dispc.c 72 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141
  1. /*
  2. * linux/drivers/video/omap2/dss/dispc.c
  3. *
  4. * Copyright (C) 2009 Nokia Corporation
  5. * Author: Tomi Valkeinen <tomi.valkeinen@nokia.com>
  6. *
  7. * Some code and ideas taken from drivers/video/omap/ driver
  8. * by Imre Deak.
  9. *
  10. * This program is free software; you can redistribute it and/or modify it
  11. * under the terms of the GNU General Public License version 2 as published by
  12. * the Free Software Foundation.
  13. *
  14. * This program is distributed in the hope that it will be useful, but WITHOUT
  15. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  16. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  17. * more details.
  18. *
  19. * You should have received a copy of the GNU General Public License along with
  20. * this program. If not, see <http://www.gnu.org/licenses/>.
  21. */
  22. #define DSS_SUBSYS_NAME "DISPC"
  23. #include <linux/kernel.h>
  24. #include <linux/dma-mapping.h>
  25. #include <linux/vmalloc.h>
  26. #include <linux/clk.h>
  27. #include <linux/io.h>
  28. #include <linux/jiffies.h>
  29. #include <linux/seq_file.h>
  30. #include <linux/delay.h>
  31. #include <linux/workqueue.h>
  32. #include <linux/hardirq.h>
  33. #include <plat/sram.h>
  34. #include <plat/clock.h>
  35. #include <plat/display.h>
  36. #include "dss.h"
  37. #include "dss_features.h"
  38. /* DISPC */
  39. #define DISPC_BASE 0x48050400
  40. #define DISPC_SZ_REGS SZ_4K
  41. struct dispc_reg { u16 idx; };
  42. #define DISPC_REG(idx) ((const struct dispc_reg) { idx })
  43. /*
  44. * DISPC common registers and
  45. * DISPC channel registers , ch = 0 for LCD, ch = 1 for
  46. * DIGIT, and ch = 2 for LCD2
  47. */
  48. #define DISPC_REVISION DISPC_REG(0x0000)
  49. #define DISPC_SYSCONFIG DISPC_REG(0x0010)
  50. #define DISPC_SYSSTATUS DISPC_REG(0x0014)
  51. #define DISPC_IRQSTATUS DISPC_REG(0x0018)
  52. #define DISPC_IRQENABLE DISPC_REG(0x001C)
  53. #define DISPC_CONTROL DISPC_REG(0x0040)
  54. #define DISPC_CONTROL2 DISPC_REG(0x0238)
  55. #define DISPC_CONFIG DISPC_REG(0x0044)
  56. #define DISPC_CONFIG2 DISPC_REG(0x0620)
  57. #define DISPC_CAPABLE DISPC_REG(0x0048)
  58. #define DISPC_DEFAULT_COLOR(ch) DISPC_REG(ch == 0 ? 0x004C : \
  59. (ch == 1 ? 0x0050 : 0x03AC))
  60. #define DISPC_TRANS_COLOR(ch) DISPC_REG(ch == 0 ? 0x0054 : \
  61. (ch == 1 ? 0x0058 : 0x03B0))
  62. #define DISPC_LINE_STATUS DISPC_REG(0x005C)
  63. #define DISPC_LINE_NUMBER DISPC_REG(0x0060)
  64. #define DISPC_TIMING_H(ch) DISPC_REG(ch != 2 ? 0x0064 : 0x0400)
  65. #define DISPC_TIMING_V(ch) DISPC_REG(ch != 2 ? 0x0068 : 0x0404)
  66. #define DISPC_POL_FREQ(ch) DISPC_REG(ch != 2 ? 0x006C : 0x0408)
  67. #define DISPC_DIVISOR(ch) DISPC_REG(ch != 2 ? 0x0070 : 0x040C)
  68. #define DISPC_GLOBAL_ALPHA DISPC_REG(0x0074)
  69. #define DISPC_SIZE_DIG DISPC_REG(0x0078)
  70. #define DISPC_SIZE_LCD(ch) DISPC_REG(ch != 2 ? 0x007C : 0x03CC)
  71. /* DISPC GFX plane */
  72. #define DISPC_GFX_BA0 DISPC_REG(0x0080)
  73. #define DISPC_GFX_BA1 DISPC_REG(0x0084)
  74. #define DISPC_GFX_POSITION DISPC_REG(0x0088)
  75. #define DISPC_GFX_SIZE DISPC_REG(0x008C)
  76. #define DISPC_GFX_ATTRIBUTES DISPC_REG(0x00A0)
  77. #define DISPC_GFX_FIFO_THRESHOLD DISPC_REG(0x00A4)
  78. #define DISPC_GFX_FIFO_SIZE_STATUS DISPC_REG(0x00A8)
  79. #define DISPC_GFX_ROW_INC DISPC_REG(0x00AC)
  80. #define DISPC_GFX_PIXEL_INC DISPC_REG(0x00B0)
  81. #define DISPC_GFX_WINDOW_SKIP DISPC_REG(0x00B4)
  82. #define DISPC_GFX_TABLE_BA DISPC_REG(0x00B8)
  83. #define DISPC_DATA_CYCLE1(ch) DISPC_REG(ch != 2 ? 0x01D4 : 0x03C0)
  84. #define DISPC_DATA_CYCLE2(ch) DISPC_REG(ch != 2 ? 0x01D8 : 0x03C4)
  85. #define DISPC_DATA_CYCLE3(ch) DISPC_REG(ch != 2 ? 0x01DC : 0x03C8)
  86. #define DISPC_CPR_COEF_R(ch) DISPC_REG(ch != 2 ? 0x0220 : 0x03BC)
  87. #define DISPC_CPR_COEF_G(ch) DISPC_REG(ch != 2 ? 0x0224 : 0x03B8)
  88. #define DISPC_CPR_COEF_B(ch) DISPC_REG(ch != 2 ? 0x0228 : 0x03B4)
  89. #define DISPC_GFX_PRELOAD DISPC_REG(0x022C)
  90. /* DISPC Video plane, n = 0 for VID1 and n = 1 for VID2 */
  91. #define DISPC_VID_REG(n, idx) DISPC_REG(0x00BC + (n)*0x90 + idx)
  92. #define DISPC_VID_BA0(n) DISPC_VID_REG(n, 0x0000)
  93. #define DISPC_VID_BA1(n) DISPC_VID_REG(n, 0x0004)
  94. #define DISPC_VID_POSITION(n) DISPC_VID_REG(n, 0x0008)
  95. #define DISPC_VID_SIZE(n) DISPC_VID_REG(n, 0x000C)
  96. #define DISPC_VID_ATTRIBUTES(n) DISPC_VID_REG(n, 0x0010)
  97. #define DISPC_VID_FIFO_THRESHOLD(n) DISPC_VID_REG(n, 0x0014)
  98. #define DISPC_VID_FIFO_SIZE_STATUS(n) DISPC_VID_REG(n, 0x0018)
  99. #define DISPC_VID_ROW_INC(n) DISPC_VID_REG(n, 0x001C)
  100. #define DISPC_VID_PIXEL_INC(n) DISPC_VID_REG(n, 0x0020)
  101. #define DISPC_VID_FIR(n) DISPC_VID_REG(n, 0x0024)
  102. #define DISPC_VID_PICTURE_SIZE(n) DISPC_VID_REG(n, 0x0028)
  103. #define DISPC_VID_ACCU0(n) DISPC_VID_REG(n, 0x002C)
  104. #define DISPC_VID_ACCU1(n) DISPC_VID_REG(n, 0x0030)
  105. /* coef index i = {0, 1, 2, 3, 4, 5, 6, 7} */
  106. #define DISPC_VID_FIR_COEF_H(n, i) DISPC_REG(0x00F0 + (n)*0x90 + (i)*0x8)
  107. /* coef index i = {0, 1, 2, 3, 4, 5, 6, 7} */
  108. #define DISPC_VID_FIR_COEF_HV(n, i) DISPC_REG(0x00F4 + (n)*0x90 + (i)*0x8)
  109. /* coef index i = {0, 1, 2, 3, 4} */
  110. #define DISPC_VID_CONV_COEF(n, i) DISPC_REG(0x0130 + (n)*0x90 + (i)*0x4)
  111. /* coef index i = {0, 1, 2, 3, 4, 5, 6, 7} */
  112. #define DISPC_VID_FIR_COEF_V(n, i) DISPC_REG(0x01E0 + (n)*0x20 + (i)*0x4)
  113. #define DISPC_VID_PRELOAD(n) DISPC_REG(0x230 + (n)*0x04)
  114. #define DISPC_IRQ_MASK_ERROR (DISPC_IRQ_GFX_FIFO_UNDERFLOW | \
  115. DISPC_IRQ_OCP_ERR | \
  116. DISPC_IRQ_VID1_FIFO_UNDERFLOW | \
  117. DISPC_IRQ_VID2_FIFO_UNDERFLOW | \
  118. DISPC_IRQ_SYNC_LOST | \
  119. DISPC_IRQ_SYNC_LOST_DIGIT)
  120. #define DISPC_MAX_NR_ISRS 8
  121. struct omap_dispc_isr_data {
  122. omap_dispc_isr_t isr;
  123. void *arg;
  124. u32 mask;
  125. };
  126. struct dispc_h_coef {
  127. s8 hc4;
  128. s8 hc3;
  129. u8 hc2;
  130. s8 hc1;
  131. s8 hc0;
  132. };
  133. struct dispc_v_coef {
  134. s8 vc22;
  135. s8 vc2;
  136. u8 vc1;
  137. s8 vc0;
  138. s8 vc00;
  139. };
  140. #define REG_GET(idx, start, end) \
  141. FLD_GET(dispc_read_reg(idx), start, end)
  142. #define REG_FLD_MOD(idx, val, start, end) \
  143. dispc_write_reg(idx, FLD_MOD(dispc_read_reg(idx), val, start, end))
  144. static const struct dispc_reg dispc_reg_att[] = { DISPC_GFX_ATTRIBUTES,
  145. DISPC_VID_ATTRIBUTES(0),
  146. DISPC_VID_ATTRIBUTES(1) };
  147. struct dispc_irq_stats {
  148. unsigned long last_reset;
  149. unsigned irq_count;
  150. unsigned irqs[32];
  151. };
  152. static struct {
  153. void __iomem *base;
  154. u32 fifo_size[3];
  155. spinlock_t irq_lock;
  156. u32 irq_error_mask;
  157. struct omap_dispc_isr_data registered_isr[DISPC_MAX_NR_ISRS];
  158. u32 error_irqs;
  159. struct work_struct error_work;
  160. u32 ctx[DISPC_SZ_REGS / sizeof(u32)];
  161. #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
  162. spinlock_t irq_stats_lock;
  163. struct dispc_irq_stats irq_stats;
  164. #endif
  165. } dispc;
  166. static void _omap_dispc_set_irqs(void);
  167. static inline void dispc_write_reg(const struct dispc_reg idx, u32 val)
  168. {
  169. __raw_writel(val, dispc.base + idx.idx);
  170. }
  171. static inline u32 dispc_read_reg(const struct dispc_reg idx)
  172. {
  173. return __raw_readl(dispc.base + idx.idx);
  174. }
  175. #define SR(reg) \
  176. dispc.ctx[(DISPC_##reg).idx / sizeof(u32)] = dispc_read_reg(DISPC_##reg)
  177. #define RR(reg) \
  178. dispc_write_reg(DISPC_##reg, dispc.ctx[(DISPC_##reg).idx / sizeof(u32)])
  179. void dispc_save_context(void)
  180. {
  181. if (cpu_is_omap24xx())
  182. return;
  183. SR(SYSCONFIG);
  184. SR(IRQENABLE);
  185. SR(CONTROL);
  186. SR(CONFIG);
  187. SR(DEFAULT_COLOR(0));
  188. SR(DEFAULT_COLOR(1));
  189. SR(TRANS_COLOR(0));
  190. SR(TRANS_COLOR(1));
  191. SR(LINE_NUMBER);
  192. SR(TIMING_H(0));
  193. SR(TIMING_V(0));
  194. SR(POL_FREQ(0));
  195. SR(DIVISOR(0));
  196. SR(GLOBAL_ALPHA);
  197. SR(SIZE_DIG);
  198. SR(SIZE_LCD(0));
  199. SR(GFX_BA0);
  200. SR(GFX_BA1);
  201. SR(GFX_POSITION);
  202. SR(GFX_SIZE);
  203. SR(GFX_ATTRIBUTES);
  204. SR(GFX_FIFO_THRESHOLD);
  205. SR(GFX_ROW_INC);
  206. SR(GFX_PIXEL_INC);
  207. SR(GFX_WINDOW_SKIP);
  208. SR(GFX_TABLE_BA);
  209. SR(DATA_CYCLE1(0));
  210. SR(DATA_CYCLE2(0));
  211. SR(DATA_CYCLE3(0));
  212. SR(CPR_COEF_R(0));
  213. SR(CPR_COEF_G(0));
  214. SR(CPR_COEF_B(0));
  215. SR(GFX_PRELOAD);
  216. /* VID1 */
  217. SR(VID_BA0(0));
  218. SR(VID_BA1(0));
  219. SR(VID_POSITION(0));
  220. SR(VID_SIZE(0));
  221. SR(VID_ATTRIBUTES(0));
  222. SR(VID_FIFO_THRESHOLD(0));
  223. SR(VID_ROW_INC(0));
  224. SR(VID_PIXEL_INC(0));
  225. SR(VID_FIR(0));
  226. SR(VID_PICTURE_SIZE(0));
  227. SR(VID_ACCU0(0));
  228. SR(VID_ACCU1(0));
  229. SR(VID_FIR_COEF_H(0, 0));
  230. SR(VID_FIR_COEF_H(0, 1));
  231. SR(VID_FIR_COEF_H(0, 2));
  232. SR(VID_FIR_COEF_H(0, 3));
  233. SR(VID_FIR_COEF_H(0, 4));
  234. SR(VID_FIR_COEF_H(0, 5));
  235. SR(VID_FIR_COEF_H(0, 6));
  236. SR(VID_FIR_COEF_H(0, 7));
  237. SR(VID_FIR_COEF_HV(0, 0));
  238. SR(VID_FIR_COEF_HV(0, 1));
  239. SR(VID_FIR_COEF_HV(0, 2));
  240. SR(VID_FIR_COEF_HV(0, 3));
  241. SR(VID_FIR_COEF_HV(0, 4));
  242. SR(VID_FIR_COEF_HV(0, 5));
  243. SR(VID_FIR_COEF_HV(0, 6));
  244. SR(VID_FIR_COEF_HV(0, 7));
  245. SR(VID_CONV_COEF(0, 0));
  246. SR(VID_CONV_COEF(0, 1));
  247. SR(VID_CONV_COEF(0, 2));
  248. SR(VID_CONV_COEF(0, 3));
  249. SR(VID_CONV_COEF(0, 4));
  250. SR(VID_FIR_COEF_V(0, 0));
  251. SR(VID_FIR_COEF_V(0, 1));
  252. SR(VID_FIR_COEF_V(0, 2));
  253. SR(VID_FIR_COEF_V(0, 3));
  254. SR(VID_FIR_COEF_V(0, 4));
  255. SR(VID_FIR_COEF_V(0, 5));
  256. SR(VID_FIR_COEF_V(0, 6));
  257. SR(VID_FIR_COEF_V(0, 7));
  258. SR(VID_PRELOAD(0));
  259. /* VID2 */
  260. SR(VID_BA0(1));
  261. SR(VID_BA1(1));
  262. SR(VID_POSITION(1));
  263. SR(VID_SIZE(1));
  264. SR(VID_ATTRIBUTES(1));
  265. SR(VID_FIFO_THRESHOLD(1));
  266. SR(VID_ROW_INC(1));
  267. SR(VID_PIXEL_INC(1));
  268. SR(VID_FIR(1));
  269. SR(VID_PICTURE_SIZE(1));
  270. SR(VID_ACCU0(1));
  271. SR(VID_ACCU1(1));
  272. SR(VID_FIR_COEF_H(1, 0));
  273. SR(VID_FIR_COEF_H(1, 1));
  274. SR(VID_FIR_COEF_H(1, 2));
  275. SR(VID_FIR_COEF_H(1, 3));
  276. SR(VID_FIR_COEF_H(1, 4));
  277. SR(VID_FIR_COEF_H(1, 5));
  278. SR(VID_FIR_COEF_H(1, 6));
  279. SR(VID_FIR_COEF_H(1, 7));
  280. SR(VID_FIR_COEF_HV(1, 0));
  281. SR(VID_FIR_COEF_HV(1, 1));
