process.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868
  1. /* $Id: process.c,v 1.131 2002/02/09 19:49:30 davem Exp $
  2. * arch/sparc64/kernel/process.c
  3. *
  4. * Copyright (C) 1995, 1996 David S. Miller (davem@caip.rutgers.edu)
  5. * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
  6. * Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  7. */
  8. /*
  9. * This file handles the architecture-dependent parts of process handling..
  10. */
  11. #include <stdarg.h>
  12. #include <linux/config.h>
  13. #include <linux/errno.h>
  14. #include <linux/module.h>
  15. #include <linux/sched.h>
  16. #include <linux/kernel.h>
  17. #include <linux/kallsyms.h>
  18. #include <linux/mm.h>
  19. #include <linux/smp.h>
  20. #include <linux/smp_lock.h>
  21. #include <linux/stddef.h>
  22. #include <linux/ptrace.h>
  23. #include <linux/slab.h>
  24. #include <linux/user.h>
  25. #include <linux/a.out.h>
  26. #include <linux/config.h>
  27. #include <linux/reboot.h>
  28. #include <linux/delay.h>
  29. #include <linux/compat.h>
  30. #include <linux/init.h>
  31. #include <asm/oplib.h>
  32. #include <asm/uaccess.h>
  33. #include <asm/system.h>
  34. #include <asm/page.h>
  35. #include <asm/pgalloc.h>
  36. #include <asm/pgtable.h>
  37. #include <asm/processor.h>
  38. #include <asm/pstate.h>
  39. #include <asm/elf.h>
  40. #include <asm/fpumacro.h>
  41. #include <asm/head.h>
  42. #include <asm/cpudata.h>
  43. #include <asm/unistd.h>
  44. /* #define VERBOSE_SHOWREGS */
  45. /*
  46. * Nothing special yet...
  47. */
  48. void default_idle(void)
  49. {
  50. }
  51. #ifndef CONFIG_SMP
  52. /*
  53. * the idle loop on a Sparc... ;)
  54. */
  55. void cpu_idle(void)
  56. {
  57. /* endless idle loop with no priority at all */
  58. for (;;) {
  59. /* If current->work.need_resched is zero we should really
  60. * setup for a system wakup event and execute a shutdown
  61. * instruction.
  62. *
  63. * But this requires writing back the contents of the
  64. * L2 cache etc. so implement this later. -DaveM
  65. */
  66. while (!need_resched())
  67. barrier();
  68. preempt_enable_no_resched();
  69. schedule();
  70. preempt_disable();
  71. check_pgt_cache();
  72. }
  73. }
  74. #else
  75. /*
  76. * the idle loop on a UltraMultiPenguin...
  77. *
  78. * TIF_POLLING_NRFLAG is set because we do not sleep the cpu
  79. * inside of the idler task, so an interrupt is not needed
  80. * to get a clean fast response.
  81. *
  82. * XXX Reverify this assumption... -DaveM
  83. *
  84. * Addendum: We do want it to do something for the signal
  85. * delivery case, we detect that by just seeing
  86. * if we are trying to send this to an idler or not.
