kvm_main.c 54 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "iodev.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/kvm.h>
  21. #include <linux/module.h>
  22. #include <linux/errno.h>
  23. #include <linux/percpu.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/sysdev.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <linux/bitops.h>
  43. #include <linux/spinlock.h>
  44. #include <linux/compat.h>
  45. #include <linux/srcu.h>
  46. #include <linux/hugetlb.h>
  47. #include <linux/slab.h>
  48. #include <asm/processor.h>
  49. #include <asm/io.h>
  50. #include <asm/uaccess.h>
  51. #include <asm/pgtable.h>
  52. #include <asm-generic/bitops/le.h>
  53. #include "coalesced_mmio.h"
  54. #include "async_pf.h"
  55. #define CREATE_TRACE_POINTS
  56. #include <trace/events/kvm.h>
  57. MODULE_AUTHOR("Qumranet");
  58. MODULE_LICENSE("GPL");
  59. /*
  60. * Ordering of locks:
  61. *
  62. * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  63. */
  64. DEFINE_SPINLOCK(kvm_lock);
  65. LIST_HEAD(vm_list);
  66. static cpumask_var_t cpus_hardware_enabled;
  67. static int kvm_usage_count = 0;
  68. static atomic_t hardware_enable_failed;
  69. struct kmem_cache *kvm_vcpu_cache;
  70. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  71. static __read_mostly struct preempt_ops kvm_preempt_ops;
  72. struct dentry *kvm_debugfs_dir;
  73. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  74. unsigned long arg);
  75. static int hardware_enable_all(void);
  76. static void hardware_disable_all(void);
  77. static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
  78. static bool kvm_rebooting;
  79. static bool largepages_enabled = true;
  80. static struct page *hwpoison_page;
  81. static pfn_t hwpoison_pfn;
  82. static struct page *fault_page;
  83. static pfn_t fault_pfn;
  84. inline int kvm_is_mmio_pfn(pfn_t pfn)
  85. {
  86. if (pfn_valid(pfn)) {
  87. struct page *page = compound_head(pfn_to_page(pfn));
  88. return PageReserved(page);
  89. }
  90. return true;
  91. }
  92. /*
  93. * Switches to specified vcpu, until a matching vcpu_put()
  94. */
  95. void vcpu_load(struct kvm_vcpu *vcpu)
  96. {
  97. int cpu;
  98. mutex_lock(&vcpu->mutex);
  99. cpu = get_cpu();
  100. preempt_notifier_register(&vcpu->preempt_notifier);
  101. kvm_arch_vcpu_load(vcpu, cpu);
  102. put_cpu();
  103. }
  104. void vcpu_put(struct kvm_vcpu *vcpu)
  105. {
  106. preempt_disable();
  107. kvm_arch_vcpu_put(vcpu);
  108. preempt_notifier_unregister(&vcpu->preempt_notifier);
  109. preempt_enable();
  110. mutex_unlock(&vcpu->mutex);
  111. }
  112. static void ack_flush(void *_completed)
  113. {
  114. }
  115. static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
  116. {
  117. int i, cpu, me;
  118. cpumask_var_t cpus;
  119. bool called = true;
  120. struct kvm_vcpu *vcpu;
  121. zalloc_cpumask_var(&cpus, GFP_ATOMIC);
  122. raw_spin_lock(&kvm->requests_lock);
  123. me = smp_processor_id();
  124. kvm_for_each_vcpu(i, vcpu, kvm) {
  125. if (kvm_make_check_request(req, vcpu))
  126. continue;
  127. cpu = vcpu->cpu;
  128. if (cpus != NULL && cpu != -1 && cpu != me)
  129. cpumask_set_cpu(cpu, cpus);
  130. }
  131. if (unlikely(cpus == NULL))
  132. smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
  133. else if (!cpumask_empty(cpus))
  134. smp_call_function_many(cpus, ack_flush, NULL, 1);
  135. else
  136. called = false;
  137. raw_spin_unlock(&kvm->requests_lock);
  138. free_cpumask_var(cpus);
  139. return called;
  140. }
  141. void kvm_flush_remote_tlbs(struct kvm *kvm)
  142. {
  143. if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
  144. ++kvm->stat.remote_tlb_flush;
  145. }
  146. void kvm_reload_remote_mmus(struct kvm *kvm)
  147. {
  148. make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
  149. }
  150. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  151. {
  152. struct page *page;
  153. int r;
  154. mutex_init(&vcpu->mutex);
  155. vcpu->cpu = -1;
  156. vcpu->kvm = kvm;
  157. vcpu->vcpu_id = id;
  158. init_waitqueue_head(&vcpu->wq);
  159. kvm_async_pf_vcpu_init(vcpu);
  160. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  161. if (!page) {
  162. r = -ENOMEM;
  163. goto fail;
  164. }
  165. vcpu->run = page_address(page);
  166. r = kvm_arch_vcpu_init(vcpu);
  167. if (r < 0)
  168. goto fail_free_run;
  169. return 0;
  170. fail_free_run:
  171. free_page((unsigned long)vcpu->run);
  172. fail:
  173. return r;
  174. }
  175. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  176. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  177. {
  178. kvm_arch_vcpu_uninit(vcpu);
  179. free_page((unsigned long)vcpu->run);
  180. }
  181. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  182. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  183. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  184. {
  185. return container_of(mn, struct kvm, mmu_notifier);
  186. }
  187. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  188. struct mm_struct *mm,
  189. unsigned long address)
  190. {
  191. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  192. int need_tlb_flush, idx;
  193. /*
  194. * When ->invalidate_page runs, the linux pte has been zapped
  195. * already but the page is still allocated until
  196. * ->invalidate_page returns. So if we increase the sequence
  197. * here the kvm page fault will notice if the spte can't be
  198. * established because the page is going to be freed. If
  199. * instead the kvm page fault establishes the spte before
  200. * ->invalidate_page runs, kvm_unmap_hva will release it
  201. * before returning.
  202. *
  203. * The sequence increase only need to be seen at spin_unlock
  204. * time, and not at spin_lock time.
  205. *
  206. * Increasing the sequence after the spin_unlock would be
  207. * unsafe because the kvm page fault could then establish the
  208. * pte after kvm_unmap_hva returned, without noticing the page
  209. * is going to be freed.
  210. */
  211. idx = srcu_read_lock(&kvm->srcu);
  212. spin_lock(&kvm->mmu_lock);
  213. kvm->mmu_notifier_seq++;
  214. need_tlb_flush = kvm_unmap_hva(kvm, address);
  215. spin_unlock(&kvm->mmu_lock);
  216. srcu_read_unlock(&kvm->srcu, idx);
  217. /* we've to flush the tlb before the pages can be freed */
  218. if (need_tlb_flush)
  219. kvm_flush_remote_tlbs(kvm);
  220. }
  221. static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
  222. struct mm_struct *mm,
  223. unsigned long address,
  224. pte_t pte)
  225. {
  226. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  227. int idx;
  228. idx = srcu_read_lock(&kvm->srcu);
  229. spin_lock(&kvm->mmu_lock);
  230. kvm->mmu_notifier_seq++;
  231. kvm_set_spte_hva(kvm, address, pte);
  232. spin_unlock(&kvm->mmu_lock);
  233. srcu_read_unlock(&kvm->srcu, idx);
  234. }
  235. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  236. struct mm_struct *mm,
  237. unsigned long start,
  238. unsigned long end)
  239. {
  240. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  241. int need_tlb_flush = 0, idx;
  242. idx = srcu_read_lock(&kvm->srcu);
  243. spin_lock(&kvm->mmu_lock);
  244. /*
  245. * The count increase must become visible at unlock time as no
  246. * spte can be established without taking the mmu_lock and
  247. * count is also read inside the mmu_lock critical section.
  248. */
  249. kvm->mmu_notifier_count++;
  250. for (; start < end; start += PAGE_SIZE)
  251. need_tlb_flush |= kvm_unmap_hva(kvm, start);
  252. spin_unlock(&kvm->mmu_lock);
  253. srcu_read_unlock(&kvm->srcu, idx);
  254. /* we've to flush the tlb before the pages can be freed */
  255. if (need_tlb_flush)
  256. kvm_flush_remote_tlbs(kvm);
  257. }
  258. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  259. struct mm_struct *mm,
  260. unsigned long start,
  261. unsigned long end)
  262. {
  263. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  264. spin_lock(&kvm->mmu_lock);
  265. /*
  266. * This sequence increase will notify the kvm page fault that
  267. * the page that is going to be mapped in the spte could have
  268. * been freed.
  269. */
  270. kvm->mmu_notifier_seq++;
  271. /*
  272. * The above sequence increase must be visible before the
  273. * below count decrease but both values are read by the kvm
  274. * page fault under mmu_lock spinlock so we don't need to add
  275. * a smb_wmb() here in between the two.