  282. SR(VID_FIR_COEF_HV(1, 2));
  283. SR(VID_FIR_COEF_HV(1, 3));
  284. SR(VID_FIR_COEF_HV(1, 4));
  285. SR(VID_FIR_COEF_HV(1, 5));
  286. SR(VID_FIR_COEF_HV(1, 6));
  287. SR(VID_FIR_COEF_HV(1, 7));
  288. SR(VID_CONV_COEF(1, 0));
  289. SR(VID_CONV_COEF(1, 1));
  290. SR(VID_CONV_COEF(1, 2));
  291. SR(VID_CONV_COEF(1, 3));
  292. SR(VID_CONV_COEF(1, 4));
  293. SR(VID_FIR_COEF_V(1, 0));
  294. SR(VID_FIR_COEF_V(1, 1));
  295. SR(VID_FIR_COEF_V(1, 2));
  296. SR(VID_FIR_COEF_V(1, 3));
  297. SR(VID_FIR_COEF_V(1, 4));
  298. SR(VID_FIR_COEF_V(1, 5));
  299. SR(VID_FIR_COEF_V(1, 6));
  300. SR(VID_FIR_COEF_V(1, 7));
  301. SR(VID_PRELOAD(1));
  302. }
  303. void dispc_restore_context(void)
  304. {
  305. RR(SYSCONFIG);
  306. /*RR(IRQENABLE);*/
  307. /*RR(CONTROL);*/
  308. RR(CONFIG);
  309. RR(DEFAULT_COLOR(0));
  310. RR(DEFAULT_COLOR(1));
  311. RR(TRANS_COLOR(0));
  312. RR(TRANS_COLOR(1));
  313. RR(LINE_NUMBER);
  314. RR(TIMING_H(0));
  315. RR(TIMING_V(0));
  316. RR(POL_FREQ(0));
  317. RR(DIVISOR(0));
  318. RR(GLOBAL_ALPHA);
  319. RR(SIZE_DIG);
  320. RR(SIZE_LCD(0));
  321. RR(GFX_BA0);
  322. RR(GFX_BA1);
  323. RR(GFX_POSITION);
  324. RR(GFX_SIZE);
  325. RR(GFX_ATTRIBUTES);
  326. RR(GFX_FIFO_THRESHOLD);
  327. RR(GFX_ROW_INC);
  328. RR(GFX_PIXEL_INC);
  329. RR(GFX_WINDOW_SKIP);
  330. RR(GFX_TABLE_BA);
  331. RR(DATA_CYCLE1(0));
  332. RR(DATA_CYCLE2(0));
  333. RR(DATA_CYCLE3(0));
  334. RR(CPR_COEF_R(0));
  335. RR(CPR_COEF_G(0));
  336. RR(CPR_COEF_B(0));
  337. RR(GFX_PRELOAD);
  338. /* VID1 */
  339. RR(VID_BA0(0));
  340. RR(VID_BA1(0));
  341. RR(VID_POSITION(0));
  342. RR(VID_SIZE(0));
  343. RR(VID_ATTRIBUTES(0));
  344. RR(VID_FIFO_THRESHOLD(0));
  345. RR(VID_ROW_INC(0));
  346. RR(VID_PIXEL_INC(0));
  347. RR(VID_FIR(0));
  348. RR(VID_PICTURE_SIZE(0));
  349. RR(VID_ACCU0(0));
  350. RR(VID_ACCU1(0));
  351. RR(VID_FIR_COEF_H(0, 0));
  352. RR(VID_FIR_COEF_H(0, 1));
  353. RR(VID_FIR_COEF_H(0, 2));
  354. RR(VID_FIR_COEF_H(0, 3));
  355. RR(VID_FIR_COEF_H(0, 4));
  356. RR(VID_FIR_COEF_H(0, 5));
  357. RR(VID_FIR_COEF_H(0, 6));
  358. RR(VID_FIR_COEF_H(0, 7));
  359. RR(VID_FIR_COEF_HV(0, 0));
  360. RR(VID_FIR_COEF_HV(0, 1));
  361. RR(VID_FIR_COEF_HV(0, 2));
  362. RR(VID_FIR_COEF_HV(0, 3));
  363. RR(VID_FIR_COEF_HV(0, 4));
  364. RR(VID_FIR_COEF_HV(0, 5));
  365. RR(VID_FIR_COEF_HV(0, 6));
  366. RR(VID_FIR_COEF_HV(0, 7));
  367. RR(VID_CONV_COEF(0, 0));
  368. RR(VID_CONV_COEF(0, 1));
  369. RR(VID_CONV_COEF(0, 2));
  370. RR(VID_CONV_COEF(0, 3));
  371. RR(VID_CONV_COEF(0, 4));
  372. RR(VID_FIR_COEF_V(0, 0));
  373. RR(VID_FIR_COEF_V(0, 1));
  374. RR(VID_FIR_COEF_V(0, 2));
  375. RR(VID_FIR_COEF_V(0, 3));
  376. RR(VID_FIR_COEF_V(0, 4));
  377. RR(VID_FIR_COEF_V(0, 5));
  378. RR(VID_FIR_COEF_V(0, 6));
  379. RR(VID_FIR_COEF_V(0, 7));
  380. RR(VID_PRELOAD(0));
  381. /* VID2 */
  382. RR(VID_BA0(1));
  383. RR(VID_BA1(1));
  384. RR(VID_POSITION(1));
  385. RR(VID_SIZE(1));
  386. RR(VID_ATTRIBUTES(1));
  387. RR(VID_FIFO_THRESHOLD(1));
  388. RR(VID_ROW_INC(1));
  389. RR(VID_PIXEL_INC(1));
  390. RR(VID_FIR(1));
  391. RR(VID_PICTURE_SIZE(1));
  392. RR(VID_ACCU0(1));
  393. RR(VID_ACCU1(1));
  394. RR(VID_FIR_COEF_H(1, 0));
  395. RR(VID_FIR_COEF_H(1, 1));
  396. RR(VID_FIR_COEF_H(1, 2));
  397. RR(VID_FIR_COEF_H(1, 3));
  398. RR(VID_FIR_COEF_H(1, 4));
  399. RR(VID_FIR_COEF_H(1, 5));
  400. RR(VID_FIR_COEF_H(1, 6));
  401. RR(VID_FIR_COEF_H(1, 7));
  402. RR(VID_FIR_COEF_HV(1, 0));
  403. RR(VID_FIR_COEF_HV(1, 1));
  404. RR(VID_FIR_COEF_HV(1, 2));
  405. RR(VID_FIR_COEF_HV(1, 3));
  406. RR(VID_FIR_COEF_HV(1, 4));
  407. RR(VID_FIR_COEF_HV(1, 5));
  408. RR(VID_FIR_COEF_HV(1, 6));
  409. RR(VID_FIR_COEF_HV(1, 7));
  410. RR(VID_CONV_COEF(1, 0));
  411. RR(VID_CONV_COEF(1, 1));
  412. RR(VID_CONV_COEF(1, 2));
  413. RR(VID_CONV_COEF(1, 3));
  414. RR(VID_CONV_COEF(1, 4));
  415. RR(VID_FIR_COEF_V(1, 0));
  416. RR(VID_FIR_COEF_V(1, 1));
  417. RR(VID_FIR_COEF_V(1, 2));
  418. RR(VID_FIR_COEF_V(1, 3));
  419. RR(VID_FIR_COEF_V(1, 4));
  420. RR(VID_FIR_COEF_V(1, 5));
  421. RR(VID_FIR_COEF_V(1, 6));
  422. RR(VID_FIR_COEF_V(1, 7));
  423. RR(VID_PRELOAD(1));
  424. /* enable last, because LCD & DIGIT enable are here */
  425. RR(CONTROL);
  426. /* clear spurious SYNC_LOST_DIGIT interrupts */
  427. dispc_write_reg(DISPC_IRQSTATUS, DISPC_IRQ_SYNC_LOST_DIGIT);
  428. /*
  429. * enable last so IRQs won't trigger before
  430. * the context is fully restored
  431. */
  432. RR(IRQENABLE);
  433. }
  434. #undef SR
  435. #undef RR
  436. static inline void enable_clocks(bool enable)
  437. {
  438. if (enable)
  439. dss_clk_enable(DSS_CLK_ICK | DSS_CLK_FCK1);
  440. else
  441. dss_clk_disable(DSS_CLK_ICK | DSS_CLK_FCK1);
  442. }
  443. bool dispc_go_busy(enum omap_channel channel)
  444. {
  445. int bit;
  446. if (channel == OMAP_DSS_CHANNEL_LCD)
  447. bit = 5; /* GOLCD */
  448. else
  449. bit = 6; /* GODIGIT */
  450. return REG_GET(DISPC_CONTROL, bit, bit) == 1;
  451. }
  452. void dispc_go(enum omap_channel channel)
  453. {
  454. int bit;
  455. enable_clocks(1);
  456. if (channel == OMAP_DSS_CHANNEL_LCD)
  457. bit = 0; /* LCDENABLE */
  458. else
  459. bit = 1; /* DIGITALENABLE */
  460. /* if the channel is not enabled, we don't need GO */
  461. if (REG_GET(DISPC_CONTROL, bit, bit) == 0)
  462. goto end;
  463. if (channel == OMAP_DSS_CHANNEL_LCD)
  464. bit = 5; /* GOLCD */
  465. else
  466. bit = 6; /* GODIGIT */
  467. if (REG_GET(DISPC_CONTROL, bit, bit) == 1) {
  468. DSSERR("GO bit not down for channel %d\n", channel);
  469. goto end;
  470. }
  471. DSSDBG("GO %s\n", channel == OMAP_DSS_CHANNEL_LCD ? "LCD" : "DIGIT");
  472. REG_FLD_MOD(DISPC_CONTROL, 1, bit, bit);
  473. end:
  474. enable_clocks(0);
  475. }
  476. static void _dispc_write_firh_reg(enum omap_plane plane, int reg, u32 value)
  477. {
  478. BUG_ON(plane == OMAP_DSS_GFX);
  479. dispc_write_reg(DISPC_VID_FIR_COEF_H(plane-1, reg), value);
  480. }
  481. static void _dispc_write_firhv_reg(enum omap_plane plane, int reg, u32 value)
  482. {
  483. BUG_ON(plane == OMAP_DSS_GFX);
  484. dispc_write_reg(DISPC_VID_FIR_COEF_HV(plane-1, reg), value);
  485. }
  486. static void _dispc_write_firv_reg(enum omap_plane plane, int reg, u32 value)
  487. {
  488. BUG_ON(plane == OMAP_DSS_GFX);
  489. dispc_write_reg(DISPC_VID_FIR_COEF_V(plane-1, reg), value);
  490. }
  491. static void _dispc_set_scale_coef(enum omap_plane plane, int hscaleup,
  492. int vscaleup, int five_taps)
  493. {
  494. /* Coefficients for horizontal up-sampling */
  495. static const struct dispc_h_coef coef_hup[8] = {
  496. { 0, 0, 128, 0, 0 },
  497. { -1, 13, 124, -8, 0 },
  498. { -2, 30, 112, -11, -1 },
  499. { -5, 51, 95, -11, -2 },
  500. { 0, -9, 73, 73, -9 },
  501. { -2, -11, 95, 51, -5 },
  502. { -1, -11, 112, 30, -2 },
  503. { 0, -8, 124, 13, -1 },
  504. };
  505. /* Coefficients for vertical up-sampling */
  506. static const struct dispc_v_coef coef_vup_3tap[8] = {
  507. { 0, 0, 128, 0, 0 },
  508. { 0, 3, 123, 2, 0 },
  509. { 0, 12, 111, 5, 0 },
  510. { 0, 32, 89, 7, 0 },
  511. { 0, 0, 64, 64, 0 },
  512. { 0, 7, 89, 32, 0 },
  513. { 0, 5, 111, 12, 0 },
  514. { 0, 2, 123, 3, 0 },
  515. };
  516. static const struct dispc_v_coef coef_vup_5tap[8] = {
  517. { 0, 0, 128, 0, 0 },
  518. { -1, 13, 124, -8, 0 },
  519. { -2, 30, 112, -11, -1 },
  520. { -5, 51, 95, -11, -2 },
  521. { 0, -9, 73, 73, -9 },
  522. { -2, -11, 95, 51, -5 },
  523. { -1, -11, 112, 30, -2 },
  524. { 0, -8, 124, 13, -1 },
  525. };
  526. /* Coefficients for horizontal down-sampling */
  527. static const struct dispc_h_coef coef_hdown[8] = {
  528. { 0, 36, 56, 36, 0 },
  529. { 4, 40, 55, 31, -2 },
  530. { 8, 44, 54, 27, -5 },
  531. { 12, 48, 53, 22, -7 },
  532. { -9, 17, 52, 51, 17 },
  533. { -7, 22, 53, 48, 12 },
  534. { -5, 27, 54, 44, 8 },
  535. { -2, 31, 55, 40, 4 },
  536. };
  537. /* Coefficients for vertical down-sampling */
  538. static const struct dispc_v_coef coef_vdown_3tap[8] = {
  539. { 0, 36, 56, 36, 0 },
  540. { 0, 40, 57, 31, 0 },
  541. { 0, 45, 56, 27, 0 },
  542. { 0, 50, 55, 23, 0 },
  543. { 0, 18, 55, 55, 0 },
  544. { 0, 23, 55, 50, 0 },
  545. { 0, 27, 56, 45, 0 },
  546. { 0, 31, 57, 40, 0 },
  547. };
  548. static const struct dispc_v_coef coef_vdown_5tap[8] = {
  549. { 0, 36, 56, 36, 0 },
  550. { 4, 40, 55, 31, -2 },
  551. { 8, 44, 54, 27, -5 },
  552. { 12, 48, 53, 22, -7 },
  553. { -9, 17, 52, 51, 17 },
  554. { -7, 22, 53, 48, 12 },
  555. { -5, 27, 54, 44, 8 },
  556. { -2, 31, 55, 40, 4 },
  557. };
  558. const struct dispc_h_coef *h_coef;
  559. const struct dispc_v_coef *v_coef;
  560. int i;
  561. if (hscaleup)
  562. h_coef = coef_hup;
  563. else
  564. h_coef = coef_hdown;
  565. if (vscaleup)
  566. v_coef = five_taps ? coef_vup_5tap : coef_vup_3tap;
  567. else
  568. v_coef = five_taps ? coef_vdown_5tap : coef_vdown_3tap;
  569. for (i = 0; i < 8; i++) {
  570. u32 h, hv;
  571. h = FLD_VAL(h_coef[i].hc0, 7, 0)
  572. | FLD_VAL(h_coef[i].hc1, 15, 8)
  573. | FLD_VAL(h_coef[i].hc2, 23, 16)
  574. | FLD_VAL(h_coef[i].hc3, 31, 24);
  575. hv = FLD_VAL(h_coef[i].hc4, 7, 0)
  576. | FLD_VAL(v_coef[i].vc0, 15, 8)
  577. | FLD_VAL(v_coef[i].vc1, 23, 16)
  578. | FLD_VAL(v_coef[i].vc2, 31, 24);
  579. _dispc_write_firh_reg(plane, i, h);
  580. _dispc_write_firhv_reg(plane, i, hv);
  581. }
  582. if (five_taps) {
  583. for (i = 0; i < 8; i++) {
  584. u32 v;
  585. v = FLD_VAL(v_coef[i].vc00, 7, 0)
  586. | FLD_VAL(v_coef[i].vc22, 15, 8);
  587. _dispc_write_firv_reg(plane, i, v);
  588. }
  589. }
  590. }
  591. static void _dispc_setup_color_conv_coef(void)
  592. {
  593. const struct color_conv_coef {
  594. int ry, rcr, rcb, gy, gcr, gcb, by, bcr, bcb;
  595. int full_range;
  596. } ctbl_bt601_5 = {
  597. 298, 409, 0, 298, -208, -100, 298, 0, 517, 0,
  598. };
  599. const struct color_conv_coef *ct;
  600. #define CVAL(x, y) (FLD_VAL(x, 26, 16) | FLD_VAL(y, 10, 0))
  601. ct = &ctbl_bt601_5;
  602. dispc_write_reg(DISPC_VID_CONV_COEF(0, 0), CVAL(ct->rcr, ct->ry));
  603. dispc_write_reg(DISPC_VID_CONV_COEF(0, 1), CVAL(ct->gy, ct->rcb));
  604. dispc_write_reg(DISPC_VID_CONV_COEF(0, 2), CVAL(ct->gcb, ct->gcr));
  605. dispc_write_reg(DISPC_VID_CONV_COEF(0, 3), CVAL(ct->bcr, ct->by));
  606. dispc_write_reg(DISPC_VID_CONV_COEF(0, 4), CVAL(0, ct->bcb));
  607. dispc_write_reg(DISPC_VID_CONV_COEF(1, 0), CVAL(ct->rcr, ct->ry));
  608. dispc_write_reg(DISPC_VID_CONV_COEF(1, 1), CVAL(ct->gy, ct->rcb));
  609. dispc_write_reg(DISPC_VID_CONV_COEF(1, 2), CVAL(ct->gcb, ct->gcr));
