data.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754
  1. /*
  2. * fs/f2fs/data.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/buffer_head.h>
  14. #include <linux/mpage.h>
  15. #include <linux/aio.h>
  16. #include <linux/writeback.h>
  17. #include <linux/backing-dev.h>
  18. #include <linux/blkdev.h>
  19. #include <linux/bio.h>
  20. #include <linux/prefetch.h>
  21. #include "f2fs.h"
  22. #include "node.h"
  23. #include "segment.h"
  24. #include <trace/events/f2fs.h>
  25. /*
  26. * Lock ordering for the change of data block address:
  27. * ->data_page
  28. * ->node_page
  29. * update block addresses in the node page
  30. */
  31. static void __set_data_blkaddr(struct dnode_of_data *dn, block_t new_addr)
  32. {
  33. struct f2fs_node *rn;
  34. __le32 *addr_array;
  35. struct page *node_page = dn->node_page;
  36. unsigned int ofs_in_node = dn->ofs_in_node;
  37. wait_on_page_writeback(node_page);
  38. rn = (struct f2fs_node *)page_address(node_page);
  39. /* Get physical address of data block */
  40. addr_array = blkaddr_in_node(rn);
  41. addr_array[ofs_in_node] = cpu_to_le32(new_addr);
  42. set_page_dirty(node_page);
  43. }
  44. int reserve_new_block(struct dnode_of_data *dn)
  45. {
  46. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  47. if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))
  48. return -EPERM;
  49. if (!inc_valid_block_count(sbi, dn->inode, 1))
  50. return -ENOSPC;
  51. trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
  52. __set_data_blkaddr(dn, NEW_ADDR);
  53. dn->data_blkaddr = NEW_ADDR;
  54. sync_inode_page(dn);
  55. return 0;
  56. }
  57. static int check_extent_cache(struct inode *inode, pgoff_t pgofs,
  58. struct buffer_head *bh_result)
  59. {
  60. struct f2fs_inode_info *fi = F2FS_I(inode);
  61. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  62. pgoff_t start_fofs, end_fofs;
  63. block_t start_blkaddr;
  64. read_lock(&fi->ext.ext_lock);
  65. if (fi->ext.len == 0) {
  66. read_unlock(&fi->ext.ext_lock);
  67. return 0;
  68. }
  69. sbi->total_hit_ext++;
  70. start_fofs = fi->ext.fofs;
  71. end_fofs = fi->ext.fofs + fi->ext.len - 1;
  72. start_blkaddr = fi->ext.blk_addr;
  73. if (pgofs >= start_fofs && pgofs <= end_fofs) {
  74. unsigned int blkbits = inode->i_sb->s_blocksize_bits;
  75. size_t count;
  76. clear_buffer_new(bh_result);
  77. map_bh(bh_result, inode->i_sb,
  78. start_blkaddr + pgofs - start_fofs);
  79. count = end_fofs - pgofs + 1;
  80. if (count < (UINT_MAX >> blkbits))
  81. bh_result->b_size = (count << blkbits);
  82. else
  83. bh_result->b_size = UINT_MAX;
  84. sbi->read_hit_ext++;
  85. read_unlock(&fi->ext.ext_lock);
  86. return 1;
  87. }
  88. read_unlock(&fi->ext.ext_lock);
  89. return 0;
  90. }
  91. void update_extent_cache(block_t blk_addr, struct dnode_of_data *dn)
  92. {
  93. struct f2fs_inode_info *fi = F2FS_I(dn->inode);
  94. pgoff_t fofs, start_fofs, end_fofs;
  95. block_t start_blkaddr, end_blkaddr;
  96. BUG_ON(blk_addr == NEW_ADDR);
  97. fofs = start_bidx_of_node(ofs_of_node(dn->node_page)) + dn->ofs_in_node;
