smp.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755
  1. /*
  2. * linux/arch/arm/kernel/smp.c
  3. *
  4. * Copyright (C) 2002 ARM Limited, All Rights Reserved.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/delay.h>
  12. #include <linux/init.h>
  13. #include <linux/spinlock.h>
  14. #include <linux/sched.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/cache.h>
  17. #include <linux/profile.h>
  18. #include <linux/errno.h>
  19. #include <linux/mm.h>
  20. #include <linux/err.h>
  21. #include <linux/cpu.h>
  22. #include <linux/seq_file.h>
  23. #include <linux/irq.h>
  24. #include <linux/percpu.h>
  25. #include <linux/clockchips.h>
  26. #include <linux/completion.h>
  27. #include <linux/cpufreq.h>
  28. #include <linux/atomic.h>
  29. #include <asm/smp.h>
  30. #include <asm/cacheflush.h>
  31. #include <asm/cpu.h>
  32. #include <asm/cputype.h>
  33. #include <asm/exception.h>
  34. #include <asm/idmap.h>
  35. #include <asm/topology.h>
  36. #include <asm/mmu_context.h>
  37. #include <asm/pgtable.h>
  38. #include <asm/pgalloc.h>
  39. #include <asm/processor.h>
  40. #include <asm/sections.h>
  41. #include <asm/tlbflush.h>
  42. #include <asm/ptrace.h>
  43. #include <asm/localtimer.h>
  44. #include <asm/smp_plat.h>
  45. #include <asm/virt.h>
  46. #include <asm/mach/arch.h>
  47. #include <asm/mpu.h>
  48. /*
  49. * as from 2.5, kernels no longer have an init_tasks structure
  50. * so we need some other way of telling a new secondary core
  51. * where to place its SVC stack
  52. */
  53. struct secondary_data secondary_data;
  54. /*
  55. * control for which core is the next to come out of the secondary
  56. * boot "holding pen"
  57. */
  58. volatile int pen_release = -1;
  59. enum ipi_msg_type {
  60. IPI_WAKEUP,
  61. IPI_TIMER,
  62. IPI_RESCHEDULE,
  63. IPI_CALL_FUNC,
  64. IPI_CALL_FUNC_SINGLE,
  65. IPI_CPU_STOP,
  66. };
  67. static DECLARE_COMPLETION(cpu_running);
  68. static struct smp_operations smp_ops;
  69. void __init smp_set_ops(struct smp_operations *ops)
  70. {
  71. if (ops)
  72. smp_ops = *ops;
  73. };
  74. static unsigned long get_arch_pgd(pgd_t *pgd)
  75. {
  76. phys_addr_t pgdir = virt_to_phys(pgd);
  77. BUG_ON(pgdir & ARCH_PGD_MASK);
  78. return pgdir >> ARCH_PGD_SHIFT;
  79. }
  80. int __cpu_up(unsigned int cpu, struct task_struct *idle)
  81. {
  82. int ret;
  83. /*
  84. * We need to tell the secondary core where to find
  85. * its stack and the page tables.
  86. */
  87. secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
  88. #ifdef CONFIG_ARM_MPU
  89. secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr;
  90. #endif
  91. #ifdef CONFIG_MMU
  92. secondary_data.pgdir = get_arch_pgd(idmap_pgd);
  93. secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
  94. #endif
  95. __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
  96. outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
  97. /*
  98. * Now bring the CPU into our world.
  99. */
  100. ret = boot_secondary(cpu, idle);
  101. if (ret == 0) {
  102. /*
  103. * CPU was successfully started, wait for it
  104. * to come online or time out.