  610. dispc_write_reg(DISPC_VID_CONV_COEF(1, 3), CVAL(ct->bcr, ct->by));
  611. dispc_write_reg(DISPC_VID_CONV_COEF(1, 4), CVAL(0, ct->bcb));
  612. #undef CVAL
  613. REG_FLD_MOD(DISPC_VID_ATTRIBUTES(0), ct->full_range, 11, 11);
  614. REG_FLD_MOD(DISPC_VID_ATTRIBUTES(1), ct->full_range, 11, 11);
  615. }
  616. static void _dispc_set_plane_ba0(enum omap_plane plane, u32 paddr)
  617. {
  618. const struct dispc_reg ba0_reg[] = { DISPC_GFX_BA0,
  619. DISPC_VID_BA0(0),
  620. DISPC_VID_BA0(1) };
  621. dispc_write_reg(ba0_reg[plane], paddr);
  622. }
  623. static void _dispc_set_plane_ba1(enum omap_plane plane, u32 paddr)
  624. {
  625. const struct dispc_reg ba1_reg[] = { DISPC_GFX_BA1,
  626. DISPC_VID_BA1(0),
  627. DISPC_VID_BA1(1) };
  628. dispc_write_reg(ba1_reg[plane], paddr);
  629. }
  630. static void _dispc_set_plane_pos(enum omap_plane plane, int x, int y)
  631. {
  632. const struct dispc_reg pos_reg[] = { DISPC_GFX_POSITION,
  633. DISPC_VID_POSITION(0),
  634. DISPC_VID_POSITION(1) };
  635. u32 val = FLD_VAL(y, 26, 16) | FLD_VAL(x, 10, 0);
  636. dispc_write_reg(pos_reg[plane], val);
  637. }
  638. static void _dispc_set_pic_size(enum omap_plane plane, int width, int height)
  639. {
  640. const struct dispc_reg siz_reg[] = { DISPC_GFX_SIZE,
  641. DISPC_VID_PICTURE_SIZE(0),
  642. DISPC_VID_PICTURE_SIZE(1) };
  643. u32 val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
  644. dispc_write_reg(siz_reg[plane], val);
  645. }
  646. static void _dispc_set_vid_size(enum omap_plane plane, int width, int height)
  647. {
  648. u32 val;
  649. const struct dispc_reg vsi_reg[] = { DISPC_VID_SIZE(0),
  650. DISPC_VID_SIZE(1) };
  651. BUG_ON(plane == OMAP_DSS_GFX);
  652. val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
  653. dispc_write_reg(vsi_reg[plane-1], val);
  654. }
  655. static void _dispc_set_pre_mult_alpha(enum omap_plane plane, bool enable)
  656. {
  657. if (!dss_has_feature(FEAT_PRE_MULT_ALPHA))
  658. return;
  659. if (!dss_has_feature(FEAT_GLOBAL_ALPHA_VID1) &&
  660. plane == OMAP_DSS_VIDEO1)
  661. return;
  662. REG_FLD_MOD(dispc_reg_att[plane], enable ? 1 : 0, 28, 28);
  663. }
  664. static void _dispc_setup_global_alpha(enum omap_plane plane, u8 global_alpha)
  665. {
  666. if (!dss_has_feature(FEAT_GLOBAL_ALPHA))
  667. return;
  668. if (!dss_has_feature(FEAT_GLOBAL_ALPHA_VID1) &&
  669. plane == OMAP_DSS_VIDEO1)
  670. return;
  671. if (plane == OMAP_DSS_GFX)
  672. REG_FLD_MOD(DISPC_GLOBAL_ALPHA, global_alpha, 7, 0);
  673. else if (plane == OMAP_DSS_VIDEO2)
  674. REG_FLD_MOD(DISPC_GLOBAL_ALPHA, global_alpha, 23, 16);
  675. }
  676. static void _dispc_set_pix_inc(enum omap_plane plane, s32 inc)
  677. {
  678. const struct dispc_reg ri_reg[] = { DISPC_GFX_PIXEL_INC,
  679. DISPC_VID_PIXEL_INC(0),
  680. DISPC_VID_PIXEL_INC(1) };
  681. dispc_write_reg(ri_reg[plane], inc);
  682. }
  683. static void _dispc_set_row_inc(enum omap_plane plane, s32 inc)
  684. {
  685. const struct dispc_reg ri_reg[] = { DISPC_GFX_ROW_INC,
  686. DISPC_VID_ROW_INC(0),
  687. DISPC_VID_ROW_INC(1) };
  688. dispc_write_reg(ri_reg[plane], inc);
  689. }
  690. static void _dispc_set_color_mode(enum omap_plane plane,
  691. enum omap_color_mode color_mode)
  692. {
  693. u32 m = 0;
  694. switch (color_mode) {
  695. case OMAP_DSS_COLOR_CLUT1:
  696. m = 0x0; break;
  697. case OMAP_DSS_COLOR_CLUT2:
  698. m = 0x1; break;
  699. case OMAP_DSS_COLOR_CLUT4:
  700. m = 0x2; break;
  701. case OMAP_DSS_COLOR_CLUT8:
  702. m = 0x3; break;
  703. case OMAP_DSS_COLOR_RGB12U:
  704. m = 0x4; break;
  705. case OMAP_DSS_COLOR_ARGB16:
  706. m = 0x5; break;
  707. case OMAP_DSS_COLOR_RGB16:
  708. m = 0x6; break;
  709. case OMAP_DSS_COLOR_RGB24U:
  710. m = 0x8; break;
  711. case OMAP_DSS_COLOR_RGB24P:
  712. m = 0x9; break;
  713. case OMAP_DSS_COLOR_YUV2:
  714. m = 0xa; break;
  715. case OMAP_DSS_COLOR_UYVY:
  716. m = 0xb; break;
  717. case OMAP_DSS_COLOR_ARGB32:
  718. m = 0xc; break;
  719. case OMAP_DSS_COLOR_RGBA32:
  720. m = 0xd; break;
  721. case OMAP_DSS_COLOR_RGBX32:
  722. m = 0xe; break;
  723. default:
  724. BUG(); break;
  725. }
  726. REG_FLD_MOD(dispc_reg_att[plane], m, 4, 1);
  727. }
  728. static void _dispc_set_channel_out(enum omap_plane plane,
  729. enum omap_channel channel)
  730. {
  731. int shift;
  732. u32 val;
  733. switch (plane) {
  734. case OMAP_DSS_GFX:
  735. shift = 8;
  736. break;
  737. case OMAP_DSS_VIDEO1:
  738. case OMAP_DSS_VIDEO2:
  739. shift = 16;
  740. break;
  741. default:
  742. BUG();
  743. return;
  744. }
  745. val = dispc_read_reg(dispc_reg_att[plane]);
  746. val = FLD_MOD(val, channel, shift, shift);
  747. dispc_write_reg(dispc_reg_att[plane], val);
  748. }
  749. void dispc_set_burst_size(enum omap_plane plane,
  750. enum omap_burst_size burst_size)
  751. {
  752. int shift;
  753. u32 val;
  754. enable_clocks(1);
  755. switch (plane) {
  756. case OMAP_DSS_GFX:
  757. shift = 6;
  758. break;
  759. case OMAP_DSS_VIDEO1:
  760. case OMAP_DSS_VIDEO2:
  761. shift = 14;
  762. break;
  763. default:
  764. BUG();
  765. return;
  766. }
  767. val = dispc_read_reg(dispc_reg_att[plane]);
  768. val = FLD_MOD(val, burst_size, shift+1, shift);
  769. dispc_write_reg(dispc_reg_att[plane], val);
  770. enable_clocks(0);
  771. }
  772. static void _dispc_set_vid_color_conv(enum omap_plane plane, bool enable)
  773. {
  774. u32 val;
  775. BUG_ON(plane == OMAP_DSS_GFX);
  776. val = dispc_read_reg(dispc_reg_att[plane]);
  777. val = FLD_MOD(val, enable, 9, 9);
  778. dispc_write_reg(dispc_reg_att[plane], val);
  779. }
  780. void dispc_enable_replication(enum omap_plane plane, bool enable)
  781. {
  782. int bit;
  783. if (plane == OMAP_DSS_GFX)
  784. bit = 5;
  785. else
  786. bit = 10;
  787. enable_clocks(1);
  788. REG_FLD_MOD(dispc_reg_att[plane], enable, bit, bit);
  789. enable_clocks(0);
  790. }
  791. void dispc_set_lcd_size(enum omap_channel channel, u16 width, u16 height)
  792. {
  793. u32 val;
  794. BUG_ON((width > (1 << 11)) || (height > (1 << 11)));
  795. val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
  796. enable_clocks(1);
  797. dispc_write_reg(DISPC_SIZE_LCD(channel), val);
  798. enable_clocks(0);
  799. }
  800. void dispc_set_digit_size(u16 width, u16 height)
  801. {
  802. u32 val;
  803. BUG_ON((width > (1 << 11)) || (height > (1 << 11)));
  804. val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
  805. enable_clocks(1);
  806. dispc_write_reg(DISPC_SIZE_DIG, val);
  807. enable_clocks(0);
  808. }
  809. static void dispc_read_plane_fifo_sizes(void)
  810. {
  811. const struct dispc_reg fsz_reg[] = { DISPC_GFX_FIFO_SIZE_STATUS,
  812. DISPC_VID_FIFO_SIZE_STATUS(0),
  813. DISPC_VID_FIFO_SIZE_STATUS(1) };
  814. u32 size;
  815. int plane;
  816. u8 start, end;
  817. enable_clocks(1);
  818. dss_feat_get_reg_field(FEAT_REG_FIFOSIZE, &start, &end);
  819. for (plane = 0; plane < ARRAY_SIZE(dispc.fifo_size); ++plane) {
  820. size = FLD_GET(dispc_read_reg(fsz_reg[plane]), start, end);
  821. dispc.fifo_size[plane] = size;
  822. }
  823. enable_clocks(0);
  824. }
  825. u32 dispc_get_plane_fifo_size(enum omap_plane plane)
  826. {
  827. return dispc.fifo_size[plane];
  828. }
  829. void dispc_setup_plane_fifo(enum omap_plane plane, u32 low, u32 high)
  830. {
  831. const struct dispc_reg ftrs_reg[] = { DISPC_GFX_FIFO_THRESHOLD,
  832. DISPC_VID_FIFO_THRESHOLD(0),
  833. DISPC_VID_FIFO_THRESHOLD(1) };
  834. u8 hi_start, hi_end, lo_start, lo_end;
  835. enable_clocks(1);
  836. DSSDBG("fifo(%d) low/high old %u/%u, new %u/%u\n",
  837. plane,
  838. REG_GET(ftrs_reg[plane], 11, 0),
  839. REG_GET(ftrs_reg[plane], 27, 16),
  840. low, high);
  841. dss_feat_get_reg_field(FEAT_REG_FIFOHIGHTHRESHOLD, &hi_start, &hi_end);
  842. dss_feat_get_reg_field(FEAT_REG_FIFOLOWTHRESHOLD, &lo_start, &lo_end);
  843. dispc_write_reg(ftrs_reg[plane],
  844. FLD_VAL(high, hi_start, hi_end) |
  845. FLD_VAL(low, lo_start, lo_end));
  846. enable_clocks(0);
  847. }
  848. void dispc_enable_fifomerge(bool enable)
  849. {
  850. enable_clocks(1);
  851. DSSDBG("FIFO merge %s\n", enable ? "enabled" : "disabled");
  852. REG_FLD_MOD(DISPC_CONFIG, enable ? 1 : 0, 14, 14);
  853. enable_clocks(0);
  854. }
  855. static void _dispc_set_fir(enum omap_plane plane, int hinc, int vinc)
  856. {
  857. u32 val;
  858. const struct dispc_reg fir_reg[] = { DISPC_VID_FIR(0),
  859. DISPC_VID_FIR(1) };
  860. u8 hinc_start, hinc_end, vinc_start, vinc_end;
  861. BUG_ON(plane == OMAP_DSS_GFX);
  862. dss_feat_get_reg_field(FEAT_REG_FIRHINC, &hinc_start, &hinc_end);
  863. dss_feat_get_reg_field(FEAT_REG_FIRVINC, &vinc_start, &vinc_end);
  864. val = FLD_VAL(vinc, vinc_start, vinc_end) |
  865. FLD_VAL(hinc, hinc_start, hinc_end);
  866. dispc_write_reg(fir_reg[plane-1], val);
  867. }
  868. static void _dispc_set_vid_accu0(enum omap_plane plane, int haccu, int vaccu)
  869. {
  870. u32 val;
  871. const struct dispc_reg ac0_reg[] = { DISPC_VID_ACCU0(0),
  872. DISPC_VID_ACCU0(1) };
  873. BUG_ON(plane == OMAP_DSS_GFX);
  874. val = FLD_VAL(vaccu, 25, 16) | FLD_VAL(haccu, 9, 0);
  875. dispc_write_reg(ac0_reg[plane-1], val);
  876. }
  877. static void _dispc_set_vid_accu1(enum omap_plane plane, int haccu, int vaccu)
  878. {
  879. u32 val;
  880. const struct dispc_reg ac1_reg[] = { DISPC_VID_ACCU1(0),
  881. DISPC_VID_ACCU1(1) };
  882. BUG_ON(plane == OMAP_DSS_GFX);
  883. val = FLD_VAL(vaccu, 25, 16) | FLD_VAL(haccu, 9, 0);
  884. dispc_write_reg(ac1_reg[plane-1], val);
  885. }
  886. static void _dispc_set_scaling(enum omap_plane plane,
  887. u16 orig_width, u16 orig_height,
  888. u16 out_width, u16 out_height,
  889. bool ilace, bool five_taps,
  890. bool fieldmode)
  891. {
  892. int fir_hinc;
  893. int fir_vinc;
  894. int hscaleup, vscaleup;
  895. int accu0 = 0;
  896. int accu1 = 0;
  897. u32 l;
  898. BUG_ON(plane == OMAP_DSS_GFX);
  899. hscaleup = orig_width <= out_width;
  900. vscaleup = orig_height <= out_height;
  901. _dispc_set_scale_coef(plane, hscaleup, vscaleup, five_taps);
  902. if (!orig_width || orig_width == out_width)
  903. fir_hinc = 0;
  904. else
  905. fir_hinc = 1024 * orig_width / out_width;
  906. if (!orig_height || orig_height == out_height)
  907. fir_vinc = 0;
  908. else
  909. fir_vinc = 1024 * orig_height / out_height;
  910. _dispc_set_fir(plane, fir_hinc, fir_vinc);
  911. l = dispc_read_reg(dispc_reg_att[plane]);
  912. l &= ~((0x0f << 5) | (0x3 << 21));
  913. l |= fir_hinc ? (1 << 5) : 0;
  914. l |= fir_vinc ? (1 << 6) : 0;
