rmap.c 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416
  1. /*
  2. * mm/rmap.c - physical to virtual reverse mappings
  3. *
  4. * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
  5. * Released under the General Public License (GPL).
  6. *
  7. * Simple, low overhead reverse mapping scheme.
  8. * Please try to keep this thing as modular as possible.
  9. *
  10. * Provides methods for unmapping each kind of mapped page:
  11. * the anon methods track anonymous pages, and
  12. * the file methods track pages belonging to an inode.
  13. *
  14. * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15. * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16. * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17. * Contributions by Hugh Dickins 2003, 2004
  18. */
  19. /*
  20. * Lock ordering in mm:
  21. *
  22. * inode->i_mutex (while writing or truncating, not reading or faulting)
  23. * inode->i_alloc_sem (vmtruncate_range)
  24. * mm->mmap_sem
  25. * page->flags PG_locked (lock_page)
  26. * mapping->i_mmap_lock
  27. * anon_vma->lock
  28. * mm->page_table_lock or pte_lock
  29. * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
  30. * swap_lock (in swap_duplicate, swap_info_get)
  31. * mmlist_lock (in mmput, drain_mmlist and others)
  32. * mapping->private_lock (in __set_page_dirty_buffers)
  33. * inode_lock (in set_page_dirty's __mark_inode_dirty)
  34. * sb_lock (within inode_lock in fs/fs-writeback.c)
  35. * mapping->tree_lock (widely used, in set_page_dirty,
  36. * in arch-dependent flush_dcache_mmap_lock,
  37. * within inode_lock in __sync_single_inode)
  38. *
  39. * (code doesn't rely on that order so it could be switched around)
  40. * ->tasklist_lock
  41. * anon_vma->lock (memory_failure, collect_procs_anon)
  42. * pte map lock
  43. */
  44. #include <linux/mm.h>
  45. #include <linux/pagemap.h>
  46. #include <linux/swap.h>
  47. #include <linux/swapops.h>
  48. #include <linux/slab.h>
  49. #include <linux/init.h>
  50. #include <linux/ksm.h>
  51. #include <linux/rmap.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/module.h>
  54. #include <linux/memcontrol.h>
  55. #include <linux/mmu_notifier.h>
  56. #include <linux/migrate.h>
  57. #include <asm/tlbflush.h>
  58. #include "internal.h"
  59. static struct kmem_cache *anon_vma_cachep;
  60. static struct kmem_cache *anon_vma_chain_cachep;
  61. static inline struct anon_vma *anon_vma_alloc(void)
  62. {
  63. return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  64. }
  65. void anon_vma_free(struct anon_vma *anon_vma)
  66. {
  67. kmem_cache_free(anon_vma_cachep, anon_vma);
  68. }
  69. static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
  70. {
  71. return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
  72. }
  73. void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
  74. {
  75. kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
  76. }
  77. /**
  78. * anon_vma_prepare - attach an anon_vma to a memory region
  79. * @vma: the memory region in question
  80. *
  81. * This makes sure the memory mapping described by 'vma' has
  82. * an 'anon_vma' attached to it, so that we can associate the
  83. * anonymous pages mapped into it with that anon_vma.
  84. *
  85. * The common case will be that we already have one, but if
  86. * if not we either need to find an adjacent mapping that we
  87. * can re-use the anon_vma from (very common when the only
  88. * reason for splitting a vma has been mprotect()), or we
  89. * allocate a new one.
  90. *
  91. * Anon-vma allocations are very subtle, because we may have
  92. * optimistically looked up an anon_vma in page_lock_anon_vma()
  93. * and that may actually touch the spinlock even in the newly
  94. * allocated vma (it depends on RCU to make sure that the
  95. * anon_vma isn't actually destroyed).
  96. *
  97. * As a result, we need to do proper anon_vma locking even
  98. * for the new allocation. At the same time, we do not want
  99. * to do any locking for the common case of already having
  100. * an anon_vma.
  101. *
  102. * This must be called with the mmap_sem held for reading.
  103. */
  104. int anon_vma_prepare(struct vm_area_struct *vma)
  105. {
  106. struct anon_vma *anon_vma = vma->anon_vma;
  107. struct anon_vma_chain *avc;
  108. might_sleep();
  109. if (unlikely(!anon_vma)) {
  110. struct mm_struct *mm = vma->vm_mm;
  111. struct anon_vma *allocated;
  112. avc = anon_vma_chain_alloc();
  113. if (!avc)
  114. goto out_enomem;
  115. anon_vma = find_mergeable_anon_vma(vma);
  116. allocated = NULL;
  117. if (!anon_vma) {
  118. anon_vma = anon_vma_alloc();
  119. if (unlikely(!anon_vma))
  120. goto out_enomem_free_avc;
  121. allocated = anon_vma;
  122. }
  123. spin_lock(&anon_vma->lock);
  124. /* page_table_lock to protect against threads */
  125. spin_lock(&mm->page_table_lock);
  126. if (likely(!vma->anon_vma)) {
  127. vma->anon_vma = anon_vma;
  128. avc->anon_vma = anon_vma;
  129. avc->vma = vma;
  130. list_add(&avc->same_vma, &vma->anon_vma_chain);
  131. list_add(&avc->same_anon_vma, &anon_vma->head);
  132. allocated = NULL;
  133. }
  134. spin_unlock(&mm->page_table_lock);
  135. spin_unlock(&anon_vma->lock);
  136. if (unlikely(allocated)) {
  137. anon_vma_free(allocated);
  138. anon_vma_chain_free(avc);
  139. }
  140. }
  141. return 0;
  142. out_enomem_free_avc:
  143. anon_vma_chain_free(avc);
  144. out_enomem:
  145. return -ENOMEM;
  146. }
  147. static void anon_vma_chain_link(struct vm_area_struct *vma,
  148. struct anon_vma_chain *avc,
  149. struct anon_vma *anon_vma)
  150. {
  151. avc->vma = vma;
  152. avc->anon_vma = anon_vma;
  153. list_add(&avc->same_vma, &vma->anon_vma_chain);
  154. spin_lock(&anon_vma->lock);
  155. list_add_tail(&avc->same_anon_vma, &anon_vma->head);
  156. spin_unlock(&anon_vma->lock);
  157. }
  158. /*
  159. * Attach the anon_vmas from src to dst.
