kv_dpm.c 73 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720
  1. /*
  2. * Copyright 2013 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. */
  23. #include "drmP.h"
  24. #include "radeon.h"
  25. #include "cikd.h"
  26. #include "r600_dpm.h"
  27. #include "kv_dpm.h"
  28. #include "radeon_asic.h"
  29. #include <linux/seq_file.h>
  30. #define KV_MAX_DEEPSLEEP_DIVIDER_ID 5
  31. #define KV_MINIMUM_ENGINE_CLOCK 800
  32. #define SMC_RAM_END 0x40000
  33. static void kv_init_graphics_levels(struct radeon_device *rdev);
  34. static int kv_calculate_ds_divider(struct radeon_device *rdev);
  35. static int kv_calculate_nbps_level_settings(struct radeon_device *rdev);
  36. static int kv_calculate_dpm_settings(struct radeon_device *rdev);
  37. static void kv_enable_new_levels(struct radeon_device *rdev);
  38. static void kv_program_nbps_index_settings(struct radeon_device *rdev,
  39. struct radeon_ps *new_rps);
  40. static int kv_set_enabled_level(struct radeon_device *rdev, u32 level);
  41. static int kv_set_enabled_levels(struct radeon_device *rdev);
  42. static int kv_force_dpm_highest(struct radeon_device *rdev);
  43. static int kv_force_dpm_lowest(struct radeon_device *rdev);
  44. static void kv_apply_state_adjust_rules(struct radeon_device *rdev,
  45. struct radeon_ps *new_rps,
  46. struct radeon_ps *old_rps);
  47. static int kv_set_thermal_temperature_range(struct radeon_device *rdev,
  48. int min_temp, int max_temp);
  49. static int kv_init_fps_limits(struct radeon_device *rdev);
  50. void kv_dpm_powergate_uvd(struct radeon_device *rdev, bool gate);
  51. static void kv_dpm_powergate_vce(struct radeon_device *rdev, bool gate);
  52. static void kv_dpm_powergate_samu(struct radeon_device *rdev, bool gate);
  53. static void kv_dpm_powergate_acp(struct radeon_device *rdev, bool gate);
  54. extern void cik_enter_rlc_safe_mode(struct radeon_device *rdev);
  55. extern void cik_exit_rlc_safe_mode(struct radeon_device *rdev);
  56. extern void cik_update_cg(struct radeon_device *rdev,
  57. u32 block, bool enable);
  58. static const struct kv_lcac_config_values sx_local_cac_cfg_kv[] =
  59. {
  60. { 0, 4, 1 },
  61. { 1, 4, 1 },
  62. { 2, 5, 1 },
  63. { 3, 4, 2 },
  64. { 4, 1, 1 },
  65. { 5, 5, 2 },
  66. { 6, 6, 1 },
  67. { 7, 9, 2 },
  68. { 0xffffffff }
  69. };
  70. static const struct kv_lcac_config_values mc0_local_cac_cfg_kv[] =
  71. {
  72. { 0, 4, 1 },
  73. { 0xffffffff }
  74. };
  75. static const struct kv_lcac_config_values mc1_local_cac_cfg_kv[] =
  76. {
  77. { 0, 4, 1 },
  78. { 0xffffffff }
  79. };
  80. static const struct kv_lcac_config_values mc2_local_cac_cfg_kv[] =
  81. {
  82. { 0, 4, 1 },
  83. { 0xffffffff }
  84. };
  85. static const struct kv_lcac_config_values mc3_local_cac_cfg_kv[] =
  86. {
  87. { 0, 4, 1 },
  88. { 0xffffffff }
  89. };
  90. static const struct kv_lcac_config_values cpl_local_cac_cfg_kv[] =
  91. {
  92. { 0, 4, 1 },
  93. { 1, 4, 1 },
  94. { 2, 5, 1 },
  95. { 3, 4, 1 },
  96. { 4, 1, 1 },
  97. { 5, 5, 1 },
  98. { 6, 6, 1 },
  99. { 7, 9, 1 },
  100. { 8, 4, 1 },
  101. { 9, 2, 1 },
  102. { 10, 3, 1 },
  103. { 11, 6, 1 },
  104. { 12, 8, 2 },
  105. { 13, 1, 1 },
  106. { 14, 2, 1 },
  107. { 15, 3, 1 },
  108. { 16, 1, 1 },
  109. { 17, 4, 1 },
  110. { 18, 3, 1 },
  111. { 19, 1, 1 },
  112. { 20, 8, 1 },
  113. { 21, 5, 1 },
  114. { 22, 1, 1 },
  115. { 23, 1, 1 },
  116. { 24, 4, 1 },
  117. { 27, 6, 1 },
  118. { 28, 1, 1 },
  119. { 0xffffffff }
  120. };
  121. static const struct kv_lcac_config_reg sx0_cac_config_reg[] =
  122. {
  123. { 0xc0400d00, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
  124. };
  125. static const struct kv_lcac_config_reg mc0_cac_config_reg[] =
  126. {
  127. { 0xc0400d30, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
  128. };
  129. static const struct kv_lcac_config_reg mc1_cac_config_reg[] =
  130. {
  131. { 0xc0400d3c, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
  132. };
  133. static const struct kv_lcac_config_reg mc2_cac_config_reg[] =
  134. {
  135. { 0xc0400d48, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
  136. };
  137. static const struct kv_lcac_config_reg mc3_cac_config_reg[] =
  138. {
  139. { 0xc0400d54, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
  140. };
  141. static const struct kv_lcac_config_reg cpl_cac_config_reg[] =
  142. {
  143. { 0xc0400d80, 0x003e0000, 17, 0x3fc00000, 22, 0x0001fffe, 1, 0x00000001, 0 }
  144. };
  145. static const struct kv_pt_config_reg didt_config_kv[] =
  146. {
  147. { 0x10, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  148. { 0x10, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  149. { 0x10, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  150. { 0x10, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  151. { 0x11, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  152. { 0x11, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  153. { 0x11, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  154. { 0x11, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  155. { 0x12, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  156. { 0x12, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  157. { 0x12, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  158. { 0x12, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  159. { 0x2, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
  160. { 0x2, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
  161. { 0x2, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
  162. { 0x1, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  163. { 0x1, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  164. { 0x0, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  165. { 0x30, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  166. { 0x30, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  167. { 0x30, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  168. { 0x30, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  169. { 0x31, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  170. { 0x31, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  171. { 0x31, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  172. { 0x31, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  173. { 0x32, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  174. { 0x32, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  175. { 0x32, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  176. { 0x32, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  177. { 0x22, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
  178. { 0x22, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
  179. { 0x22, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
  180. { 0x21, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  181. { 0x21, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  182. { 0x20, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  183. { 0x50, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  184. { 0x50, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  185. { 0x50, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  186. { 0x50, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  187. { 0x51, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  188. { 0x51, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  189. { 0x51, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  190. { 0x51, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  191. { 0x52, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  192. { 0x52, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  193. { 0x52, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  194. { 0x52, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  195. { 0x42, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
  196. { 0x42, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
  197. { 0x42, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
  198. { 0x41, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  199. { 0x41, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  200. { 0x40, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  201. { 0x70, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  202. { 0x70, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  203. { 0x70, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  204. { 0x70, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  205. { 0x71, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  206. { 0x71, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  207. { 0x71, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  208. { 0x71, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  209. { 0x72, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  210. { 0x72, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  211. { 0x72, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  212. { 0x72, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  213. { 0x62, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
  214. { 0x62, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
  215. { 0x62, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
  216. { 0x61, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  217. { 0x61, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  218. { 0x60, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  219. { 0xFFFFFFFF }
  220. };
  221. static struct kv_ps *kv_get_ps(struct radeon_ps *rps)
  222. {
  223. struct kv_ps *ps = rps->ps_priv;
  224. return ps;
  225. }
  226. static struct kv_power_info *kv_get_pi(struct radeon_device *rdev)
  227. {
  228. struct kv_power_info *pi = rdev->pm.dpm.priv;
  229. return pi;
  230. }
  231. #if 0
  232. static void kv_program_local_cac_table(struct radeon_device *rdev,
  233. const struct kv_lcac_config_values *local_cac_table,
  234. const struct kv_lcac_config_reg *local_cac_reg)
  235. {
  236. u32 i, count, data;
  237. const struct kv_lcac_config_values *values = local_cac_table;
  238. while (values->block_id != 0xffffffff) {
  239. count = values->signal_id;
  240. for (i = 0; i < count; i++) {
  241. data = ((values->block_id << local_cac_reg->block_shift) &
  242. local_cac_reg->block_mask);
  243. data |= ((i << local_cac_reg->signal_shift) &
  244. local_cac_reg->signal_mask);
  245. data |= ((values->t << local_cac_reg->t_shift) &
  246. local_cac_reg->t_mask);
  247. data |= ((1 << local_cac_reg->enable_shift) &
  248. local_cac_reg->enable_mask);
  249. WREG32_SMC(local_cac_reg->cntl, data);
  250. }
  251. values++;
  252. }
  253. }
  254. #endif
  255. static int kv_program_pt_config_registers(struct radeon_device *rdev,
  256. const struct kv_pt_config_reg *cac_config_regs)
  257. {
  258. const struct kv_pt_config_reg *config_regs = cac_config_regs;
  259. u32 data;
  260. u32 cache = 0;
  261. if (config_regs == NULL)
  262. return -EINVAL;
  263. while (config_regs->offset != 0xFFFFFFFF) {
  264. if (config_regs->type == KV_CONFIGREG_CACHE) {
  265. cache |= ((config_regs->value << config_regs->shift) & config_regs->mask);
  266. } else {
  267. switch (config_regs->type) {
  268. case KV_CONFIGREG_SMC_IND:
  269. data = RREG32_SMC(config_regs->offset);
  270. break;
  271. case KV_CONFIGREG_DIDT_IND:
