kvm-ia64.c 45 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032
  1. /*
  2. * kvm_ia64.c: Basic KVM suppport On Itanium series processors
  3. *
  4. *
  5. * Copyright (C) 2007, Intel Corporation.
  6. * Xiantao Zhang (xiantao.zhang@intel.com)
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms and conditions of the GNU General Public License,
  10. * version 2, as published by the Free Software Foundation.
  11. *
  12. * This program is distributed in the hope it will be useful, but WITHOUT
  13. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  15. * more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along with
  18. * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
  19. * Place - Suite 330, Boston, MA 02111-1307 USA.
  20. *
  21. */
  22. #include <linux/module.h>
  23. #include <linux/errno.h>
  24. #include <linux/percpu.h>
  25. #include <linux/gfp.h>
  26. #include <linux/fs.h>
  27. #include <linux/smp.h>
  28. #include <linux/kvm_host.h>
  29. #include <linux/kvm.h>
  30. #include <linux/bitops.h>
  31. #include <linux/hrtimer.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/iommu.h>
  34. #include <linux/intel-iommu.h>
  35. #include <asm/pgtable.h>
  36. #include <asm/gcc_intrin.h>
  37. #include <asm/pal.h>
  38. #include <asm/cacheflush.h>
  39. #include <asm/div64.h>
  40. #include <asm/tlb.h>
  41. #include <asm/elf.h>
  42. #include <asm/sn/addrs.h>
  43. #include <asm/sn/clksupport.h>
  44. #include <asm/sn/shub_mmr.h>
  45. #include "misc.h"
  46. #include "vti.h"
  47. #include "iodev.h"
  48. #include "ioapic.h"
  49. #include "lapic.h"
  50. #include "irq.h"
  51. static unsigned long kvm_vmm_base;
  52. static unsigned long kvm_vsa_base;
  53. static unsigned long kvm_vm_buffer;
  54. static unsigned long kvm_vm_buffer_size;
  55. unsigned long kvm_vmm_gp;
  56. static long vp_env_info;
  57. static struct kvm_vmm_info *kvm_vmm_info;
  58. static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
  59. struct kvm_stats_debugfs_item debugfs_entries[] = {
  60. { NULL }
  61. };
  62. static unsigned long kvm_get_itc(struct kvm_vcpu *vcpu)
  63. {
  64. #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
  65. if (vcpu->kvm->arch.is_sn2)
  66. return rtc_time();
  67. else
  68. #endif
  69. return ia64_getreg(_IA64_REG_AR_ITC);
  70. }
  71. static void kvm_flush_icache(unsigned long start, unsigned long len)
  72. {
  73. int l;
  74. for (l = 0; l < (len + 32); l += 32)
  75. ia64_fc((void *)(start + l));
  76. ia64_sync_i();
  77. ia64_srlz_i();
  78. }
  79. static void kvm_flush_tlb_all(void)
  80. {
  81. unsigned long i, j, count0, count1, stride0, stride1, addr;
  82. long flags;
  83. addr = local_cpu_data->ptce_base;
  84. count0 = local_cpu_data->ptce_count[0];
  85. count1 = local_cpu_data->ptce_count[1];
  86. stride0 = local_cpu_data->ptce_stride[0];
  87. stride1 = local_cpu_data->ptce_stride[1];
  88. local_irq_save(flags);
  89. for (i = 0; i < count0; ++i) {
  90. for (j = 0; j < count1; ++j) {
  91. ia64_ptce(addr);
  92. addr += stride1;
  93. }
  94. addr += stride0;
  95. }
  96. local_irq_restore(flags);
  97. ia64_srlz_i(); /* srlz.i implies srlz.d */
  98. }
  99. long ia64_pal_vp_create(u64 *vpd, u64 *host_iva, u64 *opt_handler)
  100. {
  101. struct ia64_pal_retval iprv;
  102. PAL_CALL_STK(iprv, PAL_VP_CREATE, (u64)vpd, (u64)host_iva,
  103. (u64)opt_handler);
  104. return iprv.status;
  105. }
  106. static DEFINE_SPINLOCK(vp_lock);
  107. void kvm_arch_hardware_enable(void *garbage)
  108. {
  109. long status;
  110. long tmp_base;
  111. unsigned long pte;
  112. unsigned long saved_psr;
  113. int slot;
  114. pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
  115. local_irq_save(saved_psr);
  116. slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
  117. local_irq_restore(saved_psr);
  118. if (slot < 0)
  119. return;
  120. spin_lock(&vp_lock);
  121. status = ia64_pal_vp_init_env(kvm_vsa_base ?
  122. VP_INIT_ENV : VP_INIT_ENV_INITALIZE,
  123. __pa(kvm_vm_buffer), KVM_VM_BUFFER_BASE, &tmp_base);
  124. if (status != 0) {
  125. printk(KERN_WARNING"kvm: Failed to Enable VT Support!!!!\n");
  126. return ;
  127. }
  128. if (!kvm_vsa_base) {
  129. kvm_vsa_base = tmp_base;
  130. printk(KERN_INFO"kvm: kvm_vsa_base:0x%lx\n", kvm_vsa_base);
  131. }
  132. spin_unlock(&vp_lock);
  133. ia64_ptr_entry(0x3, slot);
  134. }
  135. void kvm_arch_hardware_disable(void *garbage)
  136. {
  137. long status;
  138. int slot;
  139. unsigned long pte;
  140. unsigned long saved_psr;
  141. unsigned long host_iva = ia64_getreg(_IA64_REG_CR_IVA);
  142. pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
  143. PAGE_KERNEL));
  144. local_irq_save(saved_psr);
  145. slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
  146. local_irq_restore(saved_psr);
  147. if (slot < 0)
  148. return;
  149. status = ia64_pal_vp_exit_env(host_iva);
  150. if (status)
  151. printk(KERN_DEBUG"kvm: Failed to disable VT support! :%ld\n",
  152. status);
  153. ia64_ptr_entry(0x3, slot);
  154. }
  155. void kvm_arch_check_processor_compat(void *rtn)
  156. {
  157. *(int *)rtn = 0;
  158. }
  159. int kvm_dev_ioctl_check_extension(long ext)
  160. {
  161. int r;
  162. switch (ext) {
  163. case KVM_CAP_IRQCHIP:
  164. case KVM_CAP_MP_STATE:
  165. case KVM_CAP_IRQ_INJECT_STATUS:
  166. r = 1;
  167. break;
  168. case KVM_CAP_COALESCED_MMIO:
  169. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  170. break;
  171. case KVM_CAP_IOMMU:
  172. r = iommu_found();
  173. break;
  174. default:
  175. r = 0;
  176. }
  177. return r;
  178. }
  179. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  180. gpa_t addr, int len, int is_write)
  181. {
  182. struct kvm_io_device *dev;
  183. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len, is_write);
  184. return dev;
  185. }
  186. static int handle_vm_error(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  187. {
  188. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  189. kvm_run->hw.hardware_exit_reason = 1;
  190. return 0;
  191. }
  192. static int handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  193. {
  194. struct kvm_mmio_req *p;
  195. struct kvm_io_device *mmio_dev;
  196. p = kvm_get_vcpu_ioreq(vcpu);
  197. if ((p->addr & PAGE_MASK) == IOAPIC_DEFAULT_BASE_ADDRESS)
  198. goto mmio;
  199. vcpu->mmio_needed = 1;
  200. vcpu->mmio_phys_addr = kvm_run->mmio.phys_addr = p->addr;
  201. vcpu->mmio_size = kvm_run->mmio.len = p->size;
  202. vcpu->mmio_is_write = kvm_run->mmio.is_write = !p->dir;
  203. if (vcpu->mmio_is_write)
  204. memcpy(vcpu->mmio_data, &p->data, p->size);
  205. memcpy(kvm_run->mmio.data, &p->data, p->size);
  206. kvm_run->exit_reason = KVM_EXIT_MMIO;
  207. return 0;
  208. mmio:
  209. mmio_dev = vcpu_find_mmio_dev(vcpu, p->addr, p->size, !p->dir);
  210. if (mmio_dev) {
  211. if (!p->dir)
  212. kvm_iodevice_write(mmio_dev, p->addr, p->size,
  213. &p->data);
  214. else
  215. kvm_iodevice_read(mmio_dev, p->addr, p->size,
  216. &p->data);
  217. } else
  218. printk(KERN_ERR"kvm: No iodevice found! addr:%lx\n", p->addr);
  219. p->state = STATE_IORESP_READY;
  220. return 1;
  221. }
  222. static int handle_pal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  223. {
  224. struct exit_ctl_data *p;
  225. p = kvm_get_exit_data(vcpu);
  226. if (p->exit_reason == EXIT_REASON_PAL_CALL)
  227. return kvm_pal_emul(vcpu, kvm_run);
  228. else {
  229. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  230. kvm_run->hw.hardware_exit_reason = 2;
  231. return 0;
  232. }
  233. }
  234. static int handle_sal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  235. {
  236. struct exit_ctl_data *p;
  237. p = kvm_get_exit_data(vcpu);
  238. if (p->exit_reason == EXIT_REASON_SAL_CALL) {
  239. kvm_sal_emul(vcpu);
  240. return 1;
  241. } else {
  242. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  243. kvm_run->hw.hardware_exit_reason = 3;
  244. return 0;
  245. }
  246. }
  247. static int __apic_accept_irq(struct kvm_vcpu *vcpu, uint64_t vector)
  248. {
  249. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  250. if (!test_and_set_bit(vector, &vpd->irr[0])) {
  251. vcpu->arch.irq_new_pending = 1;
  252. kvm_vcpu_kick(vcpu);
  253. return 1;
  254. }
  255. return 0;
  256. }
  257. /*
  258. * offset: address offset to IPI space.