  87. */
  88. void cpu_idle(void)
  89. {
  90. cpuinfo_sparc *cpuinfo = &local_cpu_data();
  91. set_thread_flag(TIF_POLLING_NRFLAG);
  92. while(1) {
  93. if (need_resched()) {
  94. cpuinfo->idle_volume = 0;
  95. preempt_enable_no_resched();
  96. schedule();
  97. preempt_disable();
  98. check_pgt_cache();
  99. }
  100. cpuinfo->idle_volume++;
  101. /* The store ordering is so that IRQ handlers on
  102. * other cpus see our increasing idleness for the buddy
  103. * redistribution algorithm. -DaveM
  104. */
  105. membar_storeload_storestore();
  106. }
  107. }
  108. #endif
  109. extern char reboot_command [];
  110. extern void (*prom_palette)(int);
  111. extern void (*prom_keyboard)(void);
  112. void machine_halt(void)
  113. {
  114. if (!serial_console && prom_palette)
  115. prom_palette (1);
  116. if (prom_keyboard)
  117. prom_keyboard();
  118. prom_halt();
  119. panic("Halt failed!");
  120. }
  121. void machine_alt_power_off(void)
  122. {
  123. if (!serial_console && prom_palette)
  124. prom_palette(1);
  125. if (prom_keyboard)
  126. prom_keyboard();
  127. prom_halt_power_off();
  128. panic("Power-off failed!");
  129. }
  130. void machine_restart(char * cmd)
  131. {
  132. char *p;
  133. p = strchr (reboot_command, '\n');
  134. if (p) *p = 0;
  135. if (!serial_console && prom_palette)
  136. prom_palette (1);
  137. if (prom_keyboard)
  138. prom_keyboard();
  139. if (cmd)
  140. prom_reboot(cmd);
  141. if (*reboot_command)
  142. prom_reboot(reboot_command);
  143. prom_reboot("");
  144. panic("Reboot failed!");
  145. }
  146. static void show_regwindow32(struct pt_regs *regs)
  147. {
  148. struct reg_window32 __user *rw;
  149. struct reg_window32 r_w;
  150. mm_segment_t old_fs;
  151. __asm__ __volatile__ ("flushw");
  152. rw = compat_ptr((unsigned)regs->u_regs[14]);
  153. old_fs = get_fs();
  154. set_fs (USER_DS);
  155. if (copy_from_user (&r_w, rw, sizeof(r_w))) {
  156. set_fs (old_fs);
  157. return;
  158. }
  159. set_fs (old_fs);
  160. printk("l0: %08x l1: %08x l2: %08x l3: %08x "
  161. "l4: %08x l5: %08x l6: %08x l7: %08x\n",
  162. r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
  163. r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
  164. printk("i0: %08x i1: %08x i2: %08x i3: %08x "
  165. "i4: %08x i5: %08x i6: %08x i7: %08x\n",
  166. r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
  167. r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
  168. }
  169. static void show_regwindow(struct pt_regs *regs)
  170. {
  171. struct reg_window __user *rw;
  172. struct reg_window *rwk;
  173. struct reg_window r_w;
  174. mm_segment_t old_fs;
  175. if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
  176. __asm__ __volatile__ ("flushw");
  177. rw = (struct reg_window __user *)
  178. (regs->u_regs[14] + STACK_BIAS);
  179. rwk = (struct reg_window *)
  180. (regs->u_regs[14] + STACK_BIAS);
  181. if (!(regs->tstate & TSTATE_PRIV)) {
  182. old_fs = get_fs();
  183. set_fs (USER_DS);
  184. if (copy_from_user (&r_w, rw, sizeof(r_w))) {
  185. set_fs (old_fs);
  186. return;
  187. }
  188. rwk = &r_w;
  189. set_fs (old_fs);
  190. }
  191. } else {
  192. show_regwindow32(regs);
  193. return;
  194. }
  195. printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
  196. rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
  197. printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
  198. rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
  199. printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
  200. rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
  201. printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
