acpi-cpufreq.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729
  1. /*
  2. * acpi-cpufreq.c - ACPI Processor P-States Driver ($Revision: 1.4 $)
  3. *
  4. * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
  5. * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
  6. * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
  7. * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com>
  8. *
  9. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License as published by
  13. * the Free Software Foundation; either version 2 of the License, or (at
  14. * your option) any later version.
  15. *
  16. * This program is distributed in the hope that it will be useful, but
  17. * WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License along
  22. * with this program; if not, write to the Free Software Foundation, Inc.,
  23. * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
  24. *
  25. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  26. */
  27. #include <linux/kernel.h>
  28. #include <linux/module.h>
  29. #include <linux/init.h>
  30. #include <linux/smp.h>
  31. #include <linux/sched.h>
  32. #include <linux/cpufreq.h>
  33. #include <linux/compiler.h>
  34. #include <linux/sched.h> /* current */
  35. #include <linux/dmi.h>
  36. #include <linux/acpi.h>
  37. #include <acpi/processor.h>
  38. #include <asm/io.h>
  39. #include <asm/msr.h>
  40. #include <asm/processor.h>
  41. #include <asm/cpufeature.h>
  42. #include <asm/delay.h>
  43. #include <asm/uaccess.h>
  44. #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg)
  45. MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
  46. MODULE_DESCRIPTION("ACPI Processor P-States Driver");
  47. MODULE_LICENSE("GPL");
  48. enum {
  49. UNDEFINED_CAPABLE = 0,
  50. SYSTEM_INTEL_MSR_CAPABLE,
  51. SYSTEM_IO_CAPABLE,
  52. };
  53. #define INTEL_MSR_RANGE (0xffff)
  54. struct acpi_cpufreq_data {
  55. struct acpi_processor_performance *acpi_data;
  56. struct cpufreq_frequency_table *freq_table;
  57. unsigned int resume;
  58. unsigned int cpu_feature;
  59. };
  60. static struct acpi_cpufreq_data *drv_data[NR_CPUS];
  61. static struct acpi_processor_performance *acpi_perf_data[NR_CPUS];
  62. static struct cpufreq_driver acpi_cpufreq_driver;
  63. static unsigned int acpi_pstate_strict;
  64. static int check_est_cpu(unsigned int cpuid)
  65. {
  66. struct cpuinfo_x86 *cpu = &cpu_data[cpuid];
  67. if (cpu->x86_vendor != X86_VENDOR_INTEL ||
  68. !cpu_has(cpu, X86_FEATURE_EST))
  69. return 0;
  70. return 1;
  71. }
  72. static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
  73. {
  74. struct acpi_processor_performance *perf;
  75. int i;
  76. perf = data->acpi_data;
  77. for (i = 0; i < perf->state_count; i++) {
  78. if (value == perf->states[i].status)
  79. return data->freq_table[i].frequency;
  80. }
  81. return 0;
  82. }
  83. static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
  84. {
  85. int i;
  86. msr &= INTEL_MSR_RANGE;
  87. for (i = 0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
  88. if (msr == data->freq_table[i].index)
  89. return data->freq_table[i].frequency;
  90. }
  91. return data->freq_table[0].frequency;
  92. }
  93. static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
  94. {
  95. switch (data->cpu_feature) {
  96. case SYSTEM_INTEL_MSR_CAPABLE:
  97. return extract_msr(val, data);
  98. case SYSTEM_IO_CAPABLE:
  99. return extract_io(val, data);
  100. default:
  101. return 0;
  102. }
  103. }
  104. static void wrport(u16 port, u8 bit_width, u32 value)
  105. {
  106. if (bit_width <= 8) {
  107. outb(value, port);
  108. } else if (bit_width <= 16) {
  109. outw(value, port);
  110. } else if (bit_width <= 32) {
  111. outl(value, port);
  112. }
  113. }
  114. static void rdport(u16 port, u8 bit_width, u32 * ret)
  115. {
  116. *ret = 0;
  117. if (bit_width <= 8) {
  118. *ret = inb(port);
  119. } else if (bit_width <= 16) {