  105. */
  106. wait_for_completion_timeout(&cpu_running,
  107. msecs_to_jiffies(1000));
  108. if (!cpu_online(cpu)) {
  109. pr_crit("CPU%u: failed to come online\n", cpu);
  110. ret = -EIO;
  111. }
  112. } else {
  113. pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
  114. }
  115. memset(&secondary_data, 0, sizeof(secondary_data));
  116. return ret;
  117. }
  118. /* platform specific SMP operations */
  119. void __init smp_init_cpus(void)
  120. {
  121. if (smp_ops.smp_init_cpus)
  122. smp_ops.smp_init_cpus();
  123. }
  124. int boot_secondary(unsigned int cpu, struct task_struct *idle)
  125. {
  126. if (smp_ops.smp_boot_secondary)
  127. return smp_ops.smp_boot_secondary(cpu, idle);
  128. return -ENOSYS;
  129. }
  130. int platform_can_cpu_hotplug(void)
  131. {
  132. #ifdef CONFIG_HOTPLUG_CPU
  133. if (smp_ops.cpu_kill)
  134. return 1;
  135. #endif
  136. return 0;
  137. }
  138. #ifdef CONFIG_HOTPLUG_CPU
  139. static void percpu_timer_stop(void);
  140. static int platform_cpu_kill(unsigned int cpu)
  141. {
  142. if (smp_ops.cpu_kill)
  143. return smp_ops.cpu_kill(cpu);
  144. return 1;
  145. }
  146. static int platform_cpu_disable(unsigned int cpu)
  147. {
  148. if (smp_ops.cpu_disable)
  149. return smp_ops.cpu_disable(cpu);
  150. /*
  151. * By default, allow disabling all CPUs except the first one,
  152. * since this is special on a lot of platforms, e.g. because
  153. * of clock tick interrupts.
  154. */
  155. return cpu == 0 ? -EPERM : 0;
  156. }
  157. /*
  158. * __cpu_disable runs on the processor to be shutdown.
  159. */
  160. int __cpu_disable(void)
  161. {
  162. unsigned int cpu = smp_processor_id();
  163. int ret;
  164. ret = platform_cpu_disable(cpu);
  165. if (ret)
  166. return ret;
  167. /*
  168. * Take this CPU offline. Once we clear this, we can't return,
  169. * and we must not schedule until we're ready to give up the cpu.
  170. */
  171. set_cpu_online(cpu, false);
  172. /*
  173. * OK - migrate IRQs away from this CPU
  174. */
  175. migrate_irqs();
  176. /*
  177. * Stop the local timer for this CPU.
  178. */
  179. percpu_timer_stop();
  180. /*
  181. * Flush user cache and TLB mappings, and then remove this CPU
  182. * from the vm mask set of all processes.
  183. *
  184. * Caches are flushed to the Level of Unification Inner Shareable
  185. * to write-back dirty lines to unified caches shared by all CPUs.
  186. */
  187. flush_cache_louis();
  188. local_flush_tlb_all();
  189. clear_tasks_mm_cpumask(cpu);
  190. return 0;
  191. }
  192. static DECLARE_COMPLETION(cpu_died);
  193. /*
  194. * called on the thread which is asking for a CPU to be shutdown -
  195. * waits until shutdown has completed, or it is timed out.
  196. */
  197. void __cpu_die(unsigned int cpu)
  198. {
  199. if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
  200. pr_err("CPU%u: cpu didn't die\n", cpu);
  201. return;
  202. }
  203. printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
  204. /*
  205. * platform_cpu_kill() is generally expected to do the powering off
  206. * and/or cutting of clocks to the dying CPU. Optionally, this may
  207. * be done by the CPU which is dying in preference to supporting
  208. * this call, but that means there is _no_ synchronisation between
  209. * the requesting CPU and the dying CPU actually losing power.
  210. */
  211. if (!platform_cpu_kill(cpu))
  212. printk("CPU%u: unable to kill\n", cpu);
  213. }
  214. /*
  215. * Called from the idle thread for the CPU which has been shutdown.