  98. /* Update the page address in the parent node */
  99. __set_data_blkaddr(dn, blk_addr);
  100. write_lock(&fi->ext.ext_lock);
  101. start_fofs = fi->ext.fofs;
  102. end_fofs = fi->ext.fofs + fi->ext.len - 1;
  103. start_blkaddr = fi->ext.blk_addr;
  104. end_blkaddr = fi->ext.blk_addr + fi->ext.len - 1;
  105. /* Drop and initialize the matched extent */
  106. if (fi->ext.len == 1 && fofs == start_fofs)
  107. fi->ext.len = 0;
  108. /* Initial extent */
  109. if (fi->ext.len == 0) {
  110. if (blk_addr != NULL_ADDR) {
  111. fi->ext.fofs = fofs;
  112. fi->ext.blk_addr = blk_addr;
  113. fi->ext.len = 1;
  114. }
  115. goto end_update;
  116. }
  117. /* Front merge */
  118. if (fofs == start_fofs - 1 && blk_addr == start_blkaddr - 1) {
  119. fi->ext.fofs--;
  120. fi->ext.blk_addr--;
  121. fi->ext.len++;
  122. goto end_update;
  123. }
  124. /* Back merge */
  125. if (fofs == end_fofs + 1 && blk_addr == end_blkaddr + 1) {
  126. fi->ext.len++;
  127. goto end_update;
  128. }
  129. /* Split the existing extent */
  130. if (fi->ext.len > 1 &&
  131. fofs >= start_fofs && fofs <= end_fofs) {
  132. if ((end_fofs - fofs) < (fi->ext.len >> 1)) {
  133. fi->ext.len = fofs - start_fofs;
  134. } else {
  135. fi->ext.fofs = fofs + 1;
  136. fi->ext.blk_addr = start_blkaddr +
  137. fofs - start_fofs + 1;
  138. fi->ext.len -= fofs - start_fofs + 1;
  139. }
  140. goto end_update;
  141. }
  142. write_unlock(&fi->ext.ext_lock);
  143. return;
  144. end_update:
  145. write_unlock(&fi->ext.ext_lock);
  146. sync_inode_page(dn);
  147. return;
  148. }
  149. struct page *find_data_page(struct inode *inode, pgoff_t index, bool sync)
  150. {
  151. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  152. struct address_space *mapping = inode->i_mapping;
  153. struct dnode_of_data dn;
  154. struct page *page;
  155. int err;
  156. page = find_get_page(mapping, index);
  157. if (page && PageUptodate(page))
  158. return page;
  159. f2fs_put_page(page, 0);
  160. set_new_dnode(&dn, inode, NULL, NULL, 0);
  161. err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
  162. if (err)
  163. return ERR_PTR(err);
  164. f2fs_put_dnode(&dn);
  165. if (dn.data_blkaddr == NULL_ADDR)
  166. return ERR_PTR(-ENOENT);
  167. /* By fallocate(), there is no cached page, but with NEW_ADDR */
  168. if (dn.data_blkaddr == NEW_ADDR)
  169. return ERR_PTR(-EINVAL);
  170. page = grab_cache_page(mapping, index);
  171. if (!page)
  172. return ERR_PTR(-ENOMEM);
  173. if (PageUptodate(page)) {
  174. unlock_page(page);
  175. return page;
  176. }
  177. err = f2fs_readpage(sbi, page, dn.data_blkaddr,
  178. sync ? READ_SYNC : READA);
  179. if (sync) {
  180. wait_on_page_locked(page);
  181. if (!PageUptodate(page)) {
  182. f2fs_put_page(page, 0);
  183. return ERR_PTR(-EIO);
  184. }
  185. }
  186. return page;
  187. }
  188. /*
  189. * If it tries to access a hole, return an error.
  190. * Because, the callers, functions in dir.c and GC, should be able to know
  191. * whether this page exists or not.
