smp_64.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536
  1. /*
  2. * Intel SMP support routines.
  3. *
  4. * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
  5. * (c) 1998-99, 2000 Ingo Molnar <mingo@redhat.com>
  6. * (c) 2002,2003 Andi Kleen, SuSE Labs.
  7. *
  8. * This code is released under the GNU General Public License version 2 or
  9. * later.
  10. */
  11. #include <linux/init.h>
  12. #include <linux/mm.h>
  13. #include <linux/delay.h>
  14. #include <linux/spinlock.h>
  15. #include <linux/smp.h>
  16. #include <linux/kernel_stat.h>
  17. #include <linux/mc146818rtc.h>
  18. #include <linux/interrupt.h>
  19. #include <asm/mtrr.h>
  20. #include <asm/pgalloc.h>
  21. #include <asm/tlbflush.h>
  22. #include <asm/mach_apic.h>
  23. #include <asm/mmu_context.h>
  24. #include <asm/proto.h>
  25. #include <asm/apicdef.h>
  26. #include <asm/idle.h>
  27. /*
  28. * Smarter SMP flushing macros.
  29. * c/o Linus Torvalds.
  30. *
  31. * These mean you can really definitely utterly forget about
  32. * writing to user space from interrupts. (Its not allowed anyway).
  33. *
  34. * Optimizations Manfred Spraul <manfred@colorfullife.com>
  35. *
  36. * More scalable flush, from Andi Kleen
  37. *
  38. * To avoid global state use 8 different call vectors.
  39. * Each CPU uses a specific vector to trigger flushes on other
  40. * CPUs. Depending on the received vector the target CPUs look into
  41. * the right per cpu variable for the flush data.
  42. *
  43. * With more than 8 CPUs they are hashed to the 8 available
  44. * vectors. The limited global vector space forces us to this right now.
  45. * In future when interrupts are split into per CPU domains this could be
  46. * fixed, at the cost of triggering multiple IPIs in some cases.
  47. */
  48. union smp_flush_state {
  49. struct {
  50. cpumask_t flush_cpumask;
  51. struct mm_struct *flush_mm;
  52. unsigned long flush_va;
  53. spinlock_t tlbstate_lock;
  54. };
  55. char pad[SMP_CACHE_BYTES];
  56. } ____cacheline_aligned;
  57. /* State is put into the per CPU data section, but padded
  58. to a full cache line because other CPUs can access it and we don't
  59. want false sharing in the per cpu data segment. */
  60. static DEFINE_PER_CPU(union smp_flush_state, flush_state);
  61. /*
  62. * We cannot call mmdrop() because we are in interrupt context,
  63. * instead update mm->cpu_vm_mask.
  64. */
  65. void leave_mm(int cpu)
  66. {
  67. if (read_pda(mmu_state) == TLBSTATE_OK)
  68. BUG();
  69. cpu_clear(cpu, read_pda(active_mm)->cpu_vm_mask);
  70. load_cr3(swapper_pg_dir);
  71. }
  72. EXPORT_SYMBOL_GPL(leave_mm);
  73. /*
  74. *
  75. * The flush IPI assumes that a thread switch happens in this order:
  76. * [cpu0: the cpu that switches]
  77. * 1) switch_mm() either 1a) or 1b)
  78. * 1a) thread switch to a different mm
  79. * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask);
  80. * Stop ipi delivery for the old mm. This is not synchronized with
  81. * the other cpus, but smp_invalidate_interrupt ignore flush ipis
  82. * for the wrong mm, and in the worst case we perform a superfluous
  83. * tlb flush.
  84. * 1a2) set cpu mmu_state to TLBSTATE_OK
  85. * Now the smp_invalidate_interrupt won't call leave_mm if cpu0
  86. * was in lazy tlb mode.
  87. * 1a3) update cpu active_mm
  88. * Now cpu0 accepts tlb flushes for the new mm.
  89. * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask);
  90. * Now the other cpus will send tlb flush ipis.
  91. * 1a4) change cr3.
  92. * 1b) thread switch without mm change
  93. * cpu active_mm is correct, cpu0 already handles
  94. * flush ipis.
  95. * 1b1) set cpu mmu_state to TLBSTATE_OK
  96. * 1b2) test_and_set the cpu bit in cpu_vm_mask.
  97. * Atomically set the bit [other cpus will start sending flush ipis],
  98. * and test the bit.
  99. * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
  100. * 2) switch %%esp, ie current
  101. *
  102. * The interrupt must handle 2 special cases:
  103. * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
  104. * - the cpu performs speculative tlb reads, i.e. even if the cpu only
  105. * runs in kernel space, the cpu could load tlb entries for user space
  106. * pages.