  272. data = RREG32_DIDT(config_regs->offset);
  273. break;
  274. default:
  275. data = RREG32(config_regs->offset << 2);
  276. break;
  277. }
  278. data &= ~config_regs->mask;
  279. data |= ((config_regs->value << config_regs->shift) & config_regs->mask);
  280. data |= cache;
  281. cache = 0;
  282. switch (config_regs->type) {
  283. case KV_CONFIGREG_SMC_IND:
  284. WREG32_SMC(config_regs->offset, data);
  285. break;
  286. case KV_CONFIGREG_DIDT_IND:
  287. WREG32_DIDT(config_regs->offset, data);
  288. break;
  289. default:
  290. WREG32(config_regs->offset << 2, data);
  291. break;
  292. }
  293. }
  294. config_regs++;
  295. }
  296. return 0;
  297. }
  298. static void kv_do_enable_didt(struct radeon_device *rdev, bool enable)
  299. {
  300. struct kv_power_info *pi = kv_get_pi(rdev);
  301. u32 data;
  302. if (pi->caps_sq_ramping) {
  303. data = RREG32_DIDT(DIDT_SQ_CTRL0);
  304. if (enable)
  305. data |= DIDT_CTRL_EN;
  306. else
  307. data &= ~DIDT_CTRL_EN;
  308. WREG32_DIDT(DIDT_SQ_CTRL0, data);
  309. }
  310. if (pi->caps_db_ramping) {
  311. data = RREG32_DIDT(DIDT_DB_CTRL0);
  312. if (enable)
  313. data |= DIDT_CTRL_EN;
  314. else
  315. data &= ~DIDT_CTRL_EN;
  316. WREG32_DIDT(DIDT_DB_CTRL0, data);
  317. }
  318. if (pi->caps_td_ramping) {
  319. data = RREG32_DIDT(DIDT_TD_CTRL0);
  320. if (enable)
  321. data |= DIDT_CTRL_EN;
  322. else
  323. data &= ~DIDT_CTRL_EN;
  324. WREG32_DIDT(DIDT_TD_CTRL0, data);
  325. }
  326. if (pi->caps_tcp_ramping) {
  327. data = RREG32_DIDT(DIDT_TCP_CTRL0);
  328. if (enable)
  329. data |= DIDT_CTRL_EN;
  330. else
  331. data &= ~DIDT_CTRL_EN;
  332. WREG32_DIDT(DIDT_TCP_CTRL0, data);
  333. }
  334. }
  335. static int kv_enable_didt(struct radeon_device *rdev, bool enable)
  336. {
  337. struct kv_power_info *pi = kv_get_pi(rdev);
  338. int ret;
  339. if (pi->caps_sq_ramping ||
  340. pi->caps_db_ramping ||
  341. pi->caps_td_ramping ||
  342. pi->caps_tcp_ramping) {
  343. cik_enter_rlc_safe_mode(rdev);
  344. if (enable) {
  345. ret = kv_program_pt_config_registers(rdev, didt_config_kv);
  346. if (ret) {
  347. cik_exit_rlc_safe_mode(rdev);
  348. return ret;
  349. }
  350. }
  351. kv_do_enable_didt(rdev, enable);
  352. cik_exit_rlc_safe_mode(rdev);
  353. }
  354. return 0;
  355. }
  356. #if 0
  357. static void kv_initialize_hardware_cac_manager(struct radeon_device *rdev)
  358. {
  359. struct kv_power_info *pi = kv_get_pi(rdev);
  360. if (pi->caps_cac) {
  361. WREG32_SMC(LCAC_SX0_OVR_SEL, 0);
  362. WREG32_SMC(LCAC_SX0_OVR_VAL, 0);
  363. kv_program_local_cac_table(rdev, sx_local_cac_cfg_kv, sx0_cac_config_reg);
  364. WREG32_SMC(LCAC_MC0_OVR_SEL, 0);
  365. WREG32_SMC(LCAC_MC0_OVR_VAL, 0);
  366. kv_program_local_cac_table(rdev, mc0_local_cac_cfg_kv, mc0_cac_config_reg);
  367. WREG32_SMC(LCAC_MC1_OVR_SEL, 0);
  368. WREG32_SMC(LCAC_MC1_OVR_VAL, 0);
  369. kv_program_local_cac_table(rdev, mc1_local_cac_cfg_kv, mc1_cac_config_reg);
  370. WREG32_SMC(LCAC_MC2_OVR_SEL, 0);
  371. WREG32_SMC(LCAC_MC2_OVR_VAL, 0);
  372. kv_program_local_cac_table(rdev, mc2_local_cac_cfg_kv, mc2_cac_config_reg);
  373. WREG32_SMC(LCAC_MC3_OVR_SEL, 0);
  374. WREG32_SMC(LCAC_MC3_OVR_VAL, 0);
  375. kv_program_local_cac_table(rdev, mc3_local_cac_cfg_kv, mc3_cac_config_reg);
  376. WREG32_SMC(LCAC_CPL_OVR_SEL, 0);
  377. WREG32_SMC(LCAC_CPL_OVR_VAL, 0);
  378. kv_program_local_cac_table(rdev, cpl_local_cac_cfg_kv, cpl_cac_config_reg);
  379. }
  380. }
  381. #endif
  382. static int kv_enable_smc_cac(struct radeon_device *rdev, bool enable)
  383. {
  384. struct kv_power_info *pi = kv_get_pi(rdev);
  385. int ret = 0;
  386. if (pi->caps_cac) {
  387. if (enable) {
  388. ret = kv_notify_message_to_smu(rdev, PPSMC_MSG_EnableCac);
  389. if (ret)
  390. pi->cac_enabled = false;
  391. else
  392. pi->cac_enabled = true;
  393. } else if (pi->cac_enabled) {
  394. kv_notify_message_to_smu(rdev, PPSMC_MSG_DisableCac);
  395. pi->cac_enabled = false;
  396. }
  397. }
  398. return ret;
  399. }
  400. static int kv_process_firmware_header(struct radeon_device *rdev)
  401. {
  402. struct kv_power_info *pi = kv_get_pi(rdev);
  403. u32 tmp;
  404. int ret;
  405. ret = kv_read_smc_sram_dword(rdev, SMU7_FIRMWARE_HEADER_LOCATION +
  406. offsetof(SMU7_Firmware_Header, DpmTable),
  407. &tmp, pi->sram_end);
  408. if (ret == 0)
  409. pi->dpm_table_start = tmp;
  410. ret = kv_read_smc_sram_dword(rdev, SMU7_FIRMWARE_HEADER_LOCATION +
  411. offsetof(SMU7_Firmware_Header, SoftRegisters),
  412. &tmp, pi->sram_end);
  413. if (ret == 0)
  414. pi->soft_regs_start = tmp;
  415. return ret;
  416. }
  417. static int kv_enable_dpm_voltage_scaling(struct radeon_device *rdev)
  418. {
  419. struct kv_power_info *pi = kv_get_pi(rdev);
  420. int ret;
  421. pi->graphics_voltage_change_enable = 1;
  422. ret = kv_copy_bytes_to_smc(rdev,
  423. pi->dpm_table_start +
  424. offsetof(SMU7_Fusion_DpmTable, GraphicsVoltageChangeEnable),
  425. &pi->graphics_voltage_change_enable,
  426. sizeof(u8), pi->sram_end);
  427. return ret;
  428. }
  429. static int kv_set_dpm_interval(struct radeon_device *rdev)
  430. {
  431. struct kv_power_info *pi = kv_get_pi(rdev);
  432. int ret;
  433. pi->graphics_interval = 1;
  434. ret = kv_copy_bytes_to_smc(rdev,
  435. pi->dpm_table_start +
  436. offsetof(SMU7_Fusion_DpmTable, GraphicsInterval),
  437. &pi->graphics_interval,
  438. sizeof(u8), pi->sram_end);
  439. return ret;
  440. }
  441. static int kv_set_dpm_boot_state(struct radeon_device *rdev)
  442. {
  443. struct kv_power_info *pi = kv_get_pi(rdev);
  444. int ret;
  445. ret = kv_copy_bytes_to_smc(rdev,
  446. pi->dpm_table_start +
  447. offsetof(SMU7_Fusion_DpmTable, GraphicsBootLevel),
  448. &pi->graphics_boot_level,
  449. sizeof(u8), pi->sram_end);
  450. return ret;
  451. }
  452. static void kv_program_vc(struct radeon_device *rdev)
  453. {
  454. WREG32_SMC(CG_FTV_0, 0x3FFFC100);
  455. }
  456. static void kv_clear_vc(struct radeon_device *rdev)
  457. {
  458. WREG32_SMC(CG_FTV_0, 0);
  459. }
  460. static int kv_set_divider_value(struct radeon_device *rdev,
  461. u32 index, u32 sclk)
  462. {
  463. struct kv_power_info *pi = kv_get_pi(rdev);
  464. struct atom_clock_dividers dividers;
  465. int ret;
  466. ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
  467. sclk, false, &dividers);
  468. if (ret)
  469. return ret;
  470. pi->graphics_level[index].SclkDid = (u8)dividers.post_div;
  471. pi->graphics_level[index].SclkFrequency = cpu_to_be32(sclk);
  472. return 0;
  473. }
  474. static u16 kv_convert_8bit_index_to_voltage(struct radeon_device *rdev,
  475. u16 voltage)
  476. {
  477. return 6200 - (voltage * 25);
  478. }
  479. static u16 kv_convert_2bit_index_to_voltage(struct radeon_device *rdev,
  480. u32 vid_2bit)
  481. {
  482. struct kv_power_info *pi = kv_get_pi(rdev);
  483. u32 vid_8bit = sumo_convert_vid2_to_vid7(rdev,
  484. &pi->sys_info.vid_mapping_table,
  485. vid_2bit);
  486. return kv_convert_8bit_index_to_voltage(rdev, (u16)vid_8bit);
  487. }
  488. static int kv_set_vid(struct radeon_device *rdev, u32 index, u32 vid)
  489. {
  490. struct kv_power_info *pi = kv_get_pi(rdev);
  491. pi->graphics_level[index].VoltageDownH = (u8)pi->voltage_drop_t;
  492. pi->graphics_level[index].MinVddNb =
  493. cpu_to_be32(kv_convert_2bit_index_to_voltage(rdev, vid));
  494. return 0;
  495. }
  496. static int kv_set_at(struct radeon_device *rdev, u32 index, u32 at)
  497. {
  498. struct kv_power_info *pi = kv_get_pi(rdev);
  499. pi->graphics_level[index].AT = cpu_to_be16((u16)at);
  500. return 0;
  501. }
  502. static void kv_dpm_power_level_enable(struct radeon_device *rdev,
  503. u32 index, bool enable)
  504. {
  505. struct kv_power_info *pi = kv_get_pi(rdev);
  506. pi->graphics_level[index].EnabledForActivity = enable ? 1 : 0;
  507. }
  508. static void kv_start_dpm(struct radeon_device *rdev)
  509. {
  510. u32 tmp = RREG32_SMC(GENERAL_PWRMGT);
  511. tmp |= GLOBAL_PWRMGT_EN;
  512. WREG32_SMC(GENERAL_PWRMGT, tmp);
  513. kv_smc_dpm_enable(rdev, true);
  514. }
  515. static void kv_stop_dpm(struct radeon_device *rdev)
  516. {
  517. kv_smc_dpm_enable(rdev, false);
  518. }
  519. static void kv_start_am(struct radeon_device *rdev)
  520. {
  521. u32 sclk_pwrmgt_cntl = RREG32_SMC(SCLK_PWRMGT_CNTL);
  522. sclk_pwrmgt_cntl &= ~(RESET_SCLK_CNT | RESET_BUSY_CNT);
  523. sclk_pwrmgt_cntl |= DYNAMIC_PM_EN;
  524. WREG32_SMC(SCLK_PWRMGT_CNTL, sclk_pwrmgt_cntl);
  525. }
  526. static void kv_reset_am(struct radeon_device *rdev)
  527. {
  528. u32 sclk_pwrmgt_cntl = RREG32_SMC(SCLK_PWRMGT_CNTL);
  529. sclk_pwrmgt_cntl |= (RESET_SCLK_CNT | RESET_BUSY_CNT);
  530. WREG32_SMC(SCLK_PWRMGT_CNTL, sclk_pwrmgt_cntl);
  531. }
  532. static int kv_freeze_sclk_dpm(struct radeon_device *rdev, bool freeze)
  533. {
  534. return kv_notify_message_to_smu(rdev, freeze ?
  535. PPSMC_MSG_SCLKDPM_FreezeLevel : PPSMC_MSG_SCLKDPM_UnfreezeLevel);
  536. }
  537. static int kv_force_lowest_valid(struct radeon_device *rdev)
  538. {
  539. return kv_force_dpm_lowest(rdev);
  540. }
  541. static int kv_unforce_levels(struct radeon_device *rdev)
  542. {
  543. if (rdev->family == CHIP_KABINI)
  544. return kv_notify_message_to_smu(rdev, PPSMC_MSG_NoForcedLevel);
  545. else
  546. return kv_set_enabled_levels(rdev);
  547. }
  548. static int kv_update_sclk_t(struct radeon_device *rdev)
  549. {
  550. struct kv_power_info *pi = kv_get_pi(rdev);
  551. u32 low_sclk_interrupt_t = 0;
  552. int ret = 0;
  553. if (pi->caps_sclk_throttle_low_notification) {
  554. low_sclk_interrupt_t = cpu_to_be32(pi->low_sclk_interrupt_t);
  555. ret = kv_copy_bytes_to_smc(rdev,
  556. pi->dpm_table_start +
  557. offsetof(SMU7_Fusion_DpmTable, LowSclkInterruptT),
  558. (u8 *)&low_sclk_interrupt_t,
  559. sizeof(u32), pi->sram_end);
  560. }
  561. return ret;
  562. }
  563. static int kv_program_bootup_state(struct radeon_device *rdev)
  564. {
  565. struct kv_power_info *pi = kv_get_pi(rdev);
  566. u32 i;
  567. struct radeon_clock_voltage_dependency_table *table =
  568. &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  569. if (table && table->count) {
  570. for (i = pi->graphics_dpm_level_count - 1; i > 0; i--) {
  571. if (table->entries[i].clk == pi->boot_pl.sclk)
  572. break;
  573. }
  574. pi->graphics_boot_level = (u8)i;
  575. kv_dpm_power_level_enable(rdev, i, true);
  576. } else {
  577. struct sumo_sclk_voltage_mapping_table *table =
  578. &pi->sys_info.sclk_voltage_mapping_table;
  579. if (table->num_max_dpm_entries == 0)
  580. return -EINVAL;
  581. for (i = pi->graphics_dpm_level_count - 1; i > 0; i--) {
  582. if (table->entries[i].sclk_frequency == pi->boot_pl.sclk)
  583. break;
  584. }
  585. pi->graphics_boot_level = (u8)i;
  586. kv_dpm_power_level_enable(rdev, i, true);
  587. }
  588. return 0;
  589. }
  590. static int kv_enable_auto_thermal_throttling(struct radeon_device *rdev)
  591. {
  592. struct kv_power_info *pi = kv_get_pi(rdev);
  593. int ret;
  594. pi->graphics_therm_throttle_enable = 1;
  595. ret = kv_copy_bytes_to_smc(rdev,
  596. pi->dpm_table_start +
  597. offsetof(SMU7_Fusion_DpmTable, GraphicsThermThrottleEnable),
  598. &pi->graphics_therm_throttle_enable,
