1629. * interrupt window is open.
  1630. *
  1631. * No need to exit to userspace if we already have an interrupt queued.
  1632. */
  1633. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  1634. struct kvm_run *kvm_run)
  1635. {
  1636. return (!vcpu->irq_summary &&
  1637. kvm_run->request_interrupt_window &&
  1638. vcpu->interrupt_window_open &&
  1639. (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
  1640. }
  1641. static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1642. {
  1643. u8 fail;
  1644. int r;
  1645. preempted:
  1646. if (!vcpu->mmio_read_completed)
  1647. do_interrupt_requests(vcpu, kvm_run);
  1648. if (vcpu->guest_debug.enabled)
  1649. kvm_guest_debug_pre(vcpu);
  1650. again:
  1651. vmx_save_host_state(vcpu);
  1652. kvm_load_guest_fpu(vcpu);
  1653. /*
  1654. * Loading guest fpu may have cleared host cr0.ts
  1655. */
  1656. vmcs_writel(HOST_CR0, read_cr0());
  1657. asm (
  1658. /* Store host registers */
  1659. "pushf \n\t"
  1660. #ifdef CONFIG_X86_64
  1661. "push %%rax; push %%rbx; push %%rdx;"
  1662. "push %%rsi; push %%rdi; push %%rbp;"
  1663. "push %%r8; push %%r9; push %%r10; push %%r11;"
  1664. "push %%r12; push %%r13; push %%r14; push %%r15;"
  1665. "push %%rcx \n\t"
  1666. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1667. #else
  1668. "pusha; push %%ecx \n\t"
  1669. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1670. #endif
  1671. /* Check if vmlaunch of vmresume is needed */
  1672. "cmp $0, %1 \n\t"
  1673. /* Load guest registers. Don't clobber flags. */
  1674. #ifdef CONFIG_X86_64
  1675. "mov %c[cr2](%3), %%rax \n\t"
  1676. "mov %%rax, %%cr2 \n\t"
  1677. "mov %c[rax](%3), %%rax \n\t"
  1678. "mov %c[rbx](%3), %%rbx \n\t"
  1679. "mov %c[rdx](%3), %%rdx \n\t"
  1680. "mov %c[rsi](%3), %%rsi \n\t"
  1681. "mov %c[rdi](%3), %%rdi \n\t"
  1682. "mov %c[rbp](%3), %%rbp \n\t"
  1683. "mov %c[r8](%3), %%r8 \n\t"
  1684. "mov %c[r9](%3), %%r9 \n\t"
  1685. "mov %c[r10](%3), %%r10 \n\t"
  1686. "mov %c[r11](%3), %%r11 \n\t"
  1687. "mov %c[r12](%3), %%r12 \n\t"
  1688. "mov %c[r13](%3), %%r13 \n\t"
  1689. "mov %c[r14](%3), %%r14 \n\t"
  1690. "mov %c[r15](%3), %%r15 \n\t"
  1691. "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
  1692. #else
  1693. "mov %c[cr2](%3), %%eax \n\t"
  1694. "mov %%eax, %%cr2 \n\t"
  1695. "mov %c[rax](%3), %%eax \n\t"
  1696. "mov %c[rbx](%3), %%ebx \n\t"
  1697. "mov %c[rdx](%3), %%edx \n\t"
  1698. "mov %c[rsi](%3), %%esi \n\t"
  1699. "mov %c[rdi](%3), %%edi \n\t"
  1700. "mov %c[rbp](%3), %%ebp \n\t"
  1701. "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
  1702. #endif
  1703. /* Enter guest mode */
  1704. "jne launched \n\t"
  1705. ASM_VMX_VMLAUNCH "\n\t"
  1706. "jmp kvm_vmx_return \n\t"
  1707. "launched: " ASM_VMX_VMRESUME "\n\t"
  1708. ".globl kvm_vmx_return \n\t"
  1709. "kvm_vmx_return: "
  1710. /* Save guest registers, load host registers, keep flags */
  1711. #ifdef CONFIG_X86_64
  1712. "xchg %3, (%%rsp) \n\t"
  1713. "mov %%rax, %c[rax](%3) \n\t"
  1714. "mov %%rbx, %c[rbx](%3) \n\t"
  1715. "pushq (%%rsp); popq %c[rcx](%3) \n\t"
  1716. "mov %%rdx, %c[rdx](%3) \n\t"
  1717. "mov %%rsi, %c[rsi](%3) \n\t"
  1718. "mov %%rdi, %c[rdi](%3) \n\t"
  1719. "mov %%rbp, %c[rbp](%3) \n\t"
  1720. "mov %%r8, %c[r8](%3) \n\t"
  1721. "mov %%r9, %c[r9](%3) \n\t"
  1722. "mov %%r10, %c[r10](%3) \n\t"
  1723. "mov %%r11, %c[r11](%3) \n\t"
  1724. "mov %%r12, %c[r12](%3) \n\t"
  1725. "mov %%r13, %c[r13](%3) \n\t"
  1726. "mov %%r14, %c[r14](%3) \n\t"
  1727. "mov %%r15, %c[r15](%3) \n\t"
  1728. "mov %%cr2, %%rax \n\t"
  1729. "mov %%rax, %c[cr2](%3) \n\t"
  1730. "mov (%%rsp), %3 \n\t"
  1731. "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
  1732. "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
  1733. "pop %%rbp; pop %%rdi; pop %%rsi;"
  1734. "pop %%rdx; pop %%rbx; pop %%rax \n\t"
  1735. #else
  1736. "xchg %3, (%%esp) \n\t"