  276. */
  277. kvm->mmu_notifier_count--;
  278. spin_unlock(&kvm->mmu_lock);
  279. BUG_ON(kvm->mmu_notifier_count < 0);
  280. }
  281. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  282. struct mm_struct *mm,
  283. unsigned long address)
  284. {
  285. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  286. int young, idx;
  287. idx = srcu_read_lock(&kvm->srcu);
  288. spin_lock(&kvm->mmu_lock);
  289. young = kvm_age_hva(kvm, address);
  290. spin_unlock(&kvm->mmu_lock);
  291. srcu_read_unlock(&kvm->srcu, idx);
  292. if (young)
  293. kvm_flush_remote_tlbs(kvm);
  294. return young;
  295. }
  296. static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
  297. struct mm_struct *mm)
  298. {
  299. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  300. int idx;
  301. idx = srcu_read_lock(&kvm->srcu);
  302. kvm_arch_flush_shadow(kvm);
  303. srcu_read_unlock(&kvm->srcu, idx);
  304. }
  305. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  306. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  307. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  308. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  309. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  310. .change_pte = kvm_mmu_notifier_change_pte,
  311. .release = kvm_mmu_notifier_release,
  312. };
  313. static int kvm_init_mmu_notifier(struct kvm *kvm)
  314. {
  315. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  316. return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  317. }
  318. #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
  319. static int kvm_init_mmu_notifier(struct kvm *kvm)
  320. {
  321. return 0;
  322. }
  323. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  324. static struct kvm *kvm_create_vm(void)
  325. {
  326. int r = 0, i;
  327. struct kvm *kvm = kvm_arch_create_vm();
  328. if (IS_ERR(kvm))
  329. goto out;
  330. r = hardware_enable_all();
  331. if (r)
  332. goto out_err_nodisable;
  333. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  334. INIT_HLIST_HEAD(&kvm->mask_notifier_list);
  335. INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
  336. #endif
  337. r = -ENOMEM;
  338. kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  339. if (!kvm->memslots)
  340. goto out_err;
  341. if (init_srcu_struct(&kvm->srcu))
  342. goto out_err;
  343. for (i = 0; i < KVM_NR_BUSES; i++) {
  344. kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
  345. GFP_KERNEL);
  346. if (!kvm->buses[i]) {
  347. cleanup_srcu_struct(&kvm->srcu);
  348. goto out_err;
  349. }
  350. }
  351. r = kvm_init_mmu_notifier(kvm);
  352. if (r) {
  353. cleanup_srcu_struct(&kvm->srcu);
  354. goto out_err;
  355. }
  356. kvm->mm = current->mm;
  357. atomic_inc(&kvm->mm->mm_count);
  358. spin_lock_init(&kvm->mmu_lock);
  359. raw_spin_lock_init(&kvm->requests_lock);
  360. kvm_eventfd_init(kvm);
  361. mutex_init(&kvm->lock);
  362. mutex_init(&kvm->irq_lock);
  363. mutex_init(&kvm->slots_lock);
  364. atomic_set(&kvm->users_count, 1);
  365. spin_lock(&kvm_lock);
  366. list_add(&kvm->vm_list, &vm_list);
  367. spin_unlock(&kvm_lock);
  368. out:
  369. return kvm;
  370. out_err:
  371. hardware_disable_all();
  372. out_err_nodisable:
  373. for (i = 0; i < KVM_NR_BUSES; i++)
  374. kfree(kvm->buses[i]);
  375. kfree(kvm->memslots);
  376. kfree(kvm);
  377. return ERR_PTR(r);
  378. }
  379. /*
  380. * Free any memory in @free but not in @dont.
  381. */
  382. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  383. struct kvm_memory_slot *dont)
  384. {
  385. int i;
  386. if (!dont || free->rmap != dont->rmap)
  387. vfree(free->rmap);
  388. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  389. vfree(free->dirty_bitmap);
  390. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  391. if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
  392. vfree(free->lpage_info[i]);
  393. free->lpage_info[i] = NULL;
  394. }
  395. }
  396. free->npages = 0;
  397. free->dirty_bitmap = NULL;
  398. free->rmap = NULL;
  399. }
  400. void kvm_free_physmem(struct kvm *kvm)
  401. {
  402. int i;
  403. struct kvm_memslots *slots = kvm->memslots;
  404. for (i = 0; i < slots->nmemslots; ++i)
  405. kvm_free_physmem_slot(&slots->memslots[i], NULL);
  406. kfree(kvm->memslots);
  407. }
  408. static void kvm_destroy_vm(struct kvm *kvm)
  409. {
  410. int i;
  411. struct mm_struct *mm = kvm->mm;
  412. kvm_arch_sync_events(kvm);
  413. spin_lock(&kvm_lock);
  414. list_del(&kvm->vm_list);
  415. spin_unlock(&kvm_lock);
  416. kvm_free_irq_routing(kvm);
  417. for (i = 0; i < KVM_NR_BUSES; i++)
  418. kvm_io_bus_destroy(kvm->buses[i]);
  419. kvm_coalesced_mmio_free(kvm);
  420. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  421. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  422. #else
  423. kvm_arch_flush_shadow(kvm);
  424. #endif
  425. kvm_arch_destroy_vm(kvm);
  426. hardware_disable_all();
  427. mmdrop(mm);
  428. }
  429. void kvm_get_kvm(struct kvm *kvm)
  430. {
  431. atomic_inc(&kvm->users_count);
  432. }
  433. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  434. void kvm_put_kvm(struct kvm *kvm)
  435. {
  436. if (atomic_dec_and_test(&kvm->users_count))
  437. kvm_destroy_vm(kvm);
  438. }
  439. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  440. static int kvm_vm_release(struct inode *inode, struct file *filp)
  441. {
  442. struct kvm *kvm = filp->private_data;
  443. kvm_irqfd_release(kvm);
  444. kvm_put_kvm(kvm);
  445. return 0;
  446. }
  447. /*
  448. * Allocate some memory and give it an address in the guest physical address
  449. * space.
  450. *
  451. * Discontiguous memory is allowed, mostly for framebuffers.
  452. *
  453. * Must be called holding mmap_sem for write.
  454. */
  455. int __kvm_set_memory_region(struct kvm *kvm,
  456. struct kvm_userspace_memory_region *mem,
  457. int user_alloc)
  458. {
  459. int r, flush_shadow = 0;
  460. gfn_t base_gfn;
  461. unsigned long npages;
  462. unsigned long i;
  463. struct kvm_memory_slot *memslot;
  464. struct kvm_memory_slot old, new;
  465. struct kvm_memslots *slots, *old_memslots;
  466. r = -EINVAL;
  467. /* General sanity checks */
  468. if (mem->memory_size & (PAGE_SIZE - 1))
  469. goto out;
  470. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  471. goto out;
  472. if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
  473. goto out;
  474. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  475. goto out;
  476. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  477. goto out;
  478. memslot = &kvm->memslots->memslots[mem->slot];
  479. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  480. npages = mem->memory_size >> PAGE_SHIFT;
  481. r = -EINVAL;
  482. if (npages > KVM_MEM_MAX_NR_PAGES)
  483. goto out;
  484. if (!npages)
  485. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  486. new = old = *memslot;
  487. new.id = mem->slot;
  488. new.base_gfn = base_gfn;
  489. new.npages = npages;
  490. new.flags = mem->flags;
  491. /* Disallow changing a memory slot's size. */
  492. r = -EINVAL;
  493. if (npages && old.npages && npages != old.npages)
  494. goto out_free;
  495. /* Check for overlaps */
  496. r = -EEXIST;
  497. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  498. struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
  499. if (s == memslot || !s->npages)
  500. continue;
  501. if (!((base_gfn + npages <= s->base_gfn) ||
  502. (base_gfn >= s->base_gfn + s->npages)))
  503. goto out_free;
  504. }
  505. /* Free page dirty bitmap if unneeded */
  506. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  507. new.dirty_bitmap = NULL;
  508. r = -ENOMEM;
  509. /* Allocate if a slot is being created */
  510. #ifndef CONFIG_S390
  511. if (npages && !new.rmap) {
  512. new.rmap = vmalloc(npages * sizeof(*new.rmap));
  513. if (!new.rmap)
  514. goto out_free;
  515. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  516. new.user_alloc = user_alloc;
  517. new.userspace_addr = mem->userspace_addr;
  518. }
  519. if (!npages)
  520. goto skip_lpage;
  521. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  522. unsigned long ugfn;
  523. unsigned long j;
  524. int lpages;
  525. int level = i + 2;
  526. /* Avoid unused variable warning if no large pages */
  527. (void)level;
  528. if (new.lpage_info[i])
  529. continue;
  530. lpages = 1 + ((base_gfn + npages - 1)
  531. >> KVM_HPAGE_GFN_SHIFT(level));
  532. lpages -= base_gfn >> KVM_HPAGE_GFN_SHIFT(level);
  533. new.lpage_info[i] = vmalloc(lpages * sizeof(*new.lpage_info[i]));
  534. if (!new.lpage_info[i])
  535. goto out_free;
  536. memset(new.lpage_info[i], 0,
  537. lpages * sizeof(*new.lpage_info[i]));
  538. if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
  539. new.lpage_info[i][0].write_count = 1;
  540. if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
  541. new.lpage_info[i][lpages - 1].write_count = 1;
  542. ugfn = new.userspace_addr >> PAGE_SHIFT;
  543. /*
  544. * If the gfn and userspace address are not aligned wrt each
  545. * other, or if explicitly asked to, disable large page
  546. * support for this slot
  547. */
  548. if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
  549. !largepages_enabled)
  550. for (j = 0; j < lpages; ++j)
  551. new.lpage_info[i][j].write_count = 1;
  552. }
  553. skip_lpage:
  554. /* Allocate page dirty bitmap if needed */
  555. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  556. unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(&new);
  557. new.dirty_bitmap = vmalloc(dirty_bytes);
  558. if (!new.dirty_bitmap)
  559. goto out_free;
  560. memset(new.dirty_bitmap, 0, dirty_bytes);
  561. /* destroy any largepage mappings for dirty tracking */
  562. if (old.npages)
  563. flush_shadow = 1;
  564. }
  565. #else /* not defined CONFIG_S390 */
  566. new.user_alloc = user_alloc;
  567. if (user_alloc)
  568. new.userspace_addr = mem->userspace_addr;
  569. #endif /* not defined CONFIG_S390 */
  570. if (!npages) {
  571. r = -ENOMEM;
  572. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  573. if (!slots)
  574. goto out_free;
  575. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  576. if (mem->slot >= slots->nmemslots)
  577. slots->nmemslots = mem->slot + 1;
  578. slots->generation++;
  579. slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID;
  580. old_memslots = kvm->memslots;
  581. rcu_assign_pointer(kvm->memslots, slots);
  582. synchronize_srcu_expedited(&kvm->srcu);
  583. /* From this point no new shadow pages pointing to a deleted
  584. * memslot will be created.
