timer.c 41 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565
  1. /*
  2. * linux/kernel/timer.c
  3. *
  4. * Kernel internal timers, kernel timekeeping, basic process system calls
  5. *
  6. * Copyright (C) 1991, 1992 Linus Torvalds
  7. *
  8. * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
  9. *
  10. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  11. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  12. * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
  13. * serialize accesses to xtime/lost_ticks).
  14. * Copyright (C) 1998 Andrea Arcangeli
  15. * 1999-03-10 Improved NTP compatibility by Ulrich Windl
  16. * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
  17. * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
  18. * Copyright (C) 2000, 2001, 2002 Ingo Molnar
  19. * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
  20. */
  21. #include <linux/kernel_stat.h>
  22. #include <linux/module.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/percpu.h>
  25. #include <linux/init.h>
  26. #include <linux/mm.h>
  27. #include <linux/swap.h>
  28. #include <linux/notifier.h>
  29. #include <linux/thread_info.h>
  30. #include <linux/time.h>
  31. #include <linux/jiffies.h>
  32. #include <linux/posix-timers.h>
  33. #include <linux/cpu.h>
  34. #include <linux/syscalls.h>
  35. #include <linux/delay.h>
  36. #include <asm/uaccess.h>
  37. #include <asm/unistd.h>
  38. #include <asm/div64.h>
  39. #include <asm/timex.h>
  40. #include <asm/io.h>
  41. #ifdef CONFIG_TIME_INTERPOLATION
  42. static void time_interpolator_update(long delta_nsec);
  43. #else
  44. #define time_interpolator_update(x)
  45. #endif
  46. u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
  47. EXPORT_SYMBOL(jiffies_64);
  48. /*
  49. * per-CPU timer vector definitions:
  50. */
  51. #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
  52. #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
  53. #define TVN_SIZE (1 << TVN_BITS)
  54. #define TVR_SIZE (1 << TVR_BITS)
  55. #define TVN_MASK (TVN_SIZE - 1)
  56. #define TVR_MASK (TVR_SIZE - 1)
  57. typedef struct tvec_s {
  58. struct list_head vec[TVN_SIZE];
  59. } tvec_t;
  60. typedef struct tvec_root_s {
  61. struct list_head vec[TVR_SIZE];
  62. } tvec_root_t;
  63. struct tvec_t_base_s {
  64. spinlock_t lock;
  65. struct timer_list *running_timer;
  66. unsigned long timer_jiffies;
  67. tvec_root_t tv1;
  68. tvec_t tv2;
  69. tvec_t tv3;
  70. tvec_t tv4;
  71. tvec_t tv5;
  72. } ____cacheline_aligned_in_smp;
  73. typedef struct tvec_t_base_s tvec_base_t;
  74. tvec_base_t boot_tvec_bases;
  75. EXPORT_SYMBOL(boot_tvec_bases);
  76. static DEFINE_PER_CPU(tvec_base_t *, tvec_bases) = { &boot_tvec_bases };
  77. static inline void set_running_timer(tvec_base_t *base,
  78. struct timer_list *timer)
  79. {
  80. #ifdef CONFIG_SMP
  81. base->running_timer = timer;
  82. #endif
  83. }
  84. static void internal_add_timer(tvec_base_t *base, struct timer_list *timer)
  85. {
  86. unsigned long expires = timer->expires;
  87. unsigned long idx = expires - base->timer_jiffies;
  88. struct list_head *vec;
  89. if (idx < TVR_SIZE) {
  90. int i = expires & TVR_MASK;
  91. vec = base->tv1.vec + i;
  92. } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
  93. int i = (expires >> TVR_BITS) & TVN_MASK;
  94. vec = base->tv2.vec + i;
  95. } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
  96. int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
  97. vec = base->tv3.vec + i;
  98. } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
  99. int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
  100. vec = base->tv4.vec + i;
  101. } else if ((signed long) idx < 0) {
  102. /*
  103. * Can happen if you add a timer with expires == jiffies,
  104. * or you set a timer to go off in the past
  105. */
  106. vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
  107. } else {
  108. int i;
  109. /* If the timeout is larger than 0xffffffff on 64-bit
  110. * architectures then we use the maximum timeout:
  111. */
  112. if (idx > 0xffffffffUL) {
  113. idx = 0xffffffffUL;
  114. expires = idx + base->timer_jiffies;
  115. }
  116. i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
  117. vec = base->tv5.vec + i;
  118. }
  119. /*
  120. * Timers are FIFO:
  121. */
  122. list_add_tail(&timer->entry, vec);
  123. }
  124. /***
  125. * init_timer - initialize a timer.