  1737. "mov %%eax, %c[rax](%3) \n\t"
  1738. "mov %%ebx, %c[rbx](%3) \n\t"
  1739. "pushl (%%esp); popl %c[rcx](%3) \n\t"
  1740. "mov %%edx, %c[rdx](%3) \n\t"
  1741. "mov %%esi, %c[rsi](%3) \n\t"
  1742. "mov %%edi, %c[rdi](%3) \n\t"
  1743. "mov %%ebp, %c[rbp](%3) \n\t"
  1744. "mov %%cr2, %%eax \n\t"
  1745. "mov %%eax, %c[cr2](%3) \n\t"
  1746. "mov (%%esp), %3 \n\t"
  1747. "pop %%ecx; popa \n\t"
  1748. #endif
  1749. "setbe %0 \n\t"
  1750. "popf \n\t"
  1751. : "=q" (fail)
  1752. : "r"(vcpu->launched), "d"((unsigned long)HOST_RSP),
  1753. "c"(vcpu),
  1754. [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
  1755. [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
  1756. [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
  1757. [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
  1758. [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
  1759. [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
  1760. [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
  1761. #ifdef CONFIG_X86_64
  1762. [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
  1763. [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
  1764. [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
  1765. [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
  1766. [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
  1767. [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
  1768. [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
  1769. [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
  1770. #endif
  1771. [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
  1772. : "cc", "memory" );
  1773. ++vcpu->stat.exits;
  1774. vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
  1775. asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  1776. if (unlikely(fail)) {
  1777. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  1778. kvm_run->fail_entry.hardware_entry_failure_reason
  1779. = vmcs_read32(VM_INSTRUCTION_ERROR);
  1780. r = 0;
  1781. goto out;
  1782. }
  1783. /*
  1784. * Profile KVM exit RIPs:
  1785. */
  1786. if (unlikely(prof_on == KVM_PROFILING))
  1787. profile_hit(KVM_PROFILING, (void *)vmcs_readl(GUEST_RIP));
  1788. vcpu->launched = 1;
  1789. r = kvm_handle_exit(kvm_run, vcpu);
  1790. if (r > 0) {
  1791. /* Give scheduler a change to reschedule. */
  1792. if (signal_pending(current)) {
  1793. r = -EINTR;
  1794. kvm_run->exit_reason = KVM_EXIT_INTR;
  1795. ++vcpu->stat.signal_exits;
  1796. goto out;
  1797. }
  1798. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  1799. r = -EINTR;
  1800. kvm_run->exit_reason = KVM_EXIT_INTR;
  1801. ++vcpu->stat.request_irq_exits;
  1802. goto out;
  1803. }
  1804. if (!need_resched()) {
  1805. ++vcpu->stat.light_exits;
  1806. goto again;
  1807. }
  1808. }
  1809. out:
  1810. if (r > 0) {
  1811. kvm_resched(vcpu);
  1812. goto preempted;
  1813. }
  1814. post_kvm_run_save(vcpu, kvm_run);
  1815. return r;
  1816. }
  1817. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1818. {
  1819. vmcs_writel(GUEST_CR3, vmcs_readl(GUEST_CR3));
  1820. }
  1821. static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
  1822. unsigned long addr,
  1823. u32 err_code)
  1824. {
  1825. u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1826. ++vcpu->stat.pf_guest;
  1827. if (is_page_fault(vect_info)) {
  1828. printk(KERN_DEBUG "inject_page_fault: "
  1829. "double fault 0x%lx @ 0x%lx\n",
  1830. addr, vmcs_readl(GUEST_RIP));
  1831. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
  1832. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1833. DF_VECTOR |
  1834. INTR_TYPE_EXCEPTION |
  1835. INTR_INFO_DELIEVER_CODE_MASK |
  1836. INTR_INFO_VALID_MASK);
  1837. return;
  1838. }
  1839. vcpu->cr2 = addr;
  1840. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
  1841. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1842. PF_VECTOR |
  1843. INTR_TYPE_EXCEPTION |
  1844. INTR_INFO_DELIEVER_CODE_MASK |