  202. rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
  203. if (regs->tstate & TSTATE_PRIV)
  204. print_symbol("I7: <%s>\n", rwk->ins[7]);
  205. }
  206. void show_stackframe(struct sparc_stackf *sf)
  207. {
  208. unsigned long size;
  209. unsigned long *stk;
  210. int i;
  211. printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n"
  212. "l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
  213. sf->locals[0], sf->locals[1], sf->locals[2], sf->locals[3],
  214. sf->locals[4], sf->locals[5], sf->locals[6], sf->locals[7]);
  215. printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n"
  216. "i4: %016lx i5: %016lx fp: %016lx ret_pc: %016lx\n",
  217. sf->ins[0], sf->ins[1], sf->ins[2], sf->ins[3],
  218. sf->ins[4], sf->ins[5], (unsigned long)sf->fp, sf->callers_pc);
  219. printk("sp: %016lx x0: %016lx x1: %016lx x2: %016lx\n"
  220. "x3: %016lx x4: %016lx x5: %016lx xx: %016lx\n",
  221. (unsigned long)sf->structptr, sf->xargs[0], sf->xargs[1],
  222. sf->xargs[2], sf->xargs[3], sf->xargs[4], sf->xargs[5],
  223. sf->xxargs[0]);
  224. size = ((unsigned long)sf->fp) - ((unsigned long)sf);
  225. size -= STACKFRAME_SZ;
  226. stk = (unsigned long *)((unsigned long)sf + STACKFRAME_SZ);
  227. i = 0;
  228. do {
  229. printk("s%d: %016lx\n", i++, *stk++);
  230. } while ((size -= sizeof(unsigned long)));
  231. }
  232. void show_stackframe32(struct sparc_stackf32 *sf)
  233. {
  234. unsigned long size;
  235. unsigned *stk;
  236. int i;
  237. printk("l0: %08x l1: %08x l2: %08x l3: %08x\n",
  238. sf->locals[0], sf->locals[1], sf->locals[2], sf->locals[3]);
  239. printk("l4: %08x l5: %08x l6: %08x l7: %08x\n",
  240. sf->locals[4], sf->locals[5], sf->locals[6], sf->locals[7]);
  241. printk("i0: %08x i1: %08x i2: %08x i3: %08x\n",
  242. sf->ins[0], sf->ins[1], sf->ins[2], sf->ins[3]);
  243. printk("i4: %08x i5: %08x fp: %08x ret_pc: %08x\n",
  244. sf->ins[4], sf->ins[5], sf->fp, sf->callers_pc);
  245. printk("sp: %08x x0: %08x x1: %08x x2: %08x\n"
  246. "x3: %08x x4: %08x x5: %08x xx: %08x\n",
  247. sf->structptr, sf->xargs[0], sf->xargs[1],
  248. sf->xargs[2], sf->xargs[3], sf->xargs[4], sf->xargs[5],
  249. sf->xxargs[0]);
  250. size = ((unsigned long)sf->fp) - ((unsigned long)sf);
  251. size -= STACKFRAME32_SZ;
  252. stk = (unsigned *)((unsigned long)sf + STACKFRAME32_SZ);
  253. i = 0;
  254. do {
  255. printk("s%d: %08x\n", i++, *stk++);
  256. } while ((size -= sizeof(unsigned)));
  257. }
  258. #ifdef CONFIG_SMP
  259. static DEFINE_SPINLOCK(regdump_lock);
  260. #endif
  261. void __show_regs(struct pt_regs * regs)
  262. {
  263. #ifdef CONFIG_SMP
  264. unsigned long flags;
  265. /* Protect against xcall ipis which might lead to livelock on the lock */
  266. __asm__ __volatile__("rdpr %%pstate, %0\n\t"
  267. "wrpr %0, %1, %%pstate"
  268. : "=r" (flags)
  269. : "i" (PSTATE_IE));
  270. spin_lock(&regdump_lock);
  271. #endif
  272. printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate,
  273. regs->tpc, regs->tnpc, regs->y, print_tainted());
  274. print_symbol("TPC: <%s>\n", regs->tpc);
  275. printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
  276. regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
  277. regs->u_regs[3]);
  278. printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
  279. regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
  280. regs->u_regs[7]);
  281. printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
  282. regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
  283. regs->u_regs[11]);
  284. printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
  285. regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