  599. sizeof(u8), pi->sram_end);
  600. return ret;
  601. }
  602. static int kv_upload_dpm_settings(struct radeon_device *rdev)
  603. {
  604. struct kv_power_info *pi = kv_get_pi(rdev);
  605. int ret;
  606. ret = kv_copy_bytes_to_smc(rdev,
  607. pi->dpm_table_start +
  608. offsetof(SMU7_Fusion_DpmTable, GraphicsLevel),
  609. (u8 *)&pi->graphics_level,
  610. sizeof(SMU7_Fusion_GraphicsLevel) * SMU7_MAX_LEVELS_GRAPHICS,
  611. pi->sram_end);
  612. if (ret)
  613. return ret;
  614. ret = kv_copy_bytes_to_smc(rdev,
  615. pi->dpm_table_start +
  616. offsetof(SMU7_Fusion_DpmTable, GraphicsDpmLevelCount),
  617. &pi->graphics_dpm_level_count,
  618. sizeof(u8), pi->sram_end);
  619. return ret;
  620. }
  621. static u32 kv_get_clock_difference(u32 a, u32 b)
  622. {
  623. return (a >= b) ? a - b : b - a;
  624. }
  625. static u32 kv_get_clk_bypass(struct radeon_device *rdev, u32 clk)
  626. {
  627. struct kv_power_info *pi = kv_get_pi(rdev);
  628. u32 value;
  629. if (pi->caps_enable_dfs_bypass) {
  630. if (kv_get_clock_difference(clk, 40000) < 200)
  631. value = 3;
  632. else if (kv_get_clock_difference(clk, 30000) < 200)
  633. value = 2;
  634. else if (kv_get_clock_difference(clk, 20000) < 200)
  635. value = 7;
  636. else if (kv_get_clock_difference(clk, 15000) < 200)
  637. value = 6;
  638. else if (kv_get_clock_difference(clk, 10000) < 200)
  639. value = 8;
  640. else
  641. value = 0;
  642. } else {
  643. value = 0;
  644. }
  645. return value;
  646. }
  647. static int kv_populate_uvd_table(struct radeon_device *rdev)
  648. {
  649. struct kv_power_info *pi = kv_get_pi(rdev);
  650. struct radeon_uvd_clock_voltage_dependency_table *table =
  651. &rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table;
  652. struct atom_clock_dividers dividers;
  653. int ret;
  654. u32 i;
  655. if (table == NULL || table->count == 0)
  656. return 0;
  657. pi->uvd_level_count = 0;
  658. for (i = 0; i < table->count; i++) {
  659. if (pi->high_voltage_t &&
  660. (pi->high_voltage_t < table->entries[i].v))
  661. break;
  662. pi->uvd_level[i].VclkFrequency = cpu_to_be32(table->entries[i].vclk);
  663. pi->uvd_level[i].DclkFrequency = cpu_to_be32(table->entries[i].dclk);
  664. pi->uvd_level[i].MinVddNb = cpu_to_be16(table->entries[i].v);
  665. pi->uvd_level[i].VClkBypassCntl =
  666. (u8)kv_get_clk_bypass(rdev, table->entries[i].vclk);
  667. pi->uvd_level[i].DClkBypassCntl =
  668. (u8)kv_get_clk_bypass(rdev, table->entries[i].dclk);
  669. ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
  670. table->entries[i].vclk, false, &dividers);
  671. if (ret)
  672. return ret;
  673. pi->uvd_level[i].VclkDivider = (u8)dividers.post_div;
  674. ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
  675. table->entries[i].dclk, false, &dividers);
  676. if (ret)
  677. return ret;
  678. pi->uvd_level[i].DclkDivider = (u8)dividers.post_div;
  679. pi->uvd_level_count++;
  680. }
  681. ret = kv_copy_bytes_to_smc(rdev,
  682. pi->dpm_table_start +
  683. offsetof(SMU7_Fusion_DpmTable, UvdLevelCount),
  684. (u8 *)&pi->uvd_level_count,
  685. sizeof(u8), pi->sram_end);
  686. if (ret)
  687. return ret;
  688. pi->uvd_interval = 1;
  689. ret = kv_copy_bytes_to_smc(rdev,
  690. pi->dpm_table_start +
  691. offsetof(SMU7_Fusion_DpmTable, UVDInterval),
  692. &pi->uvd_interval,
  693. sizeof(u8), pi->sram_end);
  694. if (ret)
  695. return ret;
  696. ret = kv_copy_bytes_to_smc(rdev,
  697. pi->dpm_table_start +
  698. offsetof(SMU7_Fusion_DpmTable, UvdLevel),
  699. (u8 *)&pi->uvd_level,
  700. sizeof(SMU7_Fusion_UvdLevel) * SMU7_MAX_LEVELS_UVD,
  701. pi->sram_end);
  702. return ret;
  703. }
  704. static int kv_populate_vce_table(struct radeon_device *rdev)
  705. {
  706. struct kv_power_info *pi = kv_get_pi(rdev);
  707. int ret;
  708. u32 i;
  709. struct radeon_vce_clock_voltage_dependency_table *table =
  710. &rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
  711. struct atom_clock_dividers dividers;
  712. if (table == NULL || table->count == 0)
  713. return 0;
  714. pi->vce_level_count = 0;
  715. for (i = 0; i < table->count; i++) {
  716. if (pi->high_voltage_t &&
  717. pi->high_voltage_t < table->entries[i].v)
  718. break;
  719. pi->vce_level[i].Frequency = cpu_to_be32(table->entries[i].evclk);
  720. pi->vce_level[i].MinVoltage = cpu_to_be16(table->entries[i].v);
  721. pi->vce_level[i].ClkBypassCntl =
  722. (u8)kv_get_clk_bypass(rdev, table->entries[i].evclk);
  723. ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
  724. table->entries[i].evclk, false, &dividers);
  725. if (ret)
  726. return ret;
  727. pi->vce_level[i].Divider = (u8)dividers.post_div;
  728. pi->vce_level_count++;
  729. }
  730. ret = kv_copy_bytes_to_smc(rdev,
  731. pi->dpm_table_start +
  732. offsetof(SMU7_Fusion_DpmTable, VceLevelCount),
  733. (u8 *)&pi->vce_level_count,
  734. sizeof(u8),
  735. pi->sram_end);
  736. if (ret)
  737. return ret;
  738. pi->vce_interval = 1;
  739. ret = kv_copy_bytes_to_smc(rdev,
  740. pi->dpm_table_start +
  741. offsetof(SMU7_Fusion_DpmTable, VCEInterval),
  742. (u8 *)&pi->vce_interval,
  743. sizeof(u8),
  744. pi->sram_end);
  745. if (ret)
  746. return ret;
  747. ret = kv_copy_bytes_to_smc(rdev,
  748. pi->dpm_table_start +
  749. offsetof(SMU7_Fusion_DpmTable, VceLevel),
  750. (u8 *)&pi->vce_level,
  751. sizeof(SMU7_Fusion_ExtClkLevel) * SMU7_MAX_LEVELS_VCE,
  752. pi->sram_end);
  753. return ret;
  754. }
  755. static int kv_populate_samu_table(struct radeon_device *rdev)
  756. {
  757. struct kv_power_info *pi = kv_get_pi(rdev);
  758. struct radeon_clock_voltage_dependency_table *table =
  759. &rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table;
  760. struct atom_clock_dividers dividers;
  761. int ret;
  762. u32 i;
  763. if (table == NULL || table->count == 0)
  764. return 0;
  765. pi->samu_level_count = 0;
  766. for (i = 0; i < table->count; i++) {
  767. if (pi->high_voltage_t &&
  768. pi->high_voltage_t < table->entries[i].v)
  769. break;
  770. pi->samu_level[i].Frequency = cpu_to_be32(table->entries[i].clk);
  771. pi->samu_level[i].MinVoltage = cpu_to_be16(table->entries[i].v);
  772. pi->samu_level[i].ClkBypassCntl =
  773. (u8)kv_get_clk_bypass(rdev, table->entries[i].clk);
  774. ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
  775. table->entries[i].clk, false, &dividers);
  776. if (ret)
  777. return ret;
  778. pi->samu_level[i].Divider = (u8)dividers.post_div;
  779. pi->samu_level_count++;
  780. }
  781. ret = kv_copy_bytes_to_smc(rdev,
  782. pi->dpm_table_start +
  783. offsetof(SMU7_Fusion_DpmTable, SamuLevelCount),
  784. (u8 *)&pi->samu_level_count,
  785. sizeof(u8),
  786. pi->sram_end);
  787. if (ret)
  788. return ret;
  789. pi->samu_interval = 1;
  790. ret = kv_copy_bytes_to_smc(rdev,
  791. pi->dpm_table_start +
  792. offsetof(SMU7_Fusion_DpmTable, SAMUInterval),
  793. (u8 *)&pi->samu_interval,
  794. sizeof(u8),
  795. pi->sram_end);
  796. if (ret)
  797. return ret;
  798. ret = kv_copy_bytes_to_smc(rdev,
  799. pi->dpm_table_start +
  800. offsetof(SMU7_Fusion_DpmTable, SamuLevel),
  801. (u8 *)&pi->samu_level,
  802. sizeof(SMU7_Fusion_ExtClkLevel) * SMU7_MAX_LEVELS_SAMU,
  803. pi->sram_end);
  804. if (ret)
  805. return ret;
  806. return ret;
  807. }
  808. static int kv_populate_acp_table(struct radeon_device *rdev)
  809. {
  810. struct kv_power_info *pi = kv_get_pi(rdev);
  811. struct radeon_clock_voltage_dependency_table *table =
  812. &rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table;
  813. struct atom_clock_dividers dividers;
  814. int ret;
  815. u32 i;
  816. if (table == NULL || table->count == 0)
  817. return 0;
  818. pi->acp_level_count = 0;
  819. for (i = 0; i < table->count; i++) {
  820. pi->acp_level[i].Frequency = cpu_to_be32(table->entries[i].clk);
  821. pi->acp_level[i].MinVoltage = cpu_to_be16(table->entries[i].v);
  822. ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
  823. table->entries[i].clk, false, &dividers);
  824. if (ret)
  825. return ret;
  826. pi->acp_level[i].Divider = (u8)dividers.post_div;
  827. pi->acp_level_count++;
  828. }
  829. ret = kv_copy_bytes_to_smc(rdev,
  830. pi->dpm_table_start +
  831. offsetof(SMU7_Fusion_DpmTable, AcpLevelCount),
  832. (u8 *)&pi->acp_level_count,
  833. sizeof(u8),
  834. pi->sram_end);
  835. if (ret)
  836. return ret;
  837. pi->acp_interval = 1;
  838. ret = kv_copy_bytes_to_smc(rdev,
  839. pi->dpm_table_start +
  840. offsetof(SMU7_Fusion_DpmTable, ACPInterval),
  841. (u8 *)&pi->acp_interval,
  842. sizeof(u8),
  843. pi->sram_end);
  844. if (ret)
  845. return ret;
  846. ret = kv_copy_bytes_to_smc(rdev,
  847. pi->dpm_table_start +
  848. offsetof(SMU7_Fusion_DpmTable, AcpLevel),
  849. (u8 *)&pi->acp_level,
  850. sizeof(SMU7_Fusion_ExtClkLevel) * SMU7_MAX_LEVELS_ACP,
  851. pi->sram_end);
  852. if (ret)
  853. return ret;
  854. return ret;
  855. }
  856. static void kv_calculate_dfs_bypass_settings(struct radeon_device *rdev)
  857. {
  858. struct kv_power_info *pi = kv_get_pi(rdev);
  859. u32 i;
  860. struct radeon_clock_voltage_dependency_table *table =
  861. &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  862. if (table && table->count) {
  863. for (i = 0; i < pi->graphics_dpm_level_count; i++) {
  864. if (pi->caps_enable_dfs_bypass) {
  865. if (kv_get_clock_difference(table->entries[i].clk, 40000) < 200)
  866. pi->graphics_level[i].ClkBypassCntl = 3;
  867. else if (kv_get_clock_difference(table->entries[i].clk, 30000) < 200)
  868. pi->graphics_level[i].ClkBypassCntl = 2;
  869. else if (kv_get_clock_difference(table->entries[i].clk, 26600) < 200)
  870. pi->graphics_level[i].ClkBypassCntl = 7;
  871. else if (kv_get_clock_difference(table->entries[i].clk , 20000) < 200)
  872. pi->graphics_level[i].ClkBypassCntl = 6;
  873. else if (kv_get_clock_difference(table->entries[i].clk , 10000) < 200)
  874. pi->graphics_level[i].ClkBypassCntl = 8;
  875. else
  876. pi->graphics_level[i].ClkBypassCntl = 0;
  877. } else {
  878. pi->graphics_level[i].ClkBypassCntl = 0;
  879. }
  880. }
  881. } else {
  882. struct sumo_sclk_voltage_mapping_table *table =
  883. &pi->sys_info.sclk_voltage_mapping_table;
  884. for (i = 0; i < pi->graphics_dpm_level_count; i++) {
  885. if (pi->caps_enable_dfs_bypass) {
  886. if (kv_get_clock_difference(table->entries[i].sclk_frequency, 40000) < 200)
  887. pi->graphics_level[i].ClkBypassCntl = 3;
  888. else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 30000) < 200)
  889. pi->graphics_level[i].ClkBypassCntl = 2;
  890. else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 26600) < 200)
  891. pi->graphics_level[i].ClkBypassCntl = 7;
  892. else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 20000) < 200)
  893. pi->graphics_level[i].ClkBypassCntl = 6;
  894. else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 10000) < 200)
  895. pi->graphics_level[i].ClkBypassCntl = 8;
  896. else
  897. pi->graphics_level[i].ClkBypassCntl = 0;
  898. } else {
  899. pi->graphics_level[i].ClkBypassCntl = 0;
  900. }
  901. }
  902. }
  903. }
  904. static int kv_enable_ulv(struct radeon_device *rdev, bool enable)
  905. {
  906. return kv_notify_message_to_smu(rdev, enable ?