  107. *
  108. * The good news is that cpu mmu_state is local to each cpu, no
  109. * write/read ordering problems.
  110. */
  111. /*
  112. * TLB flush IPI:
  113. *
  114. * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
  115. * 2) Leave the mm if we are in the lazy tlb mode.
  116. *
  117. * Interrupts are disabled.
  118. */
  119. asmlinkage void smp_invalidate_interrupt(struct pt_regs *regs)
  120. {
  121. int cpu;
  122. int sender;
  123. union smp_flush_state *f;
  124. cpu = smp_processor_id();
  125. /*
  126. * orig_rax contains the negated interrupt vector.
  127. * Use that to determine where the sender put the data.
  128. */
  129. sender = ~regs->orig_ax - INVALIDATE_TLB_VECTOR_START;
  130. f = &per_cpu(flush_state, sender);
  131. if (!cpu_isset(cpu, f->flush_cpumask))
  132. goto out;
  133. /*
  134. * This was a BUG() but until someone can quote me the
  135. * line from the intel manual that guarantees an IPI to
  136. * multiple CPUs is retried _only_ on the erroring CPUs
  137. * its staying as a return
  138. *
  139. * BUG();
  140. */
  141. if (f->flush_mm == read_pda(active_mm)) {
  142. if (read_pda(mmu_state) == TLBSTATE_OK) {
  143. if (f->flush_va == TLB_FLUSH_ALL)
  144. local_flush_tlb();
  145. else
  146. __flush_tlb_one(f->flush_va);
  147. } else
  148. leave_mm(cpu);
  149. }
  150. out:
  151. ack_APIC_irq();
  152. cpu_clear(cpu, f->flush_cpumask);
  153. add_pda(irq_tlb_count, 1);
  154. }
  155. void native_flush_tlb_others(const cpumask_t *cpumaskp, struct mm_struct *mm,
  156. unsigned long va)
  157. {
  158. int sender;
  159. union smp_flush_state *f;
  160. cpumask_t cpumask = *cpumaskp;
  161. /* Caller has disabled preemption */
  162. sender = smp_processor_id() % NUM_INVALIDATE_TLB_VECTORS;
  163. f = &per_cpu(flush_state, sender);
  164. /*
  165. * Could avoid this lock when
  166. * num_online_cpus() <= NUM_INVALIDATE_TLB_VECTORS, but it is
  167. * probably not worth checking this for a cache-hot lock.
  168. */
  169. spin_lock(&f->tlbstate_lock);
  170. f->flush_mm = mm;
  171. f->flush_va = va;
  172. cpus_or(f->flush_cpumask, cpumask, f->flush_cpumask);
  173. /*
  174. * We have to send the IPI only to
  175. * CPUs affected.
  176. */
  177. send_IPI_mask(cpumask, INVALIDATE_TLB_VECTOR_START + sender);
  178. while (!cpus_empty(f->flush_cpumask))
  179. cpu_relax();
  180. f->flush_mm = NULL;
  181. f->flush_va = 0;
  182. spin_unlock(&f->tlbstate_lock);
  183. }
  184. int __cpuinit init_smp_flush(void)
  185. {
  186. int i;
  187. for_each_cpu_mask(i, cpu_possible_map) {
  188. spin_lock_init(&per_cpu(flush_state, i).tlbstate_lock);
  189. }
  190. return 0;
  191. }
  192. core_initcall(init_smp_flush);
  193. void flush_tlb_current_task(void)
  194. {
  195. struct mm_struct *mm = current->mm;
  196. cpumask_t cpu_mask;
  197. preempt_disable();
  198. cpu_mask = mm->cpu_vm_mask;
  199. cpu_clear(smp_processor_id(), cpu_mask);
  200. local_flush_tlb();
  201. if (!cpus_empty(cpu_mask))
  202. flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
  203. preempt_enable();
  204. }
  205. void flush_tlb_mm (struct mm_struct * mm)
  206. {
  207. cpumask_t cpu_mask;
  208. preempt_disable();
  209. cpu_mask = mm->cpu_vm_mask;
  210. cpu_clear(smp_processor_id(), cpu_mask);
  211. if (current->active_mm == mm) {
  212. if (current->mm)
  213. local_flush_tlb();
  214. else
  215. leave_mm(smp_processor_id());
  216. }
  217. if (!cpus_empty(cpu_mask))
  218. flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
  219. preempt_enable();
  220. }
  221. void flush_tlb_page(struct vm_area_struct * vma, unsigned long va)
  222. {
  223. struct mm_struct *mm = vma->vm_mm;
  224. cpumask_t cpu_mask;
  225. preempt_disable();
  226. cpu_mask = mm->cpu_vm_mask;
  227. cpu_clear(smp_processor_id(), cpu_mask);
  228. if (current->active_mm == mm) {
  229. if(current->mm)
  230. __flush_tlb_one(va);
  231. else
  232. leave_mm(smp_processor_id());
  233. }
  234. if (!cpus_empty(cpu_mask))
  235. flush_tlb_others(cpu_mask, mm, va);
  236. preempt_enable();
  237. }
  238. static void do_flush_tlb_all(void* info)
  239. {
  240. unsigned long cpu = smp_processor_id();
  241. __flush_tlb_all();
  242. if (read_pda(mmu_state) == TLBSTATE_LAZY)
  243. leave_mm(cpu);
  244. }
  245. void flush_tlb_all(void)
  246. {
  247. on_each_cpu(do_flush_tlb_all, NULL, 1, 1);
  248. }
  249. /*
  250. * this function sends a 'reschedule' IPI to another CPU.