  286. regs->u_regs[15]);
  287. print_symbol("RPC: <%s>\n", regs->u_regs[15]);
  288. show_regwindow(regs);
  289. #ifdef CONFIG_SMP
  290. spin_unlock(&regdump_lock);
  291. __asm__ __volatile__("wrpr %0, 0, %%pstate"
  292. : : "r" (flags));
  293. #endif
  294. }
  295. #ifdef VERBOSE_SHOWREGS
  296. static void idump_from_user (unsigned int *pc)
  297. {
  298. int i;
  299. int code;
  300. if((((unsigned long) pc) & 3))
  301. return;
  302. pc -= 3;
  303. for(i = -3; i < 6; i++) {
  304. get_user(code, pc);
  305. printk("%c%08x%c",i?' ':'<',code,i?' ':'>');
  306. pc++;
  307. }
  308. printk("\n");
  309. }
  310. #endif
  311. void show_regs(struct pt_regs *regs)
  312. {
  313. #ifdef VERBOSE_SHOWREGS
  314. extern long etrap, etraptl1;
  315. #endif
  316. __show_regs(regs);
  317. #ifdef CONFIG_SMP
  318. {
  319. extern void smp_report_regs(void);
  320. smp_report_regs();
  321. }
  322. #endif
  323. #ifdef VERBOSE_SHOWREGS
  324. if (regs->tpc >= &etrap && regs->tpc < &etraptl1 &&
  325. regs->u_regs[14] >= (long)current - PAGE_SIZE &&
  326. regs->u_regs[14] < (long)current + 6 * PAGE_SIZE) {
  327. printk ("*********parent**********\n");
  328. __show_regs((struct pt_regs *)(regs->u_regs[14] + PTREGS_OFF));
  329. idump_from_user(((struct pt_regs *)(regs->u_regs[14] + PTREGS_OFF))->tpc);
  330. printk ("*********endpar**********\n");
  331. }
  332. #endif
  333. }
  334. void show_regs32(struct pt_regs32 *regs)
  335. {
  336. printk("PSR: %08x PC: %08x NPC: %08x Y: %08x %s\n", regs->psr,
  337. regs->pc, regs->npc, regs->y, print_tainted());
  338. printk("g0: %08x g1: %08x g2: %08x g3: %08x ",
  339. regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
  340. regs->u_regs[3]);
  341. printk("g4: %08x g5: %08x g6: %08x g7: %08x\n",
  342. regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
  343. regs->u_regs[7]);
  344. printk("o0: %08x o1: %08x o2: %08x o3: %08x ",
  345. regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
  346. regs->u_regs[11]);
  347. printk("o4: %08x o5: %08x sp: %08x ret_pc: %08x\n",
  348. regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
  349. regs->u_regs[15]);
  350. }
  351. unsigned long thread_saved_pc(struct task_struct *tsk)
  352. {
  353. struct thread_info *ti = tsk->thread_info;
  354. unsigned long ret = 0xdeadbeefUL;
  355. if (ti && ti->ksp) {
  356. unsigned long *sp;
  357. sp = (unsigned long *)(ti->ksp + STACK_BIAS);
  358. if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL &&
  359. sp[14]) {
  360. unsigned long *fp;
  361. fp = (unsigned long *)(sp[14] + STACK_BIAS);
  362. if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL)
  363. ret = fp[15];
  364. }
  365. }
  366. return ret;
  367. }
  368. /* Free current thread data structures etc.. */
  369. void exit_thread(void)
  370. {
  371. struct thread_info *t = current_thread_info();
  372. if (t->utraps) {
  373. if (t->utraps[0] < 2)
  374. kfree (t->utraps);
  375. else
  376. t->utraps[0]--;
  377. }
  378. if (test_and_clear_thread_flag(TIF_PERFCTR)) {
  379. t->user_cntd0 = t->user_cntd1 = NULL;
  380. t->pcr_reg = 0;
  381. write_pcr(0);
  382. }
  383. }
  384. void flush_thread(void)
  385. {
  386. struct thread_info *t = current_thread_info();
  387. if (t->flags & _TIF_ABI_PENDING)
  388. t->flags ^= (_TIF_ABI_PENDING | _TIF_32BIT);
  389. if (t->task->mm) {
  390. unsigned long pgd_cache = 0UL;
  391. if (test_thread_flag(TIF_32BIT)) {
  392. struct mm_struct *mm = t->task->mm;
  393. pgd_t *pgd0 = &mm->pgd[0];
  394. pud_t *pud0 = pud_offset(pgd0, 0);
  395. if (pud_none(*pud0)) {
  396. pmd_t *page = pmd_alloc_one(mm, 0);
  397. pud_set(pud0, page);
  398. }
