process.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943
  1. /*
  2. * linux/arch/i386/kernel/process.c
  3. *
  4. * Copyright (C) 1995 Linus Torvalds
  5. *
  6. * Pentium III FXSR, SSE support
  7. * Gareth Hughes <gareth@valinux.com>, May 2000
  8. */
  9. /*
  10. * This file handles the architecture-dependent parts of process handling..
  11. */
  12. #include <stdarg.h>
  13. #include <linux/cpu.h>
  14. #include <linux/errno.h>
  15. #include <linux/sched.h>
  16. #include <linux/fs.h>
  17. #include <linux/kernel.h>
  18. #include <linux/mm.h>
  19. #include <linux/elfcore.h>
  20. #include <linux/smp.h>
  21. #include <linux/smp_lock.h>
  22. #include <linux/stddef.h>
  23. #include <linux/slab.h>
  24. #include <linux/vmalloc.h>
  25. #include <linux/user.h>
  26. #include <linux/a.out.h>
  27. #include <linux/interrupt.h>
  28. #include <linux/config.h>
  29. #include <linux/utsname.h>
  30. #include <linux/delay.h>
  31. #include <linux/reboot.h>
  32. #include <linux/init.h>
  33. #include <linux/mc146818rtc.h>
  34. #include <linux/module.h>
  35. #include <linux/kallsyms.h>
  36. #include <linux/ptrace.h>
  37. #include <linux/random.h>
  38. #include <linux/kprobes.h>
  39. #include <asm/uaccess.h>
  40. #include <asm/pgtable.h>
  41. #include <asm/system.h>
  42. #include <asm/io.h>
  43. #include <asm/ldt.h>
  44. #include <asm/processor.h>
  45. #include <asm/i387.h>
  46. #include <asm/desc.h>
  47. #ifdef CONFIG_MATH_EMULATION
  48. #include <asm/math_emu.h>
  49. #endif
  50. #include <linux/err.h>
  51. #include <asm/tlbflush.h>
  52. #include <asm/cpu.h>
  53. asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
  54. static int hlt_counter;
  55. unsigned long boot_option_idle_override = 0;
  56. EXPORT_SYMBOL(boot_option_idle_override);
  57. /*
  58. * Return saved PC of a blocked thread.
  59. */
  60. unsigned long thread_saved_pc(struct task_struct *tsk)
  61. {
  62. return ((unsigned long *)tsk->thread.esp)[3];
  63. }
  64. /*
  65. * Powermanagement idle function, if any..
  66. */
  67. void (*pm_idle)(void);
  68. EXPORT_SYMBOL(pm_idle);
  69. static DEFINE_PER_CPU(unsigned int, cpu_idle_state);
  70. void disable_hlt(void)
  71. {
  72. hlt_counter++;
  73. }
  74. EXPORT_SYMBOL(disable_hlt);
  75. void enable_hlt(void)
  76. {
  77. hlt_counter--;
  78. }
  79. EXPORT_SYMBOL(enable_hlt);
  80. /*
  81. * We use this if we don't have any better
  82. * idle routine..
  83. */
  84. void default_idle(void)
  85. {
  86. local_irq_enable();
  87. if (!hlt_counter && boot_cpu_data.hlt_works_ok) {
  88. clear_thread_flag(TIF_POLLING_NRFLAG);
  89. smp_mb__after_clear_bit();
  90. while (!need_resched()) {
  91. local_irq_disable();
  92. if (!need_resched())
  93. safe_halt();
  94. else
  95. local_irq_enable();
  96. }
  97. set_thread_flag(TIF_POLLING_NRFLAG);
  98. } else {
  99. while (!need_resched())
  100. cpu_relax();
  101. }
  102. }
  103. #ifdef CONFIG_APM_MODULE
  104. EXPORT_SYMBOL(default_idle);
  105. #endif
  106. /*
  107. * On SMP it's slightly faster (but much more power-consuming!)
  108. * to poll the ->work.need_resched flag instead of waiting for the
  109. * cross-CPU IPI to arrive. Use this option with caution.