  259. * value: deliver value.
  260. */
  261. static void vcpu_deliver_ipi(struct kvm_vcpu *vcpu, uint64_t dm,
  262. uint64_t vector)
  263. {
  264. switch (dm) {
  265. case SAPIC_FIXED:
  266. break;
  267. case SAPIC_NMI:
  268. vector = 2;
  269. break;
  270. case SAPIC_EXTINT:
  271. vector = 0;
  272. break;
  273. case SAPIC_INIT:
  274. case SAPIC_PMI:
  275. default:
  276. printk(KERN_ERR"kvm: Unimplemented Deliver reserved IPI!\n");
  277. return;
  278. }
  279. __apic_accept_irq(vcpu, vector);
  280. }
  281. static struct kvm_vcpu *lid_to_vcpu(struct kvm *kvm, unsigned long id,
  282. unsigned long eid)
  283. {
  284. union ia64_lid lid;
  285. int i;
  286. for (i = 0; i < kvm->arch.online_vcpus; i++) {
  287. if (kvm->vcpus[i]) {
  288. lid.val = VCPU_LID(kvm->vcpus[i]);
  289. if (lid.id == id && lid.eid == eid)
  290. return kvm->vcpus[i];
  291. }
  292. }
  293. return NULL;
  294. }
  295. static int handle_ipi(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  296. {
  297. struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
  298. struct kvm_vcpu *target_vcpu;
  299. struct kvm_pt_regs *regs;
  300. union ia64_ipi_a addr = p->u.ipi_data.addr;
  301. union ia64_ipi_d data = p->u.ipi_data.data;
  302. target_vcpu = lid_to_vcpu(vcpu->kvm, addr.id, addr.eid);
  303. if (!target_vcpu)
  304. return handle_vm_error(vcpu, kvm_run);
  305. if (!target_vcpu->arch.launched) {
  306. regs = vcpu_regs(target_vcpu);
  307. regs->cr_iip = vcpu->kvm->arch.rdv_sal_data.boot_ip;
  308. regs->r1 = vcpu->kvm->arch.rdv_sal_data.boot_gp;
  309. target_vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  310. if (waitqueue_active(&target_vcpu->wq))
  311. wake_up_interruptible(&target_vcpu->wq);
  312. } else {
  313. vcpu_deliver_ipi(target_vcpu, data.dm, data.vector);
  314. if (target_vcpu != vcpu)
  315. kvm_vcpu_kick(target_vcpu);
  316. }
  317. return 1;
  318. }
  319. struct call_data {
  320. struct kvm_ptc_g ptc_g_data;
  321. struct kvm_vcpu *vcpu;
  322. };
  323. static void vcpu_global_purge(void *info)
  324. {
  325. struct call_data *p = (struct call_data *)info;
  326. struct kvm_vcpu *vcpu = p->vcpu;
  327. if (test_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  328. return;
  329. set_bit(KVM_REQ_PTC_G, &vcpu->requests);
  330. if (vcpu->arch.ptc_g_count < MAX_PTC_G_NUM) {
  331. vcpu->arch.ptc_g_data[vcpu->arch.ptc_g_count++] =
  332. p->ptc_g_data;
  333. } else {
  334. clear_bit(KVM_REQ_PTC_G, &vcpu->requests);
  335. vcpu->arch.ptc_g_count = 0;
  336. set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
  337. }
  338. }
  339. static int handle_global_purge(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  340. {
  341. struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
  342. struct kvm *kvm = vcpu->kvm;
  343. struct call_data call_data;
  344. int i;
  345. call_data.ptc_g_data = p->u.ptc_g_data;
  346. for (i = 0; i < kvm->arch.online_vcpus; i++) {
  347. if (!kvm->vcpus[i] || kvm->vcpus[i]->arch.mp_state ==
  348. KVM_MP_STATE_UNINITIALIZED ||
  349. vcpu == kvm->vcpus[i])
  350. continue;
  351. if (waitqueue_active(&kvm->vcpus[i]->wq))
  352. wake_up_interruptible(&kvm->vcpus[i]->wq);
  353. if (kvm->vcpus[i]->cpu != -1) {
  354. call_data.vcpu = kvm->vcpus[i];
  355. smp_call_function_single(kvm->vcpus[i]->cpu,
  356. vcpu_global_purge, &call_data, 1);
  357. } else
  358. printk(KERN_WARNING"kvm: Uninit vcpu received ipi!\n");
  359. }
  360. return 1;
  361. }
  362. static int handle_switch_rr6(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  363. {
  364. return 1;
  365. }
  366. static int kvm_sn2_setup_mappings(struct kvm_vcpu *vcpu)
  367. {
  368. unsigned long pte, rtc_phys_addr, map_addr;
  369. int slot;
  370. map_addr = KVM_VMM_BASE + (1UL << KVM_VMM_SHIFT);
  371. rtc_phys_addr = LOCAL_MMR_OFFSET | SH_RTC;
  372. pte = pte_val(mk_pte_phys(rtc_phys_addr, PAGE_KERNEL_UC));
  373. slot = ia64_itr_entry(0x3, map_addr, pte, PAGE_SHIFT);
  374. vcpu->arch.sn_rtc_tr_slot = slot;
  375. if (slot < 0) {
  376. printk(KERN_ERR "Mayday mayday! RTC mapping failed!\n");
  377. slot = 0;
  378. }
  379. return slot;
  380. }
  381. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  382. {
  383. ktime_t kt;
  384. long itc_diff;
  385. unsigned long vcpu_now_itc;
  386. unsigned long expires;
  387. struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
  388. unsigned long cyc_per_usec = local_cpu_data->cyc_per_usec;
  389. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  390. if (irqchip_in_kernel(vcpu->kvm)) {
  391. vcpu_now_itc = kvm_get_itc(vcpu) + vcpu->arch.itc_offset;
  392. if (time_after(vcpu_now_itc, vpd->itm)) {
  393. vcpu->arch.timer_check = 1;
  394. return 1;
  395. }
  396. itc_diff = vpd->itm - vcpu_now_itc;
  397. if (itc_diff < 0)
  398. itc_diff = -itc_diff;
  399. expires = div64_u64(itc_diff, cyc_per_usec);
  400. kt = ktime_set(0, 1000 * expires);
  401. vcpu->arch.ht_active = 1;
  402. hrtimer_start(p_ht, kt, HRTIMER_MODE_ABS);
  403. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  404. kvm_vcpu_block(vcpu);
  405. hrtimer_cancel(p_ht);
  406. vcpu->arch.ht_active = 0;
  407. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests) ||
  408. kvm_cpu_has_pending_timer(vcpu))
  409. if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
  410. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  411. if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
  412. return -EINTR;
  413. return 1;
  414. } else {
  415. printk(KERN_ERR"kvm: Unsupported userspace halt!");
  416. return 0;
  417. }
  418. }
  419. static int handle_vm_shutdown(struct kvm_vcpu *vcpu,
  420. struct kvm_run *kvm_run)
  421. {
  422. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  423. return 0;
  424. }
  425. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  426. struct kvm_run *kvm_run)
  427. {
  428. return 1;
  429. }
  430. static int handle_vcpu_debug(struct kvm_vcpu *vcpu,
  431. struct kvm_run *kvm_run)
  432. {
  433. printk("VMM: %s", vcpu->arch.log_buf);
  434. return 1;
  435. }
  436. static int (*kvm_vti_exit_handlers[])(struct kvm_vcpu *vcpu,
  437. struct kvm_run *kvm_run) = {
  438. [EXIT_REASON_VM_PANIC] = handle_vm_error,
  439. [EXIT_REASON_MMIO_INSTRUCTION] = handle_mmio,
  440. [EXIT_REASON_PAL_CALL] = handle_pal_call,
  441. [EXIT_REASON_SAL_CALL] = handle_sal_call,
  442. [EXIT_REASON_SWITCH_RR6] = handle_switch_rr6,
  443. [EXIT_REASON_VM_DESTROY] = handle_vm_shutdown,
  444. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  445. [EXIT_REASON_IPI] = handle_ipi,
  446. [EXIT_REASON_PTC_G] = handle_global_purge,
  447. [EXIT_REASON_DEBUG] = handle_vcpu_debug,
  448. };
  449. static const int kvm_vti_max_exit_handlers =
  450. sizeof(kvm_vti_exit_handlers)/sizeof(*kvm_vti_exit_handlers);
  451. static uint32_t kvm_get_exit_reason(struct kvm_vcpu *vcpu)
  452. {
  453. struct exit_ctl_data *p_exit_data;
  454. p_exit_data = kvm_get_exit_data(vcpu);
  455. return p_exit_data->exit_reason;
  456. }
  457. /*
  458. * The guest has exited. See if we can fix it or if we need userspace
  459. * assistance.