  585. *
  586. * validation of sp->gfn happens in:
  587. * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
  588. * - kvm_is_visible_gfn (mmu_check_roots)
  589. */
  590. kvm_arch_flush_shadow(kvm);
  591. kfree(old_memslots);
  592. }
  593. r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
  594. if (r)
  595. goto out_free;
  596. /* map the pages in iommu page table */
  597. if (npages) {
  598. r = kvm_iommu_map_pages(kvm, &new);
  599. if (r)
  600. goto out_free;
  601. }
  602. r = -ENOMEM;
  603. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  604. if (!slots)
  605. goto out_free;
  606. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  607. if (mem->slot >= slots->nmemslots)
  608. slots->nmemslots = mem->slot + 1;
  609. slots->generation++;
  610. /* actual memory is freed via old in kvm_free_physmem_slot below */
  611. if (!npages) {
  612. new.rmap = NULL;
  613. new.dirty_bitmap = NULL;
  614. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
  615. new.lpage_info[i] = NULL;
  616. }
  617. slots->memslots[mem->slot] = new;
  618. old_memslots = kvm->memslots;
  619. rcu_assign_pointer(kvm->memslots, slots);
  620. synchronize_srcu_expedited(&kvm->srcu);
  621. kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
  622. kvm_free_physmem_slot(&old, &new);
  623. kfree(old_memslots);
  624. if (flush_shadow)
  625. kvm_arch_flush_shadow(kvm);
  626. return 0;
  627. out_free:
  628. kvm_free_physmem_slot(&new, &old);
  629. out:
  630. return r;
  631. }
  632. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  633. int kvm_set_memory_region(struct kvm *kvm,
  634. struct kvm_userspace_memory_region *mem,
  635. int user_alloc)
  636. {
  637. int r;
  638. mutex_lock(&kvm->slots_lock);
  639. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  640. mutex_unlock(&kvm->slots_lock);
  641. return r;
  642. }
  643. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  644. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  645. struct
  646. kvm_userspace_memory_region *mem,
  647. int user_alloc)
  648. {
  649. if (mem->slot >= KVM_MEMORY_SLOTS)
  650. return -EINVAL;
  651. return kvm_set_memory_region(kvm, mem, user_alloc);
  652. }
  653. int kvm_get_dirty_log(struct kvm *kvm,
  654. struct kvm_dirty_log *log, int *is_dirty)
  655. {
  656. struct kvm_memory_slot *memslot;
  657. int r, i;
  658. unsigned long n;
  659. unsigned long any = 0;
  660. r = -EINVAL;
  661. if (log->slot >= KVM_MEMORY_SLOTS)
  662. goto out;
  663. memslot = &kvm->memslots->memslots[log->slot];
  664. r = -ENOENT;
  665. if (!memslot->dirty_bitmap)
  666. goto out;
  667. n = kvm_dirty_bitmap_bytes(memslot);
  668. for (i = 0; !any && i < n/sizeof(long); ++i)
  669. any = memslot->dirty_bitmap[i];
  670. r = -EFAULT;
  671. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  672. goto out;
  673. if (any)
  674. *is_dirty = 1;
  675. r = 0;
  676. out:
  677. return r;
  678. }
  679. void kvm_disable_largepages(void)
  680. {
  681. largepages_enabled = false;
  682. }
  683. EXPORT_SYMBOL_GPL(kvm_disable_largepages);
  684. int is_error_page(struct page *page)
  685. {
  686. return page == bad_page || page == hwpoison_page || page == fault_page;
  687. }
  688. EXPORT_SYMBOL_GPL(is_error_page);
  689. int is_error_pfn(pfn_t pfn)
  690. {
  691. return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
  692. }
  693. EXPORT_SYMBOL_GPL(is_error_pfn);
  694. int is_hwpoison_pfn(pfn_t pfn)
  695. {
  696. return pfn == hwpoison_pfn;
  697. }
  698. EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
  699. int is_fault_pfn(pfn_t pfn)
  700. {
  701. return pfn == fault_pfn;
  702. }
  703. EXPORT_SYMBOL_GPL(is_fault_pfn);
  704. static inline unsigned long bad_hva(void)
  705. {
  706. return PAGE_OFFSET;
  707. }
  708. int kvm_is_error_hva(unsigned long addr)
  709. {
  710. return addr == bad_hva();
  711. }
  712. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  713. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm_memslots *slots,
  714. gfn_t gfn)
  715. {
  716. int i;
  717. for (i = 0; i < slots->nmemslots; ++i) {
  718. struct kvm_memory_slot *memslot = &slots->memslots[i];
  719. if (gfn >= memslot->base_gfn
  720. && gfn < memslot->base_gfn + memslot->npages)
  721. return memslot;
  722. }
  723. return NULL;
  724. }
  725. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  726. {
  727. return __gfn_to_memslot(kvm_memslots(kvm), gfn);
  728. }
  729. EXPORT_SYMBOL_GPL(gfn_to_memslot);
  730. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  731. {
  732. int i;
  733. struct kvm_memslots *slots = kvm_memslots(kvm);
  734. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  735. struct kvm_memory_slot *memslot = &slots->memslots[i];
  736. if (memslot->flags & KVM_MEMSLOT_INVALID)
  737. continue;
  738. if (gfn >= memslot->base_gfn
  739. && gfn < memslot->base_gfn + memslot->npages)
  740. return 1;
  741. }
  742. return 0;
  743. }
  744. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  745. unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
  746. {
  747. struct vm_area_struct *vma;
  748. unsigned long addr, size;
  749. size = PAGE_SIZE;
  750. addr = gfn_to_hva(kvm, gfn);
  751. if (kvm_is_error_hva(addr))
  752. return PAGE_SIZE;
  753. down_read(&current->mm->mmap_sem);
  754. vma = find_vma(current->mm, addr);
  755. if (!vma)
  756. goto out;
  757. size = vma_kernel_pagesize(vma);
  758. out:
  759. up_read(&current->mm->mmap_sem);
  760. return size;
  761. }
  762. int memslot_id(struct kvm *kvm, gfn_t gfn)
  763. {
  764. int i;
  765. struct kvm_memslots *slots = kvm_memslots(kvm);
  766. struct kvm_memory_slot *memslot = NULL;
  767. for (i = 0; i < slots->nmemslots; ++i) {
  768. memslot = &slots->memslots[i];
  769. if (gfn >= memslot->base_gfn
  770. && gfn < memslot->base_gfn + memslot->npages)
  771. break;
  772. }
  773. return memslot - slots->memslots;
  774. }
  775. static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
  776. gfn_t *nr_pages)
  777. {
  778. if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
  779. return bad_hva();
  780. if (nr_pages)
  781. *nr_pages = slot->npages - (gfn - slot->base_gfn);
  782. return gfn_to_hva_memslot(slot, gfn);
  783. }
  784. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  785. {
  786. return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
  787. }
  788. EXPORT_SYMBOL_GPL(gfn_to_hva);
  789. static pfn_t get_fault_pfn(void)
  790. {
  791. get_page(fault_page);
  792. return fault_pfn;
  793. }
  794. static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
  795. bool *async, bool write_fault, bool *writable)
  796. {
  797. struct page *page[1];
  798. int npages = 0;
  799. pfn_t pfn;
  800. /* we can do it either atomically or asynchronously, not both */
  801. BUG_ON(atomic && async);
  802. BUG_ON(!write_fault && !writable);
  803. if (writable)
  804. *writable = true;
  805. if (atomic || async)
  806. npages = __get_user_pages_fast(addr, 1, 1, page);
  807. if (unlikely(npages != 1) && !atomic) {
  808. might_sleep();
  809. if (writable)
  810. *writable = write_fault;
  811. npages = get_user_pages_fast(addr, 1, write_fault, page);
  812. /* map read fault as writable if possible */
  813. if (unlikely(!write_fault) && npages == 1) {
  814. struct page *wpage[1];
  815. npages = __get_user_pages_fast(addr, 1, 1, wpage);
  816. if (npages == 1) {
  817. *writable = true;
  818. put_page(page[0]);