  126. * @timer: the timer to be initialized
  127. *
  128. * init_timer() must be done to a timer prior calling *any* of the
  129. * other timer functions.
  130. */
  131. void fastcall init_timer(struct timer_list *timer)
  132. {
  133. timer->entry.next = NULL;
  134. timer->base = per_cpu(tvec_bases, raw_smp_processor_id());
  135. }
  136. EXPORT_SYMBOL(init_timer);
  137. static inline void detach_timer(struct timer_list *timer,
  138. int clear_pending)
  139. {
  140. struct list_head *entry = &timer->entry;
  141. __list_del(entry->prev, entry->next);
  142. if (clear_pending)
  143. entry->next = NULL;
  144. entry->prev = LIST_POISON2;
  145. }
  146. /*
  147. * We are using hashed locking: holding per_cpu(tvec_bases).lock
  148. * means that all timers which are tied to this base via timer->base are
  149. * locked, and the base itself is locked too.
  150. *
  151. * So __run_timers/migrate_timers can safely modify all timers which could
  152. * be found on ->tvX lists.
  153. *
  154. * When the timer's base is locked, and the timer removed from list, it is
  155. * possible to set timer->base = NULL and drop the lock: the timer remains
  156. * locked.
  157. */
  158. static tvec_base_t *lock_timer_base(struct timer_list *timer,
  159. unsigned long *flags)
  160. {
  161. tvec_base_t *base;
  162. for (;;) {
  163. base = timer->base;
  164. if (likely(base != NULL)) {
  165. spin_lock_irqsave(&base->lock, *flags);
  166. if (likely(base == timer->base))
  167. return base;
  168. /* The timer has migrated to another CPU */
  169. spin_unlock_irqrestore(&base->lock, *flags);
  170. }
  171. cpu_relax();
  172. }
  173. }
  174. int __mod_timer(struct timer_list *timer, unsigned long expires)
  175. {
  176. tvec_base_t *base, *new_base;
  177. unsigned long flags;
  178. int ret = 0;
  179. BUG_ON(!timer->function);
  180. base = lock_timer_base(timer, &flags);
  181. if (timer_pending(timer)) {
  182. detach_timer(timer, 0);
  183. ret = 1;
  184. }
  185. new_base = __get_cpu_var(tvec_bases);
  186. if (base != new_base) {
  187. /*
  188. * We are trying to schedule the timer on the local CPU.
  189. * However we can't change timer's base while it is running,
  190. * otherwise del_timer_sync() can't detect that the timer's
  191. * handler yet has not finished. This also guarantees that
  192. * the timer is serialized wrt itself.
  193. */
  194. if (likely(base->running_timer != timer)) {
  195. /* See the comment in lock_timer_base() */
  196. timer->base = NULL;
  197. spin_unlock(&base->lock);
  198. base = new_base;
  199. spin_lock(&base->lock);
  200. timer->base = base;
  201. }
  202. }
  203. timer->expires = expires;
  204. internal_add_timer(base, timer);
  205. spin_unlock_irqrestore(&base->lock, flags);
  206. return ret;
  207. }
  208. EXPORT_SYMBOL(__mod_timer);
  209. /***
  210. * add_timer_on - start a timer on a particular CPU
  211. * @timer: the timer to be added
  212. * @cpu: the CPU to start it on
  213. *
  214. * This is not very scalable on SMP. Double adds are not possible.
  215. */
  216. void add_timer_on(struct timer_list *timer, int cpu)
  217. {
  218. tvec_base_t *base = per_cpu(tvec_bases, cpu);
  219. unsigned long flags;
  220. BUG_ON(timer_pending(timer) || !timer->function);
  221. spin_lock_irqsave(&base->lock, flags);
  222. timer->base = base;
  223. internal_add_timer(base, timer);
  224. spin_unlock_irqrestore(&base->lock, flags);
  225. }
  226. /***
  227. * mod_timer - modify a timer's timeout
  228. * @timer: the timer to be modified
  229. *
  230. * mod_timer is a more efficient way to update the expire field of an
  231. * active timer (if the timer is inactive it will be activated)
  232. *
  233. * mod_timer(timer, expires) is equivalent to:
  234. *
  235. * del_timer(timer); timer->expires = expires; add_timer(timer);
  236. *
  237. * Note that if there are multiple unserialized concurrent users of the
  238. * same timer, then mod_timer() is the only safe way to modify the timeout,
  239. * since add_timer() cannot modify an already running timer.
  240. *
  241. * The function returns whether it has modified a pending timer or not.
  242. * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
  243. * active timer returns 1.)