  192. */
  193. struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
  194. {
  195. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  196. struct address_space *mapping = inode->i_mapping;
  197. struct dnode_of_data dn;
  198. struct page *page;
  199. int err;
  200. repeat:
  201. page = grab_cache_page(mapping, index);
  202. if (!page)
  203. return ERR_PTR(-ENOMEM);
  204. set_new_dnode(&dn, inode, NULL, NULL, 0);
  205. err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
  206. if (err) {
  207. f2fs_put_page(page, 1);
  208. return ERR_PTR(err);
  209. }
  210. f2fs_put_dnode(&dn);
  211. if (dn.data_blkaddr == NULL_ADDR) {
  212. f2fs_put_page(page, 1);
  213. return ERR_PTR(-ENOENT);
  214. }
  215. if (PageUptodate(page))
  216. return page;
  217. BUG_ON(dn.data_blkaddr == NEW_ADDR);
  218. BUG_ON(dn.data_blkaddr == NULL_ADDR);
  219. err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
  220. if (err)
  221. return ERR_PTR(err);
  222. lock_page(page);
  223. if (!PageUptodate(page)) {
  224. f2fs_put_page(page, 1);
  225. return ERR_PTR(-EIO);
  226. }
  227. if (page->mapping != mapping) {
  228. f2fs_put_page(page, 1);
  229. goto repeat;
  230. }
  231. return page;
  232. }
  233. /*
  234. * Caller ensures that this data page is never allocated.
  235. * A new zero-filled data page is allocated in the page cache.
  236. *
  237. * Also, caller should grab and release a mutex by calling mutex_lock_op() and
  238. * mutex_unlock_op().
  239. */
  240. struct page *get_new_data_page(struct inode *inode, pgoff_t index,
  241. bool new_i_size)
  242. {
  243. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  244. struct address_space *mapping = inode->i_mapping;
  245. struct page *page;
  246. struct dnode_of_data dn;
  247. int err;
  248. set_new_dnode(&dn, inode, NULL, NULL, 0);
  249. err = get_dnode_of_data(&dn, index, ALLOC_NODE);
  250. if (err)
  251. return ERR_PTR(err);
  252. if (dn.data_blkaddr == NULL_ADDR) {
  253. if (reserve_new_block(&dn)) {
  254. f2fs_put_dnode(&dn);
  255. return ERR_PTR(-ENOSPC);
  256. }
  257. }
  258. f2fs_put_dnode(&dn);
  259. repeat:
  260. page = grab_cache_page(mapping, index);
  261. if (!page)
  262. return ERR_PTR(-ENOMEM);
  263. if (PageUptodate(page))
  264. return page;
  265. if (dn.data_blkaddr == NEW_ADDR) {
  266. zero_user_segment(page, 0, PAGE_CACHE_SIZE);
  267. SetPageUptodate(page);
  268. } else {
  269. err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
  270. if (err)
  271. return ERR_PTR(err);
  272. lock_page(page);
  273. if (!PageUptodate(page)) {
  274. f2fs_put_page(page, 1);
  275. return ERR_PTR(-EIO);
  276. }
  277. if (page->mapping != mapping) {
  278. f2fs_put_page(page, 1);
  279. goto repeat;
  280. }
  281. }
  282. if (new_i_size &&
  283. i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
  284. i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
  285. mark_inode_dirty_sync(inode);
  286. }
  287. return page;
  288. }
  289. static void read_end_io(struct bio *bio, int err)
  290. {
  291. const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  292. struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
  293. do {
  294. struct page *page = bvec->bv_page;
  295. if (--bvec >= bio->bi_io_vec)
  296. prefetchw(&bvec->bv_page->flags);
  297. if (uptodate) {
  298. SetPageUptodate(page);
  299. } else {
  300. ClearPageUptodate(page);
  301. SetPageError(page);
  302. }
  303. unlock_page(page);
  304. } while (bvec >= bio->bi_io_vec);
  305. kfree(bio->bi_private);
  306. bio_put(bio);
  307. }
  308. /*
  309. * Fill the locked page with data located in the block address.
  310. * Return unlocked page.
  311. */
  312. int f2fs_readpage(struct f2fs_sb_info *sbi, struct page *page,
  313. block_t blk_addr, int type)
  314. {
  315. struct block_device *bdev = sbi->sb->s_bdev;
  316. struct bio *bio;
  317. trace_f2fs_readpage(page, blk_addr, type);
  318. down_read(&sbi->bio_sem);
  319. /* Allocate a new bio */
  320. bio = f2fs_bio_alloc(bdev, 1);
  321. /* Initialize the bio */
  322. bio->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
  323. bio->bi_end_io = read_end_io;
  324. if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
  325. kfree(bio->bi_private);
  326. bio_put(bio);
  327. up_read(&sbi->bio_sem);
  328. f2fs_put_page(page, 1);
  329. return -EFAULT;
  330. }
  331. submit_bio(type, bio);
  332. up_read(&sbi->bio_sem);
  333. return 0;
  334. }
  335. /*
  336. * This function should be used by the data read flow only where it
  337. * does not check the "create" flag that indicates block allocation.