  907. PPSMC_MSG_EnableULV : PPSMC_MSG_DisableULV);
  908. }
  909. static void kv_reset_acp_boot_level(struct radeon_device *rdev)
  910. {
  911. struct kv_power_info *pi = kv_get_pi(rdev);
  912. pi->acp_boot_level = 0xff;
  913. }
  914. static void kv_update_current_ps(struct radeon_device *rdev,
  915. struct radeon_ps *rps)
  916. {
  917. struct kv_ps *new_ps = kv_get_ps(rps);
  918. struct kv_power_info *pi = kv_get_pi(rdev);
  919. pi->current_rps = *rps;
  920. pi->current_ps = *new_ps;
  921. pi->current_rps.ps_priv = &pi->current_ps;
  922. }
  923. static void kv_update_requested_ps(struct radeon_device *rdev,
  924. struct radeon_ps *rps)
  925. {
  926. struct kv_ps *new_ps = kv_get_ps(rps);
  927. struct kv_power_info *pi = kv_get_pi(rdev);
  928. pi->requested_rps = *rps;
  929. pi->requested_ps = *new_ps;
  930. pi->requested_rps.ps_priv = &pi->requested_ps;
  931. }
  932. int kv_dpm_enable(struct radeon_device *rdev)
  933. {
  934. struct kv_power_info *pi = kv_get_pi(rdev);
  935. int ret;
  936. cik_update_cg(rdev, (RADEON_CG_BLOCK_GFX |
  937. RADEON_CG_BLOCK_SDMA |
  938. RADEON_CG_BLOCK_BIF |
  939. RADEON_CG_BLOCK_HDP), false);
  940. ret = kv_process_firmware_header(rdev);
  941. if (ret) {
  942. DRM_ERROR("kv_process_firmware_header failed\n");
  943. return ret;
  944. }
  945. kv_init_fps_limits(rdev);
  946. kv_init_graphics_levels(rdev);
  947. ret = kv_program_bootup_state(rdev);
  948. if (ret) {
  949. DRM_ERROR("kv_program_bootup_state failed\n");
  950. return ret;
  951. }
  952. kv_calculate_dfs_bypass_settings(rdev);
  953. ret = kv_upload_dpm_settings(rdev);
  954. if (ret) {
  955. DRM_ERROR("kv_upload_dpm_settings failed\n");
  956. return ret;
  957. }
  958. ret = kv_populate_uvd_table(rdev);
  959. if (ret) {
  960. DRM_ERROR("kv_populate_uvd_table failed\n");
  961. return ret;
  962. }
  963. ret = kv_populate_vce_table(rdev);
  964. if (ret) {
  965. DRM_ERROR("kv_populate_vce_table failed\n");
  966. return ret;
  967. }
  968. ret = kv_populate_samu_table(rdev);
  969. if (ret) {
  970. DRM_ERROR("kv_populate_samu_table failed\n");
  971. return ret;
  972. }
  973. ret = kv_populate_acp_table(rdev);
  974. if (ret) {
  975. DRM_ERROR("kv_populate_acp_table failed\n");
  976. return ret;
  977. }
  978. kv_program_vc(rdev);
  979. #if 0
  980. kv_initialize_hardware_cac_manager(rdev);
  981. #endif
  982. kv_start_am(rdev);
  983. if (pi->enable_auto_thermal_throttling) {
  984. ret = kv_enable_auto_thermal_throttling(rdev);
  985. if (ret) {
  986. DRM_ERROR("kv_enable_auto_thermal_throttling failed\n");
  987. return ret;
  988. }
  989. }
  990. ret = kv_enable_dpm_voltage_scaling(rdev);
  991. if (ret) {
  992. DRM_ERROR("kv_enable_dpm_voltage_scaling failed\n");
  993. return ret;
  994. }
  995. ret = kv_set_dpm_interval(rdev);
  996. if (ret) {
  997. DRM_ERROR("kv_set_dpm_interval failed\n");
  998. return ret;
  999. }
  1000. ret = kv_set_dpm_boot_state(rdev);
  1001. if (ret) {
  1002. DRM_ERROR("kv_set_dpm_boot_state failed\n");
  1003. return ret;
  1004. }
  1005. ret = kv_enable_ulv(rdev, true);
  1006. if (ret) {
  1007. DRM_ERROR("kv_enable_ulv failed\n");
  1008. return ret;
  1009. }
  1010. kv_start_dpm(rdev);
  1011. ret = kv_enable_didt(rdev, true);
  1012. if (ret) {
  1013. DRM_ERROR("kv_enable_didt failed\n");
  1014. return ret;
  1015. }
  1016. ret = kv_enable_smc_cac(rdev, true);
  1017. if (ret) {
  1018. DRM_ERROR("kv_enable_smc_cac failed\n");
  1019. return ret;
  1020. }
  1021. kv_reset_acp_boot_level(rdev);
  1022. if (rdev->irq.installed &&
  1023. r600_is_internal_thermal_sensor(rdev->pm.int_thermal_type)) {
  1024. ret = kv_set_thermal_temperature_range(rdev, R600_TEMP_RANGE_MIN, R600_TEMP_RANGE_MAX);
  1025. if (ret) {
  1026. DRM_ERROR("kv_set_thermal_temperature_range failed\n");
  1027. return ret;
  1028. }
  1029. rdev->irq.dpm_thermal = true;
  1030. radeon_irq_set(rdev);
  1031. }
  1032. ret = kv_smc_bapm_enable(rdev, false);
  1033. if (ret) {
  1034. DRM_ERROR("kv_smc_bapm_enable failed\n");
  1035. return ret;
  1036. }
  1037. /* powerdown unused blocks for now */
  1038. kv_dpm_powergate_acp(rdev, true);
  1039. kv_dpm_powergate_samu(rdev, true);
  1040. kv_dpm_powergate_vce(rdev, true);
  1041. kv_dpm_powergate_uvd(rdev, true);
  1042. cik_update_cg(rdev, (RADEON_CG_BLOCK_GFX |
  1043. RADEON_CG_BLOCK_SDMA |
  1044. RADEON_CG_BLOCK_BIF |
  1045. RADEON_CG_BLOCK_HDP), true);
  1046. kv_update_current_ps(rdev, rdev->pm.dpm.boot_ps);
  1047. return ret;
  1048. }
  1049. void kv_dpm_disable(struct radeon_device *rdev)
  1050. {
  1051. cik_update_cg(rdev, (RADEON_CG_BLOCK_GFX |
  1052. RADEON_CG_BLOCK_SDMA |
  1053. RADEON_CG_BLOCK_BIF |
  1054. RADEON_CG_BLOCK_HDP), false);
  1055. kv_smc_bapm_enable(rdev, false);
  1056. /* powerup blocks */
  1057. kv_dpm_powergate_acp(rdev, false);
  1058. kv_dpm_powergate_samu(rdev, false);
  1059. kv_dpm_powergate_vce(rdev, false);
  1060. kv_dpm_powergate_uvd(rdev, false);
  1061. kv_enable_smc_cac(rdev, false);
  1062. kv_enable_didt(rdev, false);
  1063. kv_clear_vc(rdev);
  1064. kv_stop_dpm(rdev);
  1065. kv_enable_ulv(rdev, false);
  1066. kv_reset_am(rdev);
  1067. kv_update_current_ps(rdev, rdev->pm.dpm.boot_ps);
  1068. }
  1069. #if 0
  1070. static int kv_write_smc_soft_register(struct radeon_device *rdev,
  1071. u16 reg_offset, u32 value)
  1072. {
  1073. struct kv_power_info *pi = kv_get_pi(rdev);
  1074. return kv_copy_bytes_to_smc(rdev, pi->soft_regs_start + reg_offset,
  1075. (u8 *)&value, sizeof(u16), pi->sram_end);
  1076. }
  1077. static int kv_read_smc_soft_register(struct radeon_device *rdev,
  1078. u16 reg_offset, u32 *value)
  1079. {
  1080. struct kv_power_info *pi = kv_get_pi(rdev);
  1081. return kv_read_smc_sram_dword(rdev, pi->soft_regs_start + reg_offset,
  1082. value, pi->sram_end);
  1083. }
  1084. #endif
  1085. static void kv_init_sclk_t(struct radeon_device *rdev)
  1086. {
  1087. struct kv_power_info *pi = kv_get_pi(rdev);
  1088. pi->low_sclk_interrupt_t = 0;
  1089. }
  1090. static int kv_init_fps_limits(struct radeon_device *rdev)
  1091. {
  1092. struct kv_power_info *pi = kv_get_pi(rdev);
  1093. int ret = 0;
  1094. if (pi->caps_fps) {
  1095. u16 tmp;
  1096. tmp = 45;
  1097. pi->fps_high_t = cpu_to_be16(tmp);
  1098. ret = kv_copy_bytes_to_smc(rdev,
  1099. pi->dpm_table_start +
  1100. offsetof(SMU7_Fusion_DpmTable, FpsHighT),
  1101. (u8 *)&pi->fps_high_t,
  1102. sizeof(u16), pi->sram_end);
  1103. tmp = 30;
  1104. pi->fps_low_t = cpu_to_be16(tmp);
  1105. ret = kv_copy_bytes_to_smc(rdev,
  1106. pi->dpm_table_start +
  1107. offsetof(SMU7_Fusion_DpmTable, FpsLowT),
  1108. (u8 *)&pi->fps_low_t,
  1109. sizeof(u16), pi->sram_end);
  1110. }
  1111. return ret;
  1112. }
  1113. static void kv_init_powergate_state(struct radeon_device *rdev)
  1114. {
  1115. struct kv_power_info *pi = kv_get_pi(rdev);
  1116. pi->uvd_power_gated = false;
  1117. pi->vce_power_gated = false;
  1118. pi->samu_power_gated = false;
  1119. pi->acp_power_gated = false;
  1120. }
  1121. static int kv_enable_uvd_dpm(struct radeon_device *rdev, bool enable)
  1122. {
  1123. return kv_notify_message_to_smu(rdev, enable ?
  1124. PPSMC_MSG_UVDDPM_Enable : PPSMC_MSG_UVDDPM_Disable);
  1125. }
  1126. #if 0
  1127. static int kv_enable_vce_dpm(struct radeon_device *rdev, bool enable)
  1128. {
  1129. return kv_notify_message_to_smu(rdev, enable ?
  1130. PPSMC_MSG_VCEDPM_Enable : PPSMC_MSG_VCEDPM_Disable);
  1131. }
  1132. #endif
  1133. static int kv_enable_samu_dpm(struct radeon_device *rdev, bool enable)
  1134. {
  1135. return kv_notify_message_to_smu(rdev, enable ?
  1136. PPSMC_MSG_SAMUDPM_Enable : PPSMC_MSG_SAMUDPM_Disable);
  1137. }
  1138. static int kv_enable_acp_dpm(struct radeon_device *rdev, bool enable)
  1139. {
  1140. return kv_notify_message_to_smu(rdev, enable ?
  1141. PPSMC_MSG_ACPDPM_Enable : PPSMC_MSG_ACPDPM_Disable);
  1142. }
  1143. static int kv_update_uvd_dpm(struct radeon_device *rdev, bool gate)
  1144. {
  1145. struct kv_power_info *pi = kv_get_pi(rdev);
  1146. struct radeon_uvd_clock_voltage_dependency_table *table =
  1147. &rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table;
  1148. int ret;
  1149. if (!gate) {
  1150. if (!pi->caps_uvd_dpm || table->count || pi->caps_stable_p_state)
  1151. pi->uvd_boot_level = table->count - 1;
  1152. else
  1153. pi->uvd_boot_level = 0;
  1154. ret = kv_copy_bytes_to_smc(rdev,
  1155. pi->dpm_table_start +
  1156. offsetof(SMU7_Fusion_DpmTable, UvdBootLevel),
  1157. (uint8_t *)&pi->uvd_boot_level,
  1158. sizeof(u8), pi->sram_end);
  1159. if (ret)
  1160. return ret;
  1161. if (!pi->caps_uvd_dpm ||
  1162. pi->caps_stable_p_state)
  1163. kv_send_msg_to_smc_with_parameter(rdev,
  1164. PPSMC_MSG_UVDDPM_SetEnabledMask,
  1165. (1 << pi->uvd_boot_level));
  1166. }
  1167. return kv_enable_uvd_dpm(rdev, !gate);
  1168. }
  1169. #if 0
  1170. static u8 kv_get_vce_boot_level(struct radeon_device *rdev)
  1171. {
  1172. u8 i;
  1173. struct radeon_vce_clock_voltage_dependency_table *table =
  1174. &rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
  1175. for (i = 0; i < table->count; i++) {
  1176. if (table->entries[i].evclk >= 0) /* XXX */
  1177. break;
  1178. }
  1179. return i;
  1180. }
  1181. static int kv_update_vce_dpm(struct radeon_device *rdev,
  1182. struct radeon_ps *radeon_new_state,
  1183. struct radeon_ps *radeon_current_state)
  1184. {
  1185. struct kv_power_info *pi = kv_get_pi(rdev);
  1186. struct radeon_vce_clock_voltage_dependency_table *table =
  1187. &rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
  1188. int ret;
  1189. if (radeon_new_state->evclk > 0 && radeon_current_state->evclk == 0) {
  1190. if (pi->caps_stable_p_state)
  1191. pi->vce_boot_level = table->count - 1;
  1192. else
  1193. pi->vce_boot_level = kv_get_vce_boot_level(rdev);
  1194. ret = kv_copy_bytes_to_smc(rdev,
  1195. pi->dpm_table_start +
  1196. offsetof(SMU7_Fusion_DpmTable, VceBootLevel),
  1197. (u8 *)&pi->vce_boot_level,
  1198. sizeof(u8),
  1199. pi->sram_end);
  1200. if (ret)
  1201. return ret;
  1202. if (pi->caps_stable_p_state)
  1203. kv_send_msg_to_smc_with_parameter(rdev,
  1204. PPSMC_MSG_VCEDPM_SetEnabledMask,
  1205. (1 << pi->vce_boot_level));
  1206. kv_enable_vce_dpm(rdev, true);
