process.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400
  1. /*
  2. * arch/s390/kernel/process.c
  3. *
  4. * S390 version
  5. * Copyright (C) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation
  6. * Author(s): Martin Schwidefsky (schwidefsky@de.ibm.com),
  7. * Hartmut Penner (hp@de.ibm.com),
  8. * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
  9. *
  10. * Derived from "arch/i386/kernel/process.c"
  11. * Copyright (C) 1995, Linus Torvalds
  12. */
  13. /*
  14. * This file handles the architecture-dependent parts of process handling..
  15. */
  16. #include <linux/config.h>
  17. #include <linux/compiler.h>
  18. #include <linux/cpu.h>
  19. #include <linux/errno.h>
  20. #include <linux/sched.h>
  21. #include <linux/kernel.h>
  22. #include <linux/mm.h>
  23. #include <linux/smp.h>
  24. #include <linux/smp_lock.h>
  25. #include <linux/stddef.h>
  26. #include <linux/unistd.h>
  27. #include <linux/ptrace.h>
  28. #include <linux/slab.h>
  29. #include <linux/vmalloc.h>
  30. #include <linux/user.h>
  31. #include <linux/a.out.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/delay.h>
  34. #include <linux/reboot.h>
  35. #include <linux/init.h>
  36. #include <linux/module.h>
  37. #include <linux/notifier.h>
  38. #include <asm/uaccess.h>
  39. #include <asm/pgtable.h>
  40. #include <asm/system.h>
  41. #include <asm/io.h>
  42. #include <asm/processor.h>
  43. #include <asm/irq.h>
  44. #include <asm/timer.h>
  45. asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
  46. /*
  47. * Return saved PC of a blocked thread. used in kernel/sched.
  48. * resume in entry.S does not create a new stack frame, it
  49. * just stores the registers %r6-%r15 to the frame given by
  50. * schedule. We want to return the address of the caller of
  51. * schedule, so we have to walk the backchain one time to
  52. * find the frame schedule() store its return address.
  53. */
  54. unsigned long thread_saved_pc(struct task_struct *tsk)
  55. {
  56. struct stack_frame *sf;
  57. sf = (struct stack_frame *) tsk->thread.ksp;
  58. sf = (struct stack_frame *) sf->back_chain;
  59. return sf->gprs[8];
  60. }
  61. /*
  62. * Need to know about CPUs going idle?
  63. */
  64. static struct notifier_block *idle_chain;
  65. int register_idle_notifier(struct notifier_block *nb)
  66. {
  67. return notifier_chain_register(&idle_chain, nb);
  68. }
  69. EXPORT_SYMBOL(register_idle_notifier);
  70. int unregister_idle_notifier(struct notifier_block *nb)
  71. {
  72. return notifier_chain_unregister(&idle_chain, nb);
  73. }
  74. EXPORT_SYMBOL(unregister_idle_notifier);
  75. void do_monitor_call(struct pt_regs *regs, long interruption_code)
  76. {
  77. /* disable monitor call class 0 */
  78. __ctl_clear_bit(8, 15);
  79. notifier_call_chain(&idle_chain, CPU_NOT_IDLE,
  80. (void *)(long) smp_processor_id());
  81. }
  82. extern void s390_handle_mcck(void);
  83. /*
  84. * The idle loop on a S390...
  85. */
  86. void default_idle(void)
  87. {
  88. int cpu, rc;
  89. /* CPU is going idle. */
  90. cpu = smp_processor_id();
  91. local_irq_disable();
  92. if (need_resched()) {
  93. local_irq_enable();
  94. return;
  95. }
  96. rc = notifier_call_chain(&idle_chain, CPU_IDLE, (void *)(long) cpu);
  97. if (rc != NOTIFY_OK && rc != NOTIFY_DONE)
  98. BUG();
  99. if (rc != NOTIFY_OK) {
  100. local_irq_enable();
  101. return;
  102. }
  103. /* enable monitor call class 0 */
  104. __ctl_set_bit(8, 15);
  105. #ifdef CONFIG_HOTPLUG_CPU
  106. if (cpu_is_offline(cpu))
  107. cpu_die();
  108. #endif
  109. local_mcck_disable();
  110. if (test_thread_flag(TIF_MCCK_PENDING)) {
  111. local_mcck_enable();
  112. local_irq_enable();
  113. s390_handle_mcck();
  114. return;
  115. }
  116. /* Wait for external, I/O or machine check interrupt. */
  117. __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_WAIT |
  118. PSW_MASK_IO | PSW_MASK_EXT);
  119. }
  120. void cpu_idle(void)
  121. {
  122. for (;;) {
  123. while (!need_resched())
  124. default_idle();
  125. preempt_enable_no_resched();
  126. schedule();
  127. preempt_disable();
  128. }
  129. }
  130. void show_regs(struct pt_regs *regs)
  131. {
  132. struct task_struct *tsk = current;
  133. printk("CPU: %d %s\n", tsk->thread_info->cpu, print_tainted());
  134. printk("Process %s (pid: %d, task: %p, ksp: %p)\n",
  135. current->comm, current->pid, (void *) tsk,