  216. *
  217. * Note that we disable IRQs here, but do not re-enable them
  218. * before returning to the caller. This is also the behaviour
  219. * of the other hotplug-cpu capable cores, so presumably coming
  220. * out of idle fixes this.
  221. */
  222. void __ref cpu_die(void)
  223. {
  224. unsigned int cpu = smp_processor_id();
  225. idle_task_exit();
  226. local_irq_disable();
  227. /*
  228. * Flush the data out of the L1 cache for this CPU. This must be
  229. * before the completion to ensure that data is safely written out
  230. * before platform_cpu_kill() gets called - which may disable
  231. * *this* CPU and power down its cache.
  232. */
  233. flush_cache_louis();
  234. /*
  235. * Tell __cpu_die() that this CPU is now safe to dispose of. Once
  236. * this returns, power and/or clocks can be removed at any point
  237. * from this CPU and its cache by platform_cpu_kill().
  238. */
  239. complete(&cpu_died);
  240. /*
  241. * Ensure that the cache lines associated with that completion are
  242. * written out. This covers the case where _this_ CPU is doing the
  243. * powering down, to ensure that the completion is visible to the
  244. * CPU waiting for this one.
  245. */
  246. flush_cache_louis();
  247. /*
  248. * The actual CPU shutdown procedure is at least platform (if not
  249. * CPU) specific. This may remove power, or it may simply spin.
  250. *
  251. * Platforms are generally expected *NOT* to return from this call,
  252. * although there are some which do because they have no way to
  253. * power down the CPU. These platforms are the _only_ reason we
  254. * have a return path which uses the fragment of assembly below.
  255. *
  256. * The return path should not be used for platforms which can
  257. * power off the CPU.
  258. */
  259. if (smp_ops.cpu_die)
  260. smp_ops.cpu_die(cpu);
  261. /*
  262. * Do not return to the idle loop - jump back to the secondary
  263. * cpu initialisation. There's some initialisation which needs
  264. * to be repeated to undo the effects of taking the CPU offline.
  265. */
  266. __asm__("mov sp, %0\n"
  267. " mov fp, #0\n"
  268. " b secondary_start_kernel"
  269. :
  270. : "r" (task_stack_page(current) + THREAD_SIZE - 8));
  271. }
  272. #endif /* CONFIG_HOTPLUG_CPU */
  273. /*
  274. * Called by both boot and secondaries to move global data into
  275. * per-processor storage.
  276. */
  277. static void smp_store_cpu_info(unsigned int cpuid)
  278. {
  279. struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
  280. cpu_info->loops_per_jiffy = loops_per_jiffy;
  281. cpu_info->cpuid = read_cpuid_id();
  282. store_cpu_topology(cpuid);
  283. }
  284. static void percpu_timer_setup(void);
  285. /*
  286. * This is the secondary CPU boot entry. We're using this CPUs
  287. * idle thread stack, but a set of temporary page tables.
  288. */
  289. asmlinkage void secondary_start_kernel(void)
  290. {
  291. struct mm_struct *mm = &init_mm;
  292. unsigned int cpu;
  293. /*
  294. * The identity mapping is uncached (strongly ordered), so
  295. * switch away from it before attempting any exclusive accesses.
  296. */
  297. cpu_switch_mm(mm->pgd, mm);
  298. local_flush_bp_all();
  299. enter_lazy_tlb(mm, current);
  300. local_flush_tlb_all();
  301. /*
  302. * All kernel threads share the same mm context; grab a
  303. * reference and switch to it.
  304. */
  305. cpu = smp_processor_id();
  306. atomic_inc(&mm->mm_count);
  307. current->active_mm = mm;
  308. cpumask_set_cpu(cpu, mm_cpumask(mm));
  309. cpu_init();
  310. printk("CPU%u: Booted secondary processor\n", cpu);
  311. preempt_disable();
  312. trace_hardirqs_off();
  313. /*
  314. * Give the platform a chance to do its own initialisation.