  110. */
  111. static void poll_idle (void)
  112. {
  113. local_irq_enable();
  114. asm volatile(
  115. "2:"
  116. "testl %0, %1;"
  117. "rep; nop;"
  118. "je 2b;"
  119. : : "i"(_TIF_NEED_RESCHED), "m" (current_thread_info()->flags));
  120. }
  121. #ifdef CONFIG_HOTPLUG_CPU
  122. #include <asm/nmi.h>
  123. /* We don't actually take CPU down, just spin without interrupts. */
  124. static inline void play_dead(void)
  125. {
  126. /* This must be done before dead CPU ack */
  127. cpu_exit_clear();
  128. wbinvd();
  129. mb();
  130. /* Ack it */
  131. __get_cpu_var(cpu_state) = CPU_DEAD;
  132. /*
  133. * With physical CPU hotplug, we should halt the cpu
  134. */
  135. local_irq_disable();
  136. while (1)
  137. halt();
  138. }
  139. #else
  140. static inline void play_dead(void)
  141. {
  142. BUG();
  143. }
  144. #endif /* CONFIG_HOTPLUG_CPU */
  145. /*
  146. * The idle thread. There's no useful work to be
  147. * done, so just try to conserve power and have a
  148. * low exit latency (ie sit in a loop waiting for
  149. * somebody to say that they'd like to reschedule)
  150. */
  151. void cpu_idle(void)
  152. {
  153. int cpu = smp_processor_id();
  154. set_thread_flag(TIF_POLLING_NRFLAG);
  155. /* endless idle loop with no priority at all */
  156. while (1) {
  157. while (!need_resched()) {
  158. void (*idle)(void);
  159. if (__get_cpu_var(cpu_idle_state))
  160. __get_cpu_var(cpu_idle_state) = 0;
  161. rmb();
  162. idle = pm_idle;
  163. if (!idle)
  164. idle = default_idle;
  165. if (cpu_is_offline(cpu))
  166. play_dead();
  167. __get_cpu_var(irq_stat).idle_timestamp = jiffies;
  168. idle();
  169. }
  170. preempt_enable_no_resched();
  171. schedule();
  172. preempt_disable();
  173. }
  174. }
  175. void cpu_idle_wait(void)
  176. {
  177. unsigned int cpu, this_cpu = get_cpu();
  178. cpumask_t map;
  179. set_cpus_allowed(current, cpumask_of_cpu(this_cpu));
  180. put_cpu();
  181. cpus_clear(map);
  182. for_each_online_cpu(cpu) {
  183. per_cpu(cpu_idle_state, cpu) = 1;
  184. cpu_set(cpu, map);
  185. }
  186. __get_cpu_var(cpu_idle_state) = 0;
  187. wmb();
  188. do {
  189. ssleep(1);
  190. for_each_online_cpu(cpu) {
  191. if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu))
  192. cpu_clear(cpu, map);
  193. }
  194. cpus_and(map, map, cpu_online_map);
  195. } while (!cpus_empty(map));
  196. }
  197. EXPORT_SYMBOL_GPL(cpu_idle_wait);
  198. /*
  199. * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
  200. * which can obviate IPI to trigger checking of need_resched.
  201. * We execute MONITOR against need_resched and enter optimized wait state
  202. * through MWAIT. Whenever someone changes need_resched, we would be woken
  203. * up from MWAIT (without an IPI).
  204. */
  205. static void mwait_idle(void)
  206. {
  207. local_irq_enable();
  208. while (!need_resched()) {
  209. __monitor((void *)&current_thread_info()->flags, 0, 0);
  210. smp_mb();
  211. if (need_resched())
  212. break;
  213. __mwait(0, 0);
  214. }
  215. }
  216. void __devinit select_idle_routine(const struct cpuinfo_x86 *c)
  217. {
  218. if (cpu_has(c, X86_FEATURE_MWAIT)) {
  219. printk("monitor/mwait feature present.\n");
  220. /*
  221. * Skip, if setup has overridden idle.