  160. * Returns 0 on success, -ENOMEM on failure.
  161. */
  162. int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
  163. {
  164. struct anon_vma_chain *avc, *pavc;
  165. list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
  166. avc = anon_vma_chain_alloc();
  167. if (!avc)
  168. goto enomem_failure;
  169. anon_vma_chain_link(dst, avc, pavc->anon_vma);
  170. }
  171. return 0;
  172. enomem_failure:
  173. unlink_anon_vmas(dst);
  174. return -ENOMEM;
  175. }
  176. /*
  177. * Attach vma to its own anon_vma, as well as to the anon_vmas that
  178. * the corresponding VMA in the parent process is attached to.
  179. * Returns 0 on success, non-zero on failure.
  180. */
  181. int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
  182. {
  183. struct anon_vma_chain *avc;
  184. struct anon_vma *anon_vma;
  185. /* Don't bother if the parent process has no anon_vma here. */
  186. if (!pvma->anon_vma)
  187. return 0;
  188. /*
  189. * First, attach the new VMA to the parent VMA's anon_vmas,
  190. * so rmap can find non-COWed pages in child processes.
  191. */
  192. if (anon_vma_clone(vma, pvma))
  193. return -ENOMEM;
  194. /* Then add our own anon_vma. */
  195. anon_vma = anon_vma_alloc();
  196. if (!anon_vma)
  197. goto out_error;
  198. avc = anon_vma_chain_alloc();
  199. if (!avc)
  200. goto out_error_free_anon_vma;
  201. anon_vma_chain_link(vma, avc, anon_vma);
  202. /* Mark this anon_vma as the one where our new (COWed) pages go. */
  203. vma->anon_vma = anon_vma;
  204. return 0;
  205. out_error_free_anon_vma:
  206. anon_vma_free(anon_vma);
  207. out_error:
  208. unlink_anon_vmas(vma);
  209. return -ENOMEM;
  210. }
  211. static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
  212. {
  213. struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
  214. int empty;
  215. /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
  216. if (!anon_vma)
  217. return;
  218. spin_lock(&anon_vma->lock);
  219. list_del(&anon_vma_chain->same_anon_vma);
  220. /* We must garbage collect the anon_vma if it's empty */
  221. empty = list_empty(&anon_vma->head) && !ksm_refcount(anon_vma);
  222. spin_unlock(&anon_vma->lock);
  223. if (empty)
  224. anon_vma_free(anon_vma);
  225. }
  226. void unlink_anon_vmas(struct vm_area_struct *vma)
  227. {
  228. struct anon_vma_chain *avc, *next;
  229. /* Unlink each anon_vma chained to the VMA. */
  230. list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
  231. anon_vma_unlink(avc);
  232. list_del(&avc->same_vma);
  233. anon_vma_chain_free(avc);
  234. }
  235. }
  236. static void anon_vma_ctor(void *data)
  237. {
  238. struct anon_vma *anon_vma = data;
  239. spin_lock_init(&anon_vma->lock);
  240. ksm_refcount_init(anon_vma);
  241. INIT_LIST_HEAD(&anon_vma->head);
  242. }
  243. void __init anon_vma_init(void)
  244. {
  245. anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
  246. 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
  247. anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
  248. }
  249. /*
  250. * Getting a lock on a stable anon_vma from a page off the LRU is
  251. * tricky: page_lock_anon_vma rely on RCU to guard against the races.
  252. */
  253. struct anon_vma *page_lock_anon_vma(struct page *page)
  254. {
  255. struct anon_vma *anon_vma;
  256. unsigned long anon_mapping;
  257. rcu_read_lock();
  258. anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
  259. if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  260. goto out;
  261. if (!page_mapped(page))
  262. goto out;
  263. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  264. spin_lock(&anon_vma->lock);
  265. return anon_vma;
  266. out:
  267. rcu_read_unlock();
  268. return NULL;
  269. }
  270. void page_unlock_anon_vma(struct anon_vma *anon_vma)
  271. {
  272. spin_unlock(&anon_vma->lock);
  273. rcu_read_unlock();
  274. }
  275. /*
  276. * At what user virtual address is page expected in @vma?
  277. * Returns virtual address or -EFAULT if page's index/offset is not
  278. * within the range mapped the @vma.
  279. */
  280. static inline unsigned long
  281. vma_address(struct page *page, struct vm_area_struct *vma)
  282. {
  283. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  284. unsigned long address;
  285. address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
  286. if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
  287. /* page should be within @vma mapping range */
  288. return -EFAULT;
  289. }
  290. return address;
  291. }
  292. /*
  293. * At what user virtual address is page expected in vma?
  294. * checking that the page matches the vma.
  295. */
  296. unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
  297. {
  298. if (PageAnon(page)) {
  299. if (vma->anon_vma != page_anon_vma(page))
  300. return -EFAULT;
  301. } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
  302. if (!vma->vm_file ||
  303. vma->vm_file->f_mapping != page->mapping)
  304. return -EFAULT;
  305. } else
  306. return -EFAULT;
  307. return vma_address(page, vma);
  308. }
  309. /*
  310. * Check that @page is mapped at @address into @mm.
  311. *
  312. * If @sync is false, page_check_address may perform a racy check to avoid
  313. * the page table lock when the pte is not present (helpful when reclaiming
  314. * highly shared pages).
  315. *
  316. * On success returns with pte mapped and locked.