  460. */
  461. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  462. {
  463. u32 exit_reason = kvm_get_exit_reason(vcpu);
  464. vcpu->arch.last_exit = exit_reason;
  465. if (exit_reason < kvm_vti_max_exit_handlers
  466. && kvm_vti_exit_handlers[exit_reason])
  467. return kvm_vti_exit_handlers[exit_reason](vcpu, kvm_run);
  468. else {
  469. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  470. kvm_run->hw.hardware_exit_reason = exit_reason;
  471. }
  472. return 0;
  473. }
  474. static inline void vti_set_rr6(unsigned long rr6)
  475. {
  476. ia64_set_rr(RR6, rr6);
  477. ia64_srlz_i();
  478. }
  479. static int kvm_insert_vmm_mapping(struct kvm_vcpu *vcpu)
  480. {
  481. unsigned long pte;
  482. struct kvm *kvm = vcpu->kvm;
  483. int r;
  484. /*Insert a pair of tr to map vmm*/
  485. pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
  486. r = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
  487. if (r < 0)
  488. goto out;
  489. vcpu->arch.vmm_tr_slot = r;
  490. /*Insert a pairt of tr to map data of vm*/
  491. pte = pte_val(mk_pte_phys(__pa(kvm->arch.vm_base), PAGE_KERNEL));
  492. r = ia64_itr_entry(0x3, KVM_VM_DATA_BASE,
  493. pte, KVM_VM_DATA_SHIFT);
  494. if (r < 0)
  495. goto out;
  496. vcpu->arch.vm_tr_slot = r;
  497. #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
  498. if (kvm->arch.is_sn2) {
  499. r = kvm_sn2_setup_mappings(vcpu);
  500. if (r < 0)
  501. goto out;
  502. }
  503. #endif
  504. r = 0;
  505. out:
  506. return r;
  507. }
  508. static void kvm_purge_vmm_mapping(struct kvm_vcpu *vcpu)
  509. {
  510. struct kvm *kvm = vcpu->kvm;
  511. ia64_ptr_entry(0x3, vcpu->arch.vmm_tr_slot);
  512. ia64_ptr_entry(0x3, vcpu->arch.vm_tr_slot);
  513. #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
  514. if (kvm->arch.is_sn2)
  515. ia64_ptr_entry(0x3, vcpu->arch.sn_rtc_tr_slot);
  516. #endif
  517. }
  518. static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu)
  519. {
  520. int cpu = smp_processor_id();
  521. if (vcpu->arch.last_run_cpu != cpu ||
  522. per_cpu(last_vcpu, cpu) != vcpu) {
  523. per_cpu(last_vcpu, cpu) = vcpu;
  524. vcpu->arch.last_run_cpu = cpu;
  525. kvm_flush_tlb_all();
  526. }
  527. vcpu->arch.host_rr6 = ia64_get_rr(RR6);
  528. vti_set_rr6(vcpu->arch.vmm_rr);
  529. return kvm_insert_vmm_mapping(vcpu);
  530. }
  531. static void kvm_vcpu_post_transition(struct kvm_vcpu *vcpu)
  532. {
  533. kvm_purge_vmm_mapping(vcpu);
  534. vti_set_rr6(vcpu->arch.host_rr6);
  535. }
  536. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  537. {
  538. union context *host_ctx, *guest_ctx;
  539. int r;
  540. /*
  541. * down_read() may sleep and return with interrupts enabled
  542. */
  543. down_read(&vcpu->kvm->slots_lock);
  544. again:
  545. if (signal_pending(current)) {
  546. r = -EINTR;
  547. kvm_run->exit_reason = KVM_EXIT_INTR;
  548. goto out;
  549. }
  550. preempt_disable();
  551. local_irq_disable();
  552. /*Get host and guest context with guest address space.*/
  553. host_ctx = kvm_get_host_context(vcpu);
  554. guest_ctx = kvm_get_guest_context(vcpu);
  555. vcpu->guest_mode = 1;
  556. r = kvm_vcpu_pre_transition(vcpu);
  557. if (r < 0)
  558. goto vcpu_run_fail;
  559. up_read(&vcpu->kvm->slots_lock);
  560. kvm_guest_enter();
  561. /*
  562. * Transition to the guest
  563. */
  564. kvm_vmm_info->tramp_entry(host_ctx, guest_ctx);
  565. kvm_vcpu_post_transition(vcpu);
  566. vcpu->arch.launched = 1;
  567. vcpu->guest_mode = 0;
  568. local_irq_enable();
  569. /*
  570. * We must have an instruction between local_irq_enable() and
  571. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  572. * the interrupt shadow. The stat.exits increment will do nicely.
  573. * But we need to prevent reordering, hence this barrier():
  574. */
  575. barrier();
  576. kvm_guest_exit();
  577. preempt_enable();
  578. down_read(&vcpu->kvm->slots_lock);
  579. r = kvm_handle_exit(kvm_run, vcpu);
  580. if (r > 0) {
  581. if (!need_resched())
  582. goto again;
  583. }
  584. out:
  585. up_read(&vcpu->kvm->slots_lock);
  586. if (r > 0) {
  587. kvm_resched(vcpu);
  588. down_read(&vcpu->kvm->slots_lock);
  589. goto again;
  590. }
  591. return r;
  592. vcpu_run_fail:
  593. local_irq_enable();
  594. preempt_enable();
  595. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  596. goto out;
  597. }
  598. static void kvm_set_mmio_data(struct kvm_vcpu *vcpu)
  599. {
  600. struct kvm_mmio_req *p = kvm_get_vcpu_ioreq(vcpu);
  601. if (!vcpu->mmio_is_write)
  602. memcpy(&p->data, vcpu->mmio_data, 8);
  603. p->state = STATE_IORESP_READY;
  604. }
  605. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  606. {
  607. int r;
  608. sigset_t sigsaved;
  609. vcpu_load(vcpu);
  610. if (vcpu->sigset_active)
  611. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  612. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  613. kvm_vcpu_block(vcpu);
  614. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  615. r = -EAGAIN;
  616. goto out;
  617. }
  618. if (vcpu->mmio_needed) {
  619. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  620. kvm_set_mmio_data(vcpu);
  621. vcpu->mmio_read_completed = 1;
  622. vcpu->mmio_needed = 0;
  623. }
  624. r = __vcpu_run(vcpu, kvm_run);
  625. out:
  626. if (vcpu->sigset_active)
  627. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  628. vcpu_put(vcpu);
  629. return r;
  630. }
  631. static struct kvm *kvm_alloc_kvm(void)
  632. {
  633. struct kvm *kvm;
  634. uint64_t vm_base;
  635. BUG_ON(sizeof(struct kvm) > KVM_VM_STRUCT_SIZE);
  636. vm_base = __get_free_pages(GFP_KERNEL, get_order(KVM_VM_DATA_SIZE));
  637. if (!vm_base)
  638. return ERR_PTR(-ENOMEM);
  639. memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
  640. kvm = (struct kvm *)(vm_base +
  641. offsetof(struct kvm_vm_data, kvm_vm_struct));
  642. kvm->arch.vm_base = vm_base;
  643. printk(KERN_DEBUG"kvm: vm's data area:0x%lx\n", vm_base);
  644. return kvm;
  645. }
  646. struct kvm_io_range {
  647. unsigned long start;
  648. unsigned long size;
  649. unsigned long type;
  650. };
  651. static const struct kvm_io_range io_ranges[] = {