  244. */
  245. int mod_timer(struct timer_list *timer, unsigned long expires)
  246. {
  247. BUG_ON(!timer->function);
  248. /*
  249. * This is a common optimization triggered by the
  250. * networking code - if the timer is re-modified
  251. * to be the same thing then just return:
  252. */
  253. if (timer->expires == expires && timer_pending(timer))
  254. return 1;
  255. return __mod_timer(timer, expires);
  256. }
  257. EXPORT_SYMBOL(mod_timer);
  258. /***
  259. * del_timer - deactive a timer.
  260. * @timer: the timer to be deactivated
  261. *
  262. * del_timer() deactivates a timer - this works on both active and inactive
  263. * timers.
  264. *
  265. * The function returns whether it has deactivated a pending timer or not.
  266. * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
  267. * active timer returns 1.)
  268. */
  269. int del_timer(struct timer_list *timer)
  270. {
  271. tvec_base_t *base;
  272. unsigned long flags;
  273. int ret = 0;
  274. if (timer_pending(timer)) {
  275. base = lock_timer_base(timer, &flags);
  276. if (timer_pending(timer)) {
  277. detach_timer(timer, 1);
  278. ret = 1;
  279. }
  280. spin_unlock_irqrestore(&base->lock, flags);
  281. }
  282. return ret;
  283. }
  284. EXPORT_SYMBOL(del_timer);
  285. #ifdef CONFIG_SMP
  286. /*
  287. * This function tries to deactivate a timer. Upon successful (ret >= 0)
  288. * exit the timer is not queued and the handler is not running on any CPU.
  289. *
  290. * It must not be called from interrupt contexts.
  291. */
  292. int try_to_del_timer_sync(struct timer_list *timer)
  293. {
  294. tvec_base_t *base;
  295. unsigned long flags;
  296. int ret = -1;
  297. base = lock_timer_base(timer, &flags);
  298. if (base->running_timer == timer)
  299. goto out;
  300. ret = 0;
  301. if (timer_pending(timer)) {
  302. detach_timer(timer, 1);
  303. ret = 1;
  304. }
  305. out:
  306. spin_unlock_irqrestore(&base->lock, flags);
  307. return ret;
  308. }
  309. /***
  310. * del_timer_sync - deactivate a timer and wait for the handler to finish.
  311. * @timer: the timer to be deactivated
  312. *
  313. * This function only differs from del_timer() on SMP: besides deactivating
  314. * the timer it also makes sure the handler has finished executing on other
  315. * CPUs.
  316. *
  317. * Synchronization rules: callers must prevent restarting of the timer,
  318. * otherwise this function is meaningless. It must not be called from
  319. * interrupt contexts. The caller must not hold locks which would prevent
  320. * completion of the timer's handler. The timer's handler must not call
  321. * add_timer_on(). Upon exit the timer is not queued and the handler is
  322. * not running on any CPU.
  323. *
  324. * The function returns whether it has deactivated a pending timer or not.
  325. */
  326. int del_timer_sync(struct timer_list *timer)
  327. {
  328. for (;;) {
  329. int ret = try_to_del_timer_sync(timer);
  330. if (ret >= 0)
  331. return ret;
  332. }
  333. }
  334. EXPORT_SYMBOL(del_timer_sync);
  335. #endif
  336. static int cascade(tvec_base_t *base, tvec_t *tv, int index)
  337. {
  338. /* cascade all the timers from tv up one level */
  339. struct list_head *head, *curr;
  340. head = tv->vec + index;
  341. curr = head->next;
  342. /*
  343. * We are removing _all_ timers from the list, so we don't have to
  344. * detach them individually, just clear the list afterwards.
  345. */
  346. while (curr != head) {
  347. struct timer_list *tmp;
  348. tmp = list_entry(curr, struct timer_list, entry);
  349. BUG_ON(tmp->base != base);
  350. curr = curr->next;
  351. internal_add_timer(base, tmp);
  352. }
  353. INIT_LIST_HEAD(head);
  354. return index;
  355. }
  356. /***
  357. * __run_timers - run all expired timers (if any) on this CPU.
  358. * @base: the timer vector to be processed.
  359. *
  360. * This function cascades all vectors and executes all expired timer
  361. * vectors.