  399. pgd_cache = get_pgd_cache(pgd0);
  400. }
  401. __asm__ __volatile__("stxa %0, [%1] %2\n\t"
  402. "membar #Sync"
  403. : /* no outputs */
  404. : "r" (pgd_cache),
  405. "r" (TSB_REG),
  406. "i" (ASI_DMMU));
  407. }
  408. set_thread_wsaved(0);
  409. /* Turn off performance counters if on. */
  410. if (test_and_clear_thread_flag(TIF_PERFCTR)) {
  411. t->user_cntd0 = t->user_cntd1 = NULL;
  412. t->pcr_reg = 0;
  413. write_pcr(0);
  414. }
  415. /* Clear FPU register state. */
  416. t->fpsaved[0] = 0;
  417. if (get_thread_current_ds() != ASI_AIUS)
  418. set_fs(USER_DS);
  419. /* Init new signal delivery disposition. */
  420. clear_thread_flag(TIF_NEWSIGNALS);
  421. }
  422. /* It's a bit more tricky when 64-bit tasks are involved... */
  423. static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
  424. {
  425. unsigned long fp, distance, rval;
  426. if (!(test_thread_flag(TIF_32BIT))) {
  427. csp += STACK_BIAS;
  428. psp += STACK_BIAS;
  429. __get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
  430. fp += STACK_BIAS;
  431. } else
  432. __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
  433. /* Now 8-byte align the stack as this is mandatory in the
  434. * Sparc ABI due to how register windows work. This hides
  435. * the restriction from thread libraries etc. -DaveM
  436. */
  437. csp &= ~7UL;
  438. distance = fp - psp;
  439. rval = (csp - distance);
  440. if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
  441. rval = 0;
  442. else if (test_thread_flag(TIF_32BIT)) {
  443. if (put_user(((u32)csp),
  444. &(((struct reg_window32 __user *)rval)->ins[6])))
  445. rval = 0;
  446. } else {
  447. if (put_user(((u64)csp - STACK_BIAS),
  448. &(((struct reg_window __user *)rval)->ins[6])))
  449. rval = 0;
  450. else
  451. rval = rval - STACK_BIAS;
  452. }
  453. return rval;
  454. }
  455. /* Standard stuff. */
  456. static inline void shift_window_buffer(int first_win, int last_win,
  457. struct thread_info *t)
  458. {
  459. int i;
  460. for (i = first_win; i < last_win; i++) {
  461. t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
  462. memcpy(&t->reg_window[i], &t->reg_window[i+1],
  463. sizeof(struct reg_window));
  464. }
  465. }
  466. void synchronize_user_stack(void)
  467. {
  468. struct thread_info *t = current_thread_info();
  469. unsigned long window;
  470. flush_user_windows();
  471. if ((window = get_thread_wsaved()) != 0) {
  472. int winsize = sizeof(struct reg_window);
  473. int bias = 0;
  474. if (test_thread_flag(TIF_32BIT))
  475. winsize = sizeof(struct reg_window32);
  476. else
  477. bias = STACK_BIAS;
  478. window -= 1;
  479. do {
  480. unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
  481. struct reg_window *rwin = &t->reg_window[window];
  482. if (!copy_to_user((char __user *)sp, rwin, winsize)) {
  483. shift_window_buffer(window, get_thread_wsaved() - 1, t);
  484. set_thread_wsaved(get_thread_wsaved() - 1);
  485. }
  486. } while (window--);
  487. }
  488. }
  489. void fault_in_user_windows(void)
  490. {
  491. struct thread_info *t = current_thread_info();
  492. unsigned long window;
  493. int winsize = sizeof(struct reg_window);
  494. int bias = 0;
  495. if (test_thread_flag(TIF_32BIT))
  496. winsize = sizeof(struct reg_window32);
  497. else
  498. bias = STACK_BIAS;
  499. flush_user_windows();
  500. window = get_thread_wsaved();
  501. if (window != 0) {
  502. window -= 1;
  503. do {
  504. unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
  505. struct reg_window *rwin = &t->reg_window[window];
  506. if (copy_to_user((char __user *)sp, rwin, winsize))
  507. goto barf;
  508. } while (window--);
  509. }