  317. */
  318. pte_t *page_check_address(struct page *page, struct mm_struct *mm,
  319. unsigned long address, spinlock_t **ptlp, int sync)
  320. {
  321. pgd_t *pgd;
  322. pud_t *pud;
  323. pmd_t *pmd;
  324. pte_t *pte;
  325. spinlock_t *ptl;
  326. pgd = pgd_offset(mm, address);
  327. if (!pgd_present(*pgd))
  328. return NULL;
  329. pud = pud_offset(pgd, address);
  330. if (!pud_present(*pud))
  331. return NULL;
  332. pmd = pmd_offset(pud, address);
  333. if (!pmd_present(*pmd))
  334. return NULL;
  335. pte = pte_offset_map(pmd, address);
  336. /* Make a quick check before getting the lock */
  337. if (!sync && !pte_present(*pte)) {
  338. pte_unmap(pte);
  339. return NULL;
  340. }
  341. ptl = pte_lockptr(mm, pmd);
  342. spin_lock(ptl);
  343. if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
  344. *ptlp = ptl;
  345. return pte;
  346. }
  347. pte_unmap_unlock(pte, ptl);
  348. return NULL;
  349. }
  350. /**
  351. * page_mapped_in_vma - check whether a page is really mapped in a VMA
  352. * @page: the page to test
  353. * @vma: the VMA to test
  354. *
  355. * Returns 1 if the page is mapped into the page tables of the VMA, 0
  356. * if the page is not mapped into the page tables of this VMA. Only
  357. * valid for normal file or anonymous VMAs.
  358. */
  359. int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
  360. {
  361. unsigned long address;
  362. pte_t *pte;
  363. spinlock_t *ptl;
  364. address = vma_address(page, vma);
  365. if (address == -EFAULT) /* out of vma range */
  366. return 0;
  367. pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
  368. if (!pte) /* the page is not in this mm */
  369. return 0;
  370. pte_unmap_unlock(pte, ptl);
  371. return 1;
  372. }
  373. /*
  374. * Subfunctions of page_referenced: page_referenced_one called
  375. * repeatedly from either page_referenced_anon or page_referenced_file.
  376. */
  377. int page_referenced_one(struct page *page, struct vm_area_struct *vma,
  378. unsigned long address, unsigned int *mapcount,
  379. unsigned long *vm_flags)
  380. {
  381. struct mm_struct *mm = vma->vm_mm;
  382. pte_t *pte;
  383. spinlock_t *ptl;
  384. int referenced = 0;
  385. pte = page_check_address(page, mm, address, &ptl, 0);
  386. if (!pte)
  387. goto out;
  388. /*
  389. * Don't want to elevate referenced for mlocked page that gets this far,
  390. * in order that it progresses to try_to_unmap and is moved to the
  391. * unevictable list.
  392. */
  393. if (vma->vm_flags & VM_LOCKED) {
  394. *mapcount = 1; /* break early from loop */
  395. *vm_flags |= VM_LOCKED;
  396. goto out_unmap;
  397. }
  398. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  399. /*
  400. * Don't treat a reference through a sequentially read
  401. * mapping as such. If the page has been used in
  402. * another mapping, we will catch it; if this other
  403. * mapping is already gone, the unmap path will have
  404. * set PG_referenced or activated the page.
  405. */
  406. if (likely(!VM_SequentialReadHint(vma)))
  407. referenced++;
  408. }
  409. /* Pretend the page is referenced if the task has the
  410. swap token and is in the middle of a page fault. */
  411. if (mm != current->mm && has_swap_token(mm) &&
  412. rwsem_is_locked(&mm->mmap_sem))
  413. referenced++;
  414. out_unmap:
  415. (*mapcount)--;
  416. pte_unmap_unlock(pte, ptl);
  417. if (referenced)
  418. *vm_flags |= vma->vm_flags;
  419. out:
  420. return referenced;
  421. }
  422. static int page_referenced_anon(struct page *page,
  423. struct mem_cgroup *mem_cont,
  424. unsigned long *vm_flags)
  425. {
  426. unsigned int mapcount;
  427. struct anon_vma *anon_vma;
  428. struct anon_vma_chain *avc;
  429. int referenced = 0;
  430. anon_vma = page_lock_anon_vma(page);
  431. if (!anon_vma)
  432. return referenced;
  433. mapcount = page_mapcount(page);
  434. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  435. struct vm_area_struct *vma = avc->vma;
  436. unsigned long address = vma_address(page, vma);
  437. if (address == -EFAULT)
  438. continue;
  439. /*
  440. * If we are reclaiming on behalf of a cgroup, skip
  441. * counting on behalf of references from different
  442. * cgroups
  443. */
  444. if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
  445. continue;
  446. referenced += page_referenced_one(page, vma, address,
  447. &mapcount, vm_flags);
  448. if (!mapcount)
  449. break;
  450. }
  451. page_unlock_anon_vma(anon_vma);
  452. return referenced;
  453. }
  454. /**
  455. * page_referenced_file - referenced check for object-based rmap
  456. * @page: the page we're checking references on.
  457. * @mem_cont: target memory controller
  458. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  459. *
  460. * For an object-based mapped page, find all the places it is mapped and
  461. * check/clear the referenced flag. This is done by following the page->mapping
  462. * pointer, then walking the chain of vmas it holds. It returns the number
  463. * of references it found.
  464. *
  465. * This function is only called from page_referenced for object-based pages.
  466. */
  467. static int page_referenced_file(struct page *page,
  468. struct mem_cgroup *mem_cont,
  469. unsigned long *vm_flags)
  470. {
  471. unsigned int mapcount;
  472. struct address_space *mapping = page->mapping;
  473. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  474. struct vm_area_struct *vma;
  475. struct prio_tree_iter iter;
  476. int referenced = 0;
  477. /*
  478. * The caller's checks on page->mapping and !PageAnon have made
  479. * sure that this is a file page: the check for page->mapping
  480. * excludes the case just before it gets set on an anon page.
  481. */
  482. BUG_ON(PageAnon(page));
  483. /*
  484. * The page lock not only makes sure that page->mapping cannot
  485. * suddenly be NULLified by truncation, it makes sure that the
  486. * structure at mapping cannot be freed and reused yet,
  487. * so we can safely take mapping->i_mmap_lock.
  488. */
  489. BUG_ON(!PageLocked(page));
  490. spin_lock(&mapping->i_mmap_lock);
  491. /*
  492. * i_mmap_lock does not stabilize mapcount at all, but mapcount
  493. * is more likely to be accurate if we note it after spinning.