  120. *ret = inw(port);
  121. } else if (bit_width <= 32) {
  122. *ret = inl(port);
  123. }
  124. }
  125. struct msr_addr {
  126. u32 reg;
  127. };
  128. struct io_addr {
  129. u16 port;
  130. u8 bit_width;
  131. };
  132. typedef union {
  133. struct msr_addr msr;
  134. struct io_addr io;
  135. } drv_addr_union;
  136. struct drv_cmd {
  137. unsigned int type;
  138. cpumask_t mask;
  139. drv_addr_union addr;
  140. u32 val;
  141. };
  142. static void do_drv_read(struct drv_cmd *cmd)
  143. {
  144. u32 h;
  145. switch (cmd->type) {
  146. case SYSTEM_INTEL_MSR_CAPABLE:
  147. rdmsr(cmd->addr.msr.reg, cmd->val, h);
  148. break;
  149. case SYSTEM_IO_CAPABLE:
  150. rdport(cmd->addr.io.port, cmd->addr.io.bit_width, &cmd->val);
  151. break;
  152. default:
  153. break;
  154. }
  155. }
  156. static void do_drv_write(struct drv_cmd *cmd)
  157. {
  158. u32 h = 0;
  159. switch (cmd->type) {
  160. case SYSTEM_INTEL_MSR_CAPABLE:
  161. wrmsr(cmd->addr.msr.reg, cmd->val, h);
  162. break;
  163. case SYSTEM_IO_CAPABLE:
  164. wrport(cmd->addr.io.port, cmd->addr.io.bit_width, cmd->val);
  165. break;
  166. default:
  167. break;
  168. }
  169. }
  170. static inline void drv_read(struct drv_cmd *cmd)
  171. {
  172. cpumask_t saved_mask = current->cpus_allowed;
  173. cmd->val = 0;
  174. set_cpus_allowed(current, cmd->mask);
  175. do_drv_read(cmd);
  176. set_cpus_allowed(current, saved_mask);
  177. }
  178. static void drv_write(struct drv_cmd *cmd)
  179. {
  180. cpumask_t saved_mask = current->cpus_allowed;
  181. unsigned int i;
  182. for_each_cpu_mask(i, cmd->mask) {
  183. set_cpus_allowed(current, cpumask_of_cpu(i));
  184. do_drv_write(cmd);
  185. }
  186. set_cpus_allowed(current, saved_mask);
  187. return;
  188. }
  189. static u32 get_cur_val(cpumask_t mask)
  190. {
  191. struct acpi_processor_performance *perf;
  192. struct drv_cmd cmd;
  193. if (unlikely(cpus_empty(mask)))
  194. return 0;
  195. switch (drv_data[first_cpu(mask)]->cpu_feature) {
  196. case SYSTEM_INTEL_MSR_CAPABLE:
  197. cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
  198. cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
  199. break;
  200. case SYSTEM_IO_CAPABLE:
  201. cmd.type = SYSTEM_IO_CAPABLE;
  202. perf = drv_data[first_cpu(mask)]->acpi_data;
  203. cmd.addr.io.port = perf->control_register.address;
  204. cmd.addr.io.bit_width = perf->control_register.bit_width;
  205. break;
  206. default:
  207. return 0;
  208. }
  209. cmd.mask = mask;
  210. drv_read(&cmd);
  211. dprintk("get_cur_val = %u\n", cmd.val);
  212. return cmd.val;
  213. }
  214. static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
  215. {
  216. struct acpi_cpufreq_data *data = drv_data[cpu];
  217. unsigned int freq;
  218. dprintk("get_cur_freq_on_cpu (%d)\n", cpu);
  219. if (unlikely(data == NULL ||
  220. data->acpi_data == NULL || data->freq_table == NULL)) {
  221. return 0;
  222. }
  223. freq = extract_freq(get_cur_val(cpumask_of_cpu(cpu)), data);
  224. dprintk("cur freq = %u\n", freq);
  225. return freq;
  226. }
  227. static unsigned int check_freqs(cpumask_t mask, unsigned int freq,
  228. struct acpi_cpufreq_data *data)
  229. {
  230. unsigned int cur_freq;
  231. unsigned int i;
  232. for (i = 0; i < 100; i++) {
  233. cur_freq = extract_freq(get_cur_val(mask), data);
  234. if (cur_freq == freq)
  235. return 1;
  236. udelay(10);
  237. }
  238. return 0;
  239. }
  240. static int acpi_cpufreq_target(struct cpufreq_policy *policy,
  241. unsigned int target_freq, unsigned int relation)
  242. {
  243. struct acpi_cpufreq_data *data = drv_data[policy->cpu];
  244. struct acpi_processor_performance *perf;
  245. struct cpufreq_freqs freqs;
  246. cpumask_t online_policy_cpus;
  247. struct drv_cmd cmd;
  248. unsigned int msr;
  249. unsigned int next_state = 0;
  250. unsigned int next_perf_state = 0;
  251. unsigned int i;
  252. int result = 0;