  819. page[0] = wpage[0];
  820. }
  821. npages = 1;
  822. }
  823. }
  824. if (unlikely(npages != 1)) {
  825. struct vm_area_struct *vma;
  826. if (atomic)
  827. return get_fault_pfn();
  828. down_read(&current->mm->mmap_sem);
  829. if (is_hwpoison_address(addr)) {
  830. up_read(&current->mm->mmap_sem);
  831. get_page(hwpoison_page);
  832. return page_to_pfn(hwpoison_page);
  833. }
  834. vma = find_vma_intersection(current->mm, addr, addr+1);
  835. if (vma == NULL)
  836. pfn = get_fault_pfn();
  837. else if ((vma->vm_flags & VM_PFNMAP)) {
  838. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
  839. vma->vm_pgoff;
  840. BUG_ON(!kvm_is_mmio_pfn(pfn));
  841. } else {
  842. if (async && (vma->vm_flags & VM_WRITE))
  843. *async = true;
  844. pfn = get_fault_pfn();
  845. }
  846. up_read(&current->mm->mmap_sem);
  847. } else
  848. pfn = page_to_pfn(page[0]);
  849. return pfn;
  850. }
  851. pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
  852. {
  853. return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
  854. }
  855. EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
  856. static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
  857. bool write_fault, bool *writable)
  858. {
  859. unsigned long addr;
  860. if (async)
  861. *async = false;
  862. addr = gfn_to_hva(kvm, gfn);
  863. if (kvm_is_error_hva(addr)) {
  864. get_page(bad_page);
  865. return page_to_pfn(bad_page);
  866. }
  867. return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
  868. }
  869. pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
  870. {
  871. return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
  872. }
  873. EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
  874. pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
  875. bool write_fault, bool *writable)
  876. {
  877. return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
  878. }
  879. EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
  880. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  881. {
  882. return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
  883. }
  884. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  885. pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
  886. bool *writable)
  887. {
  888. return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
  889. }
  890. EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
  891. pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
  892. struct kvm_memory_slot *slot, gfn_t gfn)
  893. {
  894. unsigned long addr = gfn_to_hva_memslot(slot, gfn);
  895. return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
  896. }
  897. int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
  898. int nr_pages)
  899. {
  900. unsigned long addr;
  901. gfn_t entry;
  902. addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
  903. if (kvm_is_error_hva(addr))
  904. return -1;
  905. if (entry < nr_pages)
  906. return 0;
  907. return __get_user_pages_fast(addr, nr_pages, 1, pages);
  908. }
  909. EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
  910. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  911. {
  912. pfn_t pfn;
  913. pfn = gfn_to_pfn(kvm, gfn);
  914. if (!kvm_is_mmio_pfn(pfn))
  915. return pfn_to_page(pfn);
  916. WARN_ON(kvm_is_mmio_pfn(pfn));
  917. get_page(bad_page);
  918. return bad_page;
  919. }
  920. EXPORT_SYMBOL_GPL(gfn_to_page);
  921. void kvm_release_page_clean(struct page *page)
  922. {
  923. kvm_release_pfn_clean(page_to_pfn(page));
  924. }
  925. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  926. void kvm_release_pfn_clean(pfn_t pfn)
  927. {
  928. if (!kvm_is_mmio_pfn(pfn))
  929. put_page(pfn_to_page(pfn));
  930. }
  931. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  932. void kvm_release_page_dirty(struct page *page)
  933. {
  934. kvm_release_pfn_dirty(page_to_pfn(page));
  935. }
  936. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  937. void kvm_release_pfn_dirty(pfn_t pfn)
  938. {
  939. kvm_set_pfn_dirty(pfn);
  940. kvm_release_pfn_clean(pfn);
  941. }
  942. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  943. void kvm_set_page_dirty(struct page *page)
  944. {
  945. kvm_set_pfn_dirty(page_to_pfn(page));
  946. }
  947. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  948. void kvm_set_pfn_dirty(pfn_t pfn)
  949. {
  950. if (!kvm_is_mmio_pfn(pfn)) {
  951. struct page *page = pfn_to_page(pfn);
  952. if (!PageReserved(page))
  953. SetPageDirty(page);
  954. }
  955. }
  956. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  957. void kvm_set_pfn_accessed(pfn_t pfn)
  958. {
  959. if (!kvm_is_mmio_pfn(pfn))
  960. mark_page_accessed(pfn_to_page(pfn));
  961. }
  962. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  963. void kvm_get_pfn(pfn_t pfn)
  964. {
  965. if (!kvm_is_mmio_pfn(pfn))
  966. get_page(pfn_to_page(pfn));
  967. }
  968. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  969. static int next_segment(unsigned long len, int offset)
  970. {
  971. if (len > PAGE_SIZE - offset)
  972. return PAGE_SIZE - offset;
  973. else
  974. return len;
  975. }
  976. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  977. int len)
  978. {
  979. int r;
  980. unsigned long addr;
  981. addr = gfn_to_hva(kvm, gfn);
  982. if (kvm_is_error_hva(addr))
  983. return -EFAULT;
  984. r = copy_from_user(data, (void __user *)addr + offset, len);
  985. if (r)
  986. return -EFAULT;
  987. return 0;
  988. }
  989. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  990. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  991. {
  992. gfn_t gfn = gpa >> PAGE_SHIFT;
  993. int seg;
  994. int offset = offset_in_page(gpa);
  995. int ret;
  996. while ((seg = next_segment(len, offset)) != 0) {
  997. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  998. if (ret < 0)
  999. return ret;
  1000. offset = 0;
  1001. len -= seg;
  1002. data += seg;
  1003. ++gfn;
  1004. }
  1005. return 0;
  1006. }
  1007. EXPORT_SYMBOL_GPL(kvm_read_guest);
  1008. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  1009. unsigned long len)
  1010. {
  1011. int r;
  1012. unsigned long addr;
  1013. gfn_t gfn = gpa >> PAGE_SHIFT;
  1014. int offset = offset_in_page(gpa);
  1015. addr = gfn_to_hva(kvm, gfn);
  1016. if (kvm_is_error_hva(addr))
  1017. return -EFAULT;
  1018. pagefault_disable();
  1019. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  1020. pagefault_enable();
  1021. if (r)
  1022. return -EFAULT;
  1023. return 0;
  1024. }
  1025. EXPORT_SYMBOL(kvm_read_guest_atomic);
  1026. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  1027. int offset, int len)
  1028. {
  1029. int r;
  1030. unsigned long addr;
  1031. addr = gfn_to_hva(kvm, gfn);
  1032. if (kvm_is_error_hva(addr))
  1033. return -EFAULT;
  1034. r = copy_to_user((void __user *)addr + offset, data, len);
  1035. if (r)
  1036. return -EFAULT;
  1037. mark_page_dirty(kvm, gfn);
  1038. return 0;
  1039. }
  1040. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  1041. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  1042. unsigned long len)
  1043. {
  1044. gfn_t gfn = gpa >> PAGE_SHIFT;
  1045. int seg;
  1046. int offset = offset_in_page(gpa);
  1047. int ret;
  1048. while ((seg = next_segment(len, offset)) != 0) {
  1049. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  1050. if (ret < 0)
  1051. return ret;
  1052. offset = 0;
  1053. len -= seg;
  1054. data += seg;