  510. set_thread_wsaved(0);
  511. return;
  512. barf:
  513. set_thread_wsaved(window + 1);
  514. do_exit(SIGILL);
  515. }
  516. asmlinkage long sparc_do_fork(unsigned long clone_flags,
  517. unsigned long stack_start,
  518. struct pt_regs *regs,
  519. unsigned long stack_size)
  520. {
  521. int __user *parent_tid_ptr, *child_tid_ptr;
  522. #ifdef CONFIG_COMPAT
  523. if (test_thread_flag(TIF_32BIT)) {
  524. parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
  525. child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
  526. } else
  527. #endif
  528. {
  529. parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
  530. child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
  531. }
  532. return do_fork(clone_flags, stack_start,
  533. regs, stack_size,
  534. parent_tid_ptr, child_tid_ptr);
  535. }
  536. /* Copy a Sparc thread. The fork() return value conventions
  537. * under SunOS are nothing short of bletcherous:
  538. * Parent --> %o0 == childs pid, %o1 == 0
  539. * Child --> %o0 == parents pid, %o1 == 1
  540. */
  541. int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
  542. unsigned long unused,
  543. struct task_struct *p, struct pt_regs *regs)
  544. {
  545. struct thread_info *t = p->thread_info;
  546. char *child_trap_frame;
  547. /* Calculate offset to stack_frame & pt_regs */
  548. child_trap_frame = ((char *)t) + (THREAD_SIZE - (TRACEREG_SZ+STACKFRAME_SZ));
  549. memcpy(child_trap_frame, (((struct sparc_stackf *)regs)-1), (TRACEREG_SZ+STACKFRAME_SZ));
  550. t->flags = (t->flags & ~((0xffUL << TI_FLAG_CWP_SHIFT) | (0xffUL << TI_FLAG_CURRENT_DS_SHIFT))) |
  551. (((regs->tstate + 1) & TSTATE_CWP) << TI_FLAG_CWP_SHIFT);
  552. t->new_child = 1;
  553. t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
  554. t->kregs = (struct pt_regs *)(child_trap_frame+sizeof(struct sparc_stackf));
  555. t->fpsaved[0] = 0;
  556. if (regs->tstate & TSTATE_PRIV) {
  557. /* Special case, if we are spawning a kernel thread from
  558. * a userspace task (via KMOD, NFS, or similar) we must
  559. * disable performance counters in the child because the
  560. * address space and protection realm are changing.
  561. */
  562. if (t->flags & _TIF_PERFCTR) {
  563. t->user_cntd0 = t->user_cntd1 = NULL;
  564. t->pcr_reg = 0;
  565. t->flags &= ~_TIF_PERFCTR;
  566. }
  567. t->kregs->u_regs[UREG_FP] = t->ksp;
  568. t->flags |= ((long)ASI_P << TI_FLAG_CURRENT_DS_SHIFT);
  569. flush_register_windows();
  570. memcpy((void *)(t->ksp + STACK_BIAS),
  571. (void *)(regs->u_regs[UREG_FP] + STACK_BIAS),
  572. sizeof(struct sparc_stackf));
  573. t->kregs->u_regs[UREG_G6] = (unsigned long) t;
  574. t->kregs->u_regs[UREG_G4] = (unsigned long) t->task;
  575. } else {
  576. if (t->flags & _TIF_32BIT) {
  577. sp &= 0x00000000ffffffffUL;
  578. regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
  579. }
  580. t->kregs->u_regs[UREG_FP] = sp;
  581. t->flags |= ((long)ASI_AIUS << TI_FLAG_CURRENT_DS_SHIFT);
  582. if (sp != regs->u_regs[UREG_FP]) {
  583. unsigned long csp;
  584. csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
  585. if (!csp)
  586. return -EFAULT;
  587. t->kregs->u_regs[UREG_FP] = csp;
  588. }
  589. if (t->utraps)
  590. t->utraps[0]++;
  591. }
  592. /* Set the return value for the child. */
  593. t->kregs->u_regs[UREG_I0] = current->pid;
  594. t->kregs->u_regs[UREG_I1] = 1;
  595. /* Set the second return value for the parent. */
  596. regs->u_regs[UREG_I1] = 0;
  597. if (clone_flags & CLONE_SETTLS)
  598. t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
  599. return 0;
  600. }
  601. /*
  602. * This is the mechanism for creating a new kernel thread.