  253. dprintk("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
  254. if (unlikely(data == NULL ||
  255. data->acpi_data == NULL || data->freq_table == NULL)) {
  256. return -ENODEV;
  257. }
  258. perf = data->acpi_data;
  259. result = cpufreq_frequency_table_target(policy,
  260. data->freq_table,
  261. target_freq,
  262. relation, &next_state);
  263. if (unlikely(result))
  264. return -ENODEV;
  265. #ifdef CONFIG_HOTPLUG_CPU
  266. /* cpufreq holds the hotplug lock, so we are safe from here on */
  267. cpus_and(online_policy_cpus, cpu_online_map, policy->cpus);
  268. #else
  269. online_policy_cpus = policy->cpus;
  270. #endif
  271. cmd.val = get_cur_val(online_policy_cpus);
  272. freqs.old = extract_freq(cmd.val, data);
  273. freqs.new = data->freq_table[next_state].frequency;
  274. next_perf_state = data->freq_table[next_state].index;
  275. if (freqs.new == freqs.old) {
  276. if (unlikely(data->resume)) {
  277. dprintk("Called after resume, resetting to P%d\n",
  278. next_perf_state);
  279. data->resume = 0;
  280. } else {
  281. dprintk("Already at target state (P%d)\n",
  282. next_perf_state);
  283. return 0;
  284. }
  285. }
  286. switch (data->cpu_feature) {
  287. case SYSTEM_INTEL_MSR_CAPABLE:
  288. cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
  289. cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
  290. msr =
  291. (u32) perf->states[next_perf_state].
  292. control & INTEL_MSR_RANGE;
  293. cmd.val = (cmd.val & ~INTEL_MSR_RANGE) | msr;
  294. break;
  295. case SYSTEM_IO_CAPABLE:
  296. cmd.type = SYSTEM_IO_CAPABLE;
  297. cmd.addr.io.port = perf->control_register.address;
  298. cmd.addr.io.bit_width = perf->control_register.bit_width;
  299. cmd.val = (u32) perf->states[next_perf_state].control;
  300. break;
  301. default:
  302. return -ENODEV;
  303. }
  304. cpus_clear(cmd.mask);
  305. if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
  306. cmd.mask = online_policy_cpus;
  307. else
  308. cpu_set(policy->cpu, cmd.mask);
  309. for_each_cpu_mask(i, cmd.mask) {
  310. freqs.cpu = i;
  311. cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
  312. }
  313. drv_write(&cmd);
  314. if (acpi_pstate_strict) {
  315. if (!check_freqs(cmd.mask, freqs.new, data)) {
  316. dprintk("acpi_cpufreq_target failed (%d)\n",
  317. policy->cpu);
  318. return -EAGAIN;
  319. }
  320. }
  321. for_each_cpu_mask(i, cmd.mask) {
  322. freqs.cpu = i;
  323. cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
  324. }
  325. perf->state = next_perf_state;
  326. return result;
  327. }
  328. static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
  329. {
  330. struct acpi_cpufreq_data *data = drv_data[policy->cpu];
  331. dprintk("acpi_cpufreq_verify\n");
  332. return cpufreq_frequency_table_verify(policy, data->freq_table);
  333. }
  334. static unsigned long
  335. acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
  336. {
  337. struct acpi_processor_performance *perf = data->acpi_data;
  338. if (cpu_khz) {
  339. /* search the closest match to cpu_khz */
  340. unsigned int i;
  341. unsigned long freq;
  342. unsigned long freqn = perf->states[0].core_frequency * 1000;
  343. for (i = 0; i < (perf->state_count - 1); i++) {
  344. freq = freqn;
  345. freqn = perf->states[i + 1].core_frequency * 1000;
  346. if ((2 * cpu_khz) > (freqn + freq)) {
  347. perf->state = i;
  348. return freq;
  349. }
  350. }
  351. perf->state = perf->state_count - 1;
  352. return freqn;
  353. } else {
  354. /* assume CPU is at P0... */
  355. perf->state = 0;
  356. return perf->states[0].core_frequency * 1000;
  357. }
  358. }
  359. /*
  360. * acpi_cpufreq_early_init - initialize ACPI P-States library
  361. *
  362. * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
  363. * in order to determine correct frequency and voltage pairings. We can
  364. * do _PDC and _PSD and find out the processor dependency for the
  365. * actual init that will happen later...