  362. */
  363. #define INDEX(N) (base->timer_jiffies >> (TVR_BITS + N * TVN_BITS)) & TVN_MASK
  364. static inline void __run_timers(tvec_base_t *base)
  365. {
  366. struct timer_list *timer;
  367. spin_lock_irq(&base->lock);
  368. while (time_after_eq(jiffies, base->timer_jiffies)) {
  369. struct list_head work_list = LIST_HEAD_INIT(work_list);
  370. struct list_head *head = &work_list;
  371. int index = base->timer_jiffies & TVR_MASK;
  372. /*
  373. * Cascade timers:
  374. */
  375. if (!index &&
  376. (!cascade(base, &base->tv2, INDEX(0))) &&
  377. (!cascade(base, &base->tv3, INDEX(1))) &&
  378. !cascade(base, &base->tv4, INDEX(2)))
  379. cascade(base, &base->tv5, INDEX(3));
  380. ++base->timer_jiffies;
  381. list_splice_init(base->tv1.vec + index, &work_list);
  382. while (!list_empty(head)) {
  383. void (*fn)(unsigned long);
  384. unsigned long data;
  385. timer = list_entry(head->next,struct timer_list,entry);
  386. fn = timer->function;
  387. data = timer->data;
  388. set_running_timer(base, timer);
  389. detach_timer(timer, 1);
  390. spin_unlock_irq(&base->lock);
  391. {
  392. int preempt_count = preempt_count();
  393. fn(data);
  394. if (preempt_count != preempt_count()) {
  395. printk(KERN_WARNING "huh, entered %p "
  396. "with preempt_count %08x, exited"
  397. " with %08x?\n",
  398. fn, preempt_count,
  399. preempt_count());
  400. BUG();
  401. }
  402. }
  403. spin_lock_irq(&base->lock);
  404. }
  405. }
  406. set_running_timer(base, NULL);
  407. spin_unlock_irq(&base->lock);
  408. }
  409. #ifdef CONFIG_NO_IDLE_HZ
  410. /*
  411. * Find out when the next timer event is due to happen. This
  412. * is used on S/390 to stop all activity when a cpus is idle.
  413. * This functions needs to be called disabled.
  414. */
  415. unsigned long next_timer_interrupt(void)
  416. {
  417. tvec_base_t *base;
  418. struct list_head *list;
  419. struct timer_list *nte;
  420. unsigned long expires;
  421. unsigned long hr_expires = MAX_JIFFY_OFFSET;
  422. ktime_t hr_delta;
  423. tvec_t *varray[4];
  424. int i, j;
  425. hr_delta = hrtimer_get_next_event();
  426. if (hr_delta.tv64 != KTIME_MAX) {
  427. struct timespec tsdelta;
  428. tsdelta = ktime_to_timespec(hr_delta);
  429. hr_expires = timespec_to_jiffies(&tsdelta);
  430. if (hr_expires < 3)
  431. return hr_expires + jiffies;
  432. }
  433. hr_expires += jiffies;
  434. base = __get_cpu_var(tvec_bases);
  435. spin_lock(&base->lock);
  436. expires = base->timer_jiffies + (LONG_MAX >> 1);
  437. list = NULL;
  438. /* Look for timer events in tv1. */
  439. j = base->timer_jiffies & TVR_MASK;
  440. do {
  441. list_for_each_entry(nte, base->tv1.vec + j, entry) {
  442. expires = nte->expires;
  443. if (j < (base->timer_jiffies & TVR_MASK))
  444. list = base->tv2.vec + (INDEX(0));
  445. goto found;
  446. }
  447. j = (j + 1) & TVR_MASK;
  448. } while (j != (base->timer_jiffies & TVR_MASK));
  449. /* Check tv2-tv5. */
  450. varray[0] = &base->tv2;
  451. varray[1] = &base->tv3;
  452. varray[2] = &base->tv4;
  453. varray[3] = &base->tv5;
  454. for (i = 0; i < 4; i++) {
  455. j = INDEX(i);
  456. do {
  457. if (list_empty(varray[i]->vec + j)) {
  458. j = (j + 1) & TVN_MASK;
  459. continue;
  460. }
  461. list_for_each_entry(nte, varray[i]->vec + j, entry)
  462. if (time_before(nte->expires, expires))
  463. expires = nte->expires;
  464. if (j < (INDEX(i)) && i < 3)
  465. list = varray[i + 1]->vec + (INDEX(i + 1));
  466. goto found;
  467. } while (j != (INDEX(i)));
  468. }
  469. found:
  470. if (list) {
  471. /*
  472. * The search wrapped. We need to look at the next list
  473. * from next tv element that would cascade into tv element
  474. * where we found the timer element.
  475. */
  476. list_for_each_entry(nte, list, entry) {
  477. if (time_before(nte->expires, expires))
  478. expires = nte->expires;
  479. }
  480. }
  481. spin_unlock(&base->lock);
  482. if (time_before(hr_expires, expires))
  483. return hr_expires;
  484. return expires;
  485. }
  486. #endif
  487. /******************************************************************/
  488. /*
  489. * Timekeeping variables
  490. */
  491. unsigned long tick_usec = TICK_USEC; /* USER_HZ period (usec) */
  492. unsigned long tick_nsec = TICK_NSEC; /* ACTHZ period (nsec) */
  493. /*
  494. * The current time
  495. * wall_to_monotonic is what we need to add to xtime (or xtime corrected
  496. * for sub jiffie times) to get to monotonic time. Monotonic is pegged
  497. * at zero at system boot time, so wall_to_monotonic will be negative,
  498. * however, we will ALWAYS keep the tv_nsec part positive so we can use
  499. * the usual normalization.