  222. * One CPU supports mwait => All CPUs supports mwait
  223. */
  224. if (!pm_idle) {
  225. printk("using mwait in idle threads.\n");
  226. pm_idle = mwait_idle;
  227. }
  228. }
  229. }
  230. static int __init idle_setup (char *str)
  231. {
  232. if (!strncmp(str, "poll", 4)) {
  233. printk("using polling idle threads.\n");
  234. pm_idle = poll_idle;
  235. #ifdef CONFIG_X86_SMP
  236. if (smp_num_siblings > 1)
  237. printk("WARNING: polling idle and HT enabled, performance may degrade.\n");
  238. #endif
  239. } else if (!strncmp(str, "halt", 4)) {
  240. printk("using halt in idle threads.\n");
  241. pm_idle = default_idle;
  242. }
  243. boot_option_idle_override = 1;
  244. return 1;
  245. }
  246. __setup("idle=", idle_setup);
  247. void show_regs(struct pt_regs * regs)
  248. {
  249. unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
  250. printk("\n");
  251. printk("Pid: %d, comm: %20s\n", current->pid, current->comm);
  252. printk("EIP: %04x:[<%08lx>] CPU: %d\n",0xffff & regs->xcs,regs->eip, smp_processor_id());
  253. print_symbol("EIP is at %s\n", regs->eip);
  254. if (user_mode(regs))
  255. printk(" ESP: %04x:%08lx",0xffff & regs->xss,regs->esp);
  256. printk(" EFLAGS: %08lx %s (%s)\n",
  257. regs->eflags, print_tainted(), system_utsname.release);
  258. printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
  259. regs->eax,regs->ebx,regs->ecx,regs->edx);
  260. printk("ESI: %08lx EDI: %08lx EBP: %08lx",
  261. regs->esi, regs->edi, regs->ebp);
  262. printk(" DS: %04x ES: %04x\n",
  263. 0xffff & regs->xds,0xffff & regs->xes);
  264. cr0 = read_cr0();
  265. cr2 = read_cr2();
  266. cr3 = read_cr3();
  267. if (current_cpu_data.x86 > 4) {
  268. cr4 = read_cr4();
  269. }
  270. printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n", cr0, cr2, cr3, cr4);
  271. show_trace(NULL, &regs->esp);
  272. }
  273. /*
  274. * This gets run with %ebx containing the
  275. * function to call, and %edx containing
  276. * the "args".
  277. */
  278. extern void kernel_thread_helper(void);
  279. __asm__(".section .text\n"
  280. ".align 4\n"
  281. "kernel_thread_helper:\n\t"
  282. "movl %edx,%eax\n\t"
  283. "pushl %edx\n\t"
  284. "call *%ebx\n\t"
  285. "pushl %eax\n\t"
  286. "call do_exit\n"
  287. ".previous");
  288. /*
  289. * Create a kernel thread
  290. */
  291. int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
  292. {
  293. struct pt_regs regs;
  294. memset(&regs, 0, sizeof(regs));
  295. regs.ebx = (unsigned long) fn;
  296. regs.edx = (unsigned long) arg;
  297. regs.xds = __USER_DS;
  298. regs.xes = __USER_DS;
  299. regs.orig_eax = -1;
  300. regs.eip = (unsigned long) kernel_thread_helper;
  301. regs.xcs = __KERNEL_CS;
  302. regs.eflags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
  303. /* Ok, create the new process.. */
  304. return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
  305. }
  306. EXPORT_SYMBOL(kernel_thread);
  307. /*
  308. * Free current thread data structures etc..
  309. */
  310. void exit_thread(void)
  311. {
  312. struct task_struct *tsk = current;
  313. struct thread_struct *t = &tsk->thread;
  314. /*
  315. * Remove function-return probe instances associated with this task
  316. * and put them back on the free list. Do not insert an exit probe for
  317. * this function, it will be disabled by kprobe_flush_task if you do.