  366. */
  367. static int acpi_cpufreq_early_init(void)
  368. {
  369. struct acpi_processor_performance *data;
  370. cpumask_t covered;
  371. unsigned int i, j;
  372. dprintk("acpi_cpufreq_early_init\n");
  373. for_each_possible_cpu(i) {
  374. data = kzalloc(sizeof(struct acpi_processor_performance),
  375. GFP_KERNEL);
  376. if (!data) {
  377. for_each_cpu_mask(j, covered) {
  378. kfree(acpi_perf_data[j]);
  379. acpi_perf_data[j] = NULL;
  380. }
  381. return -ENOMEM;
  382. }
  383. acpi_perf_data[i] = data;
  384. cpu_set(i, covered);
  385. }
  386. /* Do initialization in ACPI core */
  387. acpi_processor_preregister_performance(acpi_perf_data);
  388. return 0;
  389. }
  390. /*
  391. * Some BIOSes do SW_ANY coordination internally, either set it up in hw
  392. * or do it in BIOS firmware and won't inform about it to OS. If not
  393. * detected, this has a side effect of making CPU run at a different speed
  394. * than OS intended it to run at. Detect it and handle it cleanly.
  395. */
  396. static int bios_with_sw_any_bug;
  397. static int sw_any_bug_found(struct dmi_system_id *d)
  398. {
  399. bios_with_sw_any_bug = 1;
  400. return 0;
  401. }
  402. static struct dmi_system_id sw_any_bug_dmi_table[] = {
  403. {
  404. .callback = sw_any_bug_found,
  405. .ident = "Supermicro Server X6DLP",
  406. .matches = {
  407. DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
  408. DMI_MATCH(DMI_BIOS_VERSION, "080010"),
  409. DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
  410. },
  411. },
  412. { }
  413. };
  414. static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
  415. {
  416. unsigned int i;
  417. unsigned int valid_states = 0;
  418. unsigned int cpu = policy->cpu;
  419. struct acpi_cpufreq_data *data;
  420. unsigned int l, h;
  421. unsigned int result = 0;
  422. struct cpuinfo_x86 *c = &cpu_data[policy->cpu];
  423. struct acpi_processor_performance *perf;
  424. dprintk("acpi_cpufreq_cpu_init\n");
  425. if (!acpi_perf_data[cpu])
  426. return -ENODEV;
  427. data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
  428. if (!data)
  429. return -ENOMEM;
  430. data->acpi_data = acpi_perf_data[cpu];
  431. drv_data[cpu] = data;
  432. if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) {
  433. acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
  434. }
  435. result = acpi_processor_register_performance(data->acpi_data, cpu);
  436. if (result)
  437. goto err_free;
  438. perf = data->acpi_data;
  439. policy->shared_type = perf->shared_type;
  440. /*
  441. * Will let policy->cpus know about dependency only when software
  442. * coordination is required.
  443. */
  444. if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
  445. policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
  446. policy->cpus = perf->shared_cpu_map;
  447. }
  448. #ifdef CONFIG_SMP
  449. dmi_check_system(sw_any_bug_dmi_table);
  450. if (bios_with_sw_any_bug && cpus_weight(policy->cpus) == 1) {
  451. policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
  452. policy->cpus = cpu_core_map[cpu];
  453. }
  454. #endif
  455. /* capability check */
  456. if (perf->state_count <= 1) {
  457. dprintk("No P-States\n");
  458. result = -ENODEV;
  459. goto err_unreg;
  460. }
  461. if (perf->control_register.space_id != perf->status_register.space_id) {
  462. result = -ENODEV;
  463. goto err_unreg;
  464. }
  465. switch (perf->control_register.space_id) {
  466. case ACPI_ADR_SPACE_SYSTEM_IO:
  467. dprintk("SYSTEM IO addr space\n");
  468. data->cpu_feature = SYSTEM_IO_CAPABLE;
  469. break;
  470. case ACPI_ADR_SPACE_FIXED_HARDWARE:
  471. dprintk("HARDWARE addr space\n");
  472. if (!check_est_cpu(cpu)) {
  473. result = -ENODEV;
  474. goto err_unreg;
  475. }
  476. data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
  477. break;
  478. default:
  479. dprintk("Unknown addr space %d\n",
  480. (u32) (perf->control_register.space_id));
  481. result = -ENODEV;
  482. goto err_unreg;
  483. }
  484. data->freq_table =
  485. kmalloc(sizeof(struct cpufreq_frequency_table) *
  486. (perf->state_count + 1), GFP_KERNEL);
  487. if (!data->freq_table) {
  488. result = -ENOMEM;