  315. */
  316. if (smp_ops.smp_secondary_init)
  317. smp_ops.smp_secondary_init(cpu);
  318. notify_cpu_starting(cpu);
  319. calibrate_delay();
  320. smp_store_cpu_info(cpu);
  321. /*
  322. * OK, now it's safe to let the boot CPU continue. Wait for
  323. * the CPU migration code to notice that the CPU is online
  324. * before we continue - which happens after __cpu_up returns.
  325. */
  326. set_cpu_online(cpu, true);
  327. complete(&cpu_running);
  328. /*
  329. * Setup the percpu timer for this CPU.
  330. */
  331. percpu_timer_setup();
  332. local_irq_enable();
  333. local_fiq_enable();
  334. /*
  335. * OK, it's off to the idle thread for us
  336. */
  337. cpu_startup_entry(CPUHP_ONLINE);
  338. }
  339. void __init smp_cpus_done(unsigned int max_cpus)
  340. {
  341. int cpu;
  342. unsigned long bogosum = 0;
  343. for_each_online_cpu(cpu)
  344. bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
  345. printk(KERN_INFO "SMP: Total of %d processors activated "
  346. "(%lu.%02lu BogoMIPS).\n",
  347. num_online_cpus(),
  348. bogosum / (500000/HZ),
  349. (bogosum / (5000/HZ)) % 100);
  350. hyp_mode_check();
  351. }
  352. void __init smp_prepare_boot_cpu(void)
  353. {
  354. set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
  355. }
  356. void __init smp_prepare_cpus(unsigned int max_cpus)
  357. {
  358. unsigned int ncores = num_possible_cpus();
  359. init_cpu_topology();
  360. smp_store_cpu_info(smp_processor_id());
  361. /*
  362. * are we trying to boot more cores than exist?
  363. */
  364. if (max_cpus > ncores)
  365. max_cpus = ncores;
  366. if (ncores > 1 && max_cpus) {
  367. /*
  368. * Enable the local timer or broadcast device for the
  369. * boot CPU, but only if we have more than one CPU.
  370. */
  371. percpu_timer_setup();
  372. /*
  373. * Initialise the present map, which describes the set of CPUs
  374. * actually populated at the present time. A platform should
  375. * re-initialize the map in the platforms smp_prepare_cpus()
  376. * if present != possible (e.g. physical hotplug).
  377. */
  378. init_cpu_present(cpu_possible_mask);
  379. /*
  380. * Initialise the SCU if there are more than one CPU
  381. * and let them know where to start.
  382. */
  383. if (smp_ops.smp_prepare_cpus)
  384. smp_ops.smp_prepare_cpus(max_cpus);
  385. }
  386. }
  387. static void (*smp_cross_call)(const struct cpumask *, unsigned int);
  388. void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
  389. {
  390. if (!smp_cross_call)
  391. smp_cross_call = fn;
  392. }
  393. void arch_send_call_function_ipi_mask(const struct cpumask *mask)
  394. {
  395. smp_cross_call(mask, IPI_CALL_FUNC);
  396. }
  397. void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
  398. {
  399. smp_cross_call(mask, IPI_WAKEUP);
  400. }
  401. void arch_send_call_function_single_ipi(int cpu)
  402. {
  403. smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
  404. }
  405. static const char *ipi_types[NR_IPI] = {
  406. #define S(x,s) [x] = s
  407. S(IPI_WAKEUP, "CPU wakeup interrupts"),
  408. S(IPI_TIMER, "Timer broadcast interrupts"),
  409. S(IPI_RESCHEDULE, "Rescheduling interrupts"),
  410. S(IPI_CALL_FUNC, "Function call interrupts"),
  411. S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
  412. S(IPI_CPU_STOP, "CPU stop interrupts"),