  1055. ++gfn;
  1056. }
  1057. return 0;
  1058. }
  1059. int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1060. gpa_t gpa)
  1061. {
  1062. struct kvm_memslots *slots = kvm_memslots(kvm);
  1063. int offset = offset_in_page(gpa);
  1064. gfn_t gfn = gpa >> PAGE_SHIFT;
  1065. ghc->gpa = gpa;
  1066. ghc->generation = slots->generation;
  1067. ghc->memslot = __gfn_to_memslot(slots, gfn);
  1068. ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
  1069. if (!kvm_is_error_hva(ghc->hva))
  1070. ghc->hva += offset;
  1071. else
  1072. return -EFAULT;
  1073. return 0;
  1074. }
  1075. EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
  1076. int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1077. void *data, unsigned long len)
  1078. {
  1079. struct kvm_memslots *slots = kvm_memslots(kvm);
  1080. int r;
  1081. if (slots->generation != ghc->generation)
  1082. kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
  1083. if (kvm_is_error_hva(ghc->hva))
  1084. return -EFAULT;
  1085. r = copy_to_user((void __user *)ghc->hva, data, len);
  1086. if (r)
  1087. return -EFAULT;
  1088. mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
  1089. return 0;
  1090. }
  1091. EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
  1092. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  1093. {
  1094. return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
  1095. }
  1096. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  1097. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  1098. {
  1099. gfn_t gfn = gpa >> PAGE_SHIFT;
  1100. int seg;
  1101. int offset = offset_in_page(gpa);
  1102. int ret;
  1103. while ((seg = next_segment(len, offset)) != 0) {
  1104. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  1105. if (ret < 0)
  1106. return ret;
  1107. offset = 0;
  1108. len -= seg;
  1109. ++gfn;
  1110. }
  1111. return 0;
  1112. }
  1113. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  1114. void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
  1115. gfn_t gfn)
  1116. {
  1117. if (memslot && memslot->dirty_bitmap) {
  1118. unsigned long rel_gfn = gfn - memslot->base_gfn;
  1119. generic___set_le_bit(rel_gfn, memslot->dirty_bitmap);
  1120. }
  1121. }
  1122. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  1123. {
  1124. struct kvm_memory_slot *memslot;
  1125. memslot = gfn_to_memslot(kvm, gfn);
  1126. mark_page_dirty_in_slot(kvm, memslot, gfn);
  1127. }
  1128. /*
  1129. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1130. */
  1131. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1132. {
  1133. DEFINE_WAIT(wait);
  1134. for (;;) {
  1135. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1136. if (kvm_arch_vcpu_runnable(vcpu)) {
  1137. kvm_make_request(KVM_REQ_UNHALT, vcpu);
  1138. break;
  1139. }
  1140. if (kvm_cpu_has_pending_timer(vcpu))
  1141. break;
  1142. if (signal_pending(current))
  1143. break;
  1144. schedule();
  1145. }
  1146. finish_wait(&vcpu->wq, &wait);
  1147. }
  1148. void kvm_resched(struct kvm_vcpu *vcpu)
  1149. {
  1150. if (!need_resched())
  1151. return;
  1152. cond_resched();
  1153. }
  1154. EXPORT_SYMBOL_GPL(kvm_resched);
  1155. void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu)
  1156. {
  1157. ktime_t expires;
  1158. DEFINE_WAIT(wait);
  1159. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1160. /* Sleep for 100 us, and hope lock-holder got scheduled */
  1161. expires = ktime_add_ns(ktime_get(), 100000UL);
  1162. schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
  1163. finish_wait(&vcpu->wq, &wait);
  1164. }
  1165. EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
  1166. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1167. {
  1168. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1169. struct page *page;
  1170. if (vmf->pgoff == 0)
  1171. page = virt_to_page(vcpu->run);
  1172. #ifdef CONFIG_X86
  1173. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  1174. page = virt_to_page(vcpu->arch.pio_data);
  1175. #endif
  1176. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1177. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  1178. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  1179. #endif
  1180. else
  1181. return VM_FAULT_SIGBUS;
  1182. get_page(page);
  1183. vmf->page = page;
  1184. return 0;
  1185. }
  1186. static const struct vm_operations_struct kvm_vcpu_vm_ops = {
  1187. .fault = kvm_vcpu_fault,
  1188. };
  1189. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1190. {
  1191. vma->vm_ops = &kvm_vcpu_vm_ops;
  1192. return 0;
  1193. }
  1194. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1195. {
  1196. struct kvm_vcpu *vcpu = filp->private_data;
  1197. kvm_put_kvm(vcpu->kvm);
  1198. return 0;
  1199. }
  1200. static struct file_operations kvm_vcpu_fops = {
  1201. .release = kvm_vcpu_release,
  1202. .unlocked_ioctl = kvm_vcpu_ioctl,
  1203. .compat_ioctl = kvm_vcpu_ioctl,
  1204. .mmap = kvm_vcpu_mmap,
  1205. .llseek = noop_llseek,
  1206. };
  1207. /*
  1208. * Allocates an inode for the vcpu.
  1209. */
  1210. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1211. {
  1212. return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
  1213. }
  1214. /*
  1215. * Creates some virtual cpus. Good luck creating more than one.
  1216. */
  1217. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
  1218. {
  1219. int r;
  1220. struct kvm_vcpu *vcpu, *v;
  1221. vcpu = kvm_arch_vcpu_create(kvm, id);
  1222. if (IS_ERR(vcpu))
  1223. return PTR_ERR(vcpu);
  1224. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1225. r = kvm_arch_vcpu_setup(vcpu);
  1226. if (r)
  1227. return r;
  1228. mutex_lock(&kvm->lock);
  1229. if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
  1230. r = -EINVAL;
  1231. goto vcpu_destroy;
  1232. }
  1233. kvm_for_each_vcpu(r, v, kvm)
  1234. if (v->vcpu_id == id) {
  1235. r = -EEXIST;
  1236. goto vcpu_destroy;
  1237. }
  1238. BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
  1239. /* Now it's all set up, let userspace reach it */
  1240. kvm_get_kvm(kvm);
  1241. r = create_vcpu_fd(vcpu);
  1242. if (r < 0) {
  1243. kvm_put_kvm(kvm);
  1244. goto vcpu_destroy;
  1245. }
  1246. kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
  1247. smp_wmb();
  1248. atomic_inc(&kvm->online_vcpus);
  1249. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1250. if (kvm->bsp_vcpu_id == id)
  1251. kvm->bsp_vcpu = vcpu;
  1252. #endif
  1253. mutex_unlock(&kvm->lock);
  1254. return r;
  1255. vcpu_destroy:
  1256. mutex_unlock(&kvm->lock);
  1257. kvm_arch_vcpu_destroy(vcpu);
  1258. return r;
  1259. }
  1260. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1261. {
  1262. if (sigset) {
  1263. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1264. vcpu->sigset_active = 1;
  1265. vcpu->sigset = *sigset;
  1266. } else
  1267. vcpu->sigset_active = 0;
  1268. return 0;
  1269. }
  1270. static long kvm_vcpu_ioctl(struct file *filp,
  1271. unsigned int ioctl, unsigned long arg)
  1272. {
  1273. struct kvm_vcpu *vcpu = filp->private_data;
  1274. void __user *argp = (void __user *)arg;
  1275. int r;
  1276. struct kvm_fpu *fpu = NULL;
  1277. struct kvm_sregs *kvm_sregs = NULL;
  1278. if (vcpu->kvm->mm != current->mm)
  1279. return -EIO;
  1280. #if defined(CONFIG_S390) || defined(CONFIG_PPC)
  1281. /*
  1282. * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
  1283. * so vcpu_load() would break it.