  500. */
  501. struct timespec xtime __attribute__ ((aligned (16)));
  502. struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
  503. EXPORT_SYMBOL(xtime);
  504. /* Don't completely fail for HZ > 500. */
  505. int tickadj = 500/HZ ? : 1; /* microsecs */
  506. /*
  507. * phase-lock loop variables
  508. */
  509. /* TIME_ERROR prevents overwriting the CMOS clock */
  510. int time_state = TIME_OK; /* clock synchronization status */
  511. int time_status = STA_UNSYNC; /* clock status bits */
  512. long time_offset; /* time adjustment (us) */
  513. long time_constant = 2; /* pll time constant */
  514. long time_tolerance = MAXFREQ; /* frequency tolerance (ppm) */
  515. long time_precision = 1; /* clock precision (us) */
  516. long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */
  517. long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */
  518. static long time_phase; /* phase offset (scaled us) */
  519. long time_freq = (((NSEC_PER_SEC + HZ/2) % HZ - HZ/2) << SHIFT_USEC) / NSEC_PER_USEC;
  520. /* frequency offset (scaled ppm)*/
  521. static long time_adj; /* tick adjust (scaled 1 / HZ) */
  522. long time_reftime; /* time at last adjustment (s) */
  523. long time_adjust;
  524. long time_next_adjust;
  525. /*
  526. * this routine handles the overflow of the microsecond field
  527. *
  528. * The tricky bits of code to handle the accurate clock support
  529. * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
  530. * They were originally developed for SUN and DEC kernels.
  531. * All the kudos should go to Dave for this stuff.
  532. *
  533. */
  534. static void second_overflow(void)
  535. {
  536. long ltemp;
  537. /* Bump the maxerror field */
  538. time_maxerror += time_tolerance >> SHIFT_USEC;
  539. if (time_maxerror > NTP_PHASE_LIMIT) {
  540. time_maxerror = NTP_PHASE_LIMIT;
  541. time_status |= STA_UNSYNC;
  542. }
  543. /*
  544. * Leap second processing. If in leap-insert state at the end of the
  545. * day, the system clock is set back one second; if in leap-delete
  546. * state, the system clock is set ahead one second. The microtime()
  547. * routine or external clock driver will insure that reported time is
  548. * always monotonic. The ugly divides should be replaced.
  549. */
  550. switch (time_state) {
  551. case TIME_OK:
  552. if (time_status & STA_INS)
  553. time_state = TIME_INS;
  554. else if (time_status & STA_DEL)
  555. time_state = TIME_DEL;
  556. break;
  557. case TIME_INS:
  558. if (xtime.tv_sec % 86400 == 0) {
  559. xtime.tv_sec--;
  560. wall_to_monotonic.tv_sec++;
  561. /*
  562. * The timer interpolator will make time change
  563. * gradually instead of an immediate jump by one second
  564. */
  565. time_interpolator_update(-NSEC_PER_SEC);
  566. time_state = TIME_OOP;
  567. clock_was_set();
  568. printk(KERN_NOTICE "Clock: inserting leap second "
  569. "23:59:60 UTC\n");
  570. }
  571. break;
  572. case TIME_DEL:
  573. if ((xtime.tv_sec + 1) % 86400 == 0) {
  574. xtime.tv_sec++;
  575. wall_to_monotonic.tv_sec--;
  576. /*
  577. * Use of time interpolator for a gradual change of
  578. * time
  579. */
  580. time_interpolator_update(NSEC_PER_SEC);
  581. time_state = TIME_WAIT;
  582. clock_was_set();
  583. printk(KERN_NOTICE "Clock: deleting leap second "
  584. "23:59:59 UTC\n");
  585. }
  586. break;
  587. case TIME_OOP:
  588. time_state = TIME_WAIT;
  589. break;
  590. case TIME_WAIT:
  591. if (!(time_status & (STA_INS | STA_DEL)))
  592. time_state = TIME_OK;
  593. }
  594. /*
  595. * Compute the phase adjustment for the next second. In PLL mode, the
  596. * offset is reduced by a fixed factor times the time constant. In FLL
  597. * mode the offset is used directly. In either mode, the maximum phase
  598. * adjustment for each second is clamped so as to spread the adjustment
  599. * over not more than the number of seconds between updates.