  1207. } else if (radeon_new_state->evclk == 0 && radeon_current_state->evclk > 0) {
  1208. kv_enable_vce_dpm(rdev, false);
  1209. }
  1210. return 0;
  1211. }
  1212. #endif
  1213. static int kv_update_samu_dpm(struct radeon_device *rdev, bool gate)
  1214. {
  1215. struct kv_power_info *pi = kv_get_pi(rdev);
  1216. struct radeon_clock_voltage_dependency_table *table =
  1217. &rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table;
  1218. int ret;
  1219. if (!gate) {
  1220. if (pi->caps_stable_p_state)
  1221. pi->samu_boot_level = table->count - 1;
  1222. else
  1223. pi->samu_boot_level = 0;
  1224. ret = kv_copy_bytes_to_smc(rdev,
  1225. pi->dpm_table_start +
  1226. offsetof(SMU7_Fusion_DpmTable, SamuBootLevel),
  1227. (u8 *)&pi->samu_boot_level,
  1228. sizeof(u8),
  1229. pi->sram_end);
  1230. if (ret)
  1231. return ret;
  1232. if (pi->caps_stable_p_state)
  1233. kv_send_msg_to_smc_with_parameter(rdev,
  1234. PPSMC_MSG_SAMUDPM_SetEnabledMask,
  1235. (1 << pi->samu_boot_level));
  1236. }
  1237. return kv_enable_samu_dpm(rdev, !gate);
  1238. }
  1239. static u8 kv_get_acp_boot_level(struct radeon_device *rdev)
  1240. {
  1241. u8 i;
  1242. struct radeon_clock_voltage_dependency_table *table =
  1243. &rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table;
  1244. for (i = 0; i < table->count; i++) {
  1245. if (table->entries[i].clk >= 0) /* XXX */
  1246. break;
  1247. }
  1248. if (i >= table->count)
  1249. i = table->count - 1;
  1250. return i;
  1251. }
  1252. static void kv_update_acp_boot_level(struct radeon_device *rdev)
  1253. {
  1254. struct kv_power_info *pi = kv_get_pi(rdev);
  1255. u8 acp_boot_level;
  1256. if (!pi->caps_stable_p_state) {
  1257. acp_boot_level = kv_get_acp_boot_level(rdev);
  1258. if (acp_boot_level != pi->acp_boot_level) {
  1259. pi->acp_boot_level = acp_boot_level;
  1260. kv_send_msg_to_smc_with_parameter(rdev,
  1261. PPSMC_MSG_ACPDPM_SetEnabledMask,
  1262. (1 << pi->acp_boot_level));
  1263. }
  1264. }
  1265. }
  1266. static int kv_update_acp_dpm(struct radeon_device *rdev, bool gate)
  1267. {
  1268. struct kv_power_info *pi = kv_get_pi(rdev);
  1269. struct radeon_clock_voltage_dependency_table *table =
  1270. &rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table;
  1271. int ret;
  1272. if (!gate) {
  1273. if (pi->caps_stable_p_state)
  1274. pi->acp_boot_level = table->count - 1;
  1275. else
  1276. pi->acp_boot_level = kv_get_acp_boot_level(rdev);
  1277. ret = kv_copy_bytes_to_smc(rdev,
  1278. pi->dpm_table_start +
  1279. offsetof(SMU7_Fusion_DpmTable, AcpBootLevel),
  1280. (u8 *)&pi->acp_boot_level,
  1281. sizeof(u8),
  1282. pi->sram_end);
  1283. if (ret)
  1284. return ret;
  1285. if (pi->caps_stable_p_state)
  1286. kv_send_msg_to_smc_with_parameter(rdev,
  1287. PPSMC_MSG_ACPDPM_SetEnabledMask,
  1288. (1 << pi->acp_boot_level));
  1289. }
  1290. return kv_enable_acp_dpm(rdev, !gate);
  1291. }
  1292. void kv_dpm_powergate_uvd(struct radeon_device *rdev, bool gate)
  1293. {
  1294. struct kv_power_info *pi = kv_get_pi(rdev);
  1295. if (pi->uvd_power_gated == gate)
  1296. return;
  1297. pi->uvd_power_gated = gate;
  1298. if (gate) {
  1299. if (pi->caps_uvd_pg) {
  1300. uvd_v1_0_stop(rdev);
  1301. cik_update_cg(rdev, RADEON_CG_BLOCK_UVD, false);
  1302. }
  1303. kv_update_uvd_dpm(rdev, gate);
  1304. if (pi->caps_uvd_pg)
  1305. kv_notify_message_to_smu(rdev, PPSMC_MSG_UVDPowerOFF);
  1306. } else {
  1307. if (pi->caps_uvd_pg) {
  1308. kv_notify_message_to_smu(rdev, PPSMC_MSG_UVDPowerON);
  1309. uvd_v4_2_resume(rdev);
  1310. uvd_v1_0_start(rdev);
  1311. cik_update_cg(rdev, RADEON_CG_BLOCK_UVD, true);
  1312. }
  1313. kv_update_uvd_dpm(rdev, gate);
  1314. }
  1315. }
  1316. static void kv_dpm_powergate_vce(struct radeon_device *rdev, bool gate)
  1317. {
  1318. struct kv_power_info *pi = kv_get_pi(rdev);
  1319. if (pi->vce_power_gated == gate)
  1320. return;
  1321. pi->vce_power_gated = gate;
  1322. if (gate) {
  1323. if (pi->caps_vce_pg)
  1324. kv_notify_message_to_smu(rdev, PPSMC_MSG_VCEPowerOFF);
  1325. } else {
  1326. if (pi->caps_vce_pg)
  1327. kv_notify_message_to_smu(rdev, PPSMC_MSG_VCEPowerON);
  1328. }
  1329. }
  1330. static void kv_dpm_powergate_samu(struct radeon_device *rdev, bool gate)
  1331. {
  1332. struct kv_power_info *pi = kv_get_pi(rdev);
  1333. if (pi->samu_power_gated == gate)
  1334. return;
  1335. pi->samu_power_gated = gate;
  1336. if (gate) {
  1337. kv_update_samu_dpm(rdev, true);
  1338. if (pi->caps_samu_pg)
  1339. kv_notify_message_to_smu(rdev, PPSMC_MSG_SAMPowerOFF);
  1340. } else {
  1341. if (pi->caps_samu_pg)
  1342. kv_notify_message_to_smu(rdev, PPSMC_MSG_SAMPowerON);
  1343. kv_update_samu_dpm(rdev, false);
  1344. }
  1345. }
  1346. static void kv_dpm_powergate_acp(struct radeon_device *rdev, bool gate)
  1347. {
  1348. struct kv_power_info *pi = kv_get_pi(rdev);
  1349. if (pi->acp_power_gated == gate)
  1350. return;
  1351. if (rdev->family == CHIP_KABINI)
  1352. return;
  1353. pi->acp_power_gated = gate;
  1354. if (gate) {
  1355. kv_update_acp_dpm(rdev, true);
  1356. if (pi->caps_acp_pg)
  1357. kv_notify_message_to_smu(rdev, PPSMC_MSG_ACPPowerOFF);
  1358. } else {
  1359. if (pi->caps_acp_pg)
  1360. kv_notify_message_to_smu(rdev, PPSMC_MSG_ACPPowerON);
  1361. kv_update_acp_dpm(rdev, false);
  1362. }
  1363. }
  1364. static void kv_set_valid_clock_range(struct radeon_device *rdev,
  1365. struct radeon_ps *new_rps)
  1366. {
  1367. struct kv_ps *new_ps = kv_get_ps(new_rps);
  1368. struct kv_power_info *pi = kv_get_pi(rdev);
  1369. u32 i;
  1370. struct radeon_clock_voltage_dependency_table *table =
  1371. &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  1372. if (table && table->count) {
  1373. for (i = 0; i < pi->graphics_dpm_level_count; i++) {
  1374. if ((table->entries[i].clk >= new_ps->levels[0].sclk) ||
  1375. (i == (pi->graphics_dpm_level_count - 1))) {
  1376. pi->lowest_valid = i;
  1377. break;
  1378. }
  1379. }
  1380. for (i = pi->graphics_dpm_level_count - 1; i > 0; i--) {
  1381. if (table->entries[i].clk <= new_ps->levels[new_ps->num_levels - 1].sclk)
  1382. break;
  1383. }
  1384. pi->highest_valid = i;
  1385. if (pi->lowest_valid > pi->highest_valid) {
  1386. if ((new_ps->levels[0].sclk - table->entries[pi->highest_valid].clk) >
  1387. (table->entries[pi->lowest_valid].clk - new_ps->levels[new_ps->num_levels - 1].sclk))
  1388. pi->highest_valid = pi->lowest_valid;
  1389. else
  1390. pi->lowest_valid = pi->highest_valid;
  1391. }
  1392. } else {
  1393. struct sumo_sclk_voltage_mapping_table *table =
  1394. &pi->sys_info.sclk_voltage_mapping_table;
  1395. for (i = 0; i < (int)pi->graphics_dpm_level_count; i++) {
  1396. if (table->entries[i].sclk_frequency >= new_ps->levels[0].sclk ||
  1397. i == (int)(pi->graphics_dpm_level_count - 1)) {
  1398. pi->lowest_valid = i;
  1399. break;
  1400. }
  1401. }
  1402. for (i = pi->graphics_dpm_level_count - 1; i > 0; i--) {
  1403. if (table->entries[i].sclk_frequency <=
  1404. new_ps->levels[new_ps->num_levels - 1].sclk)
  1405. break;
  1406. }
  1407. pi->highest_valid = i;
  1408. if (pi->lowest_valid > pi->highest_valid) {
  1409. if ((new_ps->levels[0].sclk -
  1410. table->entries[pi->highest_valid].sclk_frequency) >
  1411. (table->entries[pi->lowest_valid].sclk_frequency -
  1412. new_ps->levels[new_ps->num_levels -1].sclk))
  1413. pi->highest_valid = pi->lowest_valid;
  1414. else
  1415. pi->lowest_valid = pi->highest_valid;
  1416. }
  1417. }
  1418. }
  1419. static int kv_update_dfs_bypass_settings(struct radeon_device *rdev,
  1420. struct radeon_ps *new_rps)
  1421. {
  1422. struct kv_ps *new_ps = kv_get_ps(new_rps);
  1423. struct kv_power_info *pi = kv_get_pi(rdev);
  1424. int ret = 0;
  1425. u8 clk_bypass_cntl;
  1426. if (pi->caps_enable_dfs_bypass) {
  1427. clk_bypass_cntl = new_ps->need_dfs_bypass ?
  1428. pi->graphics_level[pi->graphics_boot_level].ClkBypassCntl : 0;
  1429. ret = kv_copy_bytes_to_smc(rdev,
  1430. (pi->dpm_table_start +
  1431. offsetof(SMU7_Fusion_DpmTable, GraphicsLevel) +
  1432. (pi->graphics_boot_level * sizeof(SMU7_Fusion_GraphicsLevel)) +
  1433. offsetof(SMU7_Fusion_GraphicsLevel, ClkBypassCntl)),
  1434. &clk_bypass_cntl,
  1435. sizeof(u8), pi->sram_end);
  1436. }
  1437. return ret;
  1438. }
  1439. static int kv_enable_nb_dpm(struct radeon_device *rdev)
  1440. {
  1441. struct kv_power_info *pi = kv_get_pi(rdev);
  1442. int ret = 0;
  1443. if (pi->enable_nb_dpm && !pi->nb_dpm_enabled) {
  1444. ret = kv_notify_message_to_smu(rdev, PPSMC_MSG_NBDPM_Enable);
  1445. if (ret == 0)
  1446. pi->nb_dpm_enabled = true;
  1447. }
  1448. return ret;
  1449. }
  1450. int kv_dpm_force_performance_level(struct radeon_device *rdev,
  1451. enum radeon_dpm_forced_level level)
  1452. {
  1453. int ret;
  1454. if (level == RADEON_DPM_FORCED_LEVEL_HIGH) {
  1455. ret = kv_force_dpm_highest(rdev);
  1456. if (ret)
  1457. return ret;
  1458. } else if (level == RADEON_DPM_FORCED_LEVEL_LOW) {
  1459. ret = kv_force_dpm_lowest(rdev);
  1460. if (ret)
  1461. return ret;
  1462. } else if (level == RADEON_DPM_FORCED_LEVEL_AUTO) {
  1463. ret = kv_unforce_levels(rdev);
  1464. if (ret)
  1465. return ret;
  1466. }
  1467. rdev->pm.dpm.forced_level = level;
  1468. return 0;
  1469. }
  1470. int kv_dpm_pre_set_power_state(struct radeon_device *rdev)
  1471. {
  1472. struct kv_power_info *pi = kv_get_pi(rdev);
  1473. struct radeon_ps requested_ps = *rdev->pm.dpm.requested_ps;
  1474. struct radeon_ps *new_ps = &requested_ps;
  1475. kv_update_requested_ps(rdev, new_ps);
  1476. kv_apply_state_adjust_rules(rdev,
  1477. &pi->requested_rps,
  1478. &pi->current_rps);
  1479. return 0;
  1480. }
  1481. int kv_dpm_set_power_state(struct radeon_device *rdev)
  1482. {
  1483. struct kv_power_info *pi = kv_get_pi(rdev);
  1484. struct radeon_ps *new_ps = &pi->requested_rps;
  1485. /*struct radeon_ps *old_ps = &pi->current_rps;*/
  1486. int ret;
  1487. cik_update_cg(rdev, (RADEON_CG_BLOCK_GFX |
  1488. RADEON_CG_BLOCK_SDMA |
  1489. RADEON_CG_BLOCK_BIF |
  1490. RADEON_CG_BLOCK_HDP), false);
  1491. if (rdev->family == CHIP_KABINI) {
  1492. if (pi->enable_dpm) {
  1493. kv_set_valid_clock_range(rdev, new_ps);