  494. */
  495. mapcount = page_mapcount(page);
  496. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  497. unsigned long address = vma_address(page, vma);
  498. if (address == -EFAULT)
  499. continue;
  500. /*
  501. * If we are reclaiming on behalf of a cgroup, skip
  502. * counting on behalf of references from different
  503. * cgroups
  504. */
  505. if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
  506. continue;
  507. referenced += page_referenced_one(page, vma, address,
  508. &mapcount, vm_flags);
  509. if (!mapcount)
  510. break;
  511. }
  512. spin_unlock(&mapping->i_mmap_lock);
  513. return referenced;
  514. }
  515. /**
  516. * page_referenced - test if the page was referenced
  517. * @page: the page to test
  518. * @is_locked: caller holds lock on the page
  519. * @mem_cont: target memory controller
  520. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  521. *
  522. * Quick test_and_clear_referenced for all mappings to a page,
  523. * returns the number of ptes which referenced the page.
  524. */
  525. int page_referenced(struct page *page,
  526. int is_locked,
  527. struct mem_cgroup *mem_cont,
  528. unsigned long *vm_flags)
  529. {
  530. int referenced = 0;
  531. int we_locked = 0;
  532. *vm_flags = 0;
  533. if (page_mapped(page) && page_rmapping(page)) {
  534. if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
  535. we_locked = trylock_page(page);
  536. if (!we_locked) {
  537. referenced++;
  538. goto out;
  539. }
  540. }
  541. if (unlikely(PageKsm(page)))
  542. referenced += page_referenced_ksm(page, mem_cont,
  543. vm_flags);
  544. else if (PageAnon(page))
  545. referenced += page_referenced_anon(page, mem_cont,
  546. vm_flags);
  547. else if (page->mapping)
  548. referenced += page_referenced_file(page, mem_cont,
  549. vm_flags);
  550. if (we_locked)
  551. unlock_page(page);
  552. }
  553. out:
  554. if (page_test_and_clear_young(page))
  555. referenced++;
  556. return referenced;
  557. }
  558. static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
  559. unsigned long address)
  560. {
  561. struct mm_struct *mm = vma->vm_mm;
  562. pte_t *pte;
  563. spinlock_t *ptl;
  564. int ret = 0;
  565. pte = page_check_address(page, mm, address, &ptl, 1);
  566. if (!pte)
  567. goto out;
  568. if (pte_dirty(*pte) || pte_write(*pte)) {
  569. pte_t entry;
  570. flush_cache_page(vma, address, pte_pfn(*pte));
  571. entry = ptep_clear_flush_notify(vma, address, pte);
  572. entry = pte_wrprotect(entry);
  573. entry = pte_mkclean(entry);
  574. set_pte_at(mm, address, pte, entry);
  575. ret = 1;
  576. }
  577. pte_unmap_unlock(pte, ptl);
  578. out:
  579. return ret;
  580. }
  581. static int page_mkclean_file(struct address_space *mapping, struct page *page)
  582. {
  583. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  584. struct vm_area_struct *vma;
  585. struct prio_tree_iter iter;
  586. int ret = 0;
  587. BUG_ON(PageAnon(page));
  588. spin_lock(&mapping->i_mmap_lock);
  589. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  590. if (vma->vm_flags & VM_SHARED) {
  591. unsigned long address = vma_address(page, vma);
  592. if (address == -EFAULT)
  593. continue;
  594. ret += page_mkclean_one(page, vma, address);
  595. }
  596. }
  597. spin_unlock(&mapping->i_mmap_lock);
  598. return ret;
  599. }
  600. int page_mkclean(struct page *page)
  601. {
  602. int ret = 0;
  603. BUG_ON(!PageLocked(page));
  604. if (page_mapped(page)) {
  605. struct address_space *mapping = page_mapping(page);
  606. if (mapping) {
  607. ret = page_mkclean_file(mapping, page);
  608. if (page_test_dirty(page)) {
  609. page_clear_dirty(page);
  610. ret = 1;
  611. }
  612. }
  613. }
  614. return ret;
  615. }
  616. EXPORT_SYMBOL_GPL(page_mkclean);
  617. /**
  618. * page_move_anon_rmap - move a page to our anon_vma
  619. * @page: the page to move to our anon_vma
  620. * @vma: the vma the page belongs to
  621. * @address: the user virtual address mapped
  622. *
  623. * When a page belongs exclusively to one process after a COW event,
  624. * that page can be moved into the anon_vma that belongs to just that
  625. * process, so the rmap code will not search the parent or sibling
  626. * processes.
  627. */
  628. void page_move_anon_rmap(struct page *page,
  629. struct vm_area_struct *vma, unsigned long address)
  630. {
  631. struct anon_vma *anon_vma = vma->anon_vma;
  632. VM_BUG_ON(!PageLocked(page));
  633. VM_BUG_ON(!anon_vma);
  634. VM_BUG_ON(page->index != linear_page_index(vma, address));
  635. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  636. page->mapping = (struct address_space *) anon_vma;
  637. }
  638. /**
  639. * __page_set_anon_rmap - setup new anonymous rmap
  640. * @page: the page to add the mapping to
  641. * @vma: the vm area in which the mapping is added
  642. * @address: the user virtual address mapped
  643. */
  644. static void __page_set_anon_rmap(struct page *page,
  645. struct vm_area_struct *vma, unsigned long address)
  646. {
  647. struct anon_vma_chain *avc;
  648. struct anon_vma *anon_vma;
  649. BUG_ON(!vma->anon_vma);
  650. /*
  651. * We must use the _oldest_ possible anon_vma for the page mapping!
  652. *
  653. * So take the last AVC chain entry in the vma, which is the deepest
  654. * ancestor, and use the anon_vma from that.