  600. */
  601. ltemp = time_offset;
  602. if (!(time_status & STA_FLL))
  603. ltemp = shift_right(ltemp, SHIFT_KG + time_constant);
  604. ltemp = min(ltemp, (MAXPHASE / MINSEC) << SHIFT_UPDATE);
  605. ltemp = max(ltemp, -(MAXPHASE / MINSEC) << SHIFT_UPDATE);
  606. time_offset -= ltemp;
  607. time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
  608. /*
  609. * Compute the frequency estimate and additional phase adjustment due
  610. * to frequency error for the next second.
  611. */
  612. ltemp = time_freq;
  613. time_adj += shift_right(ltemp,(SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE));
  614. #if HZ == 100
  615. /*
  616. * Compensate for (HZ==100) != (1 << SHIFT_HZ). Add 25% and 3.125% to
  617. * get 128.125; => only 0.125% error (p. 14)
  618. */
  619. time_adj += shift_right(time_adj, 2) + shift_right(time_adj, 5);
  620. #endif
  621. #if HZ == 250
  622. /*
  623. * Compensate for (HZ==250) != (1 << SHIFT_HZ). Add 1.5625% and
  624. * 0.78125% to get 255.85938; => only 0.05% error (p. 14)
  625. */
  626. time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7);
  627. #endif
  628. #if HZ == 1000
  629. /*
  630. * Compensate for (HZ==1000) != (1 << SHIFT_HZ). Add 1.5625% and
  631. * 0.78125% to get 1023.4375; => only 0.05% error (p. 14)
  632. */
  633. time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7);
  634. #endif
  635. }
  636. /*
  637. * Returns how many microseconds we need to add to xtime this tick
  638. * in doing an adjustment requested with adjtime.
  639. */
  640. static long adjtime_adjustment(void)
  641. {
  642. long time_adjust_step;
  643. time_adjust_step = time_adjust;
  644. if (time_adjust_step) {
  645. /*
  646. * We are doing an adjtime thing. Prepare time_adjust_step to
  647. * be within bounds. Note that a positive time_adjust means we
  648. * want the clock to run faster.
  649. *
  650. * Limit the amount of the step to be in the range
  651. * -tickadj .. +tickadj
  652. */
  653. time_adjust_step = min(time_adjust_step, (long)tickadj);
  654. time_adjust_step = max(time_adjust_step, (long)-tickadj);
  655. }
  656. return time_adjust_step;
  657. }
  658. /* in the NTP reference this is called "hardclock()" */
  659. static void update_wall_time_one_tick(void)
  660. {
  661. long time_adjust_step, delta_nsec;
  662. time_adjust_step = adjtime_adjustment();
  663. if (time_adjust_step)
  664. /* Reduce by this step the amount of time left */
  665. time_adjust -= time_adjust_step;
  666. delta_nsec = tick_nsec + time_adjust_step * 1000;
  667. /*
  668. * Advance the phase, once it gets to one microsecond, then
  669. * advance the tick more.
  670. */
  671. time_phase += time_adj;
  672. if ((time_phase >= FINENSEC) || (time_phase <= -FINENSEC)) {
  673. long ltemp = shift_right(time_phase, (SHIFT_SCALE - 10));
  674. time_phase -= ltemp << (SHIFT_SCALE - 10);
  675. delta_nsec += ltemp;
  676. }
  677. xtime.tv_nsec += delta_nsec;
  678. time_interpolator_update(delta_nsec);
  679. /* Changes by adjtime() do not take effect till next tick. */
  680. if (time_next_adjust != 0) {
  681. time_adjust = time_next_adjust;
  682. time_next_adjust = 0;
  683. }
  684. }
  685. /*
  686. * Return how long ticks are at the moment, that is, how much time
  687. * update_wall_time_one_tick will add to xtime next time we call it
  688. * (assuming no calls to do_adjtimex in the meantime).
  689. * The return value is in fixed-point nanoseconds with SHIFT_SCALE-10
  690. * bits to the right of the binary point.
  691. * This function has no side-effects.
  692. */
  693. u64 current_tick_length(void)
  694. {
  695. long delta_nsec;
  696. delta_nsec = tick_nsec + adjtime_adjustment() * 1000;
  697. return ((u64) delta_nsec << (SHIFT_SCALE - 10)) + time_adj;
  698. }
  699. /*
  700. * Using a loop looks inefficient, but "ticks" is
  701. * usually just one (we shouldn't be losing ticks,
  702. * we're doing this this way mainly for interrupt
  703. * latency reasons, not because we think we'll
  704. * have lots of lost timer ticks
  705. */
  706. static void update_wall_time(unsigned long ticks)
  707. {
  708. do {
  709. ticks--;
  710. update_wall_time_one_tick();
  711. if (xtime.tv_nsec >= 1000000000) {
  712. xtime.tv_nsec -= 1000000000;
  713. xtime.tv_sec++;
  714. second_overflow();
  715. }
  716. } while (ticks);
  717. }
  718. /*
  719. * Called from the timer interrupt handler to charge one tick to the current
  720. * process. user_tick is 1 if the tick is user time, 0 for system.