  338. * The reason for this special functionality is to exploit VFS readahead
  339. * mechanism.
  340. */
  341. static int get_data_block_ro(struct inode *inode, sector_t iblock,
  342. struct buffer_head *bh_result, int create)
  343. {
  344. unsigned int blkbits = inode->i_sb->s_blocksize_bits;
  345. unsigned maxblocks = bh_result->b_size >> blkbits;
  346. struct dnode_of_data dn;
  347. pgoff_t pgofs;
  348. int err;
  349. /* Get the page offset from the block offset(iblock) */
  350. pgofs = (pgoff_t)(iblock >> (PAGE_CACHE_SHIFT - blkbits));
  351. if (check_extent_cache(inode, pgofs, bh_result)) {
  352. trace_f2fs_get_data_block(inode, iblock, bh_result, 0);
  353. return 0;
  354. }
  355. /* When reading holes, we need its node page */
  356. set_new_dnode(&dn, inode, NULL, NULL, 0);
  357. err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE_RA);
  358. if (err) {
  359. trace_f2fs_get_data_block(inode, iblock, bh_result, err);
  360. return (err == -ENOENT) ? 0 : err;
  361. }
  362. /* It does not support data allocation */
  363. BUG_ON(create);
  364. if (dn.data_blkaddr != NEW_ADDR && dn.data_blkaddr != NULL_ADDR) {
  365. int i;
  366. unsigned int end_offset;
  367. end_offset = IS_INODE(dn.node_page) ?
  368. ADDRS_PER_INODE :
  369. ADDRS_PER_BLOCK;
  370. clear_buffer_new(bh_result);
  371. /* Give more consecutive addresses for the read ahead */
  372. for (i = 0; i < end_offset - dn.ofs_in_node; i++)
  373. if (((datablock_addr(dn.node_page,
  374. dn.ofs_in_node + i))
  375. != (dn.data_blkaddr + i)) || maxblocks == i)
  376. break;
  377. map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
  378. bh_result->b_size = (i << blkbits);
  379. }
  380. f2fs_put_dnode(&dn);
  381. trace_f2fs_get_data_block(inode, iblock, bh_result, 0);
  382. return 0;
  383. }
  384. static int f2fs_read_data_page(struct file *file, struct page *page)
  385. {
  386. return mpage_readpage(page, get_data_block_ro);
  387. }
  388. static int f2fs_read_data_pages(struct file *file,
  389. struct address_space *mapping,
  390. struct list_head *pages, unsigned nr_pages)
  391. {
  392. return mpage_readpages(mapping, pages, nr_pages, get_data_block_ro);
  393. }
  394. int do_write_data_page(struct page *page)
  395. {
  396. struct inode *inode = page->mapping->host;
  397. block_t old_blk_addr, new_blk_addr;
  398. struct dnode_of_data dn;
  399. int err = 0;
  400. set_new_dnode(&dn, inode, NULL, NULL, 0);
  401. err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
  402. if (err)
  403. return err;
  404. old_blk_addr = dn.data_blkaddr;
  405. /* This page is already truncated */
  406. if (old_blk_addr == NULL_ADDR)
  407. goto out_writepage;
  408. set_page_writeback(page);
  409. /*
  410. * If current allocation needs SSR,
  411. * it had better in-place writes for updated data.