  655. */
  656. avc = list_entry(vma->anon_vma_chain.prev, struct anon_vma_chain, same_vma);
  657. anon_vma = avc->anon_vma;
  658. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  659. page->mapping = (struct address_space *) anon_vma;
  660. page->index = linear_page_index(vma, address);
  661. }
  662. /**
  663. * __page_check_anon_rmap - sanity check anonymous rmap addition
  664. * @page: the page to add the mapping to
  665. * @vma: the vm area in which the mapping is added
  666. * @address: the user virtual address mapped
  667. */
  668. static void __page_check_anon_rmap(struct page *page,
  669. struct vm_area_struct *vma, unsigned long address)
  670. {
  671. #ifdef CONFIG_DEBUG_VM
  672. /*
  673. * The page's anon-rmap details (mapping and index) are guaranteed to
  674. * be set up correctly at this point.
  675. *
  676. * We have exclusion against page_add_anon_rmap because the caller
  677. * always holds the page locked, except if called from page_dup_rmap,
  678. * in which case the page is already known to be setup.
  679. *
  680. * We have exclusion against page_add_new_anon_rmap because those pages
  681. * are initially only visible via the pagetables, and the pte is locked
  682. * over the call to page_add_new_anon_rmap.
  683. */
  684. BUG_ON(page->index != linear_page_index(vma, address));
  685. #endif
  686. }
  687. /**
  688. * page_add_anon_rmap - add pte mapping to an anonymous page
  689. * @page: the page to add the mapping to
  690. * @vma: the vm area in which the mapping is added
  691. * @address: the user virtual address mapped
  692. *
  693. * The caller needs to hold the pte lock, and the page must be locked in
  694. * the anon_vma case: to serialize mapping,index checking after setting,
  695. * and to ensure that PageAnon is not being upgraded racily to PageKsm
  696. * (but PageKsm is never downgraded to PageAnon).
  697. */
  698. void page_add_anon_rmap(struct page *page,
  699. struct vm_area_struct *vma, unsigned long address)
  700. {
  701. int first = atomic_inc_and_test(&page->_mapcount);
  702. if (first)
  703. __inc_zone_page_state(page, NR_ANON_PAGES);
  704. if (unlikely(PageKsm(page)))
  705. return;
  706. VM_BUG_ON(!PageLocked(page));
  707. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  708. if (first)
  709. __page_set_anon_rmap(page, vma, address);
  710. else
  711. __page_check_anon_rmap(page, vma, address);
  712. }
  713. /**
  714. * page_add_new_anon_rmap - add pte mapping to a new anonymous page
  715. * @page: the page to add the mapping to
  716. * @vma: the vm area in which the mapping is added
  717. * @address: the user virtual address mapped
  718. *
  719. * Same as page_add_anon_rmap but must only be called on *new* pages.
  720. * This means the inc-and-test can be bypassed.
  721. * Page does not have to be locked.
  722. */
  723. void page_add_new_anon_rmap(struct page *page,
  724. struct vm_area_struct *vma, unsigned long address)
  725. {
  726. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  727. SetPageSwapBacked(page);
  728. atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
  729. __inc_zone_page_state(page, NR_ANON_PAGES);
  730. __page_set_anon_rmap(page, vma, address);
  731. if (page_evictable(page, vma))
  732. lru_cache_add_lru(page, LRU_ACTIVE_ANON);
  733. else
  734. add_page_to_unevictable_list(page);
  735. }
  736. /**
  737. * page_add_file_rmap - add pte mapping to a file page
  738. * @page: the page to add the mapping to
  739. *
  740. * The caller needs to hold the pte lock.
  741. */
  742. void page_add_file_rmap(struct page *page)
  743. {
  744. if (atomic_inc_and_test(&page->_mapcount)) {
  745. __inc_zone_page_state(page, NR_FILE_MAPPED);
  746. mem_cgroup_update_file_mapped(page, 1);
  747. }
  748. }
  749. /**
  750. * page_remove_rmap - take down pte mapping from a page
  751. * @page: page to remove mapping from
  752. *
  753. * The caller needs to hold the pte lock.
  754. */
  755. void page_remove_rmap(struct page *page)
  756. {
  757. /* page still mapped by someone else? */
  758. if (!atomic_add_negative(-1, &page->_mapcount))
  759. return;
  760. /*
  761. * Now that the last pte has gone, s390 must transfer dirty
  762. * flag from storage key to struct page. We can usually skip
  763. * this if the page is anon, so about to be freed; but perhaps
  764. * not if it's in swapcache - there might be another pte slot
  765. * containing the swap entry, but page not yet written to swap.
  766. */
  767. if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
  768. page_clear_dirty(page);
  769. set_page_dirty(page);
  770. }
  771. if (PageAnon(page)) {
  772. mem_cgroup_uncharge_page(page);
  773. __dec_zone_page_state(page, NR_ANON_PAGES);
  774. } else {
  775. __dec_zone_page_state(page, NR_FILE_MAPPED);
  776. mem_cgroup_update_file_mapped(page, -1);
  777. }
  778. /*
  779. * It would be tidy to reset the PageAnon mapping here,
  780. * but that might overwrite a racing page_add_anon_rmap
  781. * which increments mapcount after us but sets mapping
  782. * before us: so leave the reset to free_hot_cold_page,
  783. * and remember that it's only reliable while mapped.
  784. * Leaving it set also helps swapoff to reinstate ptes
  785. * faster for those pages still in swapcache.
  786. */
  787. }
  788. /*
  789. * Subfunctions of try_to_unmap: try_to_unmap_one called
  790. * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
  791. */
  792. int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
  793. unsigned long address, enum ttu_flags flags)
  794. {
  795. struct mm_struct *mm = vma->vm_mm;
  796. pte_t *pte;
  797. pte_t pteval;
  798. spinlock_t *ptl;
  799. int ret = SWAP_AGAIN;
  800. pte = page_check_address(page, mm, address, &ptl, 0);
  801. if (!pte)
  802. goto out;
  803. /*
  804. * If the page is mlock()d, we cannot swap it out.
  805. * If it's recently referenced (perhaps page_referenced
  806. * skipped over this mm) then we should reactivate it.