  318. */
  319. kprobe_flush_task(tsk);
  320. /* The process may have allocated an io port bitmap... nuke it. */
  321. if (unlikely(NULL != t->io_bitmap_ptr)) {
  322. int cpu = get_cpu();
  323. struct tss_struct *tss = &per_cpu(init_tss, cpu);
  324. kfree(t->io_bitmap_ptr);
  325. t->io_bitmap_ptr = NULL;
  326. /*
  327. * Careful, clear this in the TSS too:
  328. */
  329. memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
  330. t->io_bitmap_max = 0;
  331. tss->io_bitmap_owner = NULL;
  332. tss->io_bitmap_max = 0;
  333. tss->io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
  334. put_cpu();
  335. }
  336. }
  337. void flush_thread(void)
  338. {
  339. struct task_struct *tsk = current;
  340. /*
  341. * Remove function-return probe instances associated with this task
  342. * and put them back on the free list. Do not insert an exit probe for
  343. * this function, it will be disabled by kprobe_flush_task if you do.
  344. */
  345. kprobe_flush_task(tsk);
  346. memset(tsk->thread.debugreg, 0, sizeof(unsigned long)*8);
  347. memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
  348. /*
  349. * Forget coprocessor state..
  350. */
  351. clear_fpu(tsk);
  352. clear_used_math();
  353. }
  354. void release_thread(struct task_struct *dead_task)
  355. {
  356. if (dead_task->mm) {
  357. // temporary debugging check
  358. if (dead_task->mm->context.size) {
  359. printk("WARNING: dead process %8s still has LDT? <%p/%d>\n",
  360. dead_task->comm,
  361. dead_task->mm->context.ldt,
  362. dead_task->mm->context.size);
  363. BUG();
  364. }
  365. }
  366. release_vm86_irqs(dead_task);
  367. }
  368. /*
  369. * This gets called before we allocate a new thread and copy
  370. * the current task into it.
  371. */
  372. void prepare_to_copy(struct task_struct *tsk)
  373. {
  374. unlazy_fpu(tsk);
  375. }
  376. int copy_thread(int nr, unsigned long clone_flags, unsigned long esp,
  377. unsigned long unused,
  378. struct task_struct * p, struct pt_regs * regs)
  379. {
  380. struct pt_regs * childregs;
  381. struct task_struct *tsk;
  382. int err;
  383. childregs = ((struct pt_regs *) (THREAD_SIZE + (unsigned long) p->thread_info)) - 1;
  384. /*
  385. * The below -8 is to reserve 8 bytes on top of the ring0 stack.
  386. * This is necessary to guarantee that the entire "struct pt_regs"
  387. * is accessable even if the CPU haven't stored the SS/ESP registers
  388. * on the stack (interrupt gate does not save these registers
  389. * when switching to the same priv ring).
  390. * Therefore beware: accessing the xss/esp fields of the
  391. * "struct pt_regs" is possible, but they may contain the
  392. * completely wrong values.
  393. */
  394. childregs = (struct pt_regs *) ((unsigned long) childregs - 8);
  395. *childregs = *regs;
  396. childregs->eax = 0;
  397. childregs->esp = esp;
  398. p->thread.esp = (unsigned long) childregs;
  399. p->thread.esp0 = (unsigned long) (childregs+1);
  400. p->thread.eip = (unsigned long) ret_from_fork;
  401. savesegment(fs,p->thread.fs);
  402. savesegment(gs,p->thread.gs);
  403. tsk = current;
  404. if (unlikely(NULL != tsk->thread.io_bitmap_ptr)) {
  405. p->thread.io_bitmap_ptr = kmalloc(IO_BITMAP_BYTES, GFP_KERNEL);
  406. if (!p->thread.io_bitmap_ptr) {
  407. p->thread.io_bitmap_max = 0;
  408. return -ENOMEM;
  409. }
  410. memcpy(p->thread.io_bitmap_ptr, tsk->thread.io_bitmap_ptr,
  411. IO_BITMAP_BYTES);
  412. }
  413. /*
  414. * Set a new TLS for the child thread?