  489. goto err_unreg;
  490. }
  491. /* detect transition latency */
  492. policy->cpuinfo.transition_latency = 0;
  493. for (i = 0; i < perf->state_count; i++) {
  494. if ((perf->states[i].transition_latency * 1000) >
  495. policy->cpuinfo.transition_latency)
  496. policy->cpuinfo.transition_latency =
  497. perf->states[i].transition_latency * 1000;
  498. }
  499. policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
  500. /* table init */
  501. for (i = 0; i < perf->state_count; i++) {
  502. if (i > 0 && perf->states[i].core_frequency ==
  503. perf->states[i - 1].core_frequency)
  504. continue;
  505. data->freq_table[valid_states].index = i;
  506. data->freq_table[valid_states].frequency =
  507. perf->states[i].core_frequency * 1000;
  508. valid_states++;
  509. }
  510. data->freq_table[perf->state_count].frequency = CPUFREQ_TABLE_END;
  511. result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
  512. if (result) {
  513. goto err_freqfree;
  514. }
  515. switch (data->cpu_feature) {
  516. case ACPI_ADR_SPACE_SYSTEM_IO:
  517. /* Current speed is unknown and not detectable by IO port */
  518. policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
  519. break;
  520. case ACPI_ADR_SPACE_FIXED_HARDWARE:
  521. get_cur_freq_on_cpu(cpu);
  522. break;
  523. default:
  524. break;
  525. }
  526. /* notify BIOS that we exist */
  527. acpi_processor_notify_smm(THIS_MODULE);
  528. dprintk("CPU%u - ACPI performance management activated.\n", cpu);
  529. for (i = 0; i < perf->state_count; i++)
  530. dprintk(" %cP%d: %d MHz, %d mW, %d uS\n",
  531. (i == perf->state ? '*' : ' '), i,
  532. (u32) perf->states[i].core_frequency,
  533. (u32) perf->states[i].power,
  534. (u32) perf->states[i].transition_latency);
  535. cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
  536. /*
  537. * the first call to ->target() should result in us actually
  538. * writing something to the appropriate registers.
  539. */
  540. data->resume = 1;
  541. return result;
  542. err_freqfree:
  543. kfree(data->freq_table);
  544. err_unreg:
  545. acpi_processor_unregister_performance(perf, cpu);
  546. err_free:
  547. kfree(data);
  548. drv_data[cpu] = NULL;
  549. return result;
  550. }
  551. static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
  552. {
  553. struct acpi_cpufreq_data *data = drv_data[policy->cpu];
  554. dprintk("acpi_cpufreq_cpu_exit\n");
  555. if (data) {
  556. cpufreq_frequency_table_put_attr(policy->cpu);
  557. drv_data[policy->cpu] = NULL;
  558. acpi_processor_unregister_performance(data->acpi_data,
  559. policy->cpu);
  560. kfree(data);
  561. }
  562. return 0;
  563. }
  564. static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
  565. {
  566. struct acpi_cpufreq_data *data = drv_data[policy->cpu];
  567. dprintk("acpi_cpufreq_resume\n");
  568. data->resume = 1;
  569. return 0;
  570. }
  571. static struct freq_attr *acpi_cpufreq_attr[] = {
  572. &cpufreq_freq_attr_scaling_available_freqs,
  573. NULL,
  574. };
  575. static struct cpufreq_driver acpi_cpufreq_driver = {
  576. .verify = acpi_cpufreq_verify,
  577. .target = acpi_cpufreq_target,
  578. .get = get_cur_freq_on_cpu,
  579. .init = acpi_cpufreq_cpu_init,
  580. .exit = acpi_cpufreq_cpu_exit,
  581. .resume = acpi_cpufreq_resume,
  582. .name = "acpi-cpufreq",
  583. .owner = THIS_MODULE,
  584. .attr = acpi_cpufreq_attr,
  585. };
  586. static int __init acpi_cpufreq_init(void)
  587. {
  588. dprintk("acpi_cpufreq_init\n");
  589. acpi_cpufreq_early_init();
  590. return cpufreq_register_driver(&acpi_cpufreq_driver);
  591. }
  592. static void __exit acpi_cpufreq_exit(void)
  593. {
  594. unsigned int i;
  595. dprintk("acpi_cpufreq_exit\n");
  596. cpufreq_unregister_driver(&acpi_cpufreq_driver);
  597. for_each_possible_cpu(i) {
  598. kfree(acpi_perf_data[i]);
  599. acpi_perf_data[i] = NULL;
  600. }
  601. return;
  602. }
  603. module_param(acpi_pstate_strict, uint, 0644);
  604. MODULE_PARM_DESC(acpi_pstate_strict,
  605. "value 0 or non-zero. non-zero -> strict ACPI checks are performed during frequency changes.");
  606. late_initcall(acpi_cpufreq_init);
  607. module_exit(acpi_cpufreq_exit);
  608. MODULE_ALIAS("acpi");