  251. * it goes straight through and wastes no time serializing
  252. * anything. Worst case is that we lose a reschedule ...
  253. */
  254. static void native_smp_send_reschedule(int cpu)
  255. {
  256. WARN_ON(cpu_is_offline(cpu));
  257. send_IPI_mask(cpumask_of_cpu(cpu), RESCHEDULE_VECTOR);
  258. }
  259. /*
  260. * Structure and data for smp_call_function(). This is designed to minimise
  261. * static memory requirements. It also looks cleaner.
  262. */
  263. static DEFINE_SPINLOCK(call_lock);
  264. struct call_data_struct {
  265. void (*func) (void *info);
  266. void *info;
  267. atomic_t started;
  268. atomic_t finished;
  269. int wait;
  270. };
  271. static struct call_data_struct * call_data;
  272. void lock_ipi_call_lock(void)
  273. {
  274. spin_lock_irq(&call_lock);
  275. }
  276. void unlock_ipi_call_lock(void)
  277. {
  278. spin_unlock_irq(&call_lock);
  279. }
  280. /*
  281. * this function sends a 'generic call function' IPI to all other CPU
  282. * of the system defined in the mask.
  283. */
  284. static int __smp_call_function_mask(cpumask_t mask,
  285. void (*func)(void *), void *info,
  286. int wait)
  287. {
  288. struct call_data_struct data;
  289. cpumask_t allbutself;
  290. int cpus;
  291. allbutself = cpu_online_map;
  292. cpu_clear(smp_processor_id(), allbutself);
  293. cpus_and(mask, mask, allbutself);
  294. cpus = cpus_weight(mask);
  295. if (!cpus)
  296. return 0;
  297. data.func = func;
  298. data.info = info;
  299. atomic_set(&data.started, 0);
  300. data.wait = wait;
  301. if (wait)
  302. atomic_set(&data.finished, 0);
  303. call_data = &data;
  304. wmb();
  305. /* Send a message to other CPUs */
  306. if (cpus_equal(mask, allbutself))
  307. send_IPI_allbutself(CALL_FUNCTION_VECTOR);
  308. else
  309. send_IPI_mask(mask, CALL_FUNCTION_VECTOR);
  310. /* Wait for response */
  311. while (atomic_read(&data.started) != cpus)
  312. cpu_relax();
  313. if (!wait)
  314. return 0;
  315. while (atomic_read(&data.finished) != cpus)
  316. cpu_relax();
  317. return 0;
  318. }
  319. /**
  320. * smp_call_function_mask(): Run a function on a set of other CPUs.
  321. * @mask: The set of cpus to run on. Must not include the current cpu.
  322. * @func: The function to run. This must be fast and non-blocking.
  323. * @info: An arbitrary pointer to pass to the function.
  324. * @wait: If true, wait (atomically) until function has completed on other CPUs.
  325. *
  326. * Returns 0 on success, else a negative status code.
  327. *
  328. * If @wait is true, then returns once @func has returned; otherwise
  329. * it returns just before the target cpu calls @func.
  330. *
  331. * You must not call this function with disabled interrupts or from a
  332. * hardware interrupt handler or from a bottom half handler.