  652. {VGA_IO_START, VGA_IO_SIZE, GPFN_FRAME_BUFFER},
  653. {MMIO_START, MMIO_SIZE, GPFN_LOW_MMIO},
  654. {LEGACY_IO_START, LEGACY_IO_SIZE, GPFN_LEGACY_IO},
  655. {IO_SAPIC_START, IO_SAPIC_SIZE, GPFN_IOSAPIC},
  656. {PIB_START, PIB_SIZE, GPFN_PIB},
  657. };
  658. static void kvm_build_io_pmt(struct kvm *kvm)
  659. {
  660. unsigned long i, j;
  661. /* Mark I/O ranges */
  662. for (i = 0; i < (sizeof(io_ranges) / sizeof(struct kvm_io_range));
  663. i++) {
  664. for (j = io_ranges[i].start;
  665. j < io_ranges[i].start + io_ranges[i].size;
  666. j += PAGE_SIZE)
  667. kvm_set_pmt_entry(kvm, j >> PAGE_SHIFT,
  668. io_ranges[i].type, 0);
  669. }
  670. }
  671. /*Use unused rids to virtualize guest rid.*/
  672. #define GUEST_PHYSICAL_RR0 0x1739
  673. #define GUEST_PHYSICAL_RR4 0x2739
  674. #define VMM_INIT_RR 0x1660
  675. static void kvm_init_vm(struct kvm *kvm)
  676. {
  677. BUG_ON(!kvm);
  678. kvm->arch.metaphysical_rr0 = GUEST_PHYSICAL_RR0;
  679. kvm->arch.metaphysical_rr4 = GUEST_PHYSICAL_RR4;
  680. kvm->arch.vmm_init_rr = VMM_INIT_RR;
  681. /*
  682. *Fill P2M entries for MMIO/IO ranges
  683. */
  684. kvm_build_io_pmt(kvm);
  685. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  686. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  687. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  688. }
  689. struct kvm *kvm_arch_create_vm(void)
  690. {
  691. struct kvm *kvm = kvm_alloc_kvm();
  692. if (IS_ERR(kvm))
  693. return ERR_PTR(-ENOMEM);
  694. kvm->arch.is_sn2 = ia64_platform_is("sn2");
  695. kvm_init_vm(kvm);
  696. kvm->arch.online_vcpus = 0;
  697. return kvm;
  698. }
  699. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm,
  700. struct kvm_irqchip *chip)
  701. {
  702. int r;
  703. r = 0;
  704. switch (chip->chip_id) {
  705. case KVM_IRQCHIP_IOAPIC:
  706. memcpy(&chip->chip.ioapic, ioapic_irqchip(kvm),
  707. sizeof(struct kvm_ioapic_state));
  708. break;
  709. default:
  710. r = -EINVAL;
  711. break;
  712. }
  713. return r;
  714. }
  715. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  716. {
  717. int r;
  718. r = 0;
  719. switch (chip->chip_id) {
  720. case KVM_IRQCHIP_IOAPIC:
  721. memcpy(ioapic_irqchip(kvm),
  722. &chip->chip.ioapic,
  723. sizeof(struct kvm_ioapic_state));
  724. break;
  725. default:
  726. r = -EINVAL;
  727. break;
  728. }
  729. return r;
  730. }
  731. #define RESTORE_REGS(_x) vcpu->arch._x = regs->_x
  732. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  733. {
  734. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  735. int i;
  736. vcpu_load(vcpu);
  737. for (i = 0; i < 16; i++) {
  738. vpd->vgr[i] = regs->vpd.vgr[i];
  739. vpd->vbgr[i] = regs->vpd.vbgr[i];
  740. }
  741. for (i = 0; i < 128; i++)
  742. vpd->vcr[i] = regs->vpd.vcr[i];
  743. vpd->vhpi = regs->vpd.vhpi;
  744. vpd->vnat = regs->vpd.vnat;
  745. vpd->vbnat = regs->vpd.vbnat;
  746. vpd->vpsr = regs->vpd.vpsr;
  747. vpd->vpr = regs->vpd.vpr;
  748. memcpy(&vcpu->arch.guest, &regs->saved_guest, sizeof(union context));
  749. RESTORE_REGS(mp_state);
  750. RESTORE_REGS(vmm_rr);
  751. memcpy(vcpu->arch.itrs, regs->itrs, sizeof(struct thash_data) * NITRS);
  752. memcpy(vcpu->arch.dtrs, regs->dtrs, sizeof(struct thash_data) * NDTRS);
  753. RESTORE_REGS(itr_regions);
  754. RESTORE_REGS(dtr_regions);
  755. RESTORE_REGS(tc_regions);
  756. RESTORE_REGS(irq_check);
  757. RESTORE_REGS(itc_check);
  758. RESTORE_REGS(timer_check);
  759. RESTORE_REGS(timer_pending);
  760. RESTORE_REGS(last_itc);
  761. for (i = 0; i < 8; i++) {
  762. vcpu->arch.vrr[i] = regs->vrr[i];
  763. vcpu->arch.ibr[i] = regs->ibr[i];
  764. vcpu->arch.dbr[i] = regs->dbr[i];
  765. }
  766. for (i = 0; i < 4; i++)
  767. vcpu->arch.insvc[i] = regs->insvc[i];
  768. RESTORE_REGS(xtp);
  769. RESTORE_REGS(metaphysical_rr0);
  770. RESTORE_REGS(metaphysical_rr4);
  771. RESTORE_REGS(metaphysical_saved_rr0);
  772. RESTORE_REGS(metaphysical_saved_rr4);
  773. RESTORE_REGS(fp_psr);
  774. RESTORE_REGS(saved_gp);
  775. vcpu->arch.irq_new_pending = 1;
  776. vcpu->arch.itc_offset = regs->saved_itc - kvm_get_itc(vcpu);
  777. set_bit(KVM_REQ_RESUME, &vcpu->requests);
  778. vcpu_put(vcpu);
  779. return 0;
  780. }
  781. long kvm_arch_vm_ioctl(struct file *filp,
  782. unsigned int ioctl, unsigned long arg)
  783. {
  784. struct kvm *kvm = filp->private_data;
  785. void __user *argp = (void __user *)arg;
  786. int r = -EINVAL;
  787. switch (ioctl) {
  788. case KVM_SET_MEMORY_REGION: {
  789. struct kvm_memory_region kvm_mem;
  790. struct kvm_userspace_memory_region kvm_userspace_mem;
  791. r = -EFAULT;
  792. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  793. goto out;
  794. kvm_userspace_mem.slot = kvm_mem.slot;
  795. kvm_userspace_mem.flags = kvm_mem.flags;
  796. kvm_userspace_mem.guest_phys_addr =
  797. kvm_mem.guest_phys_addr;
  798. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  799. r = kvm_vm_ioctl_set_memory_region(kvm,
  800. &kvm_userspace_mem, 0);
  801. if (r)
  802. goto out;
  803. break;
  804. }
  805. case KVM_CREATE_IRQCHIP:
  806. r = -EFAULT;
  807. r = kvm_ioapic_init(kvm);
  808. if (r)
  809. goto out;
  810. r = kvm_setup_default_irq_routing(kvm);
  811. if (r) {
  812. kfree(kvm->arch.vioapic);
  813. goto out;
  814. }
  815. break;
  816. case KVM_IRQ_LINE_STATUS:
  817. case KVM_IRQ_LINE: {
  818. struct kvm_irq_level irq_event;
  819. r = -EFAULT;
  820. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  821. goto out;
  822. if (irqchip_in_kernel(kvm)) {
  823. __s32 status;
  824. mutex_lock(&kvm->lock);
  825. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  826. irq_event.irq, irq_event.level);
  827. mutex_unlock(&kvm->lock);
  828. if (ioctl == KVM_IRQ_LINE_STATUS) {
  829. irq_event.status = status;
  830. if (copy_to_user(argp, &irq_event,
  831. sizeof irq_event))
  832. goto out;
  833. }
  834. r = 0;
  835. }
  836. break;
  837. }
  838. case KVM_GET_IRQCHIP: {
  839. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  840. struct kvm_irqchip chip;
  841. r = -EFAULT;
  842. if (copy_from_user(&chip, argp, sizeof chip))
  843. goto out;
  844. r = -ENXIO;
  845. if (!irqchip_in_kernel(kvm))