  915. l |= hscaleup ? 0 : (1 << 7);
  916. l |= vscaleup ? 0 : (1 << 8);
  917. l |= five_taps ? (1 << 21) : 0;
  918. l |= five_taps ? (1 << 22) : 0;
  919. dispc_write_reg(dispc_reg_att[plane], l);
  920. /*
  921. * field 0 = even field = bottom field
  922. * field 1 = odd field = top field
  923. */
  924. if (ilace && !fieldmode) {
  925. accu1 = 0;
  926. accu0 = (fir_vinc / 2) & 0x3ff;
  927. if (accu0 >= 1024/2) {
  928. accu1 = 1024/2;
  929. accu0 -= accu1;
  930. }
  931. }
  932. _dispc_set_vid_accu0(plane, 0, accu0);
  933. _dispc_set_vid_accu1(plane, 0, accu1);
  934. }
  935. static void _dispc_set_rotation_attrs(enum omap_plane plane, u8 rotation,
  936. bool mirroring, enum omap_color_mode color_mode)
  937. {
  938. if (color_mode == OMAP_DSS_COLOR_YUV2 ||
  939. color_mode == OMAP_DSS_COLOR_UYVY) {
  940. int vidrot = 0;
  941. if (mirroring) {
  942. switch (rotation) {
  943. case OMAP_DSS_ROT_0:
  944. vidrot = 2;
  945. break;
  946. case OMAP_DSS_ROT_90:
  947. vidrot = 1;
  948. break;
  949. case OMAP_DSS_ROT_180:
  950. vidrot = 0;
  951. break;
  952. case OMAP_DSS_ROT_270:
  953. vidrot = 3;
  954. break;
  955. }
  956. } else {
  957. switch (rotation) {
  958. case OMAP_DSS_ROT_0:
  959. vidrot = 0;
  960. break;
  961. case OMAP_DSS_ROT_90:
  962. vidrot = 1;
  963. break;
  964. case OMAP_DSS_ROT_180:
  965. vidrot = 2;
  966. break;
  967. case OMAP_DSS_ROT_270:
  968. vidrot = 3;
  969. break;
  970. }
  971. }
  972. REG_FLD_MOD(dispc_reg_att[plane], vidrot, 13, 12);
  973. if (rotation == OMAP_DSS_ROT_90 || rotation == OMAP_DSS_ROT_270)
  974. REG_FLD_MOD(dispc_reg_att[plane], 0x1, 18, 18);
  975. else
  976. REG_FLD_MOD(dispc_reg_att[plane], 0x0, 18, 18);
  977. } else {
  978. REG_FLD_MOD(dispc_reg_att[plane], 0, 13, 12);
  979. REG_FLD_MOD(dispc_reg_att[plane], 0, 18, 18);
  980. }
  981. }
  982. static int color_mode_to_bpp(enum omap_color_mode color_mode)
  983. {
  984. switch (color_mode) {
  985. case OMAP_DSS_COLOR_CLUT1:
  986. return 1;
  987. case OMAP_DSS_COLOR_CLUT2:
  988. return 2;
  989. case OMAP_DSS_COLOR_CLUT4:
  990. return 4;
  991. case OMAP_DSS_COLOR_CLUT8:
  992. return 8;
  993. case OMAP_DSS_COLOR_RGB12U:
  994. case OMAP_DSS_COLOR_RGB16:
  995. case OMAP_DSS_COLOR_ARGB16:
  996. case OMAP_DSS_COLOR_YUV2:
  997. case OMAP_DSS_COLOR_UYVY:
  998. return 16;
  999. case OMAP_DSS_COLOR_RGB24P:
  1000. return 24;
  1001. case OMAP_DSS_COLOR_RGB24U:
  1002. case OMAP_DSS_COLOR_ARGB32:
  1003. case OMAP_DSS_COLOR_RGBA32:
  1004. case OMAP_DSS_COLOR_RGBX32:
  1005. return 32;
  1006. default:
  1007. BUG();
  1008. }
  1009. }
  1010. static s32 pixinc(int pixels, u8 ps)
  1011. {
  1012. if (pixels == 1)
  1013. return 1;
  1014. else if (pixels > 1)
  1015. return 1 + (pixels - 1) * ps;
  1016. else if (pixels < 0)
  1017. return 1 - (-pixels + 1) * ps;
  1018. else
  1019. BUG();
  1020. }
  1021. static void calc_vrfb_rotation_offset(u8 rotation, bool mirror,
  1022. u16 screen_width,
  1023. u16 width, u16 height,
  1024. enum omap_color_mode color_mode, bool fieldmode,
  1025. unsigned int field_offset,
  1026. unsigned *offset0, unsigned *offset1,
  1027. s32 *row_inc, s32 *pix_inc)
  1028. {
  1029. u8 ps;
  1030. /* FIXME CLUT formats */
  1031. switch (color_mode) {
  1032. case OMAP_DSS_COLOR_CLUT1:
  1033. case OMAP_DSS_COLOR_CLUT2:
  1034. case OMAP_DSS_COLOR_CLUT4:
  1035. case OMAP_DSS_COLOR_CLUT8:
  1036. BUG();
  1037. return;
  1038. case OMAP_DSS_COLOR_YUV2:
  1039. case OMAP_DSS_COLOR_UYVY:
  1040. ps = 4;
  1041. break;
  1042. default:
  1043. ps = color_mode_to_bpp(color_mode) / 8;
  1044. break;
  1045. }
  1046. DSSDBG("calc_rot(%d): scrw %d, %dx%d\n", rotation, screen_width,
  1047. width, height);
  1048. /*
  1049. * field 0 = even field = bottom field
  1050. * field 1 = odd field = top field
  1051. */
  1052. switch (rotation + mirror * 4) {
  1053. case OMAP_DSS_ROT_0:
  1054. case OMAP_DSS_ROT_180:
  1055. /*
  1056. * If the pixel format is YUV or UYVY divide the width
  1057. * of the image by 2 for 0 and 180 degree rotation.
  1058. */
  1059. if (color_mode == OMAP_DSS_COLOR_YUV2 ||
  1060. color_mode == OMAP_DSS_COLOR_UYVY)
  1061. width = width >> 1;
  1062. case OMAP_DSS_ROT_90:
  1063. case OMAP_DSS_ROT_270:
  1064. *offset1 = 0;
  1065. if (field_offset)
  1066. *offset0 = field_offset * screen_width * ps;
  1067. else
  1068. *offset0 = 0;
  1069. *row_inc = pixinc(1 + (screen_width - width) +
  1070. (fieldmode ? screen_width : 0),
  1071. ps);
  1072. *pix_inc = pixinc(1, ps);
  1073. break;
  1074. case OMAP_DSS_ROT_0 + 4:
  1075. case OMAP_DSS_ROT_180 + 4:
  1076. /* If the pixel format is YUV or UYVY divide the width
  1077. * of the image by 2 for 0 degree and 180 degree
  1078. */
  1079. if (color_mode == OMAP_DSS_COLOR_YUV2 ||
  1080. color_mode == OMAP_DSS_COLOR_UYVY)
  1081. width = width >> 1;
  1082. case OMAP_DSS_ROT_90 + 4:
  1083. case OMAP_DSS_ROT_270 + 4:
  1084. *offset1 = 0;
  1085. if (field_offset)
  1086. *offset0 = field_offset * screen_width * ps;
  1087. else
  1088. *offset0 = 0;
  1089. *row_inc = pixinc(1 - (screen_width + width) -
  1090. (fieldmode ? screen_width : 0),
  1091. ps);
  1092. *pix_inc = pixinc(1, ps);
  1093. break;
  1094. default:
  1095. BUG();
  1096. }
  1097. }
  1098. static void calc_dma_rotation_offset(u8 rotation, bool mirror,
  1099. u16 screen_width,
  1100. u16 width, u16 height,
  1101. enum omap_color_mode color_mode, bool fieldmode,
  1102. unsigned int field_offset,
  1103. unsigned *offset0, unsigned *offset1,
  1104. s32 *row_inc, s32 *pix_inc)
  1105. {
  1106. u8 ps;
  1107. u16 fbw, fbh;
  1108. /* FIXME CLUT formats */
  1109. switch (color_mode) {
  1110. case OMAP_DSS_COLOR_CLUT1:
  1111. case OMAP_DSS_COLOR_CLUT2:
  1112. case OMAP_DSS_COLOR_CLUT4:
  1113. case OMAP_DSS_COLOR_CLUT8:
  1114. BUG();
  1115. return;
  1116. default:
  1117. ps = color_mode_to_bpp(color_mode) / 8;
  1118. break;
  1119. }
  1120. DSSDBG("calc_rot(%d): scrw %d, %dx%d\n", rotation, screen_width,
  1121. width, height);
  1122. /* width & height are overlay sizes, convert to fb sizes */
  1123. if (rotation == OMAP_DSS_ROT_0 || rotation == OMAP_DSS_ROT_180) {
  1124. fbw = width;
  1125. fbh = height;
  1126. } else {
  1127. fbw = height;
  1128. fbh = width;
  1129. }
  1130. /*
  1131. * field 0 = even field = bottom field
  1132. * field 1 = odd field = top field
  1133. */
  1134. switch (rotation + mirror * 4) {
  1135. case OMAP_DSS_ROT_0:
  1136. *offset1 = 0;
  1137. if (field_offset)
  1138. *offset0 = *offset1 + field_offset * screen_width * ps;
  1139. else
  1140. *offset0 = *offset1;
  1141. *row_inc = pixinc(1 + (screen_width - fbw) +
  1142. (fieldmode ? screen_width : 0),
  1143. ps);
  1144. *pix_inc = pixinc(1, ps);
  1145. break;
  1146. case OMAP_DSS_ROT_90:
  1147. *offset1 = screen_width * (fbh - 1) * ps;
  1148. if (field_offset)
  1149. *offset0 = *offset1 + field_offset * ps;
  1150. else
  1151. *offset0 = *offset1;
  1152. *row_inc = pixinc(screen_width * (fbh - 1) + 1 +
  1153. (fieldmode ? 1 : 0), ps);
  1154. *pix_inc = pixinc(-screen_width, ps);
  1155. break;
  1156. case OMAP_DSS_ROT_180:
  1157. *offset1 = (screen_width * (fbh - 1) + fbw - 1) * ps;
  1158. if (field_offset)
  1159. *offset0 = *offset1 - field_offset * screen_width * ps;
  1160. else
  1161. *offset0 = *offset1;
  1162. *row_inc = pixinc(-1 -
  1163. (screen_width - fbw) -
  1164. (fieldmode ? screen_width : 0),
  1165. ps);
  1166. *pix_inc = pixinc(-1, ps);
  1167. break;
  1168. case OMAP_DSS_ROT_270:
  1169. *offset1 = (fbw - 1) * ps;
  1170. if (field_offset)
  1171. *offset0 = *offset1 - field_offset * ps;
  1172. else
  1173. *offset0 = *offset1;
  1174. *row_inc = pixinc(-screen_width * (fbh - 1) - 1 -
  1175. (fieldmode ? 1 : 0), ps);
  1176. *pix_inc = pixinc(screen_width, ps);
  1177. break;
  1178. /* mirroring */
  1179. case OMAP_DSS_ROT_0 + 4:
  1180. *offset1 = (fbw - 1) * ps;
  1181. if (field_offset)
  1182. *offset0 = *offset1 + field_offset * screen_width * ps;
  1183. else
  1184. *offset0 = *offset1;
  1185. *row_inc = pixinc(screen_width * 2 - 1 +
  1186. (fieldmode ? screen_width : 0),
  1187. ps);
  1188. *pix_inc = pixinc(-1, ps);
  1189. break;
  1190. case OMAP_DSS_ROT_90 + 4:
  1191. *offset1 = 0;
  1192. if (field_offset)
  1193. *offset0 = *offset1 + field_offset * ps;
  1194. else
  1195. *offset0 = *offset1;
  1196. *row_inc = pixinc(-screen_width * (fbh - 1) + 1 +
  1197. (fieldmode ? 1 : 0),
  1198. ps);
  1199. *pix_inc = pixinc(screen_width, ps);
  1200. break;
  1201. case OMAP_DSS_ROT_180 + 4:
  1202. *offset1 = screen_width * (fbh - 1) * ps;
  1203. if (field_offset)
  1204. *offset0 = *offset1 - field_offset * screen_width * ps;
  1205. else
  1206. *offset0 = *offset1;
  1207. *row_inc = pixinc(1 - screen_width * 2 -
  1208. (fieldmode ? screen_width : 0),
  1209. ps);
  1210. *pix_inc = pixinc(1, ps);
  1211. break;
  1212. case OMAP_DSS_ROT_270 + 4:
  1213. *offset1 = (screen_width * (fbh - 1) + fbw - 1) * ps;
  1214. if (field_offset)
  1215. *offset0 = *offset1 - field_offset * ps;
  1216. else
  1217. *offset0 = *offset1;
  1218. *row_inc = pixinc(screen_width * (fbh - 1) - 1 -
  1219. (fieldmode ? 1 : 0),
  1220. ps);
  1221. *pix_inc = pixinc(-screen_width, ps);
  1222. break;
  1223. default:
  1224. BUG();
  1225. }
  1226. }
  1227. static unsigned long calc_fclk_five_taps(u16 width, u16 height,
  1228. u16 out_width, u16 out_height, enum omap_color_mode color_mode)
  1229. {
  1230. u32 fclk = 0;
  1231. /* FIXME venc pclk? */
  1232. u64 tmp, pclk = dispc_pclk_rate();
  1233. if (height > out_height) {
  1234. /* FIXME get real display PPL */
  1235. unsigned int ppl = 800;
  1236. tmp = pclk * height * out_width;
  1237. do_div(tmp, 2 * out_height * ppl);
  1238. fclk = tmp;
  1239. if (height > 2 * out_height) {
  1240. if (ppl == out_width)
  1241. return 0;
  1242. tmp = pclk * (height - 2 * out_height) * out_width;
  1243. do_div(tmp, 2 * out_height * (ppl - out_width));
  1244. fclk = max(fclk, (u32) tmp);
  1245. }
  1246. }
  1247. if (width > out_width) {
  1248. tmp = pclk * width;
  1249. do_div(tmp, out_width);
  1250. fclk = max(fclk, (u32) tmp);
  1251. if (color_mode == OMAP_DSS_COLOR_RGB24U)
  1252. fclk <<= 1;
  1253. }
  1254. return fclk;
  1255. }
  1256. static unsigned long calc_fclk(u16 width, u16 height,
  1257. u16 out_width, u16 out_height)
  1258. {
  1259. unsigned int hf, vf;
  1260. /*
  1261. * FIXME how to determine the 'A' factor
  1262. * for the no downscaling case ?