  807. */
  808. if (!(flags & TTU_IGNORE_MLOCK)) {
  809. if (vma->vm_flags & VM_LOCKED)
  810. goto out_mlock;
  811. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  812. goto out_unmap;
  813. }
  814. if (!(flags & TTU_IGNORE_ACCESS)) {
  815. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  816. ret = SWAP_FAIL;
  817. goto out_unmap;
  818. }
  819. }
  820. /* Nuke the page table entry. */
  821. flush_cache_page(vma, address, page_to_pfn(page));
  822. pteval = ptep_clear_flush_notify(vma, address, pte);
  823. /* Move the dirty bit to the physical page now the pte is gone. */
  824. if (pte_dirty(pteval))
  825. set_page_dirty(page);
  826. /* Update high watermark before we lower rss */
  827. update_hiwater_rss(mm);
  828. if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
  829. if (PageAnon(page))
  830. dec_mm_counter(mm, MM_ANONPAGES);
  831. else
  832. dec_mm_counter(mm, MM_FILEPAGES);
  833. set_pte_at(mm, address, pte,
  834. swp_entry_to_pte(make_hwpoison_entry(page)));
  835. } else if (PageAnon(page)) {
  836. swp_entry_t entry = { .val = page_private(page) };
  837. if (PageSwapCache(page)) {
  838. /*
  839. * Store the swap location in the pte.
  840. * See handle_pte_fault() ...
  841. */
  842. if (swap_duplicate(entry) < 0) {
  843. set_pte_at(mm, address, pte, pteval);
  844. ret = SWAP_FAIL;
  845. goto out_unmap;
  846. }
  847. if (list_empty(&mm->mmlist)) {
  848. spin_lock(&mmlist_lock);
  849. if (list_empty(&mm->mmlist))
  850. list_add(&mm->mmlist, &init_mm.mmlist);
  851. spin_unlock(&mmlist_lock);
  852. }
  853. dec_mm_counter(mm, MM_ANONPAGES);
  854. inc_mm_counter(mm, MM_SWAPENTS);
  855. } else if (PAGE_MIGRATION) {
  856. /*
  857. * Store the pfn of the page in a special migration
  858. * pte. do_swap_page() will wait until the migration
  859. * pte is removed and then restart fault handling.
  860. */
  861. BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
  862. entry = make_migration_entry(page, pte_write(pteval));
  863. }
  864. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  865. BUG_ON(pte_file(*pte));
  866. } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
  867. /* Establish migration entry for a file page */
  868. swp_entry_t entry;
  869. entry = make_migration_entry(page, pte_write(pteval));
  870. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  871. } else
  872. dec_mm_counter(mm, MM_FILEPAGES);
  873. page_remove_rmap(page);
  874. page_cache_release(page);
  875. out_unmap:
  876. pte_unmap_unlock(pte, ptl);
  877. out:
  878. return ret;
  879. out_mlock:
  880. pte_unmap_unlock(pte, ptl);
  881. /*
  882. * We need mmap_sem locking, Otherwise VM_LOCKED check makes
  883. * unstable result and race. Plus, We can't wait here because
  884. * we now hold anon_vma->lock or mapping->i_mmap_lock.
  885. * if trylock failed, the page remain in evictable lru and later
  886. * vmscan could retry to move the page to unevictable lru if the
  887. * page is actually mlocked.
  888. */
  889. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  890. if (vma->vm_flags & VM_LOCKED) {
  891. mlock_vma_page(page);
  892. ret = SWAP_MLOCK;
  893. }
  894. up_read(&vma->vm_mm->mmap_sem);
  895. }
  896. return ret;
  897. }
  898. /*
  899. * objrmap doesn't work for nonlinear VMAs because the assumption that
  900. * offset-into-file correlates with offset-into-virtual-addresses does not hold.
  901. * Consequently, given a particular page and its ->index, we cannot locate the
  902. * ptes which are mapping that page without an exhaustive linear search.
  903. *
  904. * So what this code does is a mini "virtual scan" of each nonlinear VMA which
  905. * maps the file to which the target page belongs. The ->vm_private_data field
  906. * holds the current cursor into that scan. Successive searches will circulate
  907. * around the vma's virtual address space.
  908. *
  909. * So as more replacement pressure is applied to the pages in a nonlinear VMA,
  910. * more scanning pressure is placed against them as well. Eventually pages
  911. * will become fully unmapped and are eligible for eviction.
  912. *
  913. * For very sparsely populated VMAs this is a little inefficient - chances are
  914. * there there won't be many ptes located within the scan cluster. In this case
  915. * maybe we could scan further - to the end of the pte page, perhaps.
  916. *
  917. * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
  918. * acquire it without blocking. If vma locked, mlock the pages in the cluster,
  919. * rather than unmapping them. If we encounter the "check_page" that vmscan is
  920. * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
  921. */
  922. #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
  923. #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
  924. static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
  925. struct vm_area_struct *vma, struct page *check_page)
  926. {
  927. struct mm_struct *mm = vma->vm_mm;
  928. pgd_t *pgd;
  929. pud_t *pud;
  930. pmd_t *pmd;
  931. pte_t *pte;
  932. pte_t pteval;
  933. spinlock_t *ptl;
  934. struct page *page;
  935. unsigned long address;
  936. unsigned long end;
  937. int ret = SWAP_AGAIN;
  938. int locked_vma = 0;
  939. address = (vma->vm_start + cursor) & CLUSTER_MASK;
  940. end = address + CLUSTER_SIZE;
  941. if (address < vma->vm_start)
  942. address = vma->vm_start;
  943. if (end > vma->vm_end)
  944. end = vma->vm_end;
  945. pgd = pgd_offset(mm, address);
  946. if (!pgd_present(*pgd))
  947. return ret;
  948. pud = pud_offset(pgd, address);
  949. if (!pud_present(*pud))
  950. return ret;
  951. pmd = pmd_offset(pud, address);
  952. if (!pmd_present(*pmd))
  953. return ret;
  954. /*
  955. * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
  956. * keep the sem while scanning the cluster for mlocking pages.