  846. goto out;
  847. r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
  848. if (r)
  849. goto out;
  850. r = -EFAULT;
  851. if (copy_to_user(argp, &chip, sizeof chip))
  852. goto out;
  853. r = 0;
  854. break;
  855. }
  856. case KVM_SET_IRQCHIP: {
  857. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  858. struct kvm_irqchip chip;
  859. r = -EFAULT;
  860. if (copy_from_user(&chip, argp, sizeof chip))
  861. goto out;
  862. r = -ENXIO;
  863. if (!irqchip_in_kernel(kvm))
  864. goto out;
  865. r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
  866. if (r)
  867. goto out;
  868. r = 0;
  869. break;
  870. }
  871. default:
  872. ;
  873. }
  874. out:
  875. return r;
  876. }
  877. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  878. struct kvm_sregs *sregs)
  879. {
  880. return -EINVAL;
  881. }
  882. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  883. struct kvm_sregs *sregs)
  884. {
  885. return -EINVAL;
  886. }
  887. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  888. struct kvm_translation *tr)
  889. {
  890. return -EINVAL;
  891. }
  892. static int kvm_alloc_vmm_area(void)
  893. {
  894. if (!kvm_vmm_base && (kvm_vm_buffer_size < KVM_VM_BUFFER_SIZE)) {
  895. kvm_vmm_base = __get_free_pages(GFP_KERNEL,
  896. get_order(KVM_VMM_SIZE));
  897. if (!kvm_vmm_base)
  898. return -ENOMEM;
  899. memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
  900. kvm_vm_buffer = kvm_vmm_base + VMM_SIZE;
  901. printk(KERN_DEBUG"kvm:VMM's Base Addr:0x%lx, vm_buffer:0x%lx\n",
  902. kvm_vmm_base, kvm_vm_buffer);
  903. }
  904. return 0;
  905. }
  906. static void kvm_free_vmm_area(void)
  907. {
  908. if (kvm_vmm_base) {
  909. /*Zero this area before free to avoid bits leak!!*/
  910. memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
  911. free_pages(kvm_vmm_base, get_order(KVM_VMM_SIZE));
  912. kvm_vmm_base = 0;
  913. kvm_vm_buffer = 0;
  914. kvm_vsa_base = 0;
  915. }
  916. }
  917. static void vti_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  918. {
  919. }
  920. static int vti_init_vpd(struct kvm_vcpu *vcpu)
  921. {
  922. int i;
  923. union cpuid3_t cpuid3;
  924. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  925. if (IS_ERR(vpd))
  926. return PTR_ERR(vpd);
  927. /* CPUID init */
  928. for (i = 0; i < 5; i++)
  929. vpd->vcpuid[i] = ia64_get_cpuid(i);
  930. /* Limit the CPUID number to 5 */
  931. cpuid3.value = vpd->vcpuid[3];
  932. cpuid3.number = 4; /* 5 - 1 */
  933. vpd->vcpuid[3] = cpuid3.value;
  934. /*Set vac and vdc fields*/
  935. vpd->vac.a_from_int_cr = 1;
  936. vpd->vac.a_to_int_cr = 1;
  937. vpd->vac.a_from_psr = 1;
  938. vpd->vac.a_from_cpuid = 1;
  939. vpd->vac.a_cover = 1;
  940. vpd->vac.a_bsw = 1;
  941. vpd->vac.a_int = 1;
  942. vpd->vdc.d_vmsw = 1;
  943. /*Set virtual buffer*/
  944. vpd->virt_env_vaddr = KVM_VM_BUFFER_BASE;
  945. return 0;
  946. }
  947. static int vti_create_vp(struct kvm_vcpu *vcpu)
  948. {
  949. long ret;
  950. struct vpd *vpd = vcpu->arch.vpd;
  951. unsigned long vmm_ivt;
  952. vmm_ivt = kvm_vmm_info->vmm_ivt;
  953. printk(KERN_DEBUG "kvm: vcpu:%p,ivt: 0x%lx\n", vcpu, vmm_ivt);
  954. ret = ia64_pal_vp_create((u64 *)vpd, (u64 *)vmm_ivt, 0);
  955. if (ret) {
  956. printk(KERN_ERR"kvm: ia64_pal_vp_create failed!\n");
  957. return -EINVAL;
  958. }
  959. return 0;
  960. }
  961. static void init_ptce_info(struct kvm_vcpu *vcpu)
  962. {
  963. ia64_ptce_info_t ptce = {0};
  964. ia64_get_ptce(&ptce);
  965. vcpu->arch.ptce_base = ptce.base;
  966. vcpu->arch.ptce_count[0] = ptce.count[0];
  967. vcpu->arch.ptce_count[1] = ptce.count[1];
  968. vcpu->arch.ptce_stride[0] = ptce.stride[0];
  969. vcpu->arch.ptce_stride[1] = ptce.stride[1];
  970. }
  971. static void kvm_migrate_hlt_timer(struct kvm_vcpu *vcpu)
  972. {
  973. struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
  974. if (hrtimer_cancel(p_ht))
  975. hrtimer_start_expires(p_ht, HRTIMER_MODE_ABS);
  976. }
  977. static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data)
  978. {
  979. struct kvm_vcpu *vcpu;
  980. wait_queue_head_t *q;
  981. vcpu = container_of(data, struct kvm_vcpu, arch.hlt_timer);
  982. q = &vcpu->wq;
  983. if (vcpu->arch.mp_state != KVM_MP_STATE_HALTED)
  984. goto out;
  985. if (waitqueue_active(q))
  986. wake_up_interruptible(q);
  987. out:
  988. vcpu->arch.timer_fired = 1;
  989. vcpu->arch.timer_check = 1;
  990. return HRTIMER_NORESTART;
  991. }
  992. #define PALE_RESET_ENTRY 0x80000000ffffffb0UL
  993. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  994. {
  995. struct kvm_vcpu *v;
  996. int r;
  997. int i;
  998. long itc_offset;
  999. struct kvm *kvm = vcpu->kvm;
  1000. struct kvm_pt_regs *regs = vcpu_regs(vcpu);
  1001. union context *p_ctx = &vcpu->arch.guest;
  1002. struct kvm_vcpu *vmm_vcpu = to_guest(vcpu->kvm, vcpu);
  1003. /*Init vcpu context for first run.*/
  1004. if (IS_ERR(vmm_vcpu))
  1005. return PTR_ERR(vmm_vcpu);
  1006. if (vcpu->vcpu_id == 0) {
  1007. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  1008. /*Set entry address for first run.*/
  1009. regs->cr_iip = PALE_RESET_ENTRY;
  1010. /*Initialize itc offset for vcpus*/
  1011. itc_offset = 0UL - kvm_get_itc(vcpu);
  1012. for (i = 0; i < kvm->arch.online_vcpus; i++) {
  1013. v = (struct kvm_vcpu *)((char *)vcpu +
  1014. sizeof(struct kvm_vcpu_data) * i);
  1015. v->arch.itc_offset = itc_offset;
  1016. v->arch.last_itc = 0;
  1017. }
  1018. } else
  1019. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  1020. r = -ENOMEM;
  1021. vcpu->arch.apic = kzalloc(sizeof(struct kvm_lapic), GFP_KERNEL);
  1022. if (!vcpu->arch.apic)
  1023. goto out;
  1024. vcpu->arch.apic->vcpu = vcpu;
  1025. p_ctx->gr[1] = 0;
  1026. p_ctx->gr[12] = (unsigned long)((char *)vmm_vcpu + KVM_STK_OFFSET);
  1027. p_ctx->gr[13] = (unsigned long)vmm_vcpu;
  1028. p_ctx->psr = 0x1008522000UL;
  1029. p_ctx->ar[40] = FPSR_DEFAULT; /*fpsr*/
  1030. p_ctx->caller_unat = 0;
  1031. p_ctx->pr = 0x0;
  1032. p_ctx->ar[36] = 0x0; /*unat*/
  1033. p_ctx->ar[19] = 0x0; /*rnat*/
  1034. p_ctx->ar[18] = (unsigned long)vmm_vcpu +