  1263. */
  1264. if (width > 3 * out_width)
  1265. hf = 4;
  1266. else if (width > 2 * out_width)
  1267. hf = 3;
  1268. else if (width > out_width)
  1269. hf = 2;
  1270. else
  1271. hf = 1;
  1272. if (height > out_height)
  1273. vf = 2;
  1274. else
  1275. vf = 1;
  1276. /* FIXME venc pclk? */
  1277. return dispc_pclk_rate() * vf * hf;
  1278. }
  1279. void dispc_set_channel_out(enum omap_plane plane, enum omap_channel channel_out)
  1280. {
  1281. enable_clocks(1);
  1282. _dispc_set_channel_out(plane, channel_out);
  1283. enable_clocks(0);
  1284. }
  1285. static int _dispc_setup_plane(enum omap_plane plane,
  1286. u32 paddr, u16 screen_width,
  1287. u16 pos_x, u16 pos_y,
  1288. u16 width, u16 height,
  1289. u16 out_width, u16 out_height,
  1290. enum omap_color_mode color_mode,
  1291. bool ilace,
  1292. enum omap_dss_rotation_type rotation_type,
  1293. u8 rotation, int mirror,
  1294. u8 global_alpha,
  1295. u8 pre_mult_alpha)
  1296. {
  1297. const int maxdownscale = cpu_is_omap34xx() ? 4 : 2;
  1298. bool five_taps = 0;
  1299. bool fieldmode = 0;
  1300. int cconv = 0;
  1301. unsigned offset0, offset1;
  1302. s32 row_inc;
  1303. s32 pix_inc;
  1304. u16 frame_height = height;
  1305. unsigned int field_offset = 0;
  1306. if (paddr == 0)
  1307. return -EINVAL;
  1308. if (ilace && height == out_height)
  1309. fieldmode = 1;
  1310. if (ilace) {
  1311. if (fieldmode)
  1312. height /= 2;
  1313. pos_y /= 2;
  1314. out_height /= 2;
  1315. DSSDBG("adjusting for ilace: height %d, pos_y %d, "
  1316. "out_height %d\n",
  1317. height, pos_y, out_height);
  1318. }
  1319. if (!dss_feat_color_mode_supported(plane, color_mode))
  1320. return -EINVAL;
  1321. if (plane == OMAP_DSS_GFX) {
  1322. if (width != out_width || height != out_height)
  1323. return -EINVAL;
  1324. } else {
  1325. /* video plane */
  1326. unsigned long fclk = 0;
  1327. if (out_width < width / maxdownscale ||
  1328. out_width > width * 8)
  1329. return -EINVAL;
  1330. if (out_height < height / maxdownscale ||
  1331. out_height > height * 8)
  1332. return -EINVAL;
  1333. if (color_mode == OMAP_DSS_COLOR_YUV2 ||
  1334. color_mode == OMAP_DSS_COLOR_UYVY)
  1335. cconv = 1;
  1336. /* Must use 5-tap filter? */
  1337. five_taps = height > out_height * 2;
  1338. if (!five_taps) {
  1339. fclk = calc_fclk(width, height,
  1340. out_width, out_height);
  1341. /* Try 5-tap filter if 3-tap fclk is too high */
  1342. if (cpu_is_omap34xx() && height > out_height &&
  1343. fclk > dispc_fclk_rate())
  1344. five_taps = true;
  1345. }
  1346. if (width > (2048 >> five_taps)) {
  1347. DSSERR("failed to set up scaling, fclk too low\n");
  1348. return -EINVAL;
  1349. }
  1350. if (five_taps)
  1351. fclk = calc_fclk_five_taps(width, height,
  1352. out_width, out_height, color_mode);
  1353. DSSDBG("required fclk rate = %lu Hz\n", fclk);
  1354. DSSDBG("current fclk rate = %lu Hz\n", dispc_fclk_rate());
  1355. if (!fclk || fclk > dispc_fclk_rate()) {
  1356. DSSERR("failed to set up scaling, "
  1357. "required fclk rate = %lu Hz, "
  1358. "current fclk rate = %lu Hz\n",
  1359. fclk, dispc_fclk_rate());
  1360. return -EINVAL;
  1361. }
  1362. }
  1363. if (ilace && !fieldmode) {
  1364. /*
  1365. * when downscaling the bottom field may have to start several
  1366. * source lines below the top field. Unfortunately ACCUI
  1367. * registers will only hold the fractional part of the offset
  1368. * so the integer part must be added to the base address of the
  1369. * bottom field.
  1370. */
  1371. if (!height || height == out_height)
  1372. field_offset = 0;
  1373. else
  1374. field_offset = height / out_height / 2;
  1375. }
  1376. /* Fields are independent but interleaved in memory. */
  1377. if (fieldmode)
  1378. field_offset = 1;
  1379. if (rotation_type == OMAP_DSS_ROT_DMA)
  1380. calc_dma_rotation_offset(rotation, mirror,
  1381. screen_width, width, frame_height, color_mode,
  1382. fieldmode, field_offset,
  1383. &offset0, &offset1, &row_inc, &pix_inc);
  1384. else
  1385. calc_vrfb_rotation_offset(rotation, mirror,
  1386. screen_width, width, frame_height, color_mode,
  1387. fieldmode, field_offset,
  1388. &offset0, &offset1, &row_inc, &pix_inc);
  1389. DSSDBG("offset0 %u, offset1 %u, row_inc %d, pix_inc %d\n",
  1390. offset0, offset1, row_inc, pix_inc);
  1391. _dispc_set_color_mode(plane, color_mode);
  1392. _dispc_set_plane_ba0(plane, paddr + offset0);
  1393. _dispc_set_plane_ba1(plane, paddr + offset1);
  1394. _dispc_set_row_inc(plane, row_inc);
  1395. _dispc_set_pix_inc(plane, pix_inc);
  1396. DSSDBG("%d,%d %dx%d -> %dx%d\n", pos_x, pos_y, width, height,
  1397. out_width, out_height);
  1398. _dispc_set_plane_pos(plane, pos_x, pos_y);
  1399. _dispc_set_pic_size(plane, width, height);
  1400. if (plane != OMAP_DSS_GFX) {
  1401. _dispc_set_scaling(plane, width, height,
  1402. out_width, out_height,
  1403. ilace, five_taps, fieldmode);
  1404. _dispc_set_vid_size(plane, out_width, out_height);
  1405. _dispc_set_vid_color_conv(plane, cconv);
  1406. }
  1407. _dispc_set_rotation_attrs(plane, rotation, mirror, color_mode);
  1408. _dispc_set_pre_mult_alpha(plane, pre_mult_alpha);
  1409. _dispc_setup_global_alpha(plane, global_alpha);
  1410. return 0;
  1411. }
  1412. static void _dispc_enable_plane(enum omap_plane plane, bool enable)
  1413. {
  1414. REG_FLD_MOD(dispc_reg_att[plane], enable ? 1 : 0, 0, 0);
  1415. }
  1416. static void dispc_disable_isr(void *data, u32 mask)
  1417. {
  1418. struct completion *compl = data;
  1419. complete(compl);
  1420. }
  1421. static void _enable_lcd_out(bool enable)
  1422. {
  1423. REG_FLD_MOD(DISPC_CONTROL, enable ? 1 : 0, 0, 0);
  1424. }
  1425. static void dispc_enable_lcd_out(bool enable)
  1426. {
  1427. struct completion frame_done_completion;
  1428. bool is_on;
  1429. int r;
  1430. enable_clocks(1);
  1431. /* When we disable LCD output, we need to wait until frame is done.
  1432. * Otherwise the DSS is still working, and turning off the clocks
  1433. * prevents DSS from going to OFF mode */
  1434. is_on = REG_GET(DISPC_CONTROL, 0, 0);
  1435. if (!enable && is_on) {
  1436. init_completion(&frame_done_completion);
  1437. r = omap_dispc_register_isr(dispc_disable_isr,
  1438. &frame_done_completion,
  1439. DISPC_IRQ_FRAMEDONE);
  1440. if (r)
  1441. DSSERR("failed to register FRAMEDONE isr\n");
  1442. }
  1443. _enable_lcd_out(enable);
  1444. if (!enable && is_on) {
  1445. if (!wait_for_completion_timeout(&frame_done_completion,
  1446. msecs_to_jiffies(100)))
  1447. DSSERR("timeout waiting for FRAME DONE\n");
  1448. r = omap_dispc_unregister_isr(dispc_disable_isr,
  1449. &frame_done_completion,
  1450. DISPC_IRQ_FRAMEDONE);
  1451. if (r)
  1452. DSSERR("failed to unregister FRAMEDONE isr\n");
  1453. }
  1454. enable_clocks(0);
  1455. }
  1456. static void _enable_digit_out(bool enable)
  1457. {
  1458. REG_FLD_MOD(DISPC_CONTROL, enable ? 1 : 0, 1, 1);
  1459. }
  1460. static void dispc_enable_digit_out(bool enable)
  1461. {
  1462. struct completion frame_done_completion;
  1463. int r;
  1464. enable_clocks(1);
  1465. if (REG_GET(DISPC_CONTROL, 1, 1) == enable) {
  1466. enable_clocks(0);
  1467. return;
  1468. }
  1469. if (enable) {
  1470. unsigned long flags;
  1471. /* When we enable digit output, we'll get an extra digit
  1472. * sync lost interrupt, that we need to ignore */
  1473. spin_lock_irqsave(&dispc.irq_lock, flags);
  1474. dispc.irq_error_mask &= ~DISPC_IRQ_SYNC_LOST_DIGIT;
  1475. _omap_dispc_set_irqs();
  1476. spin_unlock_irqrestore(&dispc.irq_lock, flags);
  1477. }
  1478. /* When we disable digit output, we need to wait until fields are done.
  1479. * Otherwise the DSS is still working, and turning off the clocks
  1480. * prevents DSS from going to OFF mode. And when enabling, we need to
  1481. * wait for the extra sync losts */
  1482. init_completion(&frame_done_completion);
  1483. r = omap_dispc_register_isr(dispc_disable_isr, &frame_done_completion,
  1484. DISPC_IRQ_EVSYNC_EVEN | DISPC_IRQ_EVSYNC_ODD);
  1485. if (r)
  1486. DSSERR("failed to register EVSYNC isr\n");
  1487. _enable_digit_out(enable);
  1488. /* XXX I understand from TRM that we should only wait for the
  1489. * current field to complete. But it seems we have to wait
  1490. * for both fields */
  1491. if (!wait_for_completion_timeout(&frame_done_completion,
  1492. msecs_to_jiffies(100)))
  1493. DSSERR("timeout waiting for EVSYNC\n");
  1494. if (!wait_for_completion_timeout(&frame_done_completion,
  1495. msecs_to_jiffies(100)))
  1496. DSSERR("timeout waiting for EVSYNC\n");
  1497. r = omap_dispc_unregister_isr(dispc_disable_isr,
  1498. &frame_done_completion,
  1499. DISPC_IRQ_EVSYNC_EVEN | DISPC_IRQ_EVSYNC_ODD);
  1500. if (r)
  1501. DSSERR("failed to unregister EVSYNC isr\n");
  1502. if (enable) {
  1503. unsigned long flags;
  1504. spin_lock_irqsave(&dispc.irq_lock, flags);
  1505. dispc.irq_error_mask = DISPC_IRQ_MASK_ERROR;
  1506. dispc_write_reg(DISPC_IRQSTATUS, DISPC_IRQ_SYNC_LOST_DIGIT);
  1507. _omap_dispc_set_irqs();
  1508. spin_unlock_irqrestore(&dispc.irq_lock, flags);
  1509. }
  1510. enable_clocks(0);
  1511. }
  1512. bool dispc_is_channel_enabled(enum omap_channel channel)
  1513. {
  1514. if (channel == OMAP_DSS_CHANNEL_LCD)
  1515. return !!REG_GET(DISPC_CONTROL, 0, 0);
  1516. else if (channel == OMAP_DSS_CHANNEL_DIGIT)
  1517. return !!REG_GET(DISPC_CONTROL, 1, 1);
  1518. else
  1519. BUG();
  1520. }
  1521. void dispc_enable_channel(enum omap_channel channel, bool enable)
  1522. {
  1523. if (channel == OMAP_DSS_CHANNEL_LCD)
  1524. dispc_enable_lcd_out(enable);
  1525. else if (channel == OMAP_DSS_CHANNEL_DIGIT)
  1526. dispc_enable_digit_out(enable);
  1527. else
  1528. BUG();
  1529. }
  1530. void dispc_lcd_enable_signal_polarity(bool act_high)
  1531. {
  1532. enable_clocks(1);
  1533. REG_FLD_MOD(DISPC_CONTROL, act_high ? 1 : 0, 29, 29);
  1534. enable_clocks(0);
  1535. }
  1536. void dispc_lcd_enable_signal(bool enable)
  1537. {
  1538. enable_clocks(1);
  1539. REG_FLD_MOD(DISPC_CONTROL, enable ? 1 : 0, 28, 28);
  1540. enable_clocks(0);
  1541. }
  1542. void dispc_pck_free_enable(bool enable)
  1543. {
  1544. enable_clocks(1);
  1545. REG_FLD_MOD(DISPC_CONTROL, enable ? 1 : 0, 27, 27);
  1546. enable_clocks(0);
  1547. }
  1548. void dispc_enable_fifohandcheck(enum omap_channel channel, bool enable)
  1549. {
  1550. enable_clocks(1);
  1551. REG_FLD_MOD(DISPC_CONFIG, enable ? 1 : 0, 16, 16);
  1552. enable_clocks(0);
  1553. }
  1554. void dispc_set_lcd_display_type(enum omap_channel channel,
  1555. enum omap_lcd_display_type type)
  1556. {
  1557. int mode;
  1558. switch (type) {
  1559. case OMAP_DSS_LCD_DISPLAY_STN:
  1560. mode = 0;
  1561. break;
  1562. case OMAP_DSS_LCD_DISPLAY_TFT:
  1563. mode = 1;
  1564. break;
  1565. default:
  1566. BUG();
  1567. return;
  1568. }
  1569. enable_clocks(1);
  1570. REG_FLD_MOD(DISPC_CONTROL, mode, 3, 3);
  1571. enable_clocks(0);
  1572. }
  1573. void dispc_set_loadmode(enum omap_dss_load_mode mode)
  1574. {
  1575. enable_clocks(1);
  1576. REG_FLD_MOD(DISPC_CONFIG, mode, 2, 1);
  1577. enable_clocks(0);
  1578. }
  1579. void dispc_set_default_color(enum omap_channel channel, u32 color)
  1580. {
  1581. enable_clocks(1);
  1582. dispc_write_reg(DISPC_DEFAULT_COLOR(channel), color);
  1583. enable_clocks(0);
  1584. }
  1585. u32 dispc_get_default_color(enum omap_channel channel)
  1586. {
  1587. u32 l;