  1284. */
  1285. if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
  1286. return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1287. #endif
  1288. vcpu_load(vcpu);
  1289. switch (ioctl) {
  1290. case KVM_RUN:
  1291. r = -EINVAL;
  1292. if (arg)
  1293. goto out;
  1294. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  1295. trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
  1296. break;
  1297. case KVM_GET_REGS: {
  1298. struct kvm_regs *kvm_regs;
  1299. r = -ENOMEM;
  1300. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1301. if (!kvm_regs)
  1302. goto out;
  1303. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  1304. if (r)
  1305. goto out_free1;
  1306. r = -EFAULT;
  1307. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  1308. goto out_free1;
  1309. r = 0;
  1310. out_free1:
  1311. kfree(kvm_regs);
  1312. break;
  1313. }
  1314. case KVM_SET_REGS: {
  1315. struct kvm_regs *kvm_regs;
  1316. r = -ENOMEM;
  1317. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1318. if (!kvm_regs)
  1319. goto out;
  1320. r = -EFAULT;
  1321. if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
  1322. goto out_free2;
  1323. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  1324. if (r)
  1325. goto out_free2;
  1326. r = 0;
  1327. out_free2:
  1328. kfree(kvm_regs);
  1329. break;
  1330. }
  1331. case KVM_GET_SREGS: {
  1332. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1333. r = -ENOMEM;
  1334. if (!kvm_sregs)
  1335. goto out;
  1336. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  1337. if (r)
  1338. goto out;
  1339. r = -EFAULT;
  1340. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  1341. goto out;
  1342. r = 0;
  1343. break;
  1344. }
  1345. case KVM_SET_SREGS: {
  1346. kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1347. r = -ENOMEM;
  1348. if (!kvm_sregs)
  1349. goto out;
  1350. r = -EFAULT;
  1351. if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
  1352. goto out;
  1353. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  1354. if (r)
  1355. goto out;
  1356. r = 0;
  1357. break;
  1358. }
  1359. case KVM_GET_MP_STATE: {
  1360. struct kvm_mp_state mp_state;
  1361. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  1362. if (r)
  1363. goto out;
  1364. r = -EFAULT;
  1365. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  1366. goto out;
  1367. r = 0;
  1368. break;
  1369. }
  1370. case KVM_SET_MP_STATE: {
  1371. struct kvm_mp_state mp_state;
  1372. r = -EFAULT;
  1373. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  1374. goto out;
  1375. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  1376. if (r)
  1377. goto out;
  1378. r = 0;
  1379. break;
  1380. }
  1381. case KVM_TRANSLATE: {
  1382. struct kvm_translation tr;
  1383. r = -EFAULT;
  1384. if (copy_from_user(&tr, argp, sizeof tr))
  1385. goto out;
  1386. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  1387. if (r)
  1388. goto out;
  1389. r = -EFAULT;
  1390. if (copy_to_user(argp, &tr, sizeof tr))
  1391. goto out;
  1392. r = 0;
  1393. break;
  1394. }
  1395. case KVM_SET_GUEST_DEBUG: {
  1396. struct kvm_guest_debug dbg;
  1397. r = -EFAULT;
  1398. if (copy_from_user(&dbg, argp, sizeof dbg))
  1399. goto out;
  1400. r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
  1401. if (r)
  1402. goto out;
  1403. r = 0;
  1404. break;
  1405. }
  1406. case KVM_SET_SIGNAL_MASK: {
  1407. struct kvm_signal_mask __user *sigmask_arg = argp;
  1408. struct kvm_signal_mask kvm_sigmask;
  1409. sigset_t sigset, *p;
  1410. p = NULL;
  1411. if (argp) {
  1412. r = -EFAULT;
  1413. if (copy_from_user(&kvm_sigmask, argp,
  1414. sizeof kvm_sigmask))
  1415. goto out;
  1416. r = -EINVAL;
  1417. if (kvm_sigmask.len != sizeof sigset)
  1418. goto out;
  1419. r = -EFAULT;
  1420. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1421. sizeof sigset))
  1422. goto out;
  1423. p = &sigset;
  1424. }
  1425. r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
  1426. break;
  1427. }
  1428. case KVM_GET_FPU: {
  1429. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1430. r = -ENOMEM;
  1431. if (!fpu)
  1432. goto out;
  1433. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  1434. if (r)
  1435. goto out;
  1436. r = -EFAULT;
  1437. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  1438. goto out;
  1439. r = 0;
  1440. break;
  1441. }
  1442. case KVM_SET_FPU: {
  1443. fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1444. r = -ENOMEM;
  1445. if (!fpu)
  1446. goto out;
  1447. r = -EFAULT;
  1448. if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
  1449. goto out;
  1450. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  1451. if (r)
  1452. goto out;
  1453. r = 0;
  1454. break;
  1455. }
  1456. default:
  1457. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1458. }
  1459. out:
  1460. vcpu_put(vcpu);
  1461. kfree(fpu);
  1462. kfree(kvm_sregs);
  1463. return r;
  1464. }
  1465. static long kvm_vm_ioctl(struct file *filp,
  1466. unsigned int ioctl, unsigned long arg)
  1467. {
  1468. struct kvm *kvm = filp->private_data;
  1469. void __user *argp = (void __user *)arg;
  1470. int r;
  1471. if (kvm->mm != current->mm)
  1472. return -EIO;
  1473. switch (ioctl) {
  1474. case KVM_CREATE_VCPU:
  1475. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1476. if (r < 0)
  1477. goto out;
  1478. break;
  1479. case KVM_SET_USER_MEMORY_REGION: {
  1480. struct kvm_userspace_memory_region kvm_userspace_mem;
  1481. r = -EFAULT;
  1482. if (copy_from_user(&kvm_userspace_mem, argp,
  1483. sizeof kvm_userspace_mem))
  1484. goto out;
  1485. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1486. if (r)
  1487. goto out;
  1488. break;
  1489. }
  1490. case KVM_GET_DIRTY_LOG: {
  1491. struct kvm_dirty_log log;
  1492. r = -EFAULT;
  1493. if (copy_from_user(&log, argp, sizeof log))
  1494. goto out;
  1495. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1496. if (r)
  1497. goto out;
  1498. break;
  1499. }
  1500. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1501. case KVM_REGISTER_COALESCED_MMIO: {
  1502. struct kvm_coalesced_mmio_zone zone;
  1503. r = -EFAULT;
  1504. if (copy_from_user(&zone, argp, sizeof zone))
  1505. goto out;
  1506. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1507. if (r)
  1508. goto out;
  1509. r = 0;
  1510. break;
  1511. }
  1512. case KVM_UNREGISTER_COALESCED_MMIO: {
  1513. struct kvm_coalesced_mmio_zone zone;
  1514. r = -EFAULT;
  1515. if (copy_from_user(&zone, argp, sizeof zone))
  1516. goto out;
  1517. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1518. if (r)
  1519. goto out;
  1520. r = 0;
  1521. break;
  1522. }
  1523. #endif
  1524. case KVM_IRQFD: {
  1525. struct kvm_irqfd data;
  1526. r = -EFAULT;
  1527. if (copy_from_user(&data, argp, sizeof data))
  1528. goto out;
  1529. r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
  1530. break;
  1531. }
  1532. case KVM_IOEVENTFD: {
  1533. struct kvm_ioeventfd data;
  1534. r = -EFAULT;
  1535. if (copy_from_user(&data, argp, sizeof data))
  1536. goto out;
  1537. r = kvm_ioeventfd(kvm, &data);
  1538. break;
  1539. }
  1540. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1541. case KVM_SET_BOOT_CPU_ID:
  1542. r = 0;
  1543. mutex_lock(&kvm->lock);
  1544. if (atomic_read(&kvm->online_vcpus) != 0)
  1545. r = -EBUSY;
  1546. else
  1547. kvm->bsp_vcpu_id = arg;
  1548. mutex_unlock(&kvm->lock);
  1549. break;
  1550. #endif
  1551. default:
  1552. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1553. if (r == -ENOTTY)
  1554. r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
  1555. }
  1556. out:
  1557. return r;
  1558. }