  1845. INTR_INFO_VALID_MASK);
  1846. }
  1847. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  1848. {
  1849. if (vcpu->vmcs) {
  1850. on_each_cpu(__vcpu_clear, vcpu, 0, 1);
  1851. free_vmcs(vcpu->vmcs);
  1852. vcpu->vmcs = NULL;
  1853. }
  1854. }
  1855. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  1856. {
  1857. vmx_free_vmcs(vcpu);
  1858. }
  1859. static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
  1860. {
  1861. struct vmcs *vmcs;
  1862. vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  1863. if (!vcpu->guest_msrs)
  1864. return -ENOMEM;
  1865. vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  1866. if (!vcpu->host_msrs)
  1867. goto out_free_guest_msrs;
  1868. vmcs = alloc_vmcs();
  1869. if (!vmcs)
  1870. goto out_free_msrs;
  1871. vmcs_clear(vmcs);
  1872. vcpu->vmcs = vmcs;
  1873. vcpu->launched = 0;
  1874. return 0;
  1875. out_free_msrs:
  1876. kfree(vcpu->host_msrs);
  1877. vcpu->host_msrs = NULL;
  1878. out_free_guest_msrs:
  1879. kfree(vcpu->guest_msrs);
  1880. vcpu->guest_msrs = NULL;
  1881. return -ENOMEM;
  1882. }
  1883. static struct kvm_arch_ops vmx_arch_ops = {
  1884. .cpu_has_kvm_support = cpu_has_kvm_support,
  1885. .disabled_by_bios = vmx_disabled_by_bios,
  1886. .hardware_setup = hardware_setup,
  1887. .hardware_unsetup = hardware_unsetup,
  1888. .hardware_enable = hardware_enable,
  1889. .hardware_disable = hardware_disable,
  1890. .vcpu_create = vmx_create_vcpu,
  1891. .vcpu_free = vmx_free_vcpu,
  1892. .vcpu_load = vmx_vcpu_load,
  1893. .vcpu_put = vmx_vcpu_put,
  1894. .vcpu_decache = vmx_vcpu_decache,
  1895. .set_guest_debug = set_guest_debug,
  1896. .get_msr = vmx_get_msr,
  1897. .set_msr = vmx_set_msr,
  1898. .get_segment_base = vmx_get_segment_base,
  1899. .get_segment = vmx_get_segment,
  1900. .set_segment = vmx_set_segment,
  1901. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  1902. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  1903. .set_cr0 = vmx_set_cr0,
  1904. .set_cr3 = vmx_set_cr3,
  1905. .set_cr4 = vmx_set_cr4,
  1906. #ifdef CONFIG_X86_64
  1907. .set_efer = vmx_set_efer,
  1908. #endif
  1909. .get_idt = vmx_get_idt,
  1910. .set_idt = vmx_set_idt,
  1911. .get_gdt = vmx_get_gdt,
  1912. .set_gdt = vmx_set_gdt,
  1913. .cache_regs = vcpu_load_rsp_rip,
  1914. .decache_regs = vcpu_put_rsp_rip,
  1915. .get_rflags = vmx_get_rflags,
  1916. .set_rflags = vmx_set_rflags,
  1917. .tlb_flush = vmx_flush_tlb,
  1918. .inject_page_fault = vmx_inject_page_fault,
  1919. .inject_gp = vmx_inject_gp,
  1920. .run = vmx_vcpu_run,
  1921. .skip_emulated_instruction = skip_emulated_instruction,
  1922. .vcpu_setup = vmx_vcpu_setup,
  1923. .patch_hypercall = vmx_patch_hypercall,
  1924. };
  1925. static int __init vmx_init(void)
  1926. {
  1927. void *iova;
  1928. int r;
  1929. vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  1930. if (!vmx_io_bitmap_a)
  1931. return -ENOMEM;
  1932. vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  1933. if (!vmx_io_bitmap_b) {
  1934. r = -ENOMEM;
  1935. goto out;
  1936. }
  1937. /*
  1938. * Allow direct access to the PC debug port (it is often used for I/O
  1939. * delays, but the vmexits simply slow things down).
  1940. */
  1941. iova = kmap(vmx_io_bitmap_a);
  1942. memset(iova, 0xff, PAGE_SIZE);
  1943. clear_bit(0x80, iova);
  1944. kunmap(iova);
  1945. iova = kmap(vmx_io_bitmap_b);
  1946. memset(iova, 0xff, PAGE_SIZE);
  1947. kunmap(iova);
  1948. r = kvm_init_arch(&vmx_arch_ops, THIS_MODULE);
  1949. if (r)
  1950. goto out1;
  1951. return 0;
  1952. out1:
  1953. __free_page(vmx_io_bitmap_b);
  1954. out:
  1955. __free_page(vmx_io_bitmap_a);
  1956. return r;
  1957. }
  1958. static void __exit vmx_exit(void)
  1959. {
  1960. __free_page(vmx_io_bitmap_b);
  1961. __free_page(vmx_io_bitmap_a);
  1962. kvm_exit_arch();
  1963. }
  1964. module_init(vmx_init)
  1965. module_exit(vmx_exit)