  1588. BUG_ON(channel != OMAP_DSS_CHANNEL_DIGIT &&
  1589. channel != OMAP_DSS_CHANNEL_LCD);
  1590. enable_clocks(1);
  1591. l = dispc_read_reg(DISPC_DEFAULT_COLOR(channel));
  1592. enable_clocks(0);
  1593. return l;
  1594. }
  1595. void dispc_set_trans_key(enum omap_channel ch,
  1596. enum omap_dss_trans_key_type type,
  1597. u32 trans_key)
  1598. {
  1599. enable_clocks(1);
  1600. if (ch == OMAP_DSS_CHANNEL_LCD)
  1601. REG_FLD_MOD(DISPC_CONFIG, type, 11, 11);
  1602. else /* OMAP_DSS_CHANNEL_DIGIT */
  1603. REG_FLD_MOD(DISPC_CONFIG, type, 13, 13);
  1604. dispc_write_reg(DISPC_TRANS_COLOR(ch), trans_key);
  1605. enable_clocks(0);
  1606. }
  1607. void dispc_get_trans_key(enum omap_channel ch,
  1608. enum omap_dss_trans_key_type *type,
  1609. u32 *trans_key)
  1610. {
  1611. enable_clocks(1);
  1612. if (type) {
  1613. if (ch == OMAP_DSS_CHANNEL_LCD)
  1614. *type = REG_GET(DISPC_CONFIG, 11, 11);
  1615. else if (ch == OMAP_DSS_CHANNEL_DIGIT)
  1616. *type = REG_GET(DISPC_CONFIG, 13, 13);
  1617. else
  1618. BUG();
  1619. }
  1620. if (trans_key)
  1621. *trans_key = dispc_read_reg(DISPC_TRANS_COLOR(ch));
  1622. enable_clocks(0);
  1623. }
  1624. void dispc_enable_trans_key(enum omap_channel ch, bool enable)
  1625. {
  1626. enable_clocks(1);
  1627. if (ch == OMAP_DSS_CHANNEL_LCD)
  1628. REG_FLD_MOD(DISPC_CONFIG, enable, 10, 10);
  1629. else /* OMAP_DSS_CHANNEL_DIGIT */
  1630. REG_FLD_MOD(DISPC_CONFIG, enable, 12, 12);
  1631. enable_clocks(0);
  1632. }
  1633. void dispc_enable_alpha_blending(enum omap_channel ch, bool enable)
  1634. {
  1635. if (!dss_has_feature(FEAT_GLOBAL_ALPHA))
  1636. return;
  1637. enable_clocks(1);
  1638. if (ch == OMAP_DSS_CHANNEL_LCD)
  1639. REG_FLD_MOD(DISPC_CONFIG, enable, 18, 18);
  1640. else /* OMAP_DSS_CHANNEL_DIGIT */
  1641. REG_FLD_MOD(DISPC_CONFIG, enable, 19, 19);
  1642. enable_clocks(0);
  1643. }
  1644. bool dispc_alpha_blending_enabled(enum omap_channel ch)
  1645. {
  1646. bool enabled;
  1647. if (!dss_has_feature(FEAT_GLOBAL_ALPHA))
  1648. return false;
  1649. enable_clocks(1);
  1650. if (ch == OMAP_DSS_CHANNEL_LCD)
  1651. enabled = REG_GET(DISPC_CONFIG, 18, 18);
  1652. else if (ch == OMAP_DSS_CHANNEL_DIGIT)
  1653. enabled = REG_GET(DISPC_CONFIG, 19, 19);
  1654. else
  1655. BUG();
  1656. enable_clocks(0);
  1657. return enabled;
  1658. }
  1659. bool dispc_trans_key_enabled(enum omap_channel ch)
  1660. {
  1661. bool enabled;
  1662. enable_clocks(1);
  1663. if (ch == OMAP_DSS_CHANNEL_LCD)
  1664. enabled = REG_GET(DISPC_CONFIG, 10, 10);
  1665. else if (ch == OMAP_DSS_CHANNEL_DIGIT)
  1666. enabled = REG_GET(DISPC_CONFIG, 12, 12);
  1667. else
  1668. BUG();
  1669. enable_clocks(0);
  1670. return enabled;
  1671. }
  1672. void dispc_set_tft_data_lines(enum omap_channel channel, u8 data_lines)
  1673. {
  1674. int code;
  1675. switch (data_lines) {
  1676. case 12:
  1677. code = 0;
  1678. break;
  1679. case 16:
  1680. code = 1;
  1681. break;
  1682. case 18:
  1683. code = 2;
  1684. break;
  1685. case 24:
  1686. code = 3;
  1687. break;
  1688. default:
  1689. BUG();
  1690. return;
  1691. }
  1692. enable_clocks(1);
  1693. REG_FLD_MOD(DISPC_CONTROL, code, 9, 8);
  1694. enable_clocks(0);
  1695. }
  1696. void dispc_set_parallel_interface_mode(enum omap_channel channel,
  1697. enum omap_parallel_interface_mode mode)
  1698. {
  1699. u32 l;
  1700. int stallmode;
  1701. int gpout0 = 1;
  1702. int gpout1;
  1703. switch (mode) {
  1704. case OMAP_DSS_PARALLELMODE_BYPASS:
  1705. stallmode = 0;
  1706. gpout1 = 1;
  1707. break;
  1708. case OMAP_DSS_PARALLELMODE_RFBI:
  1709. stallmode = 1;
  1710. gpout1 = 0;
  1711. break;
  1712. case OMAP_DSS_PARALLELMODE_DSI:
  1713. stallmode = 1;
  1714. gpout1 = 1;
  1715. break;
  1716. default:
  1717. BUG();
  1718. return;
  1719. }
  1720. enable_clocks(1);
  1721. l = dispc_read_reg(DISPC_CONTROL);
  1722. l = FLD_MOD(l, stallmode, 11, 11);
  1723. if (channel == OMAP_DSS_CHANNEL_LCD) {
  1724. l = FLD_MOD(l, gpout0, 15, 15);
  1725. l = FLD_MOD(l, gpout1, 16, 16);
  1726. }
  1727. dispc_write_reg(DISPC_CONTROL, l);
  1728. enable_clocks(0);
  1729. }
  1730. static bool _dispc_lcd_timings_ok(int hsw, int hfp, int hbp,
  1731. int vsw, int vfp, int vbp)
  1732. {
  1733. if (cpu_is_omap24xx() || omap_rev() < OMAP3430_REV_ES3_0) {
  1734. if (hsw < 1 || hsw > 64 ||
  1735. hfp < 1 || hfp > 256 ||
  1736. hbp < 1 || hbp > 256 ||
  1737. vsw < 1 || vsw > 64 ||
  1738. vfp < 0 || vfp > 255 ||
  1739. vbp < 0 || vbp > 255)
  1740. return false;
  1741. } else {
  1742. if (hsw < 1 || hsw > 256 ||
  1743. hfp < 1 || hfp > 4096 ||
  1744. hbp < 1 || hbp > 4096 ||
  1745. vsw < 1 || vsw > 256 ||
  1746. vfp < 0 || vfp > 4095 ||
  1747. vbp < 0 || vbp > 4095)
  1748. return false;
  1749. }
  1750. return true;
  1751. }
  1752. bool dispc_lcd_timings_ok(struct omap_video_timings *timings)
  1753. {
  1754. return _dispc_lcd_timings_ok(timings->hsw, timings->hfp,
  1755. timings->hbp, timings->vsw,
  1756. timings->vfp, timings->vbp);
  1757. }
  1758. static void _dispc_set_lcd_timings(enum omap_channel channel, int hsw,
  1759. int hfp, int hbp, int vsw, int vfp, int vbp)
  1760. {
  1761. u32 timing_h, timing_v;
  1762. if (cpu_is_omap24xx() || omap_rev() < OMAP3430_REV_ES3_0) {
  1763. timing_h = FLD_VAL(hsw-1, 5, 0) | FLD_VAL(hfp-1, 15, 8) |
  1764. FLD_VAL(hbp-1, 27, 20);
  1765. timing_v = FLD_VAL(vsw-1, 5, 0) | FLD_VAL(vfp, 15, 8) |
  1766. FLD_VAL(vbp, 27, 20);
  1767. } else {
  1768. timing_h = FLD_VAL(hsw-1, 7, 0) | FLD_VAL(hfp-1, 19, 8) |
  1769. FLD_VAL(hbp-1, 31, 20);
  1770. timing_v = FLD_VAL(vsw-1, 7, 0) | FLD_VAL(vfp, 19, 8) |
  1771. FLD_VAL(vbp, 31, 20);
  1772. }
  1773. enable_clocks(1);
  1774. dispc_write_reg(DISPC_TIMING_H(channel), timing_h);
  1775. dispc_write_reg(DISPC_TIMING_V(channel), timing_v);
  1776. enable_clocks(0);
  1777. }
  1778. /* change name to mode? */
  1779. void dispc_set_lcd_timings(enum omap_channel channel,
  1780. struct omap_video_timings *timings)
  1781. {
  1782. unsigned xtot, ytot;
  1783. unsigned long ht, vt;
  1784. if (!_dispc_lcd_timings_ok(timings->hsw, timings->hfp,
  1785. timings->hbp, timings->vsw,
  1786. timings->vfp, timings->vbp))
  1787. BUG();
  1788. _dispc_set_lcd_timings(channel, timings->hsw, timings->hfp,
  1789. timings->hbp, timings->vsw, timings->vfp,
  1790. timings->vbp);
  1791. dispc_set_lcd_size(channel, timings->x_res, timings->y_res);
  1792. xtot = timings->x_res + timings->hfp + timings->hsw + timings->hbp;
  1793. ytot = timings->y_res + timings->vfp + timings->vsw + timings->vbp;
  1794. ht = (timings->pixel_clock * 1000) / xtot;
  1795. vt = (timings->pixel_clock * 1000) / xtot / ytot;
  1796. DSSDBG("xres %u yres %u\n", timings->x_res, timings->y_res);
  1797. DSSDBG("pck %u\n", timings->pixel_clock);
  1798. DSSDBG("hsw %d hfp %d hbp %d vsw %d vfp %d vbp %d\n",
  1799. timings->hsw, timings->hfp, timings->hbp,
  1800. timings->vsw, timings->vfp, timings->vbp);
  1801. DSSDBG("hsync %luHz, vsync %luHz\n", ht, vt);
  1802. }
  1803. static void dispc_set_lcd_divisor(u16 lck_div, u16 pck_div)
  1804. {
  1805. BUG_ON(lck_div < 1);
  1806. BUG_ON(pck_div < 2);
  1807. enable_clocks(1);
  1808. dispc_write_reg(DISPC_DIVISOR(OMAP_DSS_CHANNEL_LCD),
  1809. FLD_VAL(lck_div, 23, 16) | FLD_VAL(pck_div, 7, 0));
  1810. enable_clocks(0);
  1811. }
  1812. static void dispc_get_lcd_divisor(int *lck_div, int *pck_div)
  1813. {
  1814. u32 l;
  1815. l = dispc_read_reg(DISPC_DIVISOR(OMAP_DSS_CHANNEL_LCD));
  1816. *lck_div = FLD_GET(l, 23, 16);
  1817. *pck_div = FLD_GET(l, 7, 0);
  1818. }
  1819. unsigned long dispc_fclk_rate(void)
  1820. {
  1821. unsigned long r = 0;
  1822. if (dss_get_dispc_clk_source() == DSS_SRC_DSS1_ALWON_FCLK)
  1823. r = dss_clk_get_rate(DSS_CLK_FCK1);
  1824. else
  1825. #ifdef CONFIG_OMAP2_DSS_DSI
  1826. r = dsi_get_dsi1_pll_rate();
  1827. #else
  1828. BUG();
  1829. #endif
  1830. return r;
  1831. }
  1832. unsigned long dispc_lclk_rate(void)
  1833. {
  1834. int lcd;
  1835. unsigned long r;
  1836. u32 l;
  1837. l = dispc_read_reg(DISPC_DIVISOR(OMAP_DSS_CHANNEL_LCD));
  1838. lcd = FLD_GET(l, 23, 16);
  1839. r = dispc_fclk_rate();
  1840. return r / lcd;
  1841. }
  1842. unsigned long dispc_pclk_rate(void)
  1843. {
  1844. int lcd, pcd;
  1845. unsigned long r;
  1846. u32 l;
  1847. l = dispc_read_reg(DISPC_DIVISOR(OMAP_DSS_CHANNEL_LCD));
  1848. lcd = FLD_GET(l, 23, 16);
  1849. pcd = FLD_GET(l, 7, 0);
  1850. r = dispc_fclk_rate();
  1851. return r / lcd / pcd;
  1852. }
  1853. void dispc_dump_clocks(struct seq_file *s)
  1854. {
  1855. int lcd, pcd;
  1856. enable_clocks(1);
  1857. dispc_get_lcd_divisor(&lcd, &pcd);
  1858. seq_printf(s, "- DISPC -\n");
  1859. seq_printf(s, "dispc fclk source = %s\n",
  1860. dss_get_dispc_clk_source() == DSS_SRC_DSS1_ALWON_FCLK ?
  1861. "dss1_alwon_fclk" : "dsi1_pll_fclk");
  1862. seq_printf(s, "fck\t\t%-16lu\n", dispc_fclk_rate());
  1863. seq_printf(s, "lck\t\t%-16lulck div\t%u\n", dispc_lclk_rate(), lcd);
  1864. seq_printf(s, "pck\t\t%-16lupck div\t%u\n", dispc_pclk_rate(), pcd);
  1865. enable_clocks(0);
  1866. }
  1867. #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
  1868. void dispc_dump_irqs(struct seq_file *s)
  1869. {
  1870. unsigned long flags;
  1871. struct dispc_irq_stats stats;
  1872. spin_lock_irqsave(&dispc.irq_stats_lock, flags);
  1873. stats = dispc.irq_stats;
  1874. memset(&dispc.irq_stats, 0, sizeof(dispc.irq_stats));
  1875. dispc.irq_stats.last_reset = jiffies;
  1876. spin_unlock_irqrestore(&dispc.irq_stats_lock, flags);
  1877. seq_printf(s, "period %u ms\n",
  1878. jiffies_to_msecs(jiffies - stats.last_reset));
  1879. seq_printf(s, "irqs %d\n", stats.irq_count);
  1880. #define PIS(x) \
  1881. seq_printf(s, "%-20s %10d\n", #x, stats.irqs[ffs(DISPC_IRQ_##x)-1]);
  1882. PIS(FRAMEDONE);
  1883. PIS(VSYNC);
  1884. PIS(EVSYNC_EVEN);
  1885. PIS(EVSYNC_ODD);
  1886. PIS(ACBIAS_COUNT_STAT);
  1887. PIS(PROG_LINE_NUM);
  1888. PIS(GFX_FIFO_UNDERFLOW);
  1889. PIS(GFX_END_WIN);
  1890. PIS(PAL_GAMMA_MASK);
  1891. PIS(OCP_ERR);
  1892. PIS(VID1_FIFO_UNDERFLOW);
  1893. PIS(VID1_END_WIN);
  1894. PIS(VID2_FIFO_UNDERFLOW);
  1895. PIS(VID2_END_WIN);
  1896. PIS(SYNC_LOST);
  1897. PIS(SYNC_LOST_DIGIT);
  1898. PIS(WAKEUP);
  1899. #undef PIS
  1900. }
  1901. #endif
  1902. void dispc_dump_regs(struct seq_file *s)
  1903. {
  1904. #define DUMPREG(r) seq_printf(s, "%-35s %08x\n", #r, dispc_read_reg(r))
  1905. dss_clk_enable(DSS_CLK_ICK | DSS_CLK_FCK1);
  1906. DUMPREG(DISPC_REVISION);
  1907. DUMPREG(DISPC_SYSCONFIG);
  1908. DUMPREG(DISPC_SYSSTATUS);
  1909. DUMPREG(DISPC_IRQSTATUS);
  1910. DUMPREG(DISPC_IRQENABLE);
  1911. DUMPREG(DISPC_CONTROL);
  1912. DUMPREG(DISPC_CONFIG);
  1913. DUMPREG(DISPC_CAPABLE);
  1914. DUMPREG(DISPC_DEFAULT_COLOR(0));
  1915. DUMPREG(DISPC_DEFAULT_COLOR(1));
  1916. DUMPREG(DISPC_TRANS_COLOR(0));
  1917. DUMPREG(DISPC_TRANS_COLOR(1));
  1918. DUMPREG(DISPC_LINE_STATUS);
  1919. DUMPREG(DISPC_LINE_NUMBER);
  1920. DUMPREG(DISPC_TIMING_H(0));
  1921. DUMPREG(DISPC_TIMING_V(0));
  1922. DUMPREG(DISPC_POL_FREQ(0));
  1923. DUMPREG(DISPC_DIVISOR(0));
  1924. DUMPREG(DISPC_GLOBAL_ALPHA);
  1925. DUMPREG(DISPC_SIZE_DIG);
  1926. DUMPREG(DISPC_SIZE_LCD(0));
  1927. DUMPREG(DISPC_GFX_BA0);
  1928. DUMPREG(DISPC_GFX_BA1);
  1929. DUMPREG(DISPC_GFX_POSITION);
  1930. DUMPREG(DISPC_GFX_SIZE);
  1931. DUMPREG(DISPC_GFX_ATTRIBUTES);
  1932. DUMPREG(DISPC_GFX_FIFO_THRESHOLD);
  1933. DUMPREG(DISPC_GFX_FIFO_SIZE_STATUS);