  1494. kv_update_dfs_bypass_settings(rdev, new_ps);
  1495. ret = kv_calculate_ds_divider(rdev);
  1496. if (ret) {
  1497. DRM_ERROR("kv_calculate_ds_divider failed\n");
  1498. return ret;
  1499. }
  1500. kv_calculate_nbps_level_settings(rdev);
  1501. kv_calculate_dpm_settings(rdev);
  1502. kv_force_lowest_valid(rdev);
  1503. kv_enable_new_levels(rdev);
  1504. kv_upload_dpm_settings(rdev);
  1505. kv_program_nbps_index_settings(rdev, new_ps);
  1506. kv_unforce_levels(rdev);
  1507. kv_set_enabled_levels(rdev);
  1508. kv_force_lowest_valid(rdev);
  1509. kv_unforce_levels(rdev);
  1510. #if 0
  1511. ret = kv_update_vce_dpm(rdev, new_ps, old_ps);
  1512. if (ret) {
  1513. DRM_ERROR("kv_update_vce_dpm failed\n");
  1514. return ret;
  1515. }
  1516. #endif
  1517. kv_update_sclk_t(rdev);
  1518. }
  1519. } else {
  1520. if (pi->enable_dpm) {
  1521. kv_set_valid_clock_range(rdev, new_ps);
  1522. kv_update_dfs_bypass_settings(rdev, new_ps);
  1523. ret = kv_calculate_ds_divider(rdev);
  1524. if (ret) {
  1525. DRM_ERROR("kv_calculate_ds_divider failed\n");
  1526. return ret;
  1527. }
  1528. kv_calculate_nbps_level_settings(rdev);
  1529. kv_calculate_dpm_settings(rdev);
  1530. kv_freeze_sclk_dpm(rdev, true);
  1531. kv_upload_dpm_settings(rdev);
  1532. kv_program_nbps_index_settings(rdev, new_ps);
  1533. kv_freeze_sclk_dpm(rdev, false);
  1534. kv_set_enabled_levels(rdev);
  1535. #if 0
  1536. ret = kv_update_vce_dpm(rdev, new_ps, old_ps);
  1537. if (ret) {
  1538. DRM_ERROR("kv_update_vce_dpm failed\n");
  1539. return ret;
  1540. }
  1541. #endif
  1542. kv_update_acp_boot_level(rdev);
  1543. kv_update_sclk_t(rdev);
  1544. kv_enable_nb_dpm(rdev);
  1545. }
  1546. }
  1547. cik_update_cg(rdev, (RADEON_CG_BLOCK_GFX |
  1548. RADEON_CG_BLOCK_SDMA |
  1549. RADEON_CG_BLOCK_BIF |
  1550. RADEON_CG_BLOCK_HDP), true);
  1551. rdev->pm.dpm.forced_level = RADEON_DPM_FORCED_LEVEL_AUTO;
  1552. return 0;
  1553. }
  1554. void kv_dpm_post_set_power_state(struct radeon_device *rdev)
  1555. {
  1556. struct kv_power_info *pi = kv_get_pi(rdev);
  1557. struct radeon_ps *new_ps = &pi->requested_rps;
  1558. kv_update_current_ps(rdev, new_ps);
  1559. }
  1560. void kv_dpm_setup_asic(struct radeon_device *rdev)
  1561. {
  1562. sumo_take_smu_control(rdev, true);
  1563. kv_init_powergate_state(rdev);
  1564. kv_init_sclk_t(rdev);
  1565. }
  1566. void kv_dpm_reset_asic(struct radeon_device *rdev)
  1567. {
  1568. struct kv_power_info *pi = kv_get_pi(rdev);
  1569. if (rdev->family == CHIP_KABINI) {
  1570. kv_force_lowest_valid(rdev);
  1571. kv_init_graphics_levels(rdev);
  1572. kv_program_bootup_state(rdev);
  1573. kv_upload_dpm_settings(rdev);
  1574. kv_force_lowest_valid(rdev);
  1575. kv_unforce_levels(rdev);
  1576. } else {
  1577. kv_init_graphics_levels(rdev);
  1578. kv_program_bootup_state(rdev);
  1579. kv_freeze_sclk_dpm(rdev, true);
  1580. kv_upload_dpm_settings(rdev);
  1581. kv_freeze_sclk_dpm(rdev, false);
  1582. kv_set_enabled_level(rdev, pi->graphics_boot_level);
  1583. }
  1584. }
  1585. //XXX use sumo_dpm_display_configuration_changed
  1586. static void kv_construct_max_power_limits_table(struct radeon_device *rdev,
  1587. struct radeon_clock_and_voltage_limits *table)
  1588. {
  1589. struct kv_power_info *pi = kv_get_pi(rdev);
  1590. if (pi->sys_info.sclk_voltage_mapping_table.num_max_dpm_entries > 0) {
  1591. int idx = pi->sys_info.sclk_voltage_mapping_table.num_max_dpm_entries - 1;
  1592. table->sclk =
  1593. pi->sys_info.sclk_voltage_mapping_table.entries[idx].sclk_frequency;
  1594. table->vddc =
  1595. kv_convert_2bit_index_to_voltage(rdev,
  1596. pi->sys_info.sclk_voltage_mapping_table.entries[idx].vid_2bit);
  1597. }
  1598. table->mclk = pi->sys_info.nbp_memory_clock[0];
  1599. }
  1600. static void kv_patch_voltage_values(struct radeon_device *rdev)
  1601. {
  1602. int i;
  1603. struct radeon_uvd_clock_voltage_dependency_table *table =
  1604. &rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table;
  1605. if (table->count) {
  1606. for (i = 0; i < table->count; i++)
  1607. table->entries[i].v =
  1608. kv_convert_8bit_index_to_voltage(rdev,
  1609. table->entries[i].v);
  1610. }
  1611. }
  1612. static void kv_construct_boot_state(struct radeon_device *rdev)
  1613. {
  1614. struct kv_power_info *pi = kv_get_pi(rdev);
  1615. pi->boot_pl.sclk = pi->sys_info.bootup_sclk;
  1616. pi->boot_pl.vddc_index = pi->sys_info.bootup_nb_voltage_index;
  1617. pi->boot_pl.ds_divider_index = 0;
  1618. pi->boot_pl.ss_divider_index = 0;
  1619. pi->boot_pl.allow_gnb_slow = 1;
  1620. pi->boot_pl.force_nbp_state = 0;
  1621. pi->boot_pl.display_wm = 0;
  1622. pi->boot_pl.vce_wm = 0;
  1623. }
  1624. static int kv_force_dpm_highest(struct radeon_device *rdev)
  1625. {
  1626. int ret;
  1627. u32 enable_mask, i;
  1628. ret = kv_dpm_get_enable_mask(rdev, &enable_mask);
  1629. if (ret)
  1630. return ret;
  1631. for (i = SMU7_MAX_LEVELS_GRAPHICS - 1; i > 0; i--) {
  1632. if (enable_mask & (1 << i))
  1633. break;
  1634. }
  1635. if (rdev->family == CHIP_KABINI)
  1636. return kv_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_DPM_ForceState, i);
  1637. else
  1638. return kv_set_enabled_level(rdev, i);
  1639. }
  1640. static int kv_force_dpm_lowest(struct radeon_device *rdev)
  1641. {
  1642. int ret;
  1643. u32 enable_mask, i;
  1644. ret = kv_dpm_get_enable_mask(rdev, &enable_mask);
  1645. if (ret)
  1646. return ret;
  1647. for (i = 0; i < SMU7_MAX_LEVELS_GRAPHICS; i++) {
  1648. if (enable_mask & (1 << i))
  1649. break;
  1650. }
  1651. if (rdev->family == CHIP_KABINI)
  1652. return kv_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_DPM_ForceState, i);
  1653. else
  1654. return kv_set_enabled_level(rdev, i);
  1655. }
  1656. static u8 kv_get_sleep_divider_id_from_clock(struct radeon_device *rdev,
  1657. u32 sclk, u32 min_sclk_in_sr)
  1658. {
  1659. struct kv_power_info *pi = kv_get_pi(rdev);
  1660. u32 i;
  1661. u32 temp;
  1662. u32 min = (min_sclk_in_sr > KV_MINIMUM_ENGINE_CLOCK) ?
  1663. min_sclk_in_sr : KV_MINIMUM_ENGINE_CLOCK;
  1664. if (sclk < min)
  1665. return 0;
  1666. if (!pi->caps_sclk_ds)
  1667. return 0;
  1668. for (i = KV_MAX_DEEPSLEEP_DIVIDER_ID; i > 0; i--) {
  1669. temp = sclk / sumo_get_sleep_divider_from_id(i);
  1670. if (temp >= min)
  1671. break;
  1672. }
  1673. return (u8)i;
  1674. }
  1675. static int kv_get_high_voltage_limit(struct radeon_device *rdev, int *limit)
  1676. {
  1677. struct kv_power_info *pi = kv_get_pi(rdev);
  1678. struct radeon_clock_voltage_dependency_table *table =
  1679. &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  1680. int i;
  1681. if (table && table->count) {
  1682. for (i = table->count - 1; i >= 0; i--) {
  1683. if (pi->high_voltage_t &&
  1684. (kv_convert_8bit_index_to_voltage(rdev, table->entries[i].v) <=
  1685. pi->high_voltage_t)) {
  1686. *limit = i;
  1687. return 0;
  1688. }
  1689. }
  1690. } else {
  1691. struct sumo_sclk_voltage_mapping_table *table =
  1692. &pi->sys_info.sclk_voltage_mapping_table;
  1693. for (i = table->num_max_dpm_entries - 1; i >= 0; i--) {
  1694. if (pi->high_voltage_t &&
  1695. (kv_convert_2bit_index_to_voltage(rdev, table->entries[i].vid_2bit) <=
  1696. pi->high_voltage_t)) {
  1697. *limit = i;
  1698. return 0;
  1699. }
  1700. }
  1701. }
  1702. *limit = 0;
  1703. return 0;
  1704. }
  1705. static void kv_apply_state_adjust_rules(struct radeon_device *rdev,
  1706. struct radeon_ps *new_rps,
  1707. struct radeon_ps *old_rps)
  1708. {
  1709. struct kv_ps *ps = kv_get_ps(new_rps);
  1710. struct kv_power_info *pi = kv_get_pi(rdev);
  1711. u32 min_sclk = 10000; /* ??? */
  1712. u32 sclk, mclk = 0;
  1713. int i, limit;
  1714. bool force_high;
  1715. struct radeon_clock_voltage_dependency_table *table =
  1716. &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  1717. u32 stable_p_state_sclk = 0;
  1718. struct radeon_clock_and_voltage_limits *max_limits =
  1719. &rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac;
  1720. mclk = max_limits->mclk;
  1721. sclk = min_sclk;
  1722. if (pi->caps_stable_p_state) {
  1723. stable_p_state_sclk = (max_limits->sclk * 75) / 100;
  1724. for (i = table->count - 1; i >= 0; i++) {
  1725. if (stable_p_state_sclk >= table->entries[i].clk) {
  1726. stable_p_state_sclk = table->entries[i].clk;
  1727. break;
  1728. }
  1729. }
  1730. if (i > 0)
  1731. stable_p_state_sclk = table->entries[0].clk;
  1732. sclk = stable_p_state_sclk;
  1733. }
  1734. ps->need_dfs_bypass = true;
  1735. for (i = 0; i < ps->num_levels; i++) {
  1736. if (ps->levels[i].sclk < sclk)
  1737. ps->levels[i].sclk = sclk;
  1738. }
  1739. if (table && table->count) {
  1740. for (i = 0; i < ps->num_levels; i++) {
  1741. if (pi->high_voltage_t &&
  1742. (pi->high_voltage_t <
  1743. kv_convert_8bit_index_to_voltage(rdev, ps->levels[i].vddc_index))) {
  1744. kv_get_high_voltage_limit(rdev, &limit);
  1745. ps->levels[i].sclk = table->entries[limit].clk;
  1746. }
  1747. }
  1748. } else {
  1749. struct sumo_sclk_voltage_mapping_table *table =
  1750. &pi->sys_info.sclk_voltage_mapping_table;
  1751. for (i = 0; i < ps->num_levels; i++) {
  1752. if (pi->high_voltage_t &&
  1753. (pi->high_voltage_t <
  1754. kv_convert_8bit_index_to_voltage(rdev, ps->levels[i].vddc_index))) {
  1755. kv_get_high_voltage_limit(rdev, &limit);
  1756. ps->levels[i].sclk = table->entries[limit].sclk_frequency;
  1757. }
  1758. }
  1759. }
  1760. if (pi->caps_stable_p_state) {
  1761. for (i = 0; i < ps->num_levels; i++) {
  1762. ps->levels[i].sclk = stable_p_state_sclk;
  1763. }
  1764. }
  1765. pi->video_start = new_rps->dclk || new_rps->vclk;
  1766. if ((new_rps->class & ATOM_PPLIB_CLASSIFICATION_UI_MASK) ==
  1767. ATOM_PPLIB_CLASSIFICATION_UI_BATTERY)
  1768. pi->battery_state = true;
  1769. else
  1770. pi->battery_state = false;
  1771. if (rdev->family == CHIP_KABINI) {
  1772. ps->dpm0_pg_nb_ps_lo = 0x1;
  1773. ps->dpm0_pg_nb_ps_hi = 0x0;
  1774. ps->dpmx_nb_ps_lo = 0x1;
  1775. ps->dpmx_nb_ps_hi = 0x0;
  1776. } else {
  1777. ps->dpm0_pg_nb_ps_lo = 0x3;
  1778. ps->dpm0_pg_nb_ps_hi = 0x0;
  1779. ps->dpmx_nb_ps_lo = 0x3;
  1780. ps->dpmx_nb_ps_hi = 0x0;
  1781. if (pi->sys_info.nb_dpm_enable) {