  1559. #ifdef CONFIG_COMPAT
  1560. struct compat_kvm_dirty_log {
  1561. __u32 slot;
  1562. __u32 padding1;
  1563. union {
  1564. compat_uptr_t dirty_bitmap; /* one bit per page */
  1565. __u64 padding2;
  1566. };
  1567. };
  1568. static long kvm_vm_compat_ioctl(struct file *filp,
  1569. unsigned int ioctl, unsigned long arg)
  1570. {
  1571. struct kvm *kvm = filp->private_data;
  1572. int r;
  1573. if (kvm->mm != current->mm)
  1574. return -EIO;
  1575. switch (ioctl) {
  1576. case KVM_GET_DIRTY_LOG: {
  1577. struct compat_kvm_dirty_log compat_log;
  1578. struct kvm_dirty_log log;
  1579. r = -EFAULT;
  1580. if (copy_from_user(&compat_log, (void __user *)arg,
  1581. sizeof(compat_log)))
  1582. goto out;
  1583. log.slot = compat_log.slot;
  1584. log.padding1 = compat_log.padding1;
  1585. log.padding2 = compat_log.padding2;
  1586. log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
  1587. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1588. if (r)
  1589. goto out;
  1590. break;
  1591. }
  1592. default:
  1593. r = kvm_vm_ioctl(filp, ioctl, arg);
  1594. }
  1595. out:
  1596. return r;
  1597. }
  1598. #endif
  1599. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1600. {
  1601. struct page *page[1];
  1602. unsigned long addr;
  1603. int npages;
  1604. gfn_t gfn = vmf->pgoff;
  1605. struct kvm *kvm = vma->vm_file->private_data;
  1606. addr = gfn_to_hva(kvm, gfn);
  1607. if (kvm_is_error_hva(addr))
  1608. return VM_FAULT_SIGBUS;
  1609. npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
  1610. NULL);
  1611. if (unlikely(npages != 1))
  1612. return VM_FAULT_SIGBUS;
  1613. vmf->page = page[0];
  1614. return 0;
  1615. }
  1616. static const struct vm_operations_struct kvm_vm_vm_ops = {
  1617. .fault = kvm_vm_fault,
  1618. };
  1619. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1620. {
  1621. vma->vm_ops = &kvm_vm_vm_ops;
  1622. return 0;
  1623. }
  1624. static struct file_operations kvm_vm_fops = {
  1625. .release = kvm_vm_release,
  1626. .unlocked_ioctl = kvm_vm_ioctl,
  1627. #ifdef CONFIG_COMPAT
  1628. .compat_ioctl = kvm_vm_compat_ioctl,
  1629. #endif
  1630. .mmap = kvm_vm_mmap,
  1631. .llseek = noop_llseek,
  1632. };
  1633. static int kvm_dev_ioctl_create_vm(void)
  1634. {
  1635. int fd, r;
  1636. struct kvm *kvm;
  1637. kvm = kvm_create_vm();
  1638. if (IS_ERR(kvm))
  1639. return PTR_ERR(kvm);
  1640. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1641. r = kvm_coalesced_mmio_init(kvm);
  1642. if (r < 0) {
  1643. kvm_put_kvm(kvm);
  1644. return r;
  1645. }
  1646. #endif
  1647. fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
  1648. if (fd < 0)
  1649. kvm_put_kvm(kvm);
  1650. return fd;
  1651. }
  1652. static long kvm_dev_ioctl_check_extension_generic(long arg)
  1653. {
  1654. switch (arg) {
  1655. case KVM_CAP_USER_MEMORY:
  1656. case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
  1657. case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
  1658. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1659. case KVM_CAP_SET_BOOT_CPU_ID:
  1660. #endif
  1661. case KVM_CAP_INTERNAL_ERROR_DATA:
  1662. return 1;
  1663. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  1664. case KVM_CAP_IRQ_ROUTING:
  1665. return KVM_MAX_IRQ_ROUTES;
  1666. #endif
  1667. default:
  1668. break;
  1669. }
  1670. return kvm_dev_ioctl_check_extension(arg);
  1671. }
  1672. static long kvm_dev_ioctl(struct file *filp,
  1673. unsigned int ioctl, unsigned long arg)
  1674. {
  1675. long r = -EINVAL;
  1676. switch (ioctl) {
  1677. case KVM_GET_API_VERSION:
  1678. r = -EINVAL;
  1679. if (arg)
  1680. goto out;
  1681. r = KVM_API_VERSION;
  1682. break;
  1683. case KVM_CREATE_VM:
  1684. r = -EINVAL;
  1685. if (arg)
  1686. goto out;
  1687. r = kvm_dev_ioctl_create_vm();
  1688. break;
  1689. case KVM_CHECK_EXTENSION:
  1690. r = kvm_dev_ioctl_check_extension_generic(arg);
  1691. break;
  1692. case KVM_GET_VCPU_MMAP_SIZE:
  1693. r = -EINVAL;
  1694. if (arg)
  1695. goto out;
  1696. r = PAGE_SIZE; /* struct kvm_run */
  1697. #ifdef CONFIG_X86
  1698. r += PAGE_SIZE; /* pio data page */
  1699. #endif
  1700. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1701. r += PAGE_SIZE; /* coalesced mmio ring page */
  1702. #endif
  1703. break;
  1704. case KVM_TRACE_ENABLE:
  1705. case KVM_TRACE_PAUSE:
  1706. case KVM_TRACE_DISABLE:
  1707. r = -EOPNOTSUPP;
  1708. break;
  1709. default:
  1710. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1711. }
  1712. out:
  1713. return r;
  1714. }
  1715. static struct file_operations kvm_chardev_ops = {
  1716. .unlocked_ioctl = kvm_dev_ioctl,
  1717. .compat_ioctl = kvm_dev_ioctl,
  1718. .llseek = noop_llseek,
  1719. };
  1720. static struct miscdevice kvm_dev = {
  1721. KVM_MINOR,
  1722. "kvm",
  1723. &kvm_chardev_ops,
  1724. };
  1725. static void hardware_enable(void *junk)
  1726. {
  1727. int cpu = raw_smp_processor_id();
  1728. int r;
  1729. if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1730. return;
  1731. cpumask_set_cpu(cpu, cpus_hardware_enabled);
  1732. r = kvm_arch_hardware_enable(NULL);
  1733. if (r) {
  1734. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  1735. atomic_inc(&hardware_enable_failed);
  1736. printk(KERN_INFO "kvm: enabling virtualization on "
  1737. "CPU%d failed\n", cpu);
  1738. }
  1739. }
  1740. static void hardware_disable(void *junk)
  1741. {
  1742. int cpu = raw_smp_processor_id();
  1743. if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1744. return;
  1745. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  1746. kvm_arch_hardware_disable(NULL);
  1747. }
  1748. static void hardware_disable_all_nolock(void)
  1749. {
  1750. BUG_ON(!kvm_usage_count);
  1751. kvm_usage_count--;
  1752. if (!kvm_usage_count)
  1753. on_each_cpu(hardware_disable, NULL, 1);
  1754. }
  1755. static void hardware_disable_all(void)
  1756. {
  1757. spin_lock(&kvm_lock);
  1758. hardware_disable_all_nolock();
  1759. spin_unlock(&kvm_lock);
  1760. }
  1761. static int hardware_enable_all(void)
  1762. {
  1763. int r = 0;
  1764. spin_lock(&kvm_lock);
  1765. kvm_usage_count++;
  1766. if (kvm_usage_count == 1) {
  1767. atomic_set(&hardware_enable_failed, 0);
  1768. on_each_cpu(hardware_enable, NULL, 1);
  1769. if (atomic_read(&hardware_enable_failed)) {
  1770. hardware_disable_all_nolock();
  1771. r = -EBUSY;
  1772. }
  1773. }
  1774. spin_unlock(&kvm_lock);
  1775. return r;
  1776. }
  1777. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  1778. void *v)
  1779. {
  1780. int cpu = (long)v;
  1781. if (!kvm_usage_count)
  1782. return NOTIFY_OK;
  1783. val &= ~CPU_TASKS_FROZEN;
  1784. switch (val) {
  1785. case CPU_DYING:
  1786. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1787. cpu);
  1788. hardware_disable(NULL);
  1789. break;
  1790. case CPU_STARTING:
  1791. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  1792. cpu);
  1793. spin_lock(&kvm_lock);
  1794. hardware_enable(NULL);
  1795. spin_unlock(&kvm_lock);
  1796. break;
  1797. }
  1798. return NOTIFY_OK;
  1799. }
  1800. asmlinkage void kvm_handle_fault_on_reboot(void)
  1801. {
  1802. if (kvm_rebooting) {
  1803. /* spin while reset goes on */
  1804. local_irq_enable();
  1805. while (true)
  1806. cpu_relax();
  1807. }
  1808. /* Fault while not rebooting. We want the trace. */
  1809. BUG();
  1810. }
  1811. EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
  1812. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1813. void *v)
  1814. {
  1815. /*
  1816. * Some (well, at least mine) BIOSes hang on reboot if
  1817. * in vmx root mode.
  1818. *
  1819. * And Intel TXT required VMX off for all cpu when system shutdown.