  415. */
  416. if (clone_flags & CLONE_SETTLS) {
  417. struct desc_struct *desc;
  418. struct user_desc info;
  419. int idx;
  420. err = -EFAULT;
  421. if (copy_from_user(&info, (void __user *)childregs->esi, sizeof(info)))
  422. goto out;
  423. err = -EINVAL;
  424. if (LDT_empty(&info))
  425. goto out;
  426. idx = info.entry_number;
  427. if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
  428. goto out;
  429. desc = p->thread.tls_array + idx - GDT_ENTRY_TLS_MIN;
  430. desc->a = LDT_entry_a(&info);
  431. desc->b = LDT_entry_b(&info);
  432. }
  433. err = 0;
  434. out:
  435. if (err && p->thread.io_bitmap_ptr) {
  436. kfree(p->thread.io_bitmap_ptr);
  437. p->thread.io_bitmap_max = 0;
  438. }
  439. return err;
  440. }
  441. /*
  442. * fill in the user structure for a core dump..
  443. */
  444. void dump_thread(struct pt_regs * regs, struct user * dump)
  445. {
  446. int i;
  447. /* changed the size calculations - should hopefully work better. lbt */
  448. dump->magic = CMAGIC;
  449. dump->start_code = 0;
  450. dump->start_stack = regs->esp & ~(PAGE_SIZE - 1);
  451. dump->u_tsize = ((unsigned long) current->mm->end_code) >> PAGE_SHIFT;
  452. dump->u_dsize = ((unsigned long) (current->mm->brk + (PAGE_SIZE-1))) >> PAGE_SHIFT;
  453. dump->u_dsize -= dump->u_tsize;
  454. dump->u_ssize = 0;
  455. for (i = 0; i < 8; i++)
  456. dump->u_debugreg[i] = current->thread.debugreg[i];
  457. if (dump->start_stack < TASK_SIZE)
  458. dump->u_ssize = ((unsigned long) (TASK_SIZE - dump->start_stack)) >> PAGE_SHIFT;
  459. dump->regs.ebx = regs->ebx;
  460. dump->regs.ecx = regs->ecx;
  461. dump->regs.edx = regs->edx;
  462. dump->regs.esi = regs->esi;
  463. dump->regs.edi = regs->edi;
  464. dump->regs.ebp = regs->ebp;
  465. dump->regs.eax = regs->eax;
  466. dump->regs.ds = regs->xds;
  467. dump->regs.es = regs->xes;
  468. savesegment(fs,dump->regs.fs);
  469. savesegment(gs,dump->regs.gs);
  470. dump->regs.orig_eax = regs->orig_eax;
  471. dump->regs.eip = regs->eip;
  472. dump->regs.cs = regs->xcs;
  473. dump->regs.eflags = regs->eflags;
  474. dump->regs.esp = regs->esp;
  475. dump->regs.ss = regs->xss;
  476. dump->u_fpvalid = dump_fpu (regs, &dump->i387);
  477. }
  478. EXPORT_SYMBOL(dump_thread);
  479. /*
  480. * Capture the user space registers if the task is not running (in user space)
  481. */
  482. int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs)
  483. {
  484. struct pt_regs ptregs;
  485. ptregs = *(struct pt_regs *)
  486. ((unsigned long)tsk->thread_info+THREAD_SIZE - sizeof(ptregs));
  487. ptregs.xcs &= 0xffff;
  488. ptregs.xds &= 0xffff;
  489. ptregs.xes &= 0xffff;
  490. ptregs.xss &= 0xffff;
  491. elf_core_copy_regs(regs, &ptregs);
  492. return 1;
  493. }
  494. static inline void
  495. handle_io_bitmap(struct thread_struct *next, struct tss_struct *tss)
  496. {
  497. if (!next->io_bitmap_ptr) {
  498. /*
  499. * Disable the bitmap via an invalid offset. We still cache
  500. * the previous bitmap owner and the IO bitmap contents:
  501. */
  502. tss->io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
  503. return;
  504. }
  505. if (likely(next == tss->io_bitmap_owner)) {
  506. /*
  507. * Previous owner of the bitmap (hence the bitmap content)
  508. * matches the next task, we dont have to do anything but
  509. * to set a valid offset in the TSS:
  510. */
  511. tss->io_bitmap_base = IO_BITMAP_OFFSET;
  512. return;
  513. }
  514. /*
  515. * Lazy TSS's I/O bitmap copy. We set an invalid offset here
  516. * and we let the task to get a GPF in case an I/O instruction
  517. * is performed. The handler of the GPF will verify that the
  518. * faulting task has a valid I/O bitmap and, it true, does the
  519. * real copy and restart the instruction. This will save us
  520. * redundant copies when the currently switched task does not
  521. * perform any I/O during its timeslice.