  412. */
  413. if (old_blk_addr != NEW_ADDR && !is_cold_data(page) &&
  414. need_inplace_update(inode)) {
  415. rewrite_data_page(F2FS_SB(inode->i_sb), page,
  416. old_blk_addr);
  417. } else {
  418. write_data_page(inode, page, &dn,
  419. old_blk_addr, &new_blk_addr);
  420. update_extent_cache(new_blk_addr, &dn);
  421. }
  422. out_writepage:
  423. f2fs_put_dnode(&dn);
  424. return err;
  425. }
  426. static int f2fs_write_data_page(struct page *page,
  427. struct writeback_control *wbc)
  428. {
  429. struct inode *inode = page->mapping->host;
  430. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  431. loff_t i_size = i_size_read(inode);
  432. const pgoff_t end_index = ((unsigned long long) i_size)
  433. >> PAGE_CACHE_SHIFT;
  434. unsigned offset;
  435. bool need_balance_fs = false;
  436. int err = 0;
  437. if (page->index < end_index)
  438. goto write;
  439. /*
  440. * If the offset is out-of-range of file size,
  441. * this page does not have to be written to disk.
  442. */
  443. offset = i_size & (PAGE_CACHE_SIZE - 1);
  444. if ((page->index >= end_index + 1) || !offset) {
  445. if (S_ISDIR(inode->i_mode)) {
  446. dec_page_count(sbi, F2FS_DIRTY_DENTS);
  447. inode_dec_dirty_dents(inode);
  448. }
  449. goto out;
  450. }
  451. zero_user_segment(page, offset, PAGE_CACHE_SIZE);
  452. write:
  453. if (sbi->por_doing) {
  454. err = AOP_WRITEPAGE_ACTIVATE;
  455. goto redirty_out;
  456. }
  457. /* Dentry blocks are controlled by checkpoint */
  458. if (S_ISDIR(inode->i_mode)) {
  459. dec_page_count(sbi, F2FS_DIRTY_DENTS);
  460. inode_dec_dirty_dents(inode);
  461. err = do_write_data_page(page);
  462. } else {
  463. int ilock = mutex_lock_op(sbi);
  464. err = do_write_data_page(page);
  465. mutex_unlock_op(sbi, ilock);
  466. need_balance_fs = true;
  467. }
  468. if (err == -ENOENT)
  469. goto out;
  470. else if (err)
  471. goto redirty_out;
  472. if (wbc->for_reclaim)
  473. f2fs_submit_bio(sbi, DATA, true);
  474. clear_cold_data(page);
  475. out:
  476. unlock_page(page);
  477. if (need_balance_fs)
  478. f2fs_balance_fs(sbi);
  479. return 0;
  480. redirty_out:
  481. wbc->pages_skipped++;
  482. set_page_dirty(page);
  483. return err;
  484. }
  485. #define MAX_DESIRED_PAGES_WP 4096
  486. static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
  487. void *data)
  488. {
  489. struct address_space *mapping = data;
  490. int ret = mapping->a_ops->writepage(page, wbc);
  491. mapping_set_error(mapping, ret);
  492. return ret;
  493. }
  494. static int f2fs_write_data_pages(struct address_space *mapping,
  495. struct writeback_control *wbc)
  496. {
  497. struct inode *inode = mapping->host;
  498. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  499. bool locked = false;
  500. int ret;
  501. long excess_nrtw = 0, desired_nrtw;
  502. /* deal with chardevs and other special file */
  503. if (!mapping->a_ops->writepage)
  504. return 0;
  505. if (wbc->nr_to_write < MAX_DESIRED_PAGES_WP) {
  506. desired_nrtw = MAX_DESIRED_PAGES_WP;
  507. excess_nrtw = desired_nrtw - wbc->nr_to_write;
  508. wbc->nr_to_write = desired_nrtw;
  509. }
  510. if (!S_ISDIR(inode->i_mode)) {
  511. mutex_lock(&sbi->writepages);
  512. locked = true;
  513. }
  514. ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
  515. if (locked)
  516. mutex_unlock(&sbi->writepages);
  517. f2fs_submit_bio(sbi, DATA, (wbc->sync_mode == WB_SYNC_ALL));
  518. remove_dirty_dir_inode(inode);
  519. wbc->nr_to_write -= excess_nrtw;
  520. return ret;
  521. }
  522. static int f2fs_write_begin(struct file *file, struct address_space *mapping,
  523. loff_t pos, unsigned len, unsigned flags,
  524. struct page **pagep, void **fsdata)
  525. {
  526. struct inode *inode = mapping->host;