  413. };
  414. void show_ipi_list(struct seq_file *p, int prec)
  415. {
  416. unsigned int cpu, i;
  417. for (i = 0; i < NR_IPI; i++) {
  418. seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
  419. for_each_online_cpu(cpu)
  420. seq_printf(p, "%10u ",
  421. __get_irq_stat(cpu, ipi_irqs[i]));
  422. seq_printf(p, " %s\n", ipi_types[i]);
  423. }
  424. }
  425. u64 smp_irq_stat_cpu(unsigned int cpu)
  426. {
  427. u64 sum = 0;
  428. int i;
  429. for (i = 0; i < NR_IPI; i++)
  430. sum += __get_irq_stat(cpu, ipi_irqs[i]);
  431. return sum;
  432. }
  433. /*
  434. * Timer (local or broadcast) support
  435. */
  436. static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
  437. #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
  438. void tick_broadcast(const struct cpumask *mask)
  439. {
  440. smp_cross_call(mask, IPI_TIMER);
  441. }
  442. #endif
  443. static void broadcast_timer_set_mode(enum clock_event_mode mode,
  444. struct clock_event_device *evt)
  445. {
  446. }
  447. static void broadcast_timer_setup(struct clock_event_device *evt)
  448. {
  449. evt->name = "dummy_timer";
  450. evt->features = CLOCK_EVT_FEAT_ONESHOT |
  451. CLOCK_EVT_FEAT_PERIODIC |
  452. CLOCK_EVT_FEAT_DUMMY;
  453. evt->rating = 100;
  454. evt->mult = 1;
  455. evt->set_mode = broadcast_timer_set_mode;
  456. clockevents_register_device(evt);
  457. }
  458. static struct local_timer_ops *lt_ops;
  459. #ifdef CONFIG_LOCAL_TIMERS
  460. int local_timer_register(struct local_timer_ops *ops)
  461. {
  462. if (!is_smp() || !setup_max_cpus)
  463. return -ENXIO;
  464. if (lt_ops)
  465. return -EBUSY;
  466. lt_ops = ops;
  467. return 0;
  468. }
  469. #endif
  470. static void percpu_timer_setup(void)
  471. {
  472. unsigned int cpu = smp_processor_id();
  473. struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
  474. evt->cpumask = cpumask_of(cpu);
  475. if (!lt_ops || lt_ops->setup(evt))
  476. broadcast_timer_setup(evt);
  477. }
  478. #ifdef CONFIG_HOTPLUG_CPU
  479. /*
  480. * The generic clock events code purposely does not stop the local timer
  481. * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
  482. * manually here.
  483. */
  484. static void percpu_timer_stop(void)
  485. {
  486. unsigned int cpu = smp_processor_id();
  487. struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
  488. if (lt_ops)
  489. lt_ops->stop(evt);
  490. }
  491. #endif
  492. static DEFINE_RAW_SPINLOCK(stop_lock);
  493. /*
  494. * ipi_cpu_stop - handle IPI from smp_send_stop()
  495. */
  496. static void ipi_cpu_stop(unsigned int cpu)
  497. {
  498. if (system_state == SYSTEM_BOOTING ||
  499. system_state == SYSTEM_RUNNING) {
  500. raw_spin_lock(&stop_lock);
  501. printk(KERN_CRIT "CPU%u: stopping\n", cpu);
  502. dump_stack();
  503. raw_spin_unlock(&stop_lock);
  504. }
  505. set_cpu_online(cpu, false);
  506. local_fiq_disable();
  507. local_irq_disable();
  508. while (1)
  509. cpu_relax();
  510. }
  511. /*
  512. * Main handler for inter-processor interrupts
  513. */
  514. asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
  515. {
  516. handle_IPI(ipinr, regs);
  517. }
  518. void handle_IPI(int ipinr, struct pt_regs *regs)
  519. {
  520. unsigned int cpu = smp_processor_id();
  521. struct pt_regs *old_regs = set_irq_regs(regs);