  136. (void *) tsk->thread.ksp);
  137. show_registers(regs);
  138. /* Show stack backtrace if pt_regs is from kernel mode */
  139. if (!(regs->psw.mask & PSW_MASK_PSTATE))
  140. show_trace(0,(unsigned long *) regs->gprs[15]);
  141. }
  142. extern void kernel_thread_starter(void);
  143. __asm__(".align 4\n"
  144. "kernel_thread_starter:\n"
  145. " la 2,0(10)\n"
  146. " basr 14,9\n"
  147. " la 2,0\n"
  148. " br 11\n");
  149. int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
  150. {
  151. struct pt_regs regs;
  152. memset(&regs, 0, sizeof(regs));
  153. regs.psw.mask = PSW_KERNEL_BITS | PSW_MASK_IO | PSW_MASK_EXT;
  154. regs.psw.addr = (unsigned long) kernel_thread_starter | PSW_ADDR_AMODE;
  155. regs.gprs[9] = (unsigned long) fn;
  156. regs.gprs[10] = (unsigned long) arg;
  157. regs.gprs[11] = (unsigned long) do_exit;
  158. regs.orig_gpr2 = -1;
  159. /* Ok, create the new process.. */
  160. return do_fork(flags | CLONE_VM | CLONE_UNTRACED,
  161. 0, &regs, 0, NULL, NULL);
  162. }
  163. /*
  164. * Free current thread data structures etc..
  165. */
  166. void exit_thread(void)
  167. {
  168. }
  169. void flush_thread(void)
  170. {
  171. clear_used_math();
  172. clear_tsk_thread_flag(current, TIF_USEDFPU);
  173. }
  174. void release_thread(struct task_struct *dead_task)
  175. {
  176. }
  177. int copy_thread(int nr, unsigned long clone_flags, unsigned long new_stackp,
  178. unsigned long unused,
  179. struct task_struct * p, struct pt_regs * regs)
  180. {
  181. struct fake_frame
  182. {
  183. struct stack_frame sf;
  184. struct pt_regs childregs;
  185. } *frame;
  186. frame = ((struct fake_frame *)
  187. (THREAD_SIZE + (unsigned long) p->thread_info)) - 1;
  188. p->thread.ksp = (unsigned long) frame;
  189. /* Store access registers to kernel stack of new process. */
  190. frame->childregs = *regs;
  191. frame->childregs.gprs[2] = 0; /* child returns 0 on fork. */
  192. frame->childregs.gprs[15] = new_stackp;
  193. frame->sf.back_chain = 0;
  194. /* new return point is ret_from_fork */
  195. frame->sf.gprs[8] = (unsigned long) ret_from_fork;
  196. /* fake return stack for resume(), don't go back to schedule */
  197. frame->sf.gprs[9] = (unsigned long) frame;
  198. /* Save access registers to new thread structure. */
  199. save_access_regs(&p->thread.acrs[0]);
  200. #ifndef CONFIG_ARCH_S390X
  201. /*
  202. * save fprs to current->thread.fp_regs to merge them with
  203. * the emulated registers and then copy the result to the child.
  204. */
  205. save_fp_regs(&current->thread.fp_regs);
  206. memcpy(&p->thread.fp_regs, &current->thread.fp_regs,
  207. sizeof(s390_fp_regs));
  208. p->thread.user_seg = __pa((unsigned long) p->mm->pgd) | _SEGMENT_TABLE;
  209. /* Set a new TLS ? */
  210. if (clone_flags & CLONE_SETTLS)
  211. p->thread.acrs[0] = regs->gprs[6];
  212. #else /* CONFIG_ARCH_S390X */
  213. /* Save the fpu registers to new thread structure. */
  214. save_fp_regs(&p->thread.fp_regs);
  215. p->thread.user_seg = __pa((unsigned long) p->mm->pgd) | _REGION_TABLE;
  216. /* Set a new TLS ? */
  217. if (clone_flags & CLONE_SETTLS) {
  218. if (test_thread_flag(TIF_31BIT)) {
  219. p->thread.acrs[0] = (unsigned int) regs->gprs[6];
  220. } else {
  221. p->thread.acrs[0] = (unsigned int)(regs->gprs[6] >> 32);
  222. p->thread.acrs[1] = (unsigned int) regs->gprs[6];
  223. }
  224. }
  225. #endif /* CONFIG_ARCH_S390X */
  226. /* start new process with ar4 pointing to the correct address space */
  227. p->thread.mm_segment = get_fs();
  228. /* Don't copy debug registers */
  229. memset(&p->thread.per_info,0,sizeof(p->thread.per_info));
  230. return 0;
  231. }
  232. asmlinkage long sys_fork(struct pt_regs regs)
  233. {
  234. return do_fork(SIGCHLD, regs.gprs[15], &regs, 0, NULL, NULL);
  235. }
  236. asmlinkage long sys_clone(struct pt_regs regs)
  237. {
  238. unsigned long clone_flags;
  239. unsigned long newsp;
  240. int __user *parent_tidptr, *child_tidptr;
  241. clone_flags = regs.gprs[3];
  242. newsp = regs.orig_gpr2;
  243. parent_tidptr = (int __user *) regs.gprs[4];
  244. child_tidptr = (int __user *) regs.gprs[5];
  245. if (!newsp)
  246. newsp = regs.gprs[15];
  247. return do_fork(clone_flags, newsp, &regs, 0,
  248. parent_tidptr, child_tidptr);
  249. }
  250. /*
  251. * This is trivial, and on the face of it looks like it
  252. * could equally well be done in user mode.