  957. */
  958. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  959. locked_vma = (vma->vm_flags & VM_LOCKED);
  960. if (!locked_vma)
  961. up_read(&vma->vm_mm->mmap_sem); /* don't need it */
  962. }
  963. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  964. /* Update high watermark before we lower rss */
  965. update_hiwater_rss(mm);
  966. for (; address < end; pte++, address += PAGE_SIZE) {
  967. if (!pte_present(*pte))
  968. continue;
  969. page = vm_normal_page(vma, address, *pte);
  970. BUG_ON(!page || PageAnon(page));
  971. if (locked_vma) {
  972. mlock_vma_page(page); /* no-op if already mlocked */
  973. if (page == check_page)
  974. ret = SWAP_MLOCK;
  975. continue; /* don't unmap */
  976. }
  977. if (ptep_clear_flush_young_notify(vma, address, pte))
  978. continue;
  979. /* Nuke the page table entry. */
  980. flush_cache_page(vma, address, pte_pfn(*pte));
  981. pteval = ptep_clear_flush_notify(vma, address, pte);
  982. /* If nonlinear, store the file page offset in the pte. */
  983. if (page->index != linear_page_index(vma, address))
  984. set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
  985. /* Move the dirty bit to the physical page now the pte is gone. */
  986. if (pte_dirty(pteval))
  987. set_page_dirty(page);
  988. page_remove_rmap(page);
  989. page_cache_release(page);
  990. dec_mm_counter(mm, MM_FILEPAGES);
  991. (*mapcount)--;
  992. }
  993. pte_unmap_unlock(pte - 1, ptl);
  994. if (locked_vma)
  995. up_read(&vma->vm_mm->mmap_sem);
  996. return ret;
  997. }
  998. /**
  999. * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
  1000. * rmap method
  1001. * @page: the page to unmap/unlock
  1002. * @flags: action and flags
  1003. *
  1004. * Find all the mappings of a page using the mapping pointer and the vma chains
  1005. * contained in the anon_vma struct it points to.
  1006. *
  1007. * This function is only called from try_to_unmap/try_to_munlock for
  1008. * anonymous pages.
  1009. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1010. * where the page was found will be held for write. So, we won't recheck
  1011. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1012. * 'LOCKED.
  1013. */
  1014. static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
  1015. {
  1016. struct anon_vma *anon_vma;
  1017. struct anon_vma_chain *avc;
  1018. int ret = SWAP_AGAIN;
  1019. anon_vma = page_lock_anon_vma(page);
  1020. if (!anon_vma)
  1021. return ret;
  1022. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1023. struct vm_area_struct *vma = avc->vma;
  1024. unsigned long address = vma_address(page, vma);
  1025. if (address == -EFAULT)
  1026. continue;
  1027. ret = try_to_unmap_one(page, vma, address, flags);
  1028. if (ret != SWAP_AGAIN || !page_mapped(page))
  1029. break;
  1030. }
  1031. page_unlock_anon_vma(anon_vma);
  1032. return ret;
  1033. }
  1034. /**
  1035. * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
  1036. * @page: the page to unmap/unlock
  1037. * @flags: action and flags
  1038. *
  1039. * Find all the mappings of a page using the mapping pointer and the vma chains
  1040. * contained in the address_space struct it points to.
  1041. *
  1042. * This function is only called from try_to_unmap/try_to_munlock for
  1043. * object-based pages.
  1044. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1045. * where the page was found will be held for write. So, we won't recheck
  1046. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1047. * 'LOCKED.
  1048. */
  1049. static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
  1050. {
  1051. struct address_space *mapping = page->mapping;
  1052. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1053. struct vm_area_struct *vma;
  1054. struct prio_tree_iter iter;
  1055. int ret = SWAP_AGAIN;
  1056. unsigned long cursor;
  1057. unsigned long max_nl_cursor = 0;
  1058. unsigned long max_nl_size = 0;
  1059. unsigned int mapcount;
  1060. spin_lock(&mapping->i_mmap_lock);
  1061. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  1062. unsigned long address = vma_address(page, vma);
  1063. if (address == -EFAULT)
  1064. continue;
  1065. ret = try_to_unmap_one(page, vma, address, flags);
  1066. if (ret != SWAP_AGAIN || !page_mapped(page))
  1067. goto out;
  1068. }
  1069. if (list_empty(&mapping->i_mmap_nonlinear))
  1070. goto out;
  1071. /*
  1072. * We don't bother to try to find the munlocked page in nonlinears.
  1073. * It's costly. Instead, later, page reclaim logic may call
  1074. * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
  1075. */
  1076. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  1077. goto out;
  1078. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1079. shared.vm_set.list) {
  1080. cursor = (unsigned long) vma->vm_private_data;
  1081. if (cursor > max_nl_cursor)
  1082. max_nl_cursor = cursor;
  1083. cursor = vma->vm_end - vma->vm_start;
  1084. if (cursor > max_nl_size)
  1085. max_nl_size = cursor;
  1086. }
  1087. if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
  1088. ret = SWAP_FAIL;
  1089. goto out;
  1090. }
  1091. /*
  1092. * We don't try to search for this page in the nonlinear vmas,
  1093. * and page_referenced wouldn't have found it anyway. Instead
  1094. * just walk the nonlinear vmas trying to age and unmap some.
  1095. * The mapcount of the page we came in with is irrelevant,
  1096. * but even so use it as a guide to how hard we should try?
  1097. */
  1098. mapcount = page_mapcount(page);
  1099. if (!mapcount)
  1100. goto out;
  1101. cond_resched_lock(&mapping->i_mmap_lock);
  1102. max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
  1103. if (max_nl_cursor == 0)
  1104. max_nl_cursor = CLUSTER_SIZE;
  1105. do {
  1106. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1107. shared.vm_set.list) {
  1108. cursor = (unsigned long) vma->vm_private_data;
  1109. while ( cursor < max_nl_cursor &&
  1110. cursor < vma->vm_end - vma->vm_start) {
  1111. if (try_to_unmap_cluster(cursor, &mapcount,
  1112. vma, page) == SWAP_MLOCK)
  1113. ret = SWAP_MLOCK;
  1114. cursor += CLUSTER_SIZE;
  1115. vma->vm_private_data = (void *) cursor;
  1116. if ((int)mapcount <= 0)
  1117. goto out;
  1118. }
  1119. vma->vm_private_data = (void *) max_nl_cursor;
  1120. }
  1121. cond_resched_lock(&mapping->i_mmap_lock);
  1122. max_nl_cursor += CLUSTER_SIZE;
  1123. } while (max_nl_cursor <= max_nl_size);
  1124. /*
  1125. * Don't loop forever (perhaps all the remaining pages are
  1126. * in locked vmas). Reset cursor on all unreserved nonlinear
  1127. * vmas, now forgetting on which ones it had fallen behind.