  1035. ((sizeof(struct kvm_vcpu)+15) & ~15);
  1036. p_ctx->ar[64] = 0x0; /*pfs*/
  1037. p_ctx->cr[0] = 0x7e04UL;
  1038. p_ctx->cr[2] = (unsigned long)kvm_vmm_info->vmm_ivt;
  1039. p_ctx->cr[8] = 0x3c;
  1040. /*Initilize region register*/
  1041. p_ctx->rr[0] = 0x30;
  1042. p_ctx->rr[1] = 0x30;
  1043. p_ctx->rr[2] = 0x30;
  1044. p_ctx->rr[3] = 0x30;
  1045. p_ctx->rr[4] = 0x30;
  1046. p_ctx->rr[5] = 0x30;
  1047. p_ctx->rr[7] = 0x30;
  1048. /*Initilize branch register 0*/
  1049. p_ctx->br[0] = *(unsigned long *)kvm_vmm_info->vmm_entry;
  1050. vcpu->arch.vmm_rr = kvm->arch.vmm_init_rr;
  1051. vcpu->arch.metaphysical_rr0 = kvm->arch.metaphysical_rr0;
  1052. vcpu->arch.metaphysical_rr4 = kvm->arch.metaphysical_rr4;
  1053. hrtimer_init(&vcpu->arch.hlt_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
  1054. vcpu->arch.hlt_timer.function = hlt_timer_fn;
  1055. vcpu->arch.last_run_cpu = -1;
  1056. vcpu->arch.vpd = (struct vpd *)VPD_BASE(vcpu->vcpu_id);
  1057. vcpu->arch.vsa_base = kvm_vsa_base;
  1058. vcpu->arch.__gp = kvm_vmm_gp;
  1059. vcpu->arch.dirty_log_lock_pa = __pa(&kvm->arch.dirty_log_lock);
  1060. vcpu->arch.vhpt.hash = (struct thash_data *)VHPT_BASE(vcpu->vcpu_id);
  1061. vcpu->arch.vtlb.hash = (struct thash_data *)VTLB_BASE(vcpu->vcpu_id);
  1062. init_ptce_info(vcpu);
  1063. r = 0;
  1064. out:
  1065. return r;
  1066. }
  1067. static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id)
  1068. {
  1069. unsigned long psr;
  1070. int r;
  1071. local_irq_save(psr);
  1072. r = kvm_insert_vmm_mapping(vcpu);
  1073. if (r)
  1074. goto fail;
  1075. r = kvm_vcpu_init(vcpu, vcpu->kvm, id);
  1076. if (r)
  1077. goto fail;
  1078. r = vti_init_vpd(vcpu);
  1079. if (r) {
  1080. printk(KERN_DEBUG"kvm: vpd init error!!\n");
  1081. goto uninit;
  1082. }
  1083. r = vti_create_vp(vcpu);
  1084. if (r)
  1085. goto uninit;
  1086. kvm_purge_vmm_mapping(vcpu);
  1087. local_irq_restore(psr);
  1088. return 0;
  1089. uninit:
  1090. kvm_vcpu_uninit(vcpu);
  1091. fail:
  1092. local_irq_restore(psr);
  1093. return r;
  1094. }
  1095. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  1096. unsigned int id)
  1097. {
  1098. struct kvm_vcpu *vcpu;
  1099. unsigned long vm_base = kvm->arch.vm_base;
  1100. int r;
  1101. int cpu;
  1102. BUG_ON(sizeof(struct kvm_vcpu) > VCPU_STRUCT_SIZE/2);
  1103. r = -EINVAL;
  1104. if (id >= KVM_MAX_VCPUS) {
  1105. printk(KERN_ERR"kvm: Can't configure vcpus > %ld",
  1106. KVM_MAX_VCPUS);
  1107. goto fail;
  1108. }
  1109. r = -ENOMEM;
  1110. if (!vm_base) {
  1111. printk(KERN_ERR"kvm: Create vcpu[%d] error!\n", id);
  1112. goto fail;
  1113. }
  1114. vcpu = (struct kvm_vcpu *)(vm_base + offsetof(struct kvm_vm_data,
  1115. vcpu_data[id].vcpu_struct));
  1116. vcpu->kvm = kvm;
  1117. cpu = get_cpu();
  1118. vti_vcpu_load(vcpu, cpu);
  1119. r = vti_vcpu_setup(vcpu, id);
  1120. put_cpu();
  1121. if (r) {
  1122. printk(KERN_DEBUG"kvm: vcpu_setup error!!\n");
  1123. goto fail;
  1124. }
  1125. kvm->arch.online_vcpus++;
  1126. return vcpu;
  1127. fail:
  1128. return ERR_PTR(r);
  1129. }
  1130. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  1131. {
  1132. return 0;
  1133. }
  1134. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1135. {
  1136. return -EINVAL;
  1137. }
  1138. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1139. {
  1140. return -EINVAL;
  1141. }
  1142. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  1143. struct kvm_guest_debug *dbg)
  1144. {
  1145. return -EINVAL;
  1146. }
  1147. static void free_kvm(struct kvm *kvm)
  1148. {
  1149. unsigned long vm_base = kvm->arch.vm_base;
  1150. if (vm_base) {
  1151. memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
  1152. free_pages(vm_base, get_order(KVM_VM_DATA_SIZE));
  1153. }
  1154. }
  1155. static void kvm_release_vm_pages(struct kvm *kvm)
  1156. {
  1157. struct kvm_memory_slot *memslot;
  1158. int i, j;
  1159. unsigned long base_gfn;
  1160. for (i = 0; i < kvm->nmemslots; i++) {
  1161. memslot = &kvm->memslots[i];
  1162. base_gfn = memslot->base_gfn;
  1163. for (j = 0; j < memslot->npages; j++) {
  1164. if (memslot->rmap[j])
  1165. put_page((struct page *)memslot->rmap[j]);
  1166. }
  1167. }
  1168. }
  1169. void kvm_arch_sync_events(struct kvm *kvm)
  1170. {
  1171. }
  1172. void kvm_arch_destroy_vm(struct kvm *kvm)
  1173. {
  1174. kvm_iommu_unmap_guest(kvm);
  1175. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  1176. kvm_free_all_assigned_devices(kvm);
  1177. #endif
  1178. kfree(kvm->arch.vioapic);
  1179. kvm_release_vm_pages(kvm);
  1180. kvm_free_physmem(kvm);
  1181. free_kvm(kvm);
  1182. }
  1183. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1184. {
  1185. }
  1186. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1187. {
  1188. if (cpu != vcpu->cpu) {
  1189. vcpu->cpu = cpu;
  1190. if (vcpu->arch.ht_active)
  1191. kvm_migrate_hlt_timer(vcpu);
  1192. }
  1193. }
  1194. #define SAVE_REGS(_x) regs->_x = vcpu->arch._x
  1195. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  1196. {
  1197. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  1198. int i;
  1199. vcpu_load(vcpu);
  1200. for (i = 0; i < 16; i++) {
  1201. regs->vpd.vgr[i] = vpd->vgr[i];
  1202. regs->vpd.vbgr[i] = vpd->vbgr[i];
  1203. }
  1204. for (i = 0; i < 128; i++)
  1205. regs->vpd.vcr[i] = vpd->vcr[i];
  1206. regs->vpd.vhpi = vpd->vhpi;
  1207. regs->vpd.vnat = vpd->vnat;
  1208. regs->vpd.vbnat = vpd->vbnat;
  1209. regs->vpd.vpsr = vpd->vpsr;
  1210. regs->vpd.vpr = vpd->vpr;
  1211. memcpy(&regs->saved_guest, &vcpu->arch.guest, sizeof(union context));
  1212. SAVE_REGS(mp_state);
  1213. SAVE_REGS(vmm_rr);
  1214. memcpy(regs->itrs, vcpu->arch.itrs, sizeof(struct thash_data) * NITRS);
  1215. memcpy(regs->dtrs, vcpu->arch.dtrs, sizeof(struct thash_data) * NDTRS);
  1216. SAVE_REGS(itr_regions);
  1217. SAVE_REGS(dtr_regions);
  1218. SAVE_REGS(tc_regions);
  1219. SAVE_REGS(irq_check);
  1220. SAVE_REGS(itc_check);
  1221. SAVE_REGS(timer_check);
  1222. SAVE_REGS(timer_pending);
  1223. SAVE_REGS(last_itc);
  1224. for (i = 0; i < 8; i++) {
  1225. regs->vrr[i] = vcpu->arch.vrr[i];