  721. */
  722. void update_process_times(int user_tick)
  723. {
  724. struct task_struct *p = current;
  725. int cpu = smp_processor_id();
  726. /* Note: this timer irq context must be accounted for as well. */
  727. if (user_tick)
  728. account_user_time(p, jiffies_to_cputime(1));
  729. else
  730. account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1));
  731. run_local_timers();
  732. if (rcu_pending(cpu))
  733. rcu_check_callbacks(cpu, user_tick);
  734. scheduler_tick();
  735. run_posix_cpu_timers(p);
  736. }
  737. /*
  738. * Nr of active tasks - counted in fixed-point numbers
  739. */
  740. static unsigned long count_active_tasks(void)
  741. {
  742. return nr_active() * FIXED_1;
  743. }
  744. /*
  745. * Hmm.. Changed this, as the GNU make sources (load.c) seems to
  746. * imply that avenrun[] is the standard name for this kind of thing.
  747. * Nothing else seems to be standardized: the fractional size etc
  748. * all seem to differ on different machines.
  749. *
  750. * Requires xtime_lock to access.
  751. */
  752. unsigned long avenrun[3];
  753. EXPORT_SYMBOL(avenrun);
  754. /*
  755. * calc_load - given tick count, update the avenrun load estimates.
  756. * This is called while holding a write_lock on xtime_lock.
  757. */
  758. static inline void calc_load(unsigned long ticks)
  759. {
  760. unsigned long active_tasks; /* fixed-point */
  761. static int count = LOAD_FREQ;
  762. count -= ticks;
  763. if (count < 0) {
  764. count += LOAD_FREQ;
  765. active_tasks = count_active_tasks();
  766. CALC_LOAD(avenrun[0], EXP_1, active_tasks);
  767. CALC_LOAD(avenrun[1], EXP_5, active_tasks);
  768. CALC_LOAD(avenrun[2], EXP_15, active_tasks);
  769. }
  770. }
  771. /* jiffies at the most recent update of wall time */
  772. unsigned long wall_jiffies = INITIAL_JIFFIES;
  773. /*
  774. * This read-write spinlock protects us from races in SMP while
  775. * playing with xtime and avenrun.
  776. */
  777. #ifndef ARCH_HAVE_XTIME_LOCK
  778. seqlock_t xtime_lock __cacheline_aligned_in_smp = SEQLOCK_UNLOCKED;
  779. EXPORT_SYMBOL(xtime_lock);
  780. #endif
  781. /*
  782. * This function runs timers and the timer-tq in bottom half context.
  783. */
  784. static void run_timer_softirq(struct softirq_action *h)
  785. {
  786. tvec_base_t *base = __get_cpu_var(tvec_bases);
  787. hrtimer_run_queues();
  788. if (time_after_eq(jiffies, base->timer_jiffies))
  789. __run_timers(base);
  790. }
  791. /*
  792. * Called by the local, per-CPU timer interrupt on SMP.
  793. */
  794. void run_local_timers(void)
  795. {
  796. raise_softirq(TIMER_SOFTIRQ);
  797. softlockup_tick();
  798. }
  799. /*
  800. * Called by the timer interrupt. xtime_lock must already be taken
  801. * by the timer IRQ!
  802. */
  803. static inline void update_times(void)
  804. {
  805. unsigned long ticks;
  806. ticks = jiffies - wall_jiffies;
  807. if (ticks) {
  808. wall_jiffies += ticks;
  809. update_wall_time(ticks);
  810. }
  811. calc_load(ticks);
  812. }
  813. /*
  814. * The 64-bit jiffies value is not atomic - you MUST NOT read it
  815. * without sampling the sequence number in xtime_lock.
  816. * jiffies is defined in the linker script...
  817. */
  818. void do_timer(struct pt_regs *regs)
  819. {
  820. jiffies_64++;
  821. /* prevent loading jiffies before storing new jiffies_64 value. */
  822. barrier();
  823. update_times();
  824. }
  825. #ifdef __ARCH_WANT_SYS_ALARM
  826. /*
  827. * For backwards compatibility? This can be done in libc so Alpha
  828. * and all newer ports shouldn't need it.
  829. */
  830. asmlinkage unsigned long sys_alarm(unsigned int seconds)
  831. {
  832. return alarm_setitimer(seconds);
  833. }
  834. #endif
  835. #ifndef __alpha__
  836. /*
  837. * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
  838. * should be moved into arch/i386 instead?