  1782. force_high = (mclk >= pi->sys_info.nbp_memory_clock[3]) ||
  1783. pi->video_start || (rdev->pm.dpm.new_active_crtc_count >= 3) ||
  1784. pi->disable_nb_ps3_in_battery;
  1785. ps->dpm0_pg_nb_ps_lo = force_high ? 0x2 : 0x3;
  1786. ps->dpm0_pg_nb_ps_hi = 0x2;
  1787. ps->dpmx_nb_ps_lo = force_high ? 0x2 : 0x3;
  1788. ps->dpmx_nb_ps_hi = 0x2;
  1789. }
  1790. }
  1791. }
  1792. static void kv_dpm_power_level_enabled_for_throttle(struct radeon_device *rdev,
  1793. u32 index, bool enable)
  1794. {
  1795. struct kv_power_info *pi = kv_get_pi(rdev);
  1796. pi->graphics_level[index].EnabledForThrottle = enable ? 1 : 0;
  1797. }
  1798. static int kv_calculate_ds_divider(struct radeon_device *rdev)
  1799. {
  1800. struct kv_power_info *pi = kv_get_pi(rdev);
  1801. u32 sclk_in_sr = 10000; /* ??? */
  1802. u32 i;
  1803. if (pi->lowest_valid > pi->highest_valid)
  1804. return -EINVAL;
  1805. for (i = pi->lowest_valid; i <= pi->highest_valid; i++) {
  1806. pi->graphics_level[i].DeepSleepDivId =
  1807. kv_get_sleep_divider_id_from_clock(rdev,
  1808. be32_to_cpu(pi->graphics_level[i].SclkFrequency),
  1809. sclk_in_sr);
  1810. }
  1811. return 0;
  1812. }
  1813. static int kv_calculate_nbps_level_settings(struct radeon_device *rdev)
  1814. {
  1815. struct kv_power_info *pi = kv_get_pi(rdev);
  1816. u32 i;
  1817. bool force_high;
  1818. struct radeon_clock_and_voltage_limits *max_limits =
  1819. &rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac;
  1820. u32 mclk = max_limits->mclk;
  1821. if (pi->lowest_valid > pi->highest_valid)
  1822. return -EINVAL;
  1823. if (rdev->family == CHIP_KABINI) {
  1824. for (i = pi->lowest_valid; i <= pi->highest_valid; i++) {
  1825. pi->graphics_level[i].GnbSlow = 1;
  1826. pi->graphics_level[i].ForceNbPs1 = 0;
  1827. pi->graphics_level[i].UpH = 0;
  1828. }
  1829. if (!pi->sys_info.nb_dpm_enable)
  1830. return 0;
  1831. force_high = ((mclk >= pi->sys_info.nbp_memory_clock[3]) ||
  1832. (rdev->pm.dpm.new_active_crtc_count >= 3) || pi->video_start);
  1833. if (force_high) {
  1834. for (i = pi->lowest_valid; i <= pi->highest_valid; i++)
  1835. pi->graphics_level[i].GnbSlow = 0;
  1836. } else {
  1837. if (pi->battery_state)
  1838. pi->graphics_level[0].ForceNbPs1 = 1;
  1839. pi->graphics_level[1].GnbSlow = 0;
  1840. pi->graphics_level[2].GnbSlow = 0;
  1841. pi->graphics_level[3].GnbSlow = 0;
  1842. pi->graphics_level[4].GnbSlow = 0;
  1843. }
  1844. } else {
  1845. for (i = pi->lowest_valid; i <= pi->highest_valid; i++) {
  1846. pi->graphics_level[i].GnbSlow = 1;
  1847. pi->graphics_level[i].ForceNbPs1 = 0;
  1848. pi->graphics_level[i].UpH = 0;
  1849. }
  1850. if (pi->sys_info.nb_dpm_enable && pi->battery_state) {
  1851. pi->graphics_level[pi->lowest_valid].UpH = 0x28;
  1852. pi->graphics_level[pi->lowest_valid].GnbSlow = 0;
  1853. if (pi->lowest_valid != pi->highest_valid)
  1854. pi->graphics_level[pi->lowest_valid].ForceNbPs1 = 1;
  1855. }
  1856. }
  1857. return 0;
  1858. }
  1859. static int kv_calculate_dpm_settings(struct radeon_device *rdev)
  1860. {
  1861. struct kv_power_info *pi = kv_get_pi(rdev);
  1862. u32 i;
  1863. if (pi->lowest_valid > pi->highest_valid)
  1864. return -EINVAL;
  1865. for (i = pi->lowest_valid; i <= pi->highest_valid; i++)
  1866. pi->graphics_level[i].DisplayWatermark = (i == pi->highest_valid) ? 1 : 0;
  1867. return 0;
  1868. }
  1869. static void kv_init_graphics_levels(struct radeon_device *rdev)
  1870. {
  1871. struct kv_power_info *pi = kv_get_pi(rdev);
  1872. u32 i;
  1873. struct radeon_clock_voltage_dependency_table *table =
  1874. &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  1875. if (table && table->count) {
  1876. u32 vid_2bit;
  1877. pi->graphics_dpm_level_count = 0;
  1878. for (i = 0; i < table->count; i++) {
  1879. if (pi->high_voltage_t &&
  1880. (pi->high_voltage_t <
  1881. kv_convert_8bit_index_to_voltage(rdev, table->entries[i].v)))
  1882. break;
  1883. kv_set_divider_value(rdev, i, table->entries[i].clk);
  1884. vid_2bit = sumo_convert_vid7_to_vid2(rdev,
  1885. &pi->sys_info.vid_mapping_table,
  1886. table->entries[i].v);
  1887. kv_set_vid(rdev, i, vid_2bit);
  1888. kv_set_at(rdev, i, pi->at[i]);
  1889. kv_dpm_power_level_enabled_for_throttle(rdev, i, true);
  1890. pi->graphics_dpm_level_count++;
  1891. }
  1892. } else {
  1893. struct sumo_sclk_voltage_mapping_table *table =
  1894. &pi->sys_info.sclk_voltage_mapping_table;
  1895. pi->graphics_dpm_level_count = 0;
  1896. for (i = 0; i < table->num_max_dpm_entries; i++) {
  1897. if (pi->high_voltage_t &&
  1898. pi->high_voltage_t <
  1899. kv_convert_2bit_index_to_voltage(rdev, table->entries[i].vid_2bit))
  1900. break;
  1901. kv_set_divider_value(rdev, i, table->entries[i].sclk_frequency);
  1902. kv_set_vid(rdev, i, table->entries[i].vid_2bit);
  1903. kv_set_at(rdev, i, pi->at[i]);
  1904. kv_dpm_power_level_enabled_for_throttle(rdev, i, true);
  1905. pi->graphics_dpm_level_count++;
  1906. }
  1907. }
  1908. for (i = 0; i < SMU7_MAX_LEVELS_GRAPHICS; i++)
  1909. kv_dpm_power_level_enable(rdev, i, false);
  1910. }
  1911. static void kv_enable_new_levels(struct radeon_device *rdev)
  1912. {
  1913. struct kv_power_info *pi = kv_get_pi(rdev);
  1914. u32 i;
  1915. for (i = 0; i < SMU7_MAX_LEVELS_GRAPHICS; i++) {
  1916. if (i >= pi->lowest_valid && i <= pi->highest_valid)
  1917. kv_dpm_power_level_enable(rdev, i, true);
  1918. }
  1919. }
  1920. static int kv_set_enabled_level(struct radeon_device *rdev, u32 level)
  1921. {
  1922. u32 new_mask = (1 << level);
  1923. return kv_send_msg_to_smc_with_parameter(rdev,
  1924. PPSMC_MSG_SCLKDPM_SetEnabledMask,
  1925. new_mask);
  1926. }
  1927. static int kv_set_enabled_levels(struct radeon_device *rdev)
  1928. {
  1929. struct kv_power_info *pi = kv_get_pi(rdev);
  1930. u32 i, new_mask = 0;
  1931. for (i = pi->lowest_valid; i <= pi->highest_valid; i++)
  1932. new_mask |= (1 << i);
  1933. return kv_send_msg_to_smc_with_parameter(rdev,
  1934. PPSMC_MSG_SCLKDPM_SetEnabledMask,
  1935. new_mask);
  1936. }
  1937. static void kv_program_nbps_index_settings(struct radeon_device *rdev,
  1938. struct radeon_ps *new_rps)
  1939. {
  1940. struct kv_ps *new_ps = kv_get_ps(new_rps);
  1941. struct kv_power_info *pi = kv_get_pi(rdev);
  1942. u32 nbdpmconfig1;
  1943. if (rdev->family == CHIP_KABINI)
  1944. return;
  1945. if (pi->sys_info.nb_dpm_enable) {
  1946. nbdpmconfig1 = RREG32_SMC(NB_DPM_CONFIG_1);
  1947. nbdpmconfig1 &= ~(Dpm0PgNbPsLo_MASK | Dpm0PgNbPsHi_MASK |
  1948. DpmXNbPsLo_MASK | DpmXNbPsHi_MASK);
  1949. nbdpmconfig1 |= (Dpm0PgNbPsLo(new_ps->dpm0_pg_nb_ps_lo) |
  1950. Dpm0PgNbPsHi(new_ps->dpm0_pg_nb_ps_hi) |
  1951. DpmXNbPsLo(new_ps->dpmx_nb_ps_lo) |
  1952. DpmXNbPsHi(new_ps->dpmx_nb_ps_hi));
  1953. WREG32_SMC(NB_DPM_CONFIG_1, nbdpmconfig1);
  1954. }
  1955. }
  1956. static int kv_set_thermal_temperature_range(struct radeon_device *rdev,
  1957. int min_temp, int max_temp)
  1958. {
  1959. int low_temp = 0 * 1000;
  1960. int high_temp = 255 * 1000;
  1961. u32 tmp;
  1962. if (low_temp < min_temp)
  1963. low_temp = min_temp;
  1964. if (high_temp > max_temp)
  1965. high_temp = max_temp;
  1966. if (high_temp < low_temp) {
  1967. DRM_ERROR("invalid thermal range: %d - %d\n", low_temp, high_temp);
  1968. return -EINVAL;
  1969. }
  1970. tmp = RREG32_SMC(CG_THERMAL_INT_CTRL);
  1971. tmp &= ~(DIG_THERM_INTH_MASK | DIG_THERM_INTL_MASK);
  1972. tmp |= (DIG_THERM_INTH(49 + (high_temp / 1000)) |
  1973. DIG_THERM_INTL(49 + (low_temp / 1000)));
  1974. WREG32_SMC(CG_THERMAL_INT_CTRL, tmp);
  1975. rdev->pm.dpm.thermal.min_temp = low_temp;
  1976. rdev->pm.dpm.thermal.max_temp = high_temp;
  1977. return 0;
  1978. }
  1979. union igp_info {
  1980. struct _ATOM_INTEGRATED_SYSTEM_INFO info;
  1981. struct _ATOM_INTEGRATED_SYSTEM_INFO_V2 info_2;
  1982. struct _ATOM_INTEGRATED_SYSTEM_INFO_V5 info_5;
  1983. struct _ATOM_INTEGRATED_SYSTEM_INFO_V6 info_6;
  1984. struct _ATOM_INTEGRATED_SYSTEM_INFO_V1_7 info_7;
  1985. struct _ATOM_INTEGRATED_SYSTEM_INFO_V1_8 info_8;
  1986. };
  1987. static int kv_parse_sys_info_table(struct radeon_device *rdev)
  1988. {
  1989. struct kv_power_info *pi = kv_get_pi(rdev);
  1990. struct radeon_mode_info *mode_info = &rdev->mode_info;
  1991. int index = GetIndexIntoMasterTable(DATA, IntegratedSystemInfo);
  1992. union igp_info *igp_info;
  1993. u8 frev, crev;
  1994. u16 data_offset;
  1995. int i;
  1996. if (atom_parse_data_header(mode_info->atom_context, index, NULL,
  1997. &frev, &crev, &data_offset)) {
  1998. igp_info = (union igp_info *)(mode_info->atom_context->bios +
  1999. data_offset);
  2000. if (crev != 8) {
  2001. DRM_ERROR("Unsupported IGP table: %d %d\n", frev, crev);
  2002. return -EINVAL;
  2003. }
  2004. pi->sys_info.bootup_sclk = le32_to_cpu(igp_info->info_8.ulBootUpEngineClock);
  2005. pi->sys_info.bootup_uma_clk = le32_to_cpu(igp_info->info_8.ulBootUpUMAClock);
  2006. pi->sys_info.bootup_nb_voltage_index =
  2007. le16_to_cpu(igp_info->info_8.usBootUpNBVoltage);
  2008. if (igp_info->info_8.ucHtcTmpLmt == 0)
  2009. pi->sys_info.htc_tmp_lmt = 203;
  2010. else
  2011. pi->sys_info.htc_tmp_lmt = igp_info->info_8.ucHtcTmpLmt;
  2012. if (igp_info->info_8.ucHtcHystLmt == 0)
  2013. pi->sys_info.htc_hyst_lmt = 5;
  2014. else
  2015. pi->sys_info.htc_hyst_lmt = igp_info->info_8.ucHtcHystLmt;
  2016. if (pi->sys_info.htc_tmp_lmt <= pi->sys_info.htc_hyst_lmt) {
  2017. DRM_ERROR("The htcTmpLmt should be larger than htcHystLmt.\n");
  2018. }
  2019. if (le32_to_cpu(igp_info->info_8.ulSystemConfig) & (1 << 3))
  2020. pi->sys_info.nb_dpm_enable = true;
  2021. else
  2022. pi->sys_info.nb_dpm_enable = false;
  2023. for (i = 0; i < KV_NUM_NBPSTATES; i++) {
  2024. pi->sys_info.nbp_memory_clock[i] =
  2025. le32_to_cpu(igp_info->info_8.ulNbpStateMemclkFreq[i]);
  2026. pi->sys_info.nbp_n_clock[i] =
  2027. le32_to_cpu(igp_info->info_8.ulNbpStateNClkFreq[i]);
  2028. }
  2029. if (le32_to_cpu(igp_info->info_8.ulGPUCapInfo) &
  2030. SYS_INFO_GPUCAPS__ENABEL_DFS_BYPASS)
  2031. pi->caps_enable_dfs_bypass = true;
  2032. sumo_construct_sclk_voltage_mapping_table(rdev,
  2033. &pi->sys_info.sclk_voltage_mapping_table,
  2034. igp_info->info_8.sAvail_SCLK);
  2035. sumo_construct_vid_mapping_table(rdev,
  2036. &pi->sys_info.vid_mapping_table,