  1934. DUMPREG(DISPC_GFX_ROW_INC);
  1935. DUMPREG(DISPC_GFX_PIXEL_INC);
  1936. DUMPREG(DISPC_GFX_WINDOW_SKIP);
  1937. DUMPREG(DISPC_GFX_TABLE_BA);
  1938. DUMPREG(DISPC_DATA_CYCLE1(0));
  1939. DUMPREG(DISPC_DATA_CYCLE2(0));
  1940. DUMPREG(DISPC_DATA_CYCLE3(0));
  1941. DUMPREG(DISPC_CPR_COEF_R(0));
  1942. DUMPREG(DISPC_CPR_COEF_G(0));
  1943. DUMPREG(DISPC_CPR_COEF_B(0));
  1944. DUMPREG(DISPC_GFX_PRELOAD);
  1945. DUMPREG(DISPC_VID_BA0(0));
  1946. DUMPREG(DISPC_VID_BA1(0));
  1947. DUMPREG(DISPC_VID_POSITION(0));
  1948. DUMPREG(DISPC_VID_SIZE(0));
  1949. DUMPREG(DISPC_VID_ATTRIBUTES(0));
  1950. DUMPREG(DISPC_VID_FIFO_THRESHOLD(0));
  1951. DUMPREG(DISPC_VID_FIFO_SIZE_STATUS(0));
  1952. DUMPREG(DISPC_VID_ROW_INC(0));
  1953. DUMPREG(DISPC_VID_PIXEL_INC(0));
  1954. DUMPREG(DISPC_VID_FIR(0));
  1955. DUMPREG(DISPC_VID_PICTURE_SIZE(0));
  1956. DUMPREG(DISPC_VID_ACCU0(0));
  1957. DUMPREG(DISPC_VID_ACCU1(0));
  1958. DUMPREG(DISPC_VID_BA0(1));
  1959. DUMPREG(DISPC_VID_BA1(1));
  1960. DUMPREG(DISPC_VID_POSITION(1));
  1961. DUMPREG(DISPC_VID_SIZE(1));
  1962. DUMPREG(DISPC_VID_ATTRIBUTES(1));
  1963. DUMPREG(DISPC_VID_FIFO_THRESHOLD(1));
  1964. DUMPREG(DISPC_VID_FIFO_SIZE_STATUS(1));
  1965. DUMPREG(DISPC_VID_ROW_INC(1));
  1966. DUMPREG(DISPC_VID_PIXEL_INC(1));
  1967. DUMPREG(DISPC_VID_FIR(1));
  1968. DUMPREG(DISPC_VID_PICTURE_SIZE(1));
  1969. DUMPREG(DISPC_VID_ACCU0(1));
  1970. DUMPREG(DISPC_VID_ACCU1(1));
  1971. DUMPREG(DISPC_VID_FIR_COEF_H(0, 0));
  1972. DUMPREG(DISPC_VID_FIR_COEF_H(0, 1));
  1973. DUMPREG(DISPC_VID_FIR_COEF_H(0, 2));
  1974. DUMPREG(DISPC_VID_FIR_COEF_H(0, 3));
  1975. DUMPREG(DISPC_VID_FIR_COEF_H(0, 4));
  1976. DUMPREG(DISPC_VID_FIR_COEF_H(0, 5));
  1977. DUMPREG(DISPC_VID_FIR_COEF_H(0, 6));
  1978. DUMPREG(DISPC_VID_FIR_COEF_H(0, 7));
  1979. DUMPREG(DISPC_VID_FIR_COEF_HV(0, 0));
  1980. DUMPREG(DISPC_VID_FIR_COEF_HV(0, 1));
  1981. DUMPREG(DISPC_VID_FIR_COEF_HV(0, 2));
  1982. DUMPREG(DISPC_VID_FIR_COEF_HV(0, 3));
  1983. DUMPREG(DISPC_VID_FIR_COEF_HV(0, 4));
  1984. DUMPREG(DISPC_VID_FIR_COEF_HV(0, 5));
  1985. DUMPREG(DISPC_VID_FIR_COEF_HV(0, 6));
  1986. DUMPREG(DISPC_VID_FIR_COEF_HV(0, 7));
  1987. DUMPREG(DISPC_VID_CONV_COEF(0, 0));
  1988. DUMPREG(DISPC_VID_CONV_COEF(0, 1));
  1989. DUMPREG(DISPC_VID_CONV_COEF(0, 2));
  1990. DUMPREG(DISPC_VID_CONV_COEF(0, 3));
  1991. DUMPREG(DISPC_VID_CONV_COEF(0, 4));
  1992. DUMPREG(DISPC_VID_FIR_COEF_V(0, 0));
  1993. DUMPREG(DISPC_VID_FIR_COEF_V(0, 1));
  1994. DUMPREG(DISPC_VID_FIR_COEF_V(0, 2));
  1995. DUMPREG(DISPC_VID_FIR_COEF_V(0, 3));
  1996. DUMPREG(DISPC_VID_FIR_COEF_V(0, 4));
  1997. DUMPREG(DISPC_VID_FIR_COEF_V(0, 5));
  1998. DUMPREG(DISPC_VID_FIR_COEF_V(0, 6));
  1999. DUMPREG(DISPC_VID_FIR_COEF_V(0, 7));
  2000. DUMPREG(DISPC_VID_FIR_COEF_H(1, 0));
  2001. DUMPREG(DISPC_VID_FIR_COEF_H(1, 1));
  2002. DUMPREG(DISPC_VID_FIR_COEF_H(1, 2));
  2003. DUMPREG(DISPC_VID_FIR_COEF_H(1, 3));
  2004. DUMPREG(DISPC_VID_FIR_COEF_H(1, 4));
  2005. DUMPREG(DISPC_VID_FIR_COEF_H(1, 5));
  2006. DUMPREG(DISPC_VID_FIR_COEF_H(1, 6));
  2007. DUMPREG(DISPC_VID_FIR_COEF_H(1, 7));
  2008. DUMPREG(DISPC_VID_FIR_COEF_HV(1, 0));
  2009. DUMPREG(DISPC_VID_FIR_COEF_HV(1, 1));
  2010. DUMPREG(DISPC_VID_FIR_COEF_HV(1, 2));
  2011. DUMPREG(DISPC_VID_FIR_COEF_HV(1, 3));
  2012. DUMPREG(DISPC_VID_FIR_COEF_HV(1, 4));
  2013. DUMPREG(DISPC_VID_FIR_COEF_HV(1, 5));
  2014. DUMPREG(DISPC_VID_FIR_COEF_HV(1, 6));
  2015. DUMPREG(DISPC_VID_FIR_COEF_HV(1, 7));
  2016. DUMPREG(DISPC_VID_CONV_COEF(1, 0));
  2017. DUMPREG(DISPC_VID_CONV_COEF(1, 1));
  2018. DUMPREG(DISPC_VID_CONV_COEF(1, 2));
  2019. DUMPREG(DISPC_VID_CONV_COEF(1, 3));
  2020. DUMPREG(DISPC_VID_CONV_COEF(1, 4));
  2021. DUMPREG(DISPC_VID_FIR_COEF_V(1, 0));
  2022. DUMPREG(DISPC_VID_FIR_COEF_V(1, 1));
  2023. DUMPREG(DISPC_VID_FIR_COEF_V(1, 2));
  2024. DUMPREG(DISPC_VID_FIR_COEF_V(1, 3));
  2025. DUMPREG(DISPC_VID_FIR_COEF_V(1, 4));
  2026. DUMPREG(DISPC_VID_FIR_COEF_V(1, 5));
  2027. DUMPREG(DISPC_VID_FIR_COEF_V(1, 6));
  2028. DUMPREG(DISPC_VID_FIR_COEF_V(1, 7));
  2029. DUMPREG(DISPC_VID_PRELOAD(0));
  2030. DUMPREG(DISPC_VID_PRELOAD(1));
  2031. dss_clk_disable(DSS_CLK_ICK | DSS_CLK_FCK1);
  2032. #undef DUMPREG
  2033. }
  2034. static void _dispc_set_pol_freq(bool onoff, bool rf, bool ieo, bool ipc,
  2035. bool ihs, bool ivs, u8 acbi, u8 acb)
  2036. {
  2037. u32 l = 0;
  2038. DSSDBG("onoff %d rf %d ieo %d ipc %d ihs %d ivs %d acbi %d acb %d\n",
  2039. onoff, rf, ieo, ipc, ihs, ivs, acbi, acb);
  2040. l |= FLD_VAL(onoff, 17, 17);
  2041. l |= FLD_VAL(rf, 16, 16);
  2042. l |= FLD_VAL(ieo, 15, 15);
  2043. l |= FLD_VAL(ipc, 14, 14);
  2044. l |= FLD_VAL(ihs, 13, 13);
  2045. l |= FLD_VAL(ivs, 12, 12);
  2046. l |= FLD_VAL(acbi, 11, 8);
  2047. l |= FLD_VAL(acb, 7, 0);
  2048. enable_clocks(1);
  2049. dispc_write_reg(DISPC_POL_FREQ(OMAP_DSS_CHANNEL_LCD), l);
  2050. enable_clocks(0);
  2051. }
  2052. void dispc_set_pol_freq(enum omap_panel_config config, u8 acbi, u8 acb)
  2053. {
  2054. _dispc_set_pol_freq((config & OMAP_DSS_LCD_ONOFF) != 0,
  2055. (config & OMAP_DSS_LCD_RF) != 0,
  2056. (config & OMAP_DSS_LCD_IEO) != 0,
  2057. (config & OMAP_DSS_LCD_IPC) != 0,
  2058. (config & OMAP_DSS_LCD_IHS) != 0,
  2059. (config & OMAP_DSS_LCD_IVS) != 0,
  2060. acbi, acb);
  2061. }
  2062. /* with fck as input clock rate, find dispc dividers that produce req_pck */
  2063. void dispc_find_clk_divs(bool is_tft, unsigned long req_pck, unsigned long fck,
  2064. struct dispc_clock_info *cinfo)
  2065. {
  2066. u16 pcd_min = is_tft ? 2 : 3;
  2067. unsigned long best_pck;
  2068. u16 best_ld, cur_ld;
  2069. u16 best_pd, cur_pd;
  2070. best_pck = 0;
  2071. best_ld = 0;
  2072. best_pd = 0;
  2073. for (cur_ld = 1; cur_ld <= 255; ++cur_ld) {
  2074. unsigned long lck = fck / cur_ld;
  2075. for (cur_pd = pcd_min; cur_pd <= 255; ++cur_pd) {
  2076. unsigned long pck = lck / cur_pd;
  2077. long old_delta = abs(best_pck - req_pck);
  2078. long new_delta = abs(pck - req_pck);
  2079. if (best_pck == 0 || new_delta < old_delta) {
  2080. best_pck = pck;
  2081. best_ld = cur_ld;
  2082. best_pd = cur_pd;
  2083. if (pck == req_pck)
  2084. goto found;
  2085. }
  2086. if (pck < req_pck)
  2087. break;
  2088. }
  2089. if (lck / pcd_min < req_pck)
  2090. break;
  2091. }
  2092. found:
  2093. cinfo->lck_div = best_ld;
  2094. cinfo->pck_div = best_pd;
  2095. cinfo->lck = fck / cinfo->lck_div;
  2096. cinfo->pck = cinfo->lck / cinfo->pck_div;
  2097. }
  2098. /* calculate clock rates using dividers in cinfo */
  2099. int dispc_calc_clock_rates(unsigned long dispc_fclk_rate,
  2100. struct dispc_clock_info *cinfo)
  2101. {
  2102. if (cinfo->lck_div > 255 || cinfo->lck_div == 0)
  2103. return -EINVAL;
  2104. if (cinfo->pck_div < 2 || cinfo->pck_div > 255)
  2105. return -EINVAL;
  2106. cinfo->lck = dispc_fclk_rate / cinfo->lck_div;
  2107. cinfo->pck = cinfo->lck / cinfo->pck_div;
  2108. return 0;
  2109. }
  2110. int dispc_set_clock_div(struct dispc_clock_info *cinfo)
  2111. {
  2112. DSSDBG("lck = %lu (%u)\n", cinfo->lck, cinfo->lck_div);
  2113. DSSDBG("pck = %lu (%u)\n", cinfo->pck, cinfo->pck_div);
  2114. dispc_set_lcd_divisor(cinfo->lck_div, cinfo->pck_div);
  2115. return 0;
  2116. }
  2117. int dispc_get_clock_div(struct dispc_clock_info *cinfo)
  2118. {
  2119. unsigned long fck;
  2120. fck = dispc_fclk_rate();
  2121. cinfo->lck_div = REG_GET(DISPC_DIVISOR(OMAP_DSS_CHANNEL_LCD), 23, 16);
  2122. cinfo->pck_div = REG_GET(DISPC_DIVISOR(OMAP_DSS_CHANNEL_LCD), 7, 0);
  2123. cinfo->lck = fck / cinfo->lck_div;
  2124. cinfo->pck = cinfo->lck / cinfo->pck_div;
  2125. return 0;
  2126. }
  2127. /* dispc.irq_lock has to be locked by the caller */
  2128. static void _omap_dispc_set_irqs(void)
  2129. {
  2130. u32 mask;
  2131. u32 old_mask;
  2132. int i;
  2133. struct omap_dispc_isr_data *isr_data;
  2134. mask = dispc.irq_error_mask;
  2135. for (i = 0; i < DISPC_MAX_NR_ISRS; i++) {
  2136. isr_data = &dispc.registered_isr[i];
  2137. if (isr_data->isr == NULL)
  2138. continue;
  2139. mask |= isr_data->mask;
  2140. }
  2141. enable_clocks(1);
  2142. old_mask = dispc_read_reg(DISPC_IRQENABLE);
  2143. /* clear the irqstatus for newly enabled irqs */
  2144. dispc_write_reg(DISPC_IRQSTATUS, (mask ^ old_mask) & mask);
  2145. dispc_write_reg(DISPC_IRQENABLE, mask);
  2146. enable_clocks(0);
  2147. }
  2148. int omap_dispc_register_isr(omap_dispc_isr_t isr, void *arg, u32 mask)
  2149. {
  2150. int i;
  2151. int ret;
  2152. unsigned long flags;
  2153. struct omap_dispc_isr_data *isr_data;
  2154. if (isr == NULL)
  2155. return -EINVAL;
  2156. spin_lock_irqsave(&dispc.irq_lock, flags);
  2157. /* check for duplicate entry */
  2158. for (i = 0; i < DISPC_MAX_NR_ISRS; i++) {
  2159. isr_data = &dispc.registered_isr[i];
  2160. if (isr_data->isr == isr && isr_data->arg == arg &&
  2161. isr_data->mask == mask) {
  2162. ret = -EINVAL;
  2163. goto err;
  2164. }
  2165. }
  2166. isr_data = NULL;
  2167. ret = -EBUSY;
  2168. for (i = 0; i < DISPC_MAX_NR_ISRS; i++) {
  2169. isr_data = &dispc.registered_isr[i];
  2170. if (isr_data->isr != NULL)
  2171. continue;
  2172. isr_data->isr = isr;
  2173. isr_data->arg = arg;
  2174. isr_data->mask = mask;
  2175. ret = 0;
  2176. break;
  2177. }
  2178. _omap_dispc_set_irqs();
  2179. spin_unlock_irqrestore(&dispc.irq_lock, flags);
  2180. return 0;
  2181. err:
  2182. spin_unlock_irqrestore(&dispc.irq_lock, flags);
  2183. return ret;
  2184. }
  2185. EXPORT_SYMBOL(omap_dispc_register_isr);
  2186. int omap_dispc_unregister_isr(omap_dispc_isr_t isr, void *arg, u32 mask)
  2187. {
  2188. int i;
  2189. unsigned long flags;
  2190. int ret = -EINVAL;
  2191. struct omap_dispc_isr_data *isr_data;
  2192. spin_lock_irqsave(&dispc.irq_lock, flags);
  2193. for (i = 0; i < DISPC_MAX_NR_ISRS; i++) {
  2194. isr_data = &dispc.registered_isr[i];
  2195. if (isr_data->isr != isr || isr_data->arg != arg ||
  2196. isr_data->mask != mask)
  2197. continue;
  2198. /* found the correct isr */
  2199. isr_data->isr = NULL;
  2200. isr_data->arg = NULL;
  2201. isr_data->mask = 0;
  2202. ret = 0;
  2203. break;
  2204. }
  2205. if (ret == 0)
  2206. _omap_dispc_set_irqs();
  2207. spin_unlock_irqrestore(&dispc.irq_lock, flags);
  2208. return ret;
  2209. }
  2210. EXPORT_SYMBOL(omap_dispc_unregister_isr);
  2211. #ifdef DEBUG
  2212. static void print_irq_status(u32 status)
  2213. {
  2214. if ((status & dispc.irq_error_mask) == 0)
  2215. return;
  2216. printk(KERN_DEBUG "DISPC IRQ: 0x%x: ", status);
  2217. #define PIS(x) \
  2218. if (status & DISPC_IRQ_##x) \
  2219. printk(#x " ");
  2220. PIS(GFX_FIFO_UNDERFLOW);
  2221. PIS(OCP_ERR);
  2222. PIS(VID1_FIFO_UNDERFLOW);
  2223. PIS(VID2_FIFO_UNDERFLOW);
  2224. PIS(SYNC_LOST);
  2225. PIS(SYNC_LOST_DIGIT);
  2226. #undef PIS
  2227. printk("\n");
  2228. }
  2229. #endif
  2230. /* Called from dss.c. Note that we don't touch clocks here,
  2231. * but we presume they are on because we got an IRQ. However,
  2232. * an irq handler may turn the clocks off, so we may not have
  2233. * clock later in the function. */
  2234. void dispc_irq_handler(void)
  2235. {
  2236. int i;
  2237. u32 irqstatus;
  2238. u32 handledirqs = 0;
  2239. u32 unhandled_errors;
  2240. struct omap_dispc_isr_data *isr_data;
  2241. struct omap_dispc_isr_data registered_isr[DISPC_MAX_NR_ISRS];
  2242. spin_lock(&dispc.irq_lock);
  2243. irqstatus = dispc_read_reg(DISPC_IRQSTATUS);
  2244. #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