  1226. regs->ibr[i] = vcpu->arch.ibr[i];
  1227. regs->dbr[i] = vcpu->arch.dbr[i];
  1228. }
  1229. for (i = 0; i < 4; i++)
  1230. regs->insvc[i] = vcpu->arch.insvc[i];
  1231. regs->saved_itc = vcpu->arch.itc_offset + kvm_get_itc(vcpu);
  1232. SAVE_REGS(xtp);
  1233. SAVE_REGS(metaphysical_rr0);
  1234. SAVE_REGS(metaphysical_rr4);
  1235. SAVE_REGS(metaphysical_saved_rr0);
  1236. SAVE_REGS(metaphysical_saved_rr4);
  1237. SAVE_REGS(fp_psr);
  1238. SAVE_REGS(saved_gp);
  1239. vcpu_put(vcpu);
  1240. return 0;
  1241. }
  1242. int kvm_arch_vcpu_ioctl_get_stack(struct kvm_vcpu *vcpu,
  1243. struct kvm_ia64_vcpu_stack *stack)
  1244. {
  1245. memcpy(stack, vcpu, sizeof(struct kvm_ia64_vcpu_stack));
  1246. return 0;
  1247. }
  1248. int kvm_arch_vcpu_ioctl_set_stack(struct kvm_vcpu *vcpu,
  1249. struct kvm_ia64_vcpu_stack *stack)
  1250. {
  1251. memcpy(vcpu + 1, &stack->stack[0] + sizeof(struct kvm_vcpu),
  1252. sizeof(struct kvm_ia64_vcpu_stack) - sizeof(struct kvm_vcpu));
  1253. vcpu->arch.exit_data = ((struct kvm_vcpu *)stack)->arch.exit_data;
  1254. return 0;
  1255. }
  1256. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  1257. {
  1258. hrtimer_cancel(&vcpu->arch.hlt_timer);
  1259. kfree(vcpu->arch.apic);
  1260. }
  1261. long kvm_arch_vcpu_ioctl(struct file *filp,
  1262. unsigned int ioctl, unsigned long arg)
  1263. {
  1264. struct kvm_vcpu *vcpu = filp->private_data;
  1265. void __user *argp = (void __user *)arg;
  1266. struct kvm_ia64_vcpu_stack *stack = NULL;
  1267. long r;
  1268. switch (ioctl) {
  1269. case KVM_IA64_VCPU_GET_STACK: {
  1270. struct kvm_ia64_vcpu_stack __user *user_stack;
  1271. void __user *first_p = argp;
  1272. r = -EFAULT;
  1273. if (copy_from_user(&user_stack, first_p, sizeof(void *)))
  1274. goto out;
  1275. if (!access_ok(VERIFY_WRITE, user_stack,
  1276. sizeof(struct kvm_ia64_vcpu_stack))) {
  1277. printk(KERN_INFO "KVM_IA64_VCPU_GET_STACK: "
  1278. "Illegal user destination address for stack\n");
  1279. goto out;
  1280. }
  1281. stack = kzalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
  1282. if (!stack) {
  1283. r = -ENOMEM;
  1284. goto out;
  1285. }
  1286. r = kvm_arch_vcpu_ioctl_get_stack(vcpu, stack);
  1287. if (r)
  1288. goto out;
  1289. if (copy_to_user(user_stack, stack,
  1290. sizeof(struct kvm_ia64_vcpu_stack)))
  1291. goto out;
  1292. break;
  1293. }
  1294. case KVM_IA64_VCPU_SET_STACK: {
  1295. struct kvm_ia64_vcpu_stack __user *user_stack;
  1296. void __user *first_p = argp;
  1297. r = -EFAULT;
  1298. if (copy_from_user(&user_stack, first_p, sizeof(void *)))
  1299. goto out;
  1300. if (!access_ok(VERIFY_READ, user_stack,
  1301. sizeof(struct kvm_ia64_vcpu_stack))) {
  1302. printk(KERN_INFO "KVM_IA64_VCPU_SET_STACK: "
  1303. "Illegal user address for stack\n");
  1304. goto out;
  1305. }
  1306. stack = kmalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
  1307. if (!stack) {
  1308. r = -ENOMEM;
  1309. goto out;
  1310. }
  1311. if (copy_from_user(stack, user_stack,
  1312. sizeof(struct kvm_ia64_vcpu_stack)))
  1313. goto out;
  1314. r = kvm_arch_vcpu_ioctl_set_stack(vcpu, stack);
  1315. break;
  1316. }
  1317. default:
  1318. r = -EINVAL;
  1319. }
  1320. out:
  1321. kfree(stack);
  1322. return r;
  1323. }
  1324. int kvm_arch_set_memory_region(struct kvm *kvm,
  1325. struct kvm_userspace_memory_region *mem,
  1326. struct kvm_memory_slot old,
  1327. int user_alloc)
  1328. {
  1329. unsigned long i;
  1330. unsigned long pfn;
  1331. int npages = mem->memory_size >> PAGE_SHIFT;
  1332. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  1333. unsigned long base_gfn = memslot->base_gfn;
  1334. if (base_gfn + npages > (KVM_MAX_MEM_SIZE >> PAGE_SHIFT))
  1335. return -ENOMEM;
  1336. for (i = 0; i < npages; i++) {
  1337. pfn = gfn_to_pfn(kvm, base_gfn + i);
  1338. if (!kvm_is_mmio_pfn(pfn)) {
  1339. kvm_set_pmt_entry(kvm, base_gfn + i,
  1340. pfn << PAGE_SHIFT,
  1341. _PAGE_AR_RWX | _PAGE_MA_WB);
  1342. memslot->rmap[i] = (unsigned long)pfn_to_page(pfn);
  1343. } else {
  1344. kvm_set_pmt_entry(kvm, base_gfn + i,
  1345. GPFN_PHYS_MMIO | (pfn << PAGE_SHIFT),
  1346. _PAGE_MA_UC);
  1347. memslot->rmap[i] = 0;
  1348. }
  1349. }
  1350. return 0;
  1351. }
  1352. void kvm_arch_flush_shadow(struct kvm *kvm)
  1353. {
  1354. kvm_flush_remote_tlbs(kvm);
  1355. }
  1356. long kvm_arch_dev_ioctl(struct file *filp,
  1357. unsigned int ioctl, unsigned long arg)
  1358. {
  1359. return -EINVAL;
  1360. }
  1361. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  1362. {
  1363. kvm_vcpu_uninit(vcpu);
  1364. }
  1365. static int vti_cpu_has_kvm_support(void)
  1366. {
  1367. long avail = 1, status = 1, control = 1;
  1368. long ret;
  1369. ret = ia64_pal_proc_get_features(&avail, &status, &control, 0);
  1370. if (ret)
  1371. goto out;
  1372. if (!(avail & PAL_PROC_VM_BIT))
  1373. goto out;
  1374. printk(KERN_DEBUG"kvm: Hardware Supports VT\n");
  1375. ret = ia64_pal_vp_env_info(&kvm_vm_buffer_size, &vp_env_info);
  1376. if (ret)
  1377. goto out;
  1378. printk(KERN_DEBUG"kvm: VM Buffer Size:0x%lx\n", kvm_vm_buffer_size);
  1379. if (!(vp_env_info & VP_OPCODE)) {
  1380. printk(KERN_WARNING"kvm: No opcode ability on hardware, "
  1381. "vm_env_info:0x%lx\n", vp_env_info);
  1382. }
  1383. return 1;
  1384. out:
  1385. return 0;
  1386. }
  1387. /*
  1388. * On SN2, the ITC isn't stable, so copy in fast path code to use the
  1389. * SN2 RTC, replacing the ITC based default verion.
  1390. */
  1391. static void kvm_patch_vmm(struct kvm_vmm_info *vmm_info,
  1392. struct module *module)
  1393. {
  1394. unsigned long new_ar, new_ar_sn2;
  1395. unsigned long module_base;
  1396. if (!ia64_platform_is("sn2"))
  1397. return;
  1398. module_base = (unsigned long)module->module_core;
  1399. new_ar = kvm_vmm_base + vmm_info->patch_mov_ar - module_base;
  1400. new_ar_sn2 = kvm_vmm_base + vmm_info->patch_mov_ar_sn2 - module_base;
  1401. printk(KERN_INFO "kvm: Patching ITC emulation to use SGI SN2 RTC "
  1402. "as source\n");
  1403. /*
  1404. * Copy the SN2 version of mov_ar into place. They are both
  1405. * the same size, so 6 bundles is sufficient (6 * 0x10).