  522. */
  523. tss->io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
  524. }
  525. /*
  526. * This function selects if the context switch from prev to next
  527. * has to tweak the TSC disable bit in the cr4.
  528. */
  529. static inline void disable_tsc(struct task_struct *prev_p,
  530. struct task_struct *next_p)
  531. {
  532. struct thread_info *prev, *next;
  533. /*
  534. * gcc should eliminate the ->thread_info dereference if
  535. * has_secure_computing returns 0 at compile time (SECCOMP=n).
  536. */
  537. prev = prev_p->thread_info;
  538. next = next_p->thread_info;
  539. if (has_secure_computing(prev) || has_secure_computing(next)) {
  540. /* slow path here */
  541. if (has_secure_computing(prev) &&
  542. !has_secure_computing(next)) {
  543. write_cr4(read_cr4() & ~X86_CR4_TSD);
  544. } else if (!has_secure_computing(prev) &&
  545. has_secure_computing(next))
  546. write_cr4(read_cr4() | X86_CR4_TSD);
  547. }
  548. }
  549. /*
  550. * switch_to(x,yn) should switch tasks from x to y.
  551. *
  552. * We fsave/fwait so that an exception goes off at the right time
  553. * (as a call from the fsave or fwait in effect) rather than to
  554. * the wrong process. Lazy FP saving no longer makes any sense
  555. * with modern CPU's, and this simplifies a lot of things (SMP
  556. * and UP become the same).
  557. *
  558. * NOTE! We used to use the x86 hardware context switching. The
  559. * reason for not using it any more becomes apparent when you
  560. * try to recover gracefully from saved state that is no longer
  561. * valid (stale segment register values in particular). With the
  562. * hardware task-switch, there is no way to fix up bad state in
  563. * a reasonable manner.
  564. *
  565. * The fact that Intel documents the hardware task-switching to
  566. * be slow is a fairly red herring - this code is not noticeably
  567. * faster. However, there _is_ some room for improvement here,
  568. * so the performance issues may eventually be a valid point.
  569. * More important, however, is the fact that this allows us much
  570. * more flexibility.
  571. *
  572. * The return value (in %eax) will be the "prev" task after
  573. * the task-switch, and shows up in ret_from_fork in entry.S,
  574. * for example.
  575. */
  576. struct task_struct fastcall * __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
  577. {
  578. struct thread_struct *prev = &prev_p->thread,
  579. *next = &next_p->thread;
  580. int cpu = smp_processor_id();
  581. struct tss_struct *tss = &per_cpu(init_tss, cpu);
  582. /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
  583. __unlazy_fpu(prev_p);
  584. /*
  585. * Reload esp0.
  586. */
  587. load_esp0(tss, next);
  588. /*
  589. * Save away %fs and %gs. No need to save %es and %ds, as
  590. * those are always kernel segments while inside the kernel.
  591. * Doing this before setting the new TLS descriptors avoids
  592. * the situation where we temporarily have non-reloadable
  593. * segments in %fs and %gs. This could be an issue if the
  594. * NMI handler ever used %fs or %gs (it does not today), or
  595. * if the kernel is running inside of a hypervisor layer.
  596. */
  597. savesegment(fs, prev->fs);
  598. savesegment(gs, prev->gs);
  599. /*
  600. * Load the per-thread Thread-Local Storage descriptor.
  601. */
  602. load_TLS(next, cpu);
  603. /*
  604. * Restore %fs and %gs if needed.
  605. *
  606. * Glibc normally makes %fs be zero, and %gs is one of
  607. * the TLS segments.
  608. */
  609. if (unlikely(prev->fs | next->fs))
  610. loadsegment(fs, next->fs);
  611. if (prev->gs | next->gs)
  612. loadsegment(gs, next->gs);
  613. /*
  614. * Restore IOPL if needed.