  527. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  528. struct page *page;
  529. pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
  530. struct dnode_of_data dn;
  531. int err = 0;
  532. int ilock;
  533. /* for nobh_write_end */
  534. *fsdata = NULL;
  535. f2fs_balance_fs(sbi);
  536. repeat:
  537. page = grab_cache_page_write_begin(mapping, index, flags);
  538. if (!page)
  539. return -ENOMEM;
  540. *pagep = page;
  541. ilock = mutex_lock_op(sbi);
  542. set_new_dnode(&dn, inode, NULL, NULL, 0);
  543. err = get_dnode_of_data(&dn, index, ALLOC_NODE);
  544. if (err)
  545. goto err;
  546. if (dn.data_blkaddr == NULL_ADDR)
  547. err = reserve_new_block(&dn);
  548. f2fs_put_dnode(&dn);
  549. if (err)
  550. goto err;
  551. mutex_unlock_op(sbi, ilock);
  552. if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
  553. return 0;
  554. if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
  555. unsigned start = pos & (PAGE_CACHE_SIZE - 1);
  556. unsigned end = start + len;
  557. /* Reading beyond i_size is simple: memset to zero */
  558. zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
  559. goto out;
  560. }
  561. if (dn.data_blkaddr == NEW_ADDR) {
  562. zero_user_segment(page, 0, PAGE_CACHE_SIZE);
  563. } else {
  564. err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
  565. if (err)
  566. return err;
  567. lock_page(page);
  568. if (!PageUptodate(page)) {
  569. f2fs_put_page(page, 1);
  570. return -EIO;
  571. }
  572. if (page->mapping != mapping) {
  573. f2fs_put_page(page, 1);
  574. goto repeat;
  575. }
  576. }
  577. out:
  578. SetPageUptodate(page);
  579. clear_cold_data(page);
  580. return 0;
  581. err:
  582. mutex_unlock_op(sbi, ilock);
  583. f2fs_put_page(page, 1);
  584. return err;
  585. }
  586. static ssize_t f2fs_direct_IO(int rw, struct kiocb *iocb,
  587. const struct iovec *iov, loff_t offset, unsigned long nr_segs)
  588. {
  589. struct file *file = iocb->ki_filp;
  590. struct inode *inode = file->f_mapping->host;
  591. if (rw == WRITE)
  592. return 0;
  593. /* Needs synchronization with the cleaner */
  594. return blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
  595. get_data_block_ro);
  596. }
  597. static void f2fs_invalidate_data_page(struct page *page, unsigned long offset)
  598. {
  599. struct inode *inode = page->mapping->host;
  600. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  601. if (S_ISDIR(inode->i_mode) && PageDirty(page)) {
  602. dec_page_count(sbi, F2FS_DIRTY_DENTS);
  603. inode_dec_dirty_dents(inode);
  604. }
  605. ClearPagePrivate(page);
  606. }
  607. static int f2fs_release_data_page(struct page *page, gfp_t wait)
  608. {
  609. ClearPagePrivate(page);
  610. return 1;
  611. }
  612. static int f2fs_set_data_page_dirty(struct page *page)
  613. {
  614. struct address_space *mapping = page->mapping;
  615. struct inode *inode = mapping->host;
  616. SetPageUptodate(page);
  617. if (!PageDirty(page)) {
  618. __set_page_dirty_nobuffers(page);
  619. set_dirty_dir_page(inode, page);
  620. return 1;
  621. }
  622. return 0;
  623. }
  624. static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
  625. {
  626. return generic_block_bmap(mapping, block, get_data_block_ro);
  627. }
  628. const struct address_space_operations f2fs_dblock_aops = {
  629. .readpage = f2fs_read_data_page,
  630. .readpages = f2fs_read_data_pages,
  631. .writepage = f2fs_write_data_page,
  632. .writepages = f2fs_write_data_pages,
  633. .write_begin = f2fs_write_begin,
  634. .write_end = nobh_write_end,
  635. .set_page_dirty = f2fs_set_data_page_dirty,
  636. .invalidatepage = f2fs_invalidate_data_page,
  637. .releasepage = f2fs_release_data_page,
  638. .direct_IO = f2fs_direct_IO,
  639. .bmap = f2fs_bmap,
  640. };