  2037. igp_info->info_8.sAvail_SCLK);
  2038. kv_construct_max_power_limits_table(rdev,
  2039. &rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac);
  2040. }
  2041. return 0;
  2042. }
  2043. union power_info {
  2044. struct _ATOM_POWERPLAY_INFO info;
  2045. struct _ATOM_POWERPLAY_INFO_V2 info_2;
  2046. struct _ATOM_POWERPLAY_INFO_V3 info_3;
  2047. struct _ATOM_PPLIB_POWERPLAYTABLE pplib;
  2048. struct _ATOM_PPLIB_POWERPLAYTABLE2 pplib2;
  2049. struct _ATOM_PPLIB_POWERPLAYTABLE3 pplib3;
  2050. };
  2051. union pplib_clock_info {
  2052. struct _ATOM_PPLIB_R600_CLOCK_INFO r600;
  2053. struct _ATOM_PPLIB_RS780_CLOCK_INFO rs780;
  2054. struct _ATOM_PPLIB_EVERGREEN_CLOCK_INFO evergreen;
  2055. struct _ATOM_PPLIB_SUMO_CLOCK_INFO sumo;
  2056. };
  2057. union pplib_power_state {
  2058. struct _ATOM_PPLIB_STATE v1;
  2059. struct _ATOM_PPLIB_STATE_V2 v2;
  2060. };
  2061. static void kv_patch_boot_state(struct radeon_device *rdev,
  2062. struct kv_ps *ps)
  2063. {
  2064. struct kv_power_info *pi = kv_get_pi(rdev);
  2065. ps->num_levels = 1;
  2066. ps->levels[0] = pi->boot_pl;
  2067. }
  2068. static void kv_parse_pplib_non_clock_info(struct radeon_device *rdev,
  2069. struct radeon_ps *rps,
  2070. struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info,
  2071. u8 table_rev)
  2072. {
  2073. struct kv_ps *ps = kv_get_ps(rps);
  2074. rps->caps = le32_to_cpu(non_clock_info->ulCapsAndSettings);
  2075. rps->class = le16_to_cpu(non_clock_info->usClassification);
  2076. rps->class2 = le16_to_cpu(non_clock_info->usClassification2);
  2077. if (ATOM_PPLIB_NONCLOCKINFO_VER1 < table_rev) {
  2078. rps->vclk = le32_to_cpu(non_clock_info->ulVCLK);
  2079. rps->dclk = le32_to_cpu(non_clock_info->ulDCLK);
  2080. } else {
  2081. rps->vclk = 0;
  2082. rps->dclk = 0;
  2083. }
  2084. if (rps->class & ATOM_PPLIB_CLASSIFICATION_BOOT) {
  2085. rdev->pm.dpm.boot_ps = rps;
  2086. kv_patch_boot_state(rdev, ps);
  2087. }
  2088. if (rps->class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE)
  2089. rdev->pm.dpm.uvd_ps = rps;
  2090. }
  2091. static void kv_parse_pplib_clock_info(struct radeon_device *rdev,
  2092. struct radeon_ps *rps, int index,
  2093. union pplib_clock_info *clock_info)
  2094. {
  2095. struct kv_power_info *pi = kv_get_pi(rdev);
  2096. struct kv_ps *ps = kv_get_ps(rps);
  2097. struct kv_pl *pl = &ps->levels[index];
  2098. u32 sclk;
  2099. sclk = le16_to_cpu(clock_info->sumo.usEngineClockLow);
  2100. sclk |= clock_info->sumo.ucEngineClockHigh << 16;
  2101. pl->sclk = sclk;
  2102. pl->vddc_index = clock_info->sumo.vddcIndex;
  2103. ps->num_levels = index + 1;
  2104. if (pi->caps_sclk_ds) {
  2105. pl->ds_divider_index = 5;
  2106. pl->ss_divider_index = 5;
  2107. }
  2108. }
  2109. static int kv_parse_power_table(struct radeon_device *rdev)
  2110. {
  2111. struct radeon_mode_info *mode_info = &rdev->mode_info;
  2112. struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info;
  2113. union pplib_power_state *power_state;
  2114. int i, j, k, non_clock_array_index, clock_array_index;
  2115. union pplib_clock_info *clock_info;
  2116. struct _StateArray *state_array;
  2117. struct _ClockInfoArray *clock_info_array;
  2118. struct _NonClockInfoArray *non_clock_info_array;
  2119. union power_info *power_info;
  2120. int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
  2121. u16 data_offset;
  2122. u8 frev, crev;
  2123. u8 *power_state_offset;
  2124. struct kv_ps *ps;
  2125. if (!atom_parse_data_header(mode_info->atom_context, index, NULL,
  2126. &frev, &crev, &data_offset))
  2127. return -EINVAL;
  2128. power_info = (union power_info *)(mode_info->atom_context->bios + data_offset);
  2129. state_array = (struct _StateArray *)
  2130. (mode_info->atom_context->bios + data_offset +
  2131. le16_to_cpu(power_info->pplib.usStateArrayOffset));
  2132. clock_info_array = (struct _ClockInfoArray *)
  2133. (mode_info->atom_context->bios + data_offset +
  2134. le16_to_cpu(power_info->pplib.usClockInfoArrayOffset));
  2135. non_clock_info_array = (struct _NonClockInfoArray *)
  2136. (mode_info->atom_context->bios + data_offset +
  2137. le16_to_cpu(power_info->pplib.usNonClockInfoArrayOffset));
  2138. rdev->pm.dpm.ps = kzalloc(sizeof(struct radeon_ps) *
  2139. state_array->ucNumEntries, GFP_KERNEL);
  2140. if (!rdev->pm.dpm.ps)
  2141. return -ENOMEM;
  2142. power_state_offset = (u8 *)state_array->states;
  2143. rdev->pm.dpm.platform_caps = le32_to_cpu(power_info->pplib.ulPlatformCaps);
  2144. rdev->pm.dpm.backbias_response_time = le16_to_cpu(power_info->pplib.usBackbiasTime);
  2145. rdev->pm.dpm.voltage_response_time = le16_to_cpu(power_info->pplib.usVoltageTime);
  2146. for (i = 0; i < state_array->ucNumEntries; i++) {
  2147. u8 *idx;
  2148. power_state = (union pplib_power_state *)power_state_offset;
  2149. non_clock_array_index = power_state->v2.nonClockInfoIndex;
  2150. non_clock_info = (struct _ATOM_PPLIB_NONCLOCK_INFO *)
  2151. &non_clock_info_array->nonClockInfo[non_clock_array_index];
  2152. if (!rdev->pm.power_state[i].clock_info)
  2153. return -EINVAL;
  2154. ps = kzalloc(sizeof(struct kv_ps), GFP_KERNEL);
  2155. if (ps == NULL) {
  2156. kfree(rdev->pm.dpm.ps);
  2157. return -ENOMEM;
  2158. }
  2159. rdev->pm.dpm.ps[i].ps_priv = ps;
  2160. k = 0;
  2161. idx = (u8 *)&power_state->v2.clockInfoIndex[0];
  2162. for (j = 0; j < power_state->v2.ucNumDPMLevels; j++) {
  2163. clock_array_index = idx[j];
  2164. if (clock_array_index >= clock_info_array->ucNumEntries)
  2165. continue;
  2166. if (k >= SUMO_MAX_HARDWARE_POWERLEVELS)
  2167. break;
  2168. clock_info = (union pplib_clock_info *)
  2169. ((u8 *)&clock_info_array->clockInfo[0] +
  2170. (clock_array_index * clock_info_array->ucEntrySize));
  2171. kv_parse_pplib_clock_info(rdev,
  2172. &rdev->pm.dpm.ps[i], k,
  2173. clock_info);
  2174. k++;
  2175. }
  2176. kv_parse_pplib_non_clock_info(rdev, &rdev->pm.dpm.ps[i],
  2177. non_clock_info,
  2178. non_clock_info_array->ucEntrySize);
  2179. power_state_offset += 2 + power_state->v2.ucNumDPMLevels;
  2180. }
  2181. rdev->pm.dpm.num_ps = state_array->ucNumEntries;
  2182. return 0;
  2183. }
  2184. int kv_dpm_init(struct radeon_device *rdev)
  2185. {
  2186. struct kv_power_info *pi;
  2187. int ret, i;
  2188. pi = kzalloc(sizeof(struct kv_power_info), GFP_KERNEL);
  2189. if (pi == NULL)
  2190. return -ENOMEM;
  2191. rdev->pm.dpm.priv = pi;
  2192. ret = r600_parse_extended_power_table(rdev);
  2193. if (ret)
  2194. return ret;
  2195. for (i = 0; i < SUMO_MAX_HARDWARE_POWERLEVELS; i++)
  2196. pi->at[i] = TRINITY_AT_DFLT;
  2197. pi->sram_end = SMC_RAM_END;
  2198. if (rdev->family == CHIP_KABINI)
  2199. pi->high_voltage_t = 4001;
  2200. pi->enable_nb_dpm = true;
  2201. pi->caps_power_containment = true;
  2202. pi->caps_cac = true;
  2203. pi->enable_didt = false;
  2204. if (pi->enable_didt) {
  2205. pi->caps_sq_ramping = true;
  2206. pi->caps_db_ramping = true;
  2207. pi->caps_td_ramping = true;
  2208. pi->caps_tcp_ramping = true;
  2209. }
  2210. pi->caps_sclk_ds = true;
  2211. pi->enable_auto_thermal_throttling = true;
  2212. pi->disable_nb_ps3_in_battery = false;
  2213. pi->bapm_enable = true;
  2214. pi->voltage_drop_t = 0;
  2215. pi->caps_sclk_throttle_low_notification = false;
  2216. pi->caps_fps = false; /* true? */
  2217. pi->caps_uvd_pg = true;
  2218. pi->caps_uvd_dpm = true;
  2219. pi->caps_vce_pg = false;
  2220. pi->caps_samu_pg = false;
  2221. pi->caps_acp_pg = false;
  2222. pi->caps_stable_p_state = false;
  2223. ret = kv_parse_sys_info_table(rdev);
  2224. if (ret)
  2225. return ret;
  2226. kv_patch_voltage_values(rdev);
  2227. kv_construct_boot_state(rdev);
  2228. ret = kv_parse_power_table(rdev);
  2229. if (ret)
  2230. return ret;
  2231. pi->enable_dpm = true;
  2232. return 0;
  2233. }
  2234. void kv_dpm_debugfs_print_current_performance_level(struct radeon_device *rdev,
  2235. struct seq_file *m)
  2236. {
  2237. struct kv_power_info *pi = kv_get_pi(rdev);
  2238. u32 current_index =
  2239. (RREG32_SMC(TARGET_AND_CURRENT_PROFILE_INDEX) & CURR_SCLK_INDEX_MASK) >>
  2240. CURR_SCLK_INDEX_SHIFT;
  2241. u32 sclk, tmp;
  2242. u16 vddc;
  2243. if (current_index >= SMU__NUM_SCLK_DPM_STATE) {
  2244. seq_printf(m, "invalid dpm profile %d\n", current_index);
  2245. } else {
  2246. sclk = be32_to_cpu(pi->graphics_level[current_index].SclkFrequency);
  2247. tmp = (RREG32_SMC(SMU_VOLTAGE_STATUS) & SMU_VOLTAGE_CURRENT_LEVEL_MASK) >>
  2248. SMU_VOLTAGE_CURRENT_LEVEL_SHIFT;
  2249. vddc = kv_convert_8bit_index_to_voltage(rdev, (u16)tmp);
  2250. seq_printf(m, "power level %d sclk: %u vddc: %u\n",
  2251. current_index, sclk, vddc);
  2252. }
  2253. }
  2254. void kv_dpm_print_power_state(struct radeon_device *rdev,
  2255. struct radeon_ps *rps)
  2256. {
  2257. int i;
  2258. struct kv_ps *ps = kv_get_ps(rps);
  2259. r600_dpm_print_class_info(rps->class, rps->class2);
  2260. r600_dpm_print_cap_info(rps->caps);
  2261. printk("\tuvd vclk: %d dclk: %d\n", rps->vclk, rps->dclk);
  2262. for (i = 0; i < ps->num_levels; i++) {
  2263. struct kv_pl *pl = &ps->levels[i];
  2264. printk("\t\tpower level %d sclk: %u vddc: %u\n",
  2265. i, pl->sclk,
  2266. kv_convert_8bit_index_to_voltage(rdev, pl->vddc_index));
  2267. }
  2268. r600_dpm_print_ps_status(rdev, rps);
  2269. }
  2270. void kv_dpm_fini(struct radeon_device *rdev)
  2271. {
  2272. int i;
  2273. for (i = 0; i < rdev->pm.dpm.num_ps; i++) {
  2274. kfree(rdev->pm.dpm.ps[i].ps_priv);
  2275. }
  2276. kfree(rdev->pm.dpm.ps);
  2277. kfree(rdev->pm.dpm.priv);
  2278. r600_free_extended_power_table(rdev);
  2279. }
  2280. void kv_dpm_display_configuration_changed(struct radeon_device *rdev)
  2281. {
  2282. }
  2283. u32 kv_dpm_get_sclk(struct radeon_device *rdev, bool low)
  2284. {
  2285. struct kv_power_info *pi = kv_get_pi(rdev);
  2286. struct kv_ps *requested_state = kv_get_ps(&pi->requested_rps);
  2287. if (low)
  2288. return requested_state->levels[0].sclk;
  2289. else
  2290. return requested_state->levels[requested_state->num_levels - 1].sclk;
  2291. }
  2292. u32 kv_dpm_get_mclk(struct radeon_device *rdev, bool low)
  2293. {
  2294. struct kv_power_info *pi = kv_get_pi(rdev);
  2295. return pi->sys_info.bootup_uma_clk;
  2296. }