  603. *
  604. * NOTE! Only a kernel-only process(ie the swapper or direct descendants
  605. * who haven't done an "execve()") should use this: it will work within
  606. * a system call from a "real" process, but the process memory space will
  607. * not be free'd until both the parent and the child have exited.
  608. */
  609. pid_t kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
  610. {
  611. long retval;
  612. /* If the parent runs before fn(arg) is called by the child,
  613. * the input registers of this function can be clobbered.
  614. * So we stash 'fn' and 'arg' into global registers which
  615. * will not be modified by the parent.
  616. */
  617. __asm__ __volatile__("mov %4, %%g2\n\t" /* Save FN into global */
  618. "mov %5, %%g3\n\t" /* Save ARG into global */
  619. "mov %1, %%g1\n\t" /* Clone syscall nr. */
  620. "mov %2, %%o0\n\t" /* Clone flags. */
  621. "mov 0, %%o1\n\t" /* usp arg == 0 */
  622. "t 0x6d\n\t" /* Linux/Sparc clone(). */
  623. "brz,a,pn %%o1, 1f\n\t" /* Parent, just return. */
  624. " mov %%o0, %0\n\t"
  625. "jmpl %%g2, %%o7\n\t" /* Call the function. */
  626. " mov %%g3, %%o0\n\t" /* Set arg in delay. */
  627. "mov %3, %%g1\n\t"
  628. "t 0x6d\n\t" /* Linux/Sparc exit(). */
  629. /* Notreached by child. */
  630. "1:" :
  631. "=r" (retval) :
  632. "i" (__NR_clone), "r" (flags | CLONE_VM | CLONE_UNTRACED),
  633. "i" (__NR_exit), "r" (fn), "r" (arg) :
  634. "g1", "g2", "g3", "o0", "o1", "memory", "cc");
  635. return retval;
  636. }
  637. /*
  638. * fill in the user structure for a core dump..
  639. */
  640. void dump_thread(struct pt_regs * regs, struct user * dump)
  641. {
  642. /* Only should be used for SunOS and ancient a.out
  643. * SparcLinux binaries... Not worth implementing.
  644. */
  645. memset(dump, 0, sizeof(struct user));
  646. }
  647. typedef struct {
  648. union {
  649. unsigned int pr_regs[32];
  650. unsigned long pr_dregs[16];
  651. } pr_fr;
  652. unsigned int __unused;
  653. unsigned int pr_fsr;
  654. unsigned char pr_qcnt;
  655. unsigned char pr_q_entrysize;
  656. unsigned char pr_en;
  657. unsigned int pr_q[64];
  658. } elf_fpregset_t32;
  659. /*
  660. * fill in the fpu structure for a core dump.