  839. */
  840. /**
  841. * sys_getpid - return the thread group id of the current process
  842. *
  843. * Note, despite the name, this returns the tgid not the pid. The tgid and
  844. * the pid are identical unless CLONE_THREAD was specified on clone() in
  845. * which case the tgid is the same in all threads of the same group.
  846. *
  847. * This is SMP safe as current->tgid does not change.
  848. */
  849. asmlinkage long sys_getpid(void)
  850. {
  851. return current->tgid;
  852. }
  853. /*
  854. * Accessing ->group_leader->real_parent is not SMP-safe, it could
  855. * change from under us. However, rather than getting any lock
  856. * we can use an optimistic algorithm: get the parent
  857. * pid, and go back and check that the parent is still
  858. * the same. If it has changed (which is extremely unlikely
  859. * indeed), we just try again..
  860. *
  861. * NOTE! This depends on the fact that even if we _do_
  862. * get an old value of "parent", we can happily dereference
  863. * the pointer (it was and remains a dereferencable kernel pointer
  864. * no matter what): we just can't necessarily trust the result
  865. * until we know that the parent pointer is valid.
  866. *
  867. * NOTE2: ->group_leader never changes from under us.
  868. */
  869. asmlinkage long sys_getppid(void)
  870. {
  871. int pid;
  872. struct task_struct *me = current;
  873. struct task_struct *parent;
  874. parent = me->group_leader->real_parent;
  875. for (;;) {
  876. pid = parent->tgid;
  877. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  878. {
  879. struct task_struct *old = parent;
  880. /*
  881. * Make sure we read the pid before re-reading the
  882. * parent pointer:
  883. */
  884. smp_rmb();
  885. parent = me->group_leader->real_parent;
  886. if (old != parent)
  887. continue;
  888. }
  889. #endif
  890. break;
  891. }
  892. return pid;
  893. }
  894. asmlinkage long sys_getuid(void)
  895. {
  896. /* Only we change this so SMP safe */
  897. return current->uid;
  898. }
  899. asmlinkage long sys_geteuid(void)
  900. {
  901. /* Only we change this so SMP safe */
  902. return current->euid;
  903. }
  904. asmlinkage long sys_getgid(void)
  905. {
  906. /* Only we change this so SMP safe */
  907. return current->gid;
  908. }
  909. asmlinkage long sys_getegid(void)
  910. {
  911. /* Only we change this so SMP safe */
  912. return current->egid;
  913. }
  914. #endif
  915. static void process_timeout(unsigned long __data)
  916. {
  917. wake_up_process((task_t *)__data);
  918. }
  919. /**
  920. * schedule_timeout - sleep until timeout
  921. * @timeout: timeout value in jiffies
  922. *
  923. * Make the current task sleep until @timeout jiffies have
  924. * elapsed. The routine will return immediately unless
  925. * the current task state has been set (see set_current_state()).
  926. *
  927. * You can set the task state as follows -
  928. *
  929. * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
  930. * pass before the routine returns. The routine will return 0
  931. *
  932. * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
  933. * delivered to the current task. In this case the remaining time
  934. * in jiffies will be returned, or 0 if the timer expired in time
  935. *
  936. * The current task state is guaranteed to be TASK_RUNNING when this
  937. * routine returns.
  938. *
  939. * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
  940. * the CPU away without a bound on the timeout. In this case the return
  941. * value will be %MAX_SCHEDULE_TIMEOUT.
  942. *
  943. * In all cases the return value is guaranteed to be non-negative.
  944. */
  945. fastcall signed long __sched schedule_timeout(signed long timeout)
  946. {
  947. struct timer_list timer;
  948. unsigned long expire;
  949. switch (timeout)
  950. {
  951. case MAX_SCHEDULE_TIMEOUT:
  952. /*
  953. * These two special cases are useful to be comfortable
  954. * in the caller. Nothing more. We could take
  955. * MAX_SCHEDULE_TIMEOUT from one of the negative value
  956. * but I' d like to return a valid offset (>=0) to allow
  957. * the caller to do everything it want with the retval.
  958. */
  959. schedule();
  960. goto out;
  961. default:
  962. /*
  963. * Another bit of PARANOID. Note that the retval will be
  964. * 0 since no piece of kernel is supposed to do a check
  965. * for a negative retval of schedule_timeout() (since it
  966. * should never happens anyway). You just have the printk()
  967. * that will tell you if something is gone wrong and where.
  968. */
  969. if (timeout < 0)
  970. {
  971. printk(KERN_ERR "schedule_timeout: wrong timeout "
  972. "value %lx from %p\n", timeout,
  