  253. *
  254. * Not so, for quite unobvious reasons - register pressure.
  255. * In user mode vfork() cannot have a stack frame, and if
  256. * done by calling the "clone()" system call directly, you
  257. * do not have enough call-clobbered registers to hold all
  258. * the information you need.
  259. */
  260. asmlinkage long sys_vfork(struct pt_regs regs)
  261. {
  262. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD,
  263. regs.gprs[15], &regs, 0, NULL, NULL);
  264. }
  265. /*
  266. * sys_execve() executes a new program.
  267. */
  268. asmlinkage long sys_execve(struct pt_regs regs)
  269. {
  270. int error;
  271. char * filename;
  272. filename = getname((char __user *) regs.orig_gpr2);
  273. error = PTR_ERR(filename);
  274. if (IS_ERR(filename))
  275. goto out;
  276. error = do_execve(filename, (char __user * __user *) regs.gprs[3],
  277. (char __user * __user *) regs.gprs[4], &regs);
  278. if (error == 0) {
  279. task_lock(current);
  280. current->ptrace &= ~PT_DTRACE;
  281. task_unlock(current);
  282. current->thread.fp_regs.fpc = 0;
  283. if (MACHINE_HAS_IEEE)
  284. asm volatile("sfpc %0,%0" : : "d" (0));
  285. }
  286. putname(filename);
  287. out:
  288. return error;
  289. }
  290. /*
  291. * fill in the FPU structure for a core dump.
  292. */
  293. int dump_fpu (struct pt_regs * regs, s390_fp_regs *fpregs)
  294. {
  295. #ifndef CONFIG_ARCH_S390X
  296. /*
  297. * save fprs to current->thread.fp_regs to merge them with
  298. * the emulated registers and then copy the result to the dump.
  299. */
  300. save_fp_regs(&current->thread.fp_regs);
  301. memcpy(fpregs, &current->thread.fp_regs, sizeof(s390_fp_regs));
  302. #else /* CONFIG_ARCH_S390X */
  303. save_fp_regs(fpregs);
  304. #endif /* CONFIG_ARCH_S390X */
  305. return 1;
  306. }
  307. /*
  308. * fill in the user structure for a core dump..
  309. */
  310. void dump_thread(struct pt_regs * regs, struct user * dump)
  311. {
  312. /* changed the size calculations - should hopefully work better. lbt */
  313. dump->magic = CMAGIC;
  314. dump->start_code = 0;
  315. dump->start_stack = regs->gprs[15] & ~(PAGE_SIZE - 1);
  316. dump->u_tsize = current->mm->end_code >> PAGE_SHIFT;
  317. dump->u_dsize = (current->mm->brk + PAGE_SIZE - 1) >> PAGE_SHIFT;
  318. dump->u_dsize -= dump->u_tsize;
  319. dump->u_ssize = 0;
  320. if (dump->start_stack < TASK_SIZE)
  321. dump->u_ssize = (TASK_SIZE - dump->start_stack) >> PAGE_SHIFT;
  322. memcpy(&dump->regs, regs, sizeof(s390_regs));
  323. dump_fpu (regs, &dump->regs.fp_regs);
  324. dump->regs.per_info = current->thread.per_info;
  325. }
  326. unsigned long get_wchan(struct task_struct *p)
  327. {
  328. struct stack_frame *sf, *low, *high;
  329. unsigned long return_address;
  330. int count;
  331. if (!p || p == current || p->state == TASK_RUNNING || !p->thread_info)
  332. return 0;
  333. low = (struct stack_frame *) p->thread_info;
  334. high = (struct stack_frame *)
  335. ((unsigned long) p->thread_info + THREAD_SIZE) - 1;
  336. sf = (struct stack_frame *) (p->thread.ksp & PSW_ADDR_INSN);
  337. if (sf <= low || sf > high)
  338. return 0;
  339. for (count = 0; count < 16; count++) {
  340. sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
  341. if (sf <= low || sf > high)
  342. return 0;
  343. return_address = sf->gprs[8] & PSW_ADDR_INSN;
  344. if (!in_sched_functions(return_address))
  345. return return_address;
  346. }
  347. return 0;
  348. }