  1820. */
  1821. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1822. kvm_rebooting = true;
  1823. on_each_cpu(hardware_disable, NULL, 1);
  1824. return NOTIFY_OK;
  1825. }
  1826. static struct notifier_block kvm_reboot_notifier = {
  1827. .notifier_call = kvm_reboot,
  1828. .priority = 0,
  1829. };
  1830. static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  1831. {
  1832. int i;
  1833. for (i = 0; i < bus->dev_count; i++) {
  1834. struct kvm_io_device *pos = bus->devs[i];
  1835. kvm_iodevice_destructor(pos);
  1836. }
  1837. kfree(bus);
  1838. }
  1839. /* kvm_io_bus_write - called under kvm->slots_lock */
  1840. int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  1841. int len, const void *val)
  1842. {
  1843. int i;
  1844. struct kvm_io_bus *bus;
  1845. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  1846. for (i = 0; i < bus->dev_count; i++)
  1847. if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
  1848. return 0;
  1849. return -EOPNOTSUPP;
  1850. }
  1851. /* kvm_io_bus_read - called under kvm->slots_lock */
  1852. int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  1853. int len, void *val)
  1854. {
  1855. int i;
  1856. struct kvm_io_bus *bus;
  1857. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  1858. for (i = 0; i < bus->dev_count; i++)
  1859. if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
  1860. return 0;
  1861. return -EOPNOTSUPP;
  1862. }
  1863. /* Caller must hold slots_lock. */
  1864. int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx,
  1865. struct kvm_io_device *dev)
  1866. {
  1867. struct kvm_io_bus *new_bus, *bus;
  1868. bus = kvm->buses[bus_idx];
  1869. if (bus->dev_count > NR_IOBUS_DEVS-1)
  1870. return -ENOSPC;
  1871. new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
  1872. if (!new_bus)
  1873. return -ENOMEM;
  1874. memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
  1875. new_bus->devs[new_bus->dev_count++] = dev;
  1876. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  1877. synchronize_srcu_expedited(&kvm->srcu);
  1878. kfree(bus);
  1879. return 0;
  1880. }
  1881. /* Caller must hold slots_lock. */
  1882. int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
  1883. struct kvm_io_device *dev)
  1884. {
  1885. int i, r;
  1886. struct kvm_io_bus *new_bus, *bus;
  1887. new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
  1888. if (!new_bus)
  1889. return -ENOMEM;
  1890. bus = kvm->buses[bus_idx];
  1891. memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
  1892. r = -ENOENT;
  1893. for (i = 0; i < new_bus->dev_count; i++)
  1894. if (new_bus->devs[i] == dev) {
  1895. r = 0;
  1896. new_bus->devs[i] = new_bus->devs[--new_bus->dev_count];
  1897. break;
  1898. }
  1899. if (r) {
  1900. kfree(new_bus);
  1901. return r;
  1902. }
  1903. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  1904. synchronize_srcu_expedited(&kvm->srcu);
  1905. kfree(bus);
  1906. return r;
  1907. }
  1908. static struct notifier_block kvm_cpu_notifier = {
  1909. .notifier_call = kvm_cpu_hotplug,
  1910. };
  1911. static int vm_stat_get(void *_offset, u64 *val)
  1912. {
  1913. unsigned offset = (long)_offset;
  1914. struct kvm *kvm;
  1915. *val = 0;
  1916. spin_lock(&kvm_lock);
  1917. list_for_each_entry(kvm, &vm_list, vm_list)
  1918. *val += *(u32 *)((void *)kvm + offset);
  1919. spin_unlock(&kvm_lock);
  1920. return 0;
  1921. }
  1922. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  1923. static int vcpu_stat_get(void *_offset, u64 *val)
  1924. {
  1925. unsigned offset = (long)_offset;
  1926. struct kvm *kvm;
  1927. struct kvm_vcpu *vcpu;
  1928. int i;
  1929. *val = 0;
  1930. spin_lock(&kvm_lock);
  1931. list_for_each_entry(kvm, &vm_list, vm_list)
  1932. kvm_for_each_vcpu(i, vcpu, kvm)
  1933. *val += *(u32 *)((void *)vcpu + offset);
  1934. spin_unlock(&kvm_lock);
  1935. return 0;
  1936. }
  1937. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  1938. static const struct file_operations *stat_fops[] = {
  1939. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  1940. [KVM_STAT_VM] = &vm_stat_fops,
  1941. };
  1942. static void kvm_init_debug(void)
  1943. {
  1944. struct kvm_stats_debugfs_item *p;
  1945. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  1946. for (p = debugfs_entries; p->name; ++p)
  1947. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  1948. (void *)(long)p->offset,
  1949. stat_fops[p->kind]);
  1950. }
  1951. static void kvm_exit_debug(void)
  1952. {
  1953. struct kvm_stats_debugfs_item *p;
  1954. for (p = debugfs_entries; p->name; ++p)
  1955. debugfs_remove(p->dentry);
  1956. debugfs_remove(kvm_debugfs_dir);
  1957. }
  1958. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  1959. {
  1960. if (kvm_usage_count)
  1961. hardware_disable(NULL);
  1962. return 0;
  1963. }
  1964. static int kvm_resume(struct sys_device *dev)
  1965. {
  1966. if (kvm_usage_count) {
  1967. WARN_ON(spin_is_locked(&kvm_lock));
  1968. hardware_enable(NULL);
  1969. }
  1970. return 0;
  1971. }
  1972. static struct sysdev_class kvm_sysdev_class = {
  1973. .name = "kvm",
  1974. .suspend = kvm_suspend,
  1975. .resume = kvm_resume,
  1976. };
  1977. static struct sys_device kvm_sysdev = {
  1978. .id = 0,
  1979. .cls = &kvm_sysdev_class,
  1980. };
  1981. struct page *bad_page;
  1982. pfn_t bad_pfn;
  1983. static inline
  1984. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  1985. {
  1986. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  1987. }
  1988. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  1989. {
  1990. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1991. kvm_arch_vcpu_load(vcpu, cpu);
  1992. }
  1993. static void kvm_sched_out(struct preempt_notifier *pn,
  1994. struct task_struct *next)
  1995. {
  1996. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1997. kvm_arch_vcpu_put(vcpu);
  1998. }
  1999. int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
  2000. struct module *module)
  2001. {
  2002. int r;
  2003. int cpu;
  2004. r = kvm_arch_init(opaque);
  2005. if (r)
  2006. goto out_fail;
  2007. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2008. if (bad_page == NULL) {
  2009. r = -ENOMEM;
  2010. goto out;
  2011. }
  2012. bad_pfn = page_to_pfn(bad_page);
  2013. hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2014. if (hwpoison_page == NULL) {
  2015. r = -ENOMEM;
  2016. goto out_free_0;
  2017. }
  2018. hwpoison_pfn = page_to_pfn(hwpoison_page);
  2019. fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2020. if (fault_page == NULL) {
  2021. r = -ENOMEM;
  2022. goto out_free_0;
  2023. }
  2024. fault_pfn = page_to_pfn(fault_page);
  2025. if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
  2026. r = -ENOMEM;
  2027. goto out_free_0;
  2028. }
  2029. r = kvm_arch_hardware_setup();
  2030. if (r < 0)
  2031. goto out_free_0a;
  2032. for_each_online_cpu(cpu) {
  2033. smp_call_function_single(cpu,
  2034. kvm_arch_check_processor_compat,
  2035. &r, 1);
  2036. if (r < 0)
  2037. goto out_free_1;
  2038. }
  2039. r = register_cpu_notifier(&kvm_cpu_notifier);
  2040. if (r)
  2041. goto out_free_2;
  2042. register_reboot_notifier(&kvm_reboot_notifier);
  2043. r = sysdev_class_register(&kvm_sysdev_class);
  2044. if (r)
  2045. goto out_free_3;
  2046. r = sysdev_register(&kvm_sysdev);
  2047. if (r)
  2048. goto out_free_4;
  2049. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2050. if (!vcpu_align)
  2051. vcpu_align = __alignof__(struct kvm_vcpu);
  2052. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
  2053. 0, NULL);
  2054. if (!kvm_vcpu_cache) {
  2055. r = -ENOMEM;
  2056. goto out_free_5;
  2057. }
  2058. r = kvm_async_pf_init();
  2059. if (r)
  2060. goto out_free;
  2061. kvm_chardev_ops.owner = module;
  2062. kvm_vm_fops.owner = module;
  2063. kvm_vcpu_fops.owner = module;
  2064. r = misc_register(&kvm_dev);
  2065. if (r) {
  2066. printk(KERN_ERR "kvm: misc device register failed\n");
  2067. goto out_unreg;
  2068. }
  2069. kvm_preempt_ops.sched_in = kvm_sched_in;
  2070. kvm_preempt_ops.sched_out = kvm_sched_out;
  2071. kvm_init_debug();
  2072. return 0;
  2073. out_unreg:
  2074. kvm_async_pf_deinit();
  2075. out_free:
  2076. kmem_cache_destroy(kvm_vcpu_cache);
  2077. out_free_5:
  2078. sysdev_unregister(&kvm_sysdev);
  2079. out_free_4:
  2080. sysdev_class_unregister(&kvm_sysdev_class);
  2081. out_free_3:
  2082. unregister_reboot_notifier(&kvm_reboot_notifier);
  2083. unregister_cpu_notifier(&kvm_cpu_notifier);
  2084. out_free_2:
  2085. out_free_1:
  2086. kvm_arch_hardware_unsetup();
  2087. out_free_0a:
  2088. free_cpumask_var(cpus_hardware_enabled);
  2089. out_free_0:
  2090. if (fault_page)
  2091. __free_page(fault_page);
  2092. if (hwpoison_page)
  2093. __free_page(hwpoison_page);
  2094. __free_page(bad_page);
  2095. out:
  2096. kvm_arch_exit();
  2097. out_fail:
  2098. return r;
  2099. }
  2100. EXPORT_SYMBOL_GPL(kvm_init);
  2101. void kvm_exit(void)
  2102. {
  2103. kvm_exit_debug();
  2104. misc_deregister(&kvm_dev);
  2105. kmem_cache_destroy(kvm_vcpu_cache);
  2106. kvm_async_pf_deinit();
  2107. sysdev_unregister(&kvm_sysdev);
  2108. sysdev_class_unregister(&kvm_sysdev_class);
  2109. unregister_reboot_notifier(&kvm_reboot_notifier);
  2110. unregister_cpu_notifier(&kvm_cpu_notifier);
  2111. on_each_cpu(hardware_disable, NULL, 1);
  2112. kvm_arch_hardware_unsetup();
  2113. kvm_arch_exit();
  2114. free_cpumask_var(cpus_hardware_enabled);
  2115. __free_page(hwpoison_page);
  2116. __free_page(bad_page);
  2117. }
  2118. EXPORT_SYMBOL_GPL(kvm_exit);