  522. if (ipinr < NR_IPI)
  523. __inc_irq_stat(cpu, ipi_irqs[ipinr]);
  524. switch (ipinr) {
  525. case IPI_WAKEUP:
  526. break;
  527. #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
  528. case IPI_TIMER:
  529. irq_enter();
  530. tick_receive_broadcast();
  531. irq_exit();
  532. break;
  533. #endif
  534. case IPI_RESCHEDULE:
  535. scheduler_ipi();
  536. break;
  537. case IPI_CALL_FUNC:
  538. irq_enter();
  539. generic_smp_call_function_interrupt();
  540. irq_exit();
  541. break;
  542. case IPI_CALL_FUNC_SINGLE:
  543. irq_enter();
  544. generic_smp_call_function_single_interrupt();
  545. irq_exit();
  546. break;
  547. case IPI_CPU_STOP:
  548. irq_enter();
  549. ipi_cpu_stop(cpu);
  550. irq_exit();
  551. break;
  552. default:
  553. printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
  554. cpu, ipinr);
  555. break;
  556. }
  557. set_irq_regs(old_regs);
  558. }
  559. void smp_send_reschedule(int cpu)
  560. {
  561. smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
  562. }
  563. void smp_send_stop(void)
  564. {
  565. unsigned long timeout;
  566. struct cpumask mask;
  567. cpumask_copy(&mask, cpu_online_mask);
  568. cpumask_clear_cpu(smp_processor_id(), &mask);
  569. if (!cpumask_empty(&mask))
  570. smp_cross_call(&mask, IPI_CPU_STOP);
  571. /* Wait up to one second for other CPUs to stop */
  572. timeout = USEC_PER_SEC;
  573. while (num_online_cpus() > 1 && timeout--)
  574. udelay(1);
  575. if (num_online_cpus() > 1)
  576. pr_warning("SMP: failed to stop secondary CPUs\n");
  577. }
  578. /*
  579. * not supported here
  580. */
  581. int setup_profiling_timer(unsigned int multiplier)
  582. {
  583. return -EINVAL;
  584. }
  585. #ifdef CONFIG_CPU_FREQ
  586. static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
  587. static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
  588. static unsigned long global_l_p_j_ref;
  589. static unsigned long global_l_p_j_ref_freq;
  590. static int cpufreq_callback(struct notifier_block *nb,
  591. unsigned long val, void *data)
  592. {
  593. struct cpufreq_freqs *freq = data;
  594. int cpu = freq->cpu;
  595. if (freq->flags & CPUFREQ_CONST_LOOPS)
  596. return NOTIFY_OK;
  597. if (!per_cpu(l_p_j_ref, cpu)) {
  598. per_cpu(l_p_j_ref, cpu) =
  599. per_cpu(cpu_data, cpu).loops_per_jiffy;
  600. per_cpu(l_p_j_ref_freq, cpu) = freq->old;
  601. if (!global_l_p_j_ref) {
  602. global_l_p_j_ref = loops_per_jiffy;
  603. global_l_p_j_ref_freq = freq->old;
  604. }
  605. }
  606. if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
  607. (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
  608. (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
  609. loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
  610. global_l_p_j_ref_freq,
  611. freq->new);
  612. per_cpu(cpu_data, cpu).loops_per_jiffy =
  613. cpufreq_scale(per_cpu(l_p_j_ref, cpu),
  614. per_cpu(l_p_j_ref_freq, cpu),
  615. freq->new);
  616. }
  617. return NOTIFY_OK;
  618. }
  619. static struct notifier_block cpufreq_notifier = {
  620. .notifier_call = cpufreq_callback,
  621. };
  622. static int __init register_cpufreq_notifier(void)
  623. {
  624. return cpufreq_register_notifier(&cpufreq_notifier,
  625. CPUFREQ_TRANSITION_NOTIFIER);
  626. }
  627. core_initcall(register_cpufreq_notifier);
  628. #endif