  615. */
  616. if (unlikely(prev->iopl != next->iopl))
  617. set_iopl_mask(next->iopl);
  618. /*
  619. * Now maybe reload the debug registers
  620. */
  621. if (unlikely(next->debugreg[7])) {
  622. set_debugreg(next->debugreg[0], 0);
  623. set_debugreg(next->debugreg[1], 1);
  624. set_debugreg(next->debugreg[2], 2);
  625. set_debugreg(next->debugreg[3], 3);
  626. /* no 4 and 5 */
  627. set_debugreg(next->debugreg[6], 6);
  628. set_debugreg(next->debugreg[7], 7);
  629. }
  630. if (unlikely(prev->io_bitmap_ptr || next->io_bitmap_ptr))
  631. handle_io_bitmap(next, tss);
  632. disable_tsc(prev_p, next_p);
  633. return prev_p;
  634. }
  635. asmlinkage int sys_fork(struct pt_regs regs)
  636. {
  637. return do_fork(SIGCHLD, regs.esp, &regs, 0, NULL, NULL);
  638. }
  639. asmlinkage int sys_clone(struct pt_regs regs)
  640. {
  641. unsigned long clone_flags;
  642. unsigned long newsp;
  643. int __user *parent_tidptr, *child_tidptr;
  644. clone_flags = regs.ebx;
  645. newsp = regs.ecx;
  646. parent_tidptr = (int __user *)regs.edx;
  647. child_tidptr = (int __user *)regs.edi;
  648. if (!newsp)
  649. newsp = regs.esp;
  650. return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr, child_tidptr);
  651. }
  652. /*
  653. * This is trivial, and on the face of it looks like it
  654. * could equally well be done in user mode.
  655. *
  656. * Not so, for quite unobvious reasons - register pressure.
  657. * In user mode vfork() cannot have a stack frame, and if
  658. * done by calling the "clone()" system call directly, you
  659. * do not have enough call-clobbered registers to hold all
  660. * the information you need.
  661. */
  662. asmlinkage int sys_vfork(struct pt_regs regs)
  663. {
  664. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.esp, &regs, 0, NULL, NULL);
  665. }
  666. /*
  667. * sys_execve() executes a new program.
  668. */
  669. asmlinkage int sys_execve(struct pt_regs regs)
  670. {
  671. int error;
  672. char * filename;
  673. filename = getname((char __user *) regs.ebx);
  674. error = PTR_ERR(filename);
  675. if (IS_ERR(filename))
  676. goto out;
  677. error = do_execve(filename,
  678. (char __user * __user *) regs.ecx,
  679. (char __user * __user *) regs.edx,
  680. &regs);
  681. if (error == 0) {
  682. task_lock(current);
  683. current->ptrace &= ~PT_DTRACE;
  684. task_unlock(current);
  685. /* Make sure we don't return using sysenter.. */
  686. set_thread_flag(TIF_IRET);
  687. }
  688. putname(filename);
  689. out:
  690. return error;
  691. }
  692. #define top_esp (THREAD_SIZE - sizeof(unsigned long))
  693. #define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long))
  694. unsigned long get_wchan(struct task_struct *p)
  695. {
  696. unsigned long ebp, esp, eip;
  697. unsigned long stack_page;
  698. int count = 0;
  699. if (!p || p == current || p->state == TASK_RUNNING)
  700. return 0;
  701. stack_page = (unsigned long)p->thread_info;
  702. esp = p->thread.esp;
  703. if (!stack_page || esp < stack_page || esp > top_esp+stack_page)
  704. return 0;
  705. /* include/asm-i386/system.h:switch_to() pushes ebp last. */
  706. ebp = *(unsigned long *) esp;
  707. do {
  708. if (ebp < stack_page || ebp > top_ebp+stack_page)
  709. return 0;
  710. eip = *(unsigned long *) (ebp+4);
  711. if (!in_sched_functions(eip))
  712. return eip;
  713. ebp = *(unsigned long *) ebp;
  714. } while (count++ < 16);
  715. return 0;
  716. }
  717. EXPORT_SYMBOL(get_wchan);
  718. /*
  719. * sys_alloc_thread_area: get a yet unused TLS descriptor index.