  333. */
  334. int native_smp_call_function_mask(cpumask_t mask,
  335. void (*func)(void *), void *info,
  336. int wait)
  337. {
  338. int ret;
  339. /* Can deadlock when called with interrupts disabled */
  340. WARN_ON(irqs_disabled());
  341. spin_lock(&call_lock);
  342. ret = __smp_call_function_mask(mask, func, info, wait);
  343. spin_unlock(&call_lock);
  344. return ret;
  345. }
  346. EXPORT_SYMBOL(smp_call_function_mask);
  347. /*
  348. * smp_call_function_single - Run a function on a specific CPU
  349. * @func: The function to run. This must be fast and non-blocking.
  350. * @info: An arbitrary pointer to pass to the function.
  351. * @nonatomic: Currently unused.
  352. * @wait: If true, wait until function has completed on other CPUs.
  353. *
  354. * Retrurns 0 on success, else a negative status code.
  355. *
  356. * Does not return until the remote CPU is nearly ready to execute <func>
  357. * or is or has executed.
  358. */
  359. int smp_call_function_single (int cpu, void (*func) (void *info), void *info,
  360. int nonatomic, int wait)
  361. {
  362. /* prevent preemption and reschedule on another processor */
  363. int ret, me = get_cpu();
  364. /* Can deadlock when called with interrupts disabled */
  365. WARN_ON(irqs_disabled());
  366. if (cpu == me) {
  367. local_irq_disable();
  368. func(info);
  369. local_irq_enable();
  370. put_cpu();
  371. return 0;
  372. }
  373. ret = smp_call_function_mask(cpumask_of_cpu(cpu), func, info, wait);
  374. put_cpu();
  375. return ret;
  376. }
  377. EXPORT_SYMBOL(smp_call_function_single);
  378. /*
  379. * smp_call_function - run a function on all other CPUs.
  380. * @func: The function to run. This must be fast and non-blocking.
  381. * @info: An arbitrary pointer to pass to the function.
  382. * @nonatomic: currently unused.
  383. * @wait: If true, wait (atomically) until function has completed on other
  384. * CPUs.
  385. *
  386. * Returns 0 on success, else a negative status code. Does not return until
  387. * remote CPUs are nearly ready to execute func or are or have executed.
  388. *
  389. * You must not call this function with disabled interrupts or from a
  390. * hardware interrupt handler or from a bottom half handler.
  391. * Actually there are a few legal cases, like panic.
  392. */
  393. int smp_call_function (void (*func) (void *info), void *info, int nonatomic,
  394. int wait)
  395. {
  396. return smp_call_function_mask(cpu_online_map, func, info, wait);
  397. }
  398. EXPORT_SYMBOL(smp_call_function);
  399. static void stop_this_cpu(void *dummy)
  400. {
  401. local_irq_disable();
  402. /*
  403. * Remove this CPU:
  404. */
  405. cpu_clear(smp_processor_id(), cpu_online_map);
  406. disable_local_APIC();
  407. for (;;)
  408. halt();
  409. }
  410. void smp_send_stop(void)
  411. {
  412. int nolock;
  413. unsigned long flags;
  414. if (reboot_force)
  415. return;
  416. /* Don't deadlock on the call lock in panic */
  417. nolock = !spin_trylock(&call_lock);
  418. local_irq_save(flags);
  419. __smp_call_function_mask(cpu_online_map, stop_this_cpu, NULL, 0);
  420. if (!nolock)
  421. spin_unlock(&call_lock);
  422. disable_local_APIC();
  423. local_irq_restore(flags);
  424. }
  425. /*
  426. * Reschedule call back. Nothing to do,
  427. * all the work is done automatically when
  428. * we return from the interrupt.
  429. */
  430. asmlinkage void smp_reschedule_interrupt(void)
  431. {
  432. ack_APIC_irq();
  433. add_pda(irq_resched_count, 1);
  434. }
  435. asmlinkage void smp_call_function_interrupt(void)
  436. {
  437. void (*func) (void *info) = call_data->func;
  438. void *info = call_data->info;
  439. int wait = call_data->wait;
  440. ack_APIC_irq();
  441. /*
  442. * Notify initiating CPU that I've grabbed the data and am
  443. * about to execute the function
  444. */
  445. mb();
  446. atomic_inc(&call_data->started);
  447. /*
  448. * At this point the info structure may be out of scope unless wait==1
  449. */
  450. exit_idle();
  451. irq_enter();
  452. (*func)(info);
  453. add_pda(irq_call_count, 1);
  454. irq_exit();
  455. if (wait) {
  456. mb();
  457. atomic_inc(&call_data->finished);
  458. }
  459. }
  460. struct smp_ops smp_ops = {
  461. .smp_send_reschedule = native_smp_send_reschedule,
  462. .smp_call_function_mask = native_smp_call_function_mask,
  463. };
  464. EXPORT_SYMBOL_GPL(smp_ops);