  661. */
  662. int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
  663. {
  664. unsigned long *kfpregs = current_thread_info()->fpregs;
  665. unsigned long fprs = current_thread_info()->fpsaved[0];
  666. if (test_thread_flag(TIF_32BIT)) {
  667. elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
  668. if (fprs & FPRS_DL)
  669. memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
  670. sizeof(unsigned int) * 32);
  671. else
  672. memset(&fpregs32->pr_fr.pr_regs[0], 0,
  673. sizeof(unsigned int) * 32);
  674. fpregs32->pr_qcnt = 0;
  675. fpregs32->pr_q_entrysize = 8;
  676. memset(&fpregs32->pr_q[0], 0,
  677. (sizeof(unsigned int) * 64));
  678. if (fprs & FPRS_FEF) {
  679. fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
  680. fpregs32->pr_en = 1;
  681. } else {
  682. fpregs32->pr_fsr = 0;
  683. fpregs32->pr_en = 0;
  684. }
  685. } else {
  686. if(fprs & FPRS_DL)
  687. memcpy(&fpregs->pr_regs[0], kfpregs,
  688. sizeof(unsigned int) * 32);
  689. else
  690. memset(&fpregs->pr_regs[0], 0,
  691. sizeof(unsigned int) * 32);
  692. if(fprs & FPRS_DU)
  693. memcpy(&fpregs->pr_regs[16], kfpregs+16,
  694. sizeof(unsigned int) * 32);
  695. else
  696. memset(&fpregs->pr_regs[16], 0,
  697. sizeof(unsigned int) * 32);
  698. if(fprs & FPRS_FEF) {
  699. fpregs->pr_fsr = current_thread_info()->xfsr[0];
  700. fpregs->pr_gsr = current_thread_info()->gsr[0];
  701. } else {
  702. fpregs->pr_fsr = fpregs->pr_gsr = 0;
  703. }
  704. fpregs->pr_fprs = fprs;
  705. }
  706. return 1;
  707. }
  708. /*
  709. * sparc_execve() executes a new program after the asm stub has set
  710. * things up for us. This should basically do what I want it to.
  711. */
  712. asmlinkage int sparc_execve(struct pt_regs *regs)
  713. {
  714. int error, base = 0;
  715. char *filename;
  716. /* User register window flush is done by entry.S */
  717. /* Check for indirect call. */
  718. if (regs->u_regs[UREG_G1] == 0)
  719. base = 1;
  720. filename = getname((char __user *)regs->u_regs[base + UREG_I0]);
  721. error = PTR_ERR(filename);
  722. if (IS_ERR(filename))
  723. goto out;
  724. error = do_execve(filename,
  725. (char __user * __user *)
  726. regs->u_regs[base + UREG_I1],
  727. (char __user * __user *)
  728. regs->u_regs[base + UREG_I2], regs);
  729. putname(filename);
  730. if (!error) {
  731. fprs_write(0);
  732. current_thread_info()->xfsr[0] = 0;
  733. current_thread_info()->fpsaved[0] = 0;
  734. regs->tstate &= ~TSTATE_PEF;
  735. task_lock(current);
  736. current->ptrace &= ~PT_DTRACE;
  737. task_unlock(current);
  738. }
  739. out:
  740. return error;
  741. }
  742. unsigned long get_wchan(struct task_struct *task)
  743. {
  744. unsigned long pc, fp, bias = 0;
  745. unsigned long thread_info_base;
  746. struct reg_window *rw;
  747. unsigned long ret = 0;
  748. int count = 0;
  749. if (!task || task == current ||
  750. task->state == TASK_RUNNING)
  751. goto out;
  752. thread_info_base = (unsigned long) task->thread_info;
  753. bias = STACK_BIAS;
  754. fp = task->thread_info->ksp + bias;
  755. do {
  756. /* Bogus frame pointer? */
  757. if (fp < (thread_info_base + sizeof(struct thread_info)) ||
  758. fp >= (thread_info_base + THREAD_SIZE))
  759. break;
  760. rw = (struct reg_window *) fp;
  761. pc = rw->ins[7];
  762. if (!in_sched_functions(pc)) {
  763. ret = pc;
  764. goto out;
  765. }
  766. fp = rw->ins[6] + bias;
  767. } while (++count < 16);
  768. out:
  769. return ret;
  770. }