  720. */
  721. static int get_free_idx(void)
  722. {
  723. struct thread_struct *t = &current->thread;
  724. int idx;
  725. for (idx = 0; idx < GDT_ENTRY_TLS_ENTRIES; idx++)
  726. if (desc_empty(t->tls_array + idx))
  727. return idx + GDT_ENTRY_TLS_MIN;
  728. return -ESRCH;
  729. }
  730. /*
  731. * Set a given TLS descriptor:
  732. */
  733. asmlinkage int sys_set_thread_area(struct user_desc __user *u_info)
  734. {
  735. struct thread_struct *t = &current->thread;
  736. struct user_desc info;
  737. struct desc_struct *desc;
  738. int cpu, idx;
  739. if (copy_from_user(&info, u_info, sizeof(info)))
  740. return -EFAULT;
  741. idx = info.entry_number;
  742. /*
  743. * index -1 means the kernel should try to find and
  744. * allocate an empty descriptor:
  745. */
  746. if (idx == -1) {
  747. idx = get_free_idx();
  748. if (idx < 0)
  749. return idx;
  750. if (put_user(idx, &u_info->entry_number))
  751. return -EFAULT;
  752. }
  753. if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
  754. return -EINVAL;
  755. desc = t->tls_array + idx - GDT_ENTRY_TLS_MIN;
  756. /*
  757. * We must not get preempted while modifying the TLS.
  758. */
  759. cpu = get_cpu();
  760. if (LDT_empty(&info)) {
  761. desc->a = 0;
  762. desc->b = 0;
  763. } else {
  764. desc->a = LDT_entry_a(&info);
  765. desc->b = LDT_entry_b(&info);
  766. }
  767. load_TLS(t, cpu);
  768. put_cpu();
  769. return 0;
  770. }
  771. /*
  772. * Get the current Thread-Local Storage area:
  773. */
  774. #define GET_BASE(desc) ( \
  775. (((desc)->a >> 16) & 0x0000ffff) | \
  776. (((desc)->b << 16) & 0x00ff0000) | \
  777. ( (desc)->b & 0xff000000) )
  778. #define GET_LIMIT(desc) ( \
  779. ((desc)->a & 0x0ffff) | \
  780. ((desc)->b & 0xf0000) )
  781. #define GET_32BIT(desc) (((desc)->b >> 22) & 1)
  782. #define GET_CONTENTS(desc) (((desc)->b >> 10) & 3)
  783. #define GET_WRITABLE(desc) (((desc)->b >> 9) & 1)
  784. #define GET_LIMIT_PAGES(desc) (((desc)->b >> 23) & 1)
  785. #define GET_PRESENT(desc) (((desc)->b >> 15) & 1)
  786. #define GET_USEABLE(desc) (((desc)->b >> 20) & 1)
  787. asmlinkage int sys_get_thread_area(struct user_desc __user *u_info)
  788. {
  789. struct user_desc info;
  790. struct desc_struct *desc;
  791. int idx;
  792. if (get_user(idx, &u_info->entry_number))
  793. return -EFAULT;
  794. if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
  795. return -EINVAL;
  796. memset(&info, 0, sizeof(info));
  797. desc = current->thread.tls_array + idx - GDT_ENTRY_TLS_MIN;
  798. info.entry_number = idx;
  799. info.base_addr = GET_BASE(desc);
  800. info.limit = GET_LIMIT(desc);
  801. info.seg_32bit = GET_32BIT(desc);
  802. info.contents = GET_CONTENTS(desc);
  803. info.read_exec_only = !GET_WRITABLE(desc);
  804. info.limit_in_pages = GET_LIMIT_PAGES(desc);
  805. info.seg_not_present = !GET_PRESENT(desc);
  806. info.useable = GET_USEABLE(desc);
  807. if (copy_to_user(u_info, &info, sizeof(info)))
  808. return -EFAULT;
  809. return 0;
  810. }
  811. unsigned long arch_align_stack(unsigned long sp)
  812. {
  813. if (randomize_va_space)
  814. sp -= get_random_int() % 8192;
  815. return sp & ~0xf;
  816. }