  1406. */
  1407. memcpy((void *)new_ar, (void *)new_ar_sn2, 0x60);
  1408. }
  1409. static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info,
  1410. struct module *module)
  1411. {
  1412. unsigned long module_base;
  1413. unsigned long vmm_size;
  1414. unsigned long vmm_offset, func_offset, fdesc_offset;
  1415. struct fdesc *p_fdesc;
  1416. BUG_ON(!module);
  1417. if (!kvm_vmm_base) {
  1418. printk("kvm: kvm area hasn't been initilized yet!!\n");
  1419. return -EFAULT;
  1420. }
  1421. /*Calculate new position of relocated vmm module.*/
  1422. module_base = (unsigned long)module->module_core;
  1423. vmm_size = module->core_size;
  1424. if (unlikely(vmm_size > KVM_VMM_SIZE))
  1425. return -EFAULT;
  1426. memcpy((void *)kvm_vmm_base, (void *)module_base, vmm_size);
  1427. kvm_patch_vmm(vmm_info, module);
  1428. kvm_flush_icache(kvm_vmm_base, vmm_size);
  1429. /*Recalculate kvm_vmm_info based on new VMM*/
  1430. vmm_offset = vmm_info->vmm_ivt - module_base;
  1431. kvm_vmm_info->vmm_ivt = KVM_VMM_BASE + vmm_offset;
  1432. printk(KERN_DEBUG"kvm: Relocated VMM's IVT Base Addr:%lx\n",
  1433. kvm_vmm_info->vmm_ivt);
  1434. fdesc_offset = (unsigned long)vmm_info->vmm_entry - module_base;
  1435. kvm_vmm_info->vmm_entry = (kvm_vmm_entry *)(KVM_VMM_BASE +
  1436. fdesc_offset);
  1437. func_offset = *(unsigned long *)vmm_info->vmm_entry - module_base;
  1438. p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
  1439. p_fdesc->ip = KVM_VMM_BASE + func_offset;
  1440. p_fdesc->gp = KVM_VMM_BASE+(p_fdesc->gp - module_base);
  1441. printk(KERN_DEBUG"kvm: Relocated VMM's Init Entry Addr:%lx\n",
  1442. KVM_VMM_BASE+func_offset);
  1443. fdesc_offset = (unsigned long)vmm_info->tramp_entry - module_base;
  1444. kvm_vmm_info->tramp_entry = (kvm_tramp_entry *)(KVM_VMM_BASE +
  1445. fdesc_offset);
  1446. func_offset = *(unsigned long *)vmm_info->tramp_entry - module_base;
  1447. p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
  1448. p_fdesc->ip = KVM_VMM_BASE + func_offset;
  1449. p_fdesc->gp = KVM_VMM_BASE + (p_fdesc->gp - module_base);
  1450. kvm_vmm_gp = p_fdesc->gp;
  1451. printk(KERN_DEBUG"kvm: Relocated VMM's Entry IP:%p\n",
  1452. kvm_vmm_info->vmm_entry);
  1453. printk(KERN_DEBUG"kvm: Relocated VMM's Trampoline Entry IP:0x%lx\n",
  1454. KVM_VMM_BASE + func_offset);
  1455. return 0;
  1456. }
  1457. int kvm_arch_init(void *opaque)
  1458. {
  1459. int r;
  1460. struct kvm_vmm_info *vmm_info = (struct kvm_vmm_info *)opaque;
  1461. if (!vti_cpu_has_kvm_support()) {
  1462. printk(KERN_ERR "kvm: No Hardware Virtualization Support!\n");
  1463. r = -EOPNOTSUPP;
  1464. goto out;
  1465. }
  1466. if (kvm_vmm_info) {
  1467. printk(KERN_ERR "kvm: Already loaded VMM module!\n");
  1468. r = -EEXIST;
  1469. goto out;
  1470. }
  1471. r = -ENOMEM;
  1472. kvm_vmm_info = kzalloc(sizeof(struct kvm_vmm_info), GFP_KERNEL);
  1473. if (!kvm_vmm_info)
  1474. goto out;
  1475. if (kvm_alloc_vmm_area())
  1476. goto out_free0;
  1477. r = kvm_relocate_vmm(vmm_info, vmm_info->module);
  1478. if (r)
  1479. goto out_free1;
  1480. return 0;
  1481. out_free1:
  1482. kvm_free_vmm_area();
  1483. out_free0:
  1484. kfree(kvm_vmm_info);
  1485. out:
  1486. return r;
  1487. }
  1488. void kvm_arch_exit(void)
  1489. {
  1490. kvm_free_vmm_area();
  1491. kfree(kvm_vmm_info);
  1492. kvm_vmm_info = NULL;
  1493. }
  1494. static int kvm_ia64_sync_dirty_log(struct kvm *kvm,
  1495. struct kvm_dirty_log *log)
  1496. {
  1497. struct kvm_memory_slot *memslot;
  1498. int r, i;
  1499. long n, base;
  1500. unsigned long *dirty_bitmap = (unsigned long *)(kvm->arch.vm_base +
  1501. offsetof(struct kvm_vm_data, kvm_mem_dirty_log));
  1502. r = -EINVAL;
  1503. if (log->slot >= KVM_MEMORY_SLOTS)
  1504. goto out;
  1505. memslot = &kvm->memslots[log->slot];
  1506. r = -ENOENT;
  1507. if (!memslot->dirty_bitmap)
  1508. goto out;
  1509. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1510. base = memslot->base_gfn / BITS_PER_LONG;
  1511. for (i = 0; i < n/sizeof(long); ++i) {
  1512. memslot->dirty_bitmap[i] = dirty_bitmap[base + i];
  1513. dirty_bitmap[base + i] = 0;
  1514. }
  1515. r = 0;
  1516. out:
  1517. return r;
  1518. }
  1519. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1520. struct kvm_dirty_log *log)
  1521. {
  1522. int r;
  1523. int n;
  1524. struct kvm_memory_slot *memslot;
  1525. int is_dirty = 0;
  1526. spin_lock(&kvm->arch.dirty_log_lock);
  1527. r = kvm_ia64_sync_dirty_log(kvm, log);
  1528. if (r)
  1529. goto out;
  1530. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1531. if (r)
  1532. goto out;
  1533. /* If nothing is dirty, don't bother messing with page tables. */
  1534. if (is_dirty) {
  1535. kvm_flush_remote_tlbs(kvm);
  1536. memslot = &kvm->memslots[log->slot];
  1537. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1538. memset(memslot->dirty_bitmap, 0, n);
  1539. }
  1540. r = 0;
  1541. out:
  1542. spin_unlock(&kvm->arch.dirty_log_lock);
  1543. return r;
  1544. }
  1545. int kvm_arch_hardware_setup(void)
  1546. {
  1547. return 0;
  1548. }
  1549. void kvm_arch_hardware_unsetup(void)
  1550. {
  1551. }
  1552. static void vcpu_kick_intr(void *info)
  1553. {
  1554. #ifdef DEBUG
  1555. struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
  1556. printk(KERN_DEBUG"vcpu_kick_intr %p \n", vcpu);
  1557. #endif
  1558. }
  1559. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  1560. {
  1561. int ipi_pcpu = vcpu->cpu;
  1562. int cpu = get_cpu();
  1563. if (waitqueue_active(&vcpu->wq))
  1564. wake_up_interruptible(&vcpu->wq);
  1565. if (vcpu->guest_mode && cpu != ipi_pcpu)
  1566. smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
  1567. put_cpu();
  1568. }
  1569. int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq)
  1570. {
  1571. return __apic_accept_irq(vcpu, irq->vector);
  1572. }
  1573. int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest)
  1574. {
  1575. return apic->vcpu->vcpu_id == dest;
  1576. }
  1577. int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
  1578. {
  1579. return 0;
  1580. }
  1581. int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
  1582. {
  1583. return vcpu1->arch.xtp - vcpu2->arch.xtp;
  1584. }
  1585. int kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
  1586. int short_hand, int dest, int dest_mode)
  1587. {
  1588. struct kvm_lapic *target = vcpu->arch.apic;
  1589. return (dest_mode == 0) ?
  1590. kvm_apic_match_physical_addr(target, dest) :
  1591. kvm_apic_match_logical_addr(target, dest);
  1592. }
  1593. static int find_highest_bits(int *dat)
  1594. {
  1595. u32 bits, bitnum;
  1596. int i;
  1597. /* loop for all 256 bits */
  1598. for (i = 7; i >= 0 ; i--) {
  1599. bits = dat[i];
  1600. if (bits) {
  1601. bitnum = fls(bits);
  1602. return i * 32 + bitnum - 1;
  1603. }
  1604. }
  1605. return -1;
  1606. }
  1607. int kvm_highest_pending_irq(struct kvm_vcpu *vcpu)
  1608. {
  1609. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  1610. if (vpd->irr[0] & (1UL << NMI_VECTOR))
  1611. return NMI_VECTOR;
  1612. if (vpd->irr[0] & (1UL << ExtINT_VECTOR))
  1613. return ExtINT_VECTOR;
  1614. return find_highest_bits((int *)&vpd->irr[0]);
  1615. }
  1616. int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu)
  1617. {
  1618. if (kvm_highest_pending_irq(vcpu) != -1)
  1619. return 1;
  1620. return 0;
  1621. }
  1622. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  1623. {
  1624. /* do real check here */
  1625. return 1;
  1626. }
  1627. int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
  1628. {
  1629. return vcpu->arch.timer_fired;
  1630. }
  1631. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1632. {
  1633. return gfn;
  1634. }
  1635. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  1636. {
  1637. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE;
  1638. }
  1639. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  1640. struct kvm_mp_state *mp_state)
  1641. {
  1642. vcpu_load(vcpu);
  1643. mp_state->mp_state = vcpu->arch.mp_state;
  1644. vcpu_put(vcpu);
  1645. return 0;
  1646. }
  1647. static int vcpu_reset(struct kvm_vcpu *vcpu)
  1648. {
  1649. int r;
  1650. long psr;
  1651. local_irq_save(psr);
  1652. r = kvm_insert_vmm_mapping(vcpu);
  1653. if (r)
  1654. goto fail;
  1655. vcpu->arch.launched = 0;
  1656. kvm_arch_vcpu_uninit(vcpu);
  1657. r = kvm_arch_vcpu_init(vcpu);
  1658. if (r)
  1659. goto fail;
  1660. kvm_purge_vmm_mapping(vcpu);
  1661. r = 0;
  1662. fail:
  1663. local_irq_restore(psr);
  1664. return r;
  1665. }
  1666. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  1667. struct kvm_mp_state *mp_state)
  1668. {
  1669. int r = 0;
  1670. vcpu_load(vcpu);
  1671. vcpu->arch.mp_state = mp_state->mp_state;
  1672. if (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)
  1673. r = vcpu_reset(vcpu);
  1674. vcpu_put(vcpu);
  1675. return r;
  1676. }