  1128. */
  1129. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  1130. vma->vm_private_data = NULL;
  1131. out:
  1132. spin_unlock(&mapping->i_mmap_lock);
  1133. return ret;
  1134. }
  1135. /**
  1136. * try_to_unmap - try to remove all page table mappings to a page
  1137. * @page: the page to get unmapped
  1138. * @flags: action and flags
  1139. *
  1140. * Tries to remove all the page table entries which are mapping this
  1141. * page, used in the pageout path. Caller must hold the page lock.
  1142. * Return values are:
  1143. *
  1144. * SWAP_SUCCESS - we succeeded in removing all mappings
  1145. * SWAP_AGAIN - we missed a mapping, try again later
  1146. * SWAP_FAIL - the page is unswappable
  1147. * SWAP_MLOCK - page is mlocked.
  1148. */
  1149. int try_to_unmap(struct page *page, enum ttu_flags flags)
  1150. {
  1151. int ret;
  1152. BUG_ON(!PageLocked(page));
  1153. if (unlikely(PageKsm(page)))
  1154. ret = try_to_unmap_ksm(page, flags);
  1155. else if (PageAnon(page))
  1156. ret = try_to_unmap_anon(page, flags);
  1157. else
  1158. ret = try_to_unmap_file(page, flags);
  1159. if (ret != SWAP_MLOCK && !page_mapped(page))
  1160. ret = SWAP_SUCCESS;
  1161. return ret;
  1162. }
  1163. /**
  1164. * try_to_munlock - try to munlock a page
  1165. * @page: the page to be munlocked
  1166. *
  1167. * Called from munlock code. Checks all of the VMAs mapping the page
  1168. * to make sure nobody else has this page mlocked. The page will be
  1169. * returned with PG_mlocked cleared if no other vmas have it mlocked.
  1170. *
  1171. * Return values are:
  1172. *
  1173. * SWAP_AGAIN - no vma is holding page mlocked, or,
  1174. * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
  1175. * SWAP_FAIL - page cannot be located at present
  1176. * SWAP_MLOCK - page is now mlocked.
  1177. */
  1178. int try_to_munlock(struct page *page)
  1179. {
  1180. VM_BUG_ON(!PageLocked(page) || PageLRU(page));
  1181. if (unlikely(PageKsm(page)))
  1182. return try_to_unmap_ksm(page, TTU_MUNLOCK);
  1183. else if (PageAnon(page))
  1184. return try_to_unmap_anon(page, TTU_MUNLOCK);
  1185. else
  1186. return try_to_unmap_file(page, TTU_MUNLOCK);
  1187. }
  1188. #ifdef CONFIG_MIGRATION
  1189. /*
  1190. * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
  1191. * Called by migrate.c to remove migration ptes, but might be used more later.
  1192. */
  1193. static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
  1194. struct vm_area_struct *, unsigned long, void *), void *arg)
  1195. {
  1196. struct anon_vma *anon_vma;
  1197. struct anon_vma_chain *avc;
  1198. int ret = SWAP_AGAIN;
  1199. /*
  1200. * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
  1201. * because that depends on page_mapped(); but not all its usages
  1202. * are holding mmap_sem, which also gave the necessary guarantee
  1203. * (that this anon_vma's slab has not already been destroyed).
  1204. * This needs to be reviewed later: avoiding page_lock_anon_vma()
  1205. * is risky, and currently limits the usefulness of rmap_walk().
  1206. */
  1207. anon_vma = page_anon_vma(page);
  1208. if (!anon_vma)
  1209. return ret;
  1210. spin_lock(&anon_vma->lock);
  1211. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1212. struct vm_area_struct *vma = avc->vma;
  1213. unsigned long address = vma_address(page, vma);
  1214. if (address == -EFAULT)
  1215. continue;
  1216. ret = rmap_one(page, vma, address, arg);
  1217. if (ret != SWAP_AGAIN)
  1218. break;
  1219. }
  1220. spin_unlock(&anon_vma->lock);
  1221. return ret;
  1222. }
  1223. static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
  1224. struct vm_area_struct *, unsigned long, void *), void *arg)
  1225. {
  1226. struct address_space *mapping = page->mapping;
  1227. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1228. struct vm_area_struct *vma;
  1229. struct prio_tree_iter iter;
  1230. int ret = SWAP_AGAIN;
  1231. if (!mapping)
  1232. return ret;
  1233. spin_lock(&mapping->i_mmap_lock);
  1234. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  1235. unsigned long address = vma_address(page, vma);
  1236. if (address == -EFAULT)
  1237. continue;
  1238. ret = rmap_one(page, vma, address, arg);
  1239. if (ret != SWAP_AGAIN)
  1240. break;
  1241. }
  1242. /*
  1243. * No nonlinear handling: being always shared, nonlinear vmas
  1244. * never contain migration ptes. Decide what to do about this
  1245. * limitation to linear when we need rmap_walk() on nonlinear.
  1246. */
  1247. spin_unlock(&mapping->i_mmap_lock);
  1248. return ret;
  1249. }
  1250. int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
  1251. struct vm_area_struct *, unsigned long, void *), void *arg)
  1252. {
  1253. VM_BUG_ON(!PageLocked(page));
  1254. if (unlikely(PageKsm(page)))
  1255. return rmap_walk_ksm(page, rmap_one, arg);
  1256. else if (PageAnon(page))
  1257. return rmap_walk_anon(page, rmap_one, arg);
  1258. else
  1259. return rmap_walk_file(page, rmap_one, arg);
  1260. }
  1261. #endif /* CONFIG_MIGRATION */