  2245. spin_lock(&dispc.irq_stats_lock);
  2246. dispc.irq_stats.irq_count++;
  2247. dss_collect_irq_stats(irqstatus, dispc.irq_stats.irqs);
  2248. spin_unlock(&dispc.irq_stats_lock);
  2249. #endif
  2250. #ifdef DEBUG
  2251. if (dss_debug)
  2252. print_irq_status(irqstatus);
  2253. #endif
  2254. /* Ack the interrupt. Do it here before clocks are possibly turned
  2255. * off */
  2256. dispc_write_reg(DISPC_IRQSTATUS, irqstatus);
  2257. /* flush posted write */
  2258. dispc_read_reg(DISPC_IRQSTATUS);
  2259. /* make a copy and unlock, so that isrs can unregister
  2260. * themselves */
  2261. memcpy(registered_isr, dispc.registered_isr,
  2262. sizeof(registered_isr));
  2263. spin_unlock(&dispc.irq_lock);
  2264. for (i = 0; i < DISPC_MAX_NR_ISRS; i++) {
  2265. isr_data = &registered_isr[i];
  2266. if (!isr_data->isr)
  2267. continue;
  2268. if (isr_data->mask & irqstatus) {
  2269. isr_data->isr(isr_data->arg, irqstatus);
  2270. handledirqs |= isr_data->mask;
  2271. }
  2272. }
  2273. spin_lock(&dispc.irq_lock);
  2274. unhandled_errors = irqstatus & ~handledirqs & dispc.irq_error_mask;
  2275. if (unhandled_errors) {
  2276. dispc.error_irqs |= unhandled_errors;
  2277. dispc.irq_error_mask &= ~unhandled_errors;
  2278. _omap_dispc_set_irqs();
  2279. schedule_work(&dispc.error_work);
  2280. }
  2281. spin_unlock(&dispc.irq_lock);
  2282. }
  2283. static void dispc_error_worker(struct work_struct *work)
  2284. {
  2285. int i;
  2286. u32 errors;
  2287. unsigned long flags;
  2288. spin_lock_irqsave(&dispc.irq_lock, flags);
  2289. errors = dispc.error_irqs;
  2290. dispc.error_irqs = 0;
  2291. spin_unlock_irqrestore(&dispc.irq_lock, flags);
  2292. if (errors & DISPC_IRQ_GFX_FIFO_UNDERFLOW) {
  2293. DSSERR("GFX_FIFO_UNDERFLOW, disabling GFX\n");
  2294. for (i = 0; i < omap_dss_get_num_overlays(); ++i) {
  2295. struct omap_overlay *ovl;
  2296. ovl = omap_dss_get_overlay(i);
  2297. if (!(ovl->caps & OMAP_DSS_OVL_CAP_DISPC))
  2298. continue;
  2299. if (ovl->id == 0) {
  2300. dispc_enable_plane(ovl->id, 0);
  2301. dispc_go(ovl->manager->id);
  2302. mdelay(50);
  2303. break;
  2304. }
  2305. }
  2306. }
  2307. if (errors & DISPC_IRQ_VID1_FIFO_UNDERFLOW) {
  2308. DSSERR("VID1_FIFO_UNDERFLOW, disabling VID1\n");
  2309. for (i = 0; i < omap_dss_get_num_overlays(); ++i) {
  2310. struct omap_overlay *ovl;
  2311. ovl = omap_dss_get_overlay(i);
  2312. if (!(ovl->caps & OMAP_DSS_OVL_CAP_DISPC))
  2313. continue;
  2314. if (ovl->id == 1) {
  2315. dispc_enable_plane(ovl->id, 0);
  2316. dispc_go(ovl->manager->id);
  2317. mdelay(50);
  2318. break;
  2319. }
  2320. }
  2321. }
  2322. if (errors & DISPC_IRQ_VID2_FIFO_UNDERFLOW) {
  2323. DSSERR("VID2_FIFO_UNDERFLOW, disabling VID2\n");
  2324. for (i = 0; i < omap_dss_get_num_overlays(); ++i) {
  2325. struct omap_overlay *ovl;
  2326. ovl = omap_dss_get_overlay(i);
  2327. if (!(ovl->caps & OMAP_DSS_OVL_CAP_DISPC))
  2328. continue;
  2329. if (ovl->id == 2) {
  2330. dispc_enable_plane(ovl->id, 0);
  2331. dispc_go(ovl->manager->id);
  2332. mdelay(50);
  2333. break;
  2334. }
  2335. }
  2336. }
  2337. if (errors & DISPC_IRQ_SYNC_LOST) {
  2338. struct omap_overlay_manager *manager = NULL;
  2339. bool enable = false;
  2340. DSSERR("SYNC_LOST, disabling LCD\n");
  2341. for (i = 0; i < omap_dss_get_num_overlay_managers(); ++i) {
  2342. struct omap_overlay_manager *mgr;
  2343. mgr = omap_dss_get_overlay_manager(i);
  2344. if (mgr->id == OMAP_DSS_CHANNEL_LCD) {
  2345. manager = mgr;
  2346. enable = mgr->device->state ==
  2347. OMAP_DSS_DISPLAY_ACTIVE;
  2348. mgr->device->driver->disable(mgr->device);
  2349. break;
  2350. }
  2351. }
  2352. if (manager) {
  2353. struct omap_dss_device *dssdev = manager->device;
  2354. for (i = 0; i < omap_dss_get_num_overlays(); ++i) {
  2355. struct omap_overlay *ovl;
  2356. ovl = omap_dss_get_overlay(i);
  2357. if (!(ovl->caps & OMAP_DSS_OVL_CAP_DISPC))
  2358. continue;
  2359. if (ovl->id != 0 && ovl->manager == manager)
  2360. dispc_enable_plane(ovl->id, 0);
  2361. }
  2362. dispc_go(manager->id);
  2363. mdelay(50);
  2364. if (enable)
  2365. dssdev->driver->enable(dssdev);
  2366. }
  2367. }
  2368. if (errors & DISPC_IRQ_SYNC_LOST_DIGIT) {
  2369. struct omap_overlay_manager *manager = NULL;
  2370. bool enable = false;
  2371. DSSERR("SYNC_LOST_DIGIT, disabling TV\n");
  2372. for (i = 0; i < omap_dss_get_num_overlay_managers(); ++i) {
  2373. struct omap_overlay_manager *mgr;
  2374. mgr = omap_dss_get_overlay_manager(i);
  2375. if (mgr->id == OMAP_DSS_CHANNEL_DIGIT) {
  2376. manager = mgr;
  2377. enable = mgr->device->state ==
  2378. OMAP_DSS_DISPLAY_ACTIVE;
  2379. mgr->device->driver->disable(mgr->device);
  2380. break;
  2381. }
  2382. }
  2383. if (manager) {
  2384. struct omap_dss_device *dssdev = manager->device;
  2385. for (i = 0; i < omap_dss_get_num_overlays(); ++i) {
  2386. struct omap_overlay *ovl;
  2387. ovl = omap_dss_get_overlay(i);
  2388. if (!(ovl->caps & OMAP_DSS_OVL_CAP_DISPC))
  2389. continue;
  2390. if (ovl->id != 0 && ovl->manager == manager)
  2391. dispc_enable_plane(ovl->id, 0);
  2392. }
  2393. dispc_go(manager->id);
  2394. mdelay(50);
  2395. if (enable)
  2396. dssdev->driver->enable(dssdev);
  2397. }
  2398. }
  2399. if (errors & DISPC_IRQ_OCP_ERR) {
  2400. DSSERR("OCP_ERR\n");
  2401. for (i = 0; i < omap_dss_get_num_overlay_managers(); ++i) {
  2402. struct omap_overlay_manager *mgr;
  2403. mgr = omap_dss_get_overlay_manager(i);
  2404. if (mgr->caps & OMAP_DSS_OVL_CAP_DISPC)
  2405. mgr->device->driver->disable(mgr->device);
  2406. }
  2407. }
  2408. spin_lock_irqsave(&dispc.irq_lock, flags);
  2409. dispc.irq_error_mask |= errors;
  2410. _omap_dispc_set_irqs();
  2411. spin_unlock_irqrestore(&dispc.irq_lock, flags);
  2412. }
  2413. int omap_dispc_wait_for_irq_timeout(u32 irqmask, unsigned long timeout)
  2414. {
  2415. void dispc_irq_wait_handler(void *data, u32 mask)
  2416. {
  2417. complete((struct completion *)data);
  2418. }
  2419. int r;
  2420. DECLARE_COMPLETION_ONSTACK(completion);
  2421. r = omap_dispc_register_isr(dispc_irq_wait_handler, &completion,
  2422. irqmask);
  2423. if (r)
  2424. return r;
  2425. timeout = wait_for_completion_timeout(&completion, timeout);
  2426. omap_dispc_unregister_isr(dispc_irq_wait_handler, &completion, irqmask);
  2427. if (timeout == 0)
  2428. return -ETIMEDOUT;
  2429. if (timeout == -ERESTARTSYS)
  2430. return -ERESTARTSYS;
  2431. return 0;
  2432. }
  2433. int omap_dispc_wait_for_irq_interruptible_timeout(u32 irqmask,
  2434. unsigned long timeout)
  2435. {
  2436. void dispc_irq_wait_handler(void *data, u32 mask)
  2437. {
  2438. complete((struct completion *)data);
  2439. }
  2440. int r;
  2441. DECLARE_COMPLETION_ONSTACK(completion);
  2442. r = omap_dispc_register_isr(dispc_irq_wait_handler, &completion,
  2443. irqmask);
  2444. if (r)
  2445. return r;
  2446. timeout = wait_for_completion_interruptible_timeout(&completion,
  2447. timeout);
  2448. omap_dispc_unregister_isr(dispc_irq_wait_handler, &completion, irqmask);
  2449. if (timeout == 0)
  2450. return -ETIMEDOUT;
  2451. if (timeout == -ERESTARTSYS)
  2452. return -ERESTARTSYS;
  2453. return 0;
  2454. }
  2455. #ifdef CONFIG_OMAP2_DSS_FAKE_VSYNC
  2456. void dispc_fake_vsync_irq(void)
  2457. {
  2458. u32 irqstatus = DISPC_IRQ_VSYNC;
  2459. int i;
  2460. WARN_ON(!in_interrupt());
  2461. for (i = 0; i < DISPC_MAX_NR_ISRS; i++) {
  2462. struct omap_dispc_isr_data *isr_data;
  2463. isr_data = &dispc.registered_isr[i];
  2464. if (!isr_data->isr)
  2465. continue;
  2466. if (isr_data->mask & irqstatus)
  2467. isr_data->isr(isr_data->arg, irqstatus);
  2468. }
  2469. }
  2470. #endif
  2471. static void _omap_dispc_initialize_irq(void)
  2472. {
  2473. unsigned long flags;
  2474. spin_lock_irqsave(&dispc.irq_lock, flags);
  2475. memset(dispc.registered_isr, 0, sizeof(dispc.registered_isr));
  2476. dispc.irq_error_mask = DISPC_IRQ_MASK_ERROR;
  2477. /* there's SYNC_LOST_DIGIT waiting after enabling the DSS,
  2478. * so clear it */
  2479. dispc_write_reg(DISPC_IRQSTATUS, dispc_read_reg(DISPC_IRQSTATUS));
  2480. _omap_dispc_set_irqs();
  2481. spin_unlock_irqrestore(&dispc.irq_lock, flags);
  2482. }
  2483. void dispc_enable_sidle(void)
  2484. {
  2485. REG_FLD_MOD(DISPC_SYSCONFIG, 2, 4, 3); /* SIDLEMODE: smart idle */
  2486. }
  2487. void dispc_disable_sidle(void)
  2488. {
  2489. REG_FLD_MOD(DISPC_SYSCONFIG, 1, 4, 3); /* SIDLEMODE: no idle */
  2490. }
  2491. static void _omap_dispc_initial_config(void)
  2492. {
  2493. u32 l;
  2494. l = dispc_read_reg(DISPC_SYSCONFIG);
  2495. l = FLD_MOD(l, 2, 13, 12); /* MIDLEMODE: smart standby */
  2496. l = FLD_MOD(l, 2, 4, 3); /* SIDLEMODE: smart idle */
  2497. l = FLD_MOD(l, 1, 2, 2); /* ENWAKEUP */
  2498. l = FLD_MOD(l, 1, 0, 0); /* AUTOIDLE */
  2499. dispc_write_reg(DISPC_SYSCONFIG, l);
  2500. /* FUNCGATED */
  2501. REG_FLD_MOD(DISPC_CONFIG, 1, 9, 9);
  2502. /* L3 firewall setting: enable access to OCM RAM */
  2503. /* XXX this should be somewhere in plat-omap */
  2504. if (cpu_is_omap24xx())
  2505. __raw_writel(0x402000b0, OMAP2_L3_IO_ADDRESS(0x680050a0));
  2506. _dispc_setup_color_conv_coef();
  2507. dispc_set_loadmode(OMAP_DSS_LOAD_FRAME_ONLY);
  2508. dispc_read_plane_fifo_sizes();
  2509. }
  2510. int dispc_init(void)
  2511. {
  2512. u32 rev;
  2513. spin_lock_init(&dispc.irq_lock);
  2514. #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
  2515. spin_lock_init(&dispc.irq_stats_lock);
  2516. dispc.irq_stats.last_reset = jiffies;
  2517. #endif
  2518. INIT_WORK(&dispc.error_work, dispc_error_worker);
  2519. dispc.base = ioremap(DISPC_BASE, DISPC_SZ_REGS);
  2520. if (!dispc.base) {
  2521. DSSERR("can't ioremap DISPC\n");
  2522. return -ENOMEM;
  2523. }
  2524. enable_clocks(1);
  2525. _omap_dispc_initial_config();
  2526. _omap_dispc_initialize_irq();
  2527. dispc_save_context();
  2528. rev = dispc_read_reg(DISPC_REVISION);
  2529. printk(KERN_INFO "OMAP DISPC rev %d.%d\n",
  2530. FLD_GET(rev, 7, 4), FLD_GET(rev, 3, 0));
  2531. enable_clocks(0);
  2532. return 0;
  2533. }
  2534. void dispc_exit(void)
  2535. {
  2536. iounmap(dispc.base);
  2537. }
  2538. int dispc_enable_plane(enum omap_plane plane, bool enable)
  2539. {
  2540. DSSDBG("dispc_enable_plane %d, %d\n", plane, enable);
  2541. enable_clocks(1);
  2542. _dispc_enable_plane(plane, enable);
  2543. enable_clocks(0);
  2544. return 0;
  2545. }
  2546. int dispc_setup_plane(enum omap_plane plane,
  2547. u32 paddr, u16 screen_width,
  2548. u16 pos_x, u16 pos_y,
  2549. u16 width, u16 height,
  2550. u16 out_width, u16 out_height,
  2551. enum omap_color_mode color_mode,
  2552. bool ilace,
  2553. enum omap_dss_rotation_type rotation_type,
  2554. u8 rotation, bool mirror, u8 global_alpha,
  2555. u8 pre_mult_alpha)
  2556. {
  2557. int r = 0;
  2558. DSSDBG("dispc_setup_plane %d, pa %x, sw %d, %d,%d, %dx%d -> "
  2559. "%dx%d, ilace %d, cmode %x, rot %d, mir %d\n",
  2560. plane, paddr, screen_width, pos_x, pos_y,
  2561. width, height,
  2562. out_width, out_height,
  2563. ilace, color_mode,
  2564. rotation, mirror);
  2565. enable_clocks(1);
  2566. r = _dispc_setup_plane(plane,
  2567. paddr, screen_width,
  2568. pos_x, pos_y,
  2569. width, height,
  2570. out_width, out_height,
  2571. color_mode, ilace,
  2572. rotation_type,
  2573. rotation, mirror,
  2574. global_alpha,
  2575. pre_mult_alpha);
  2576. enable_clocks(0);
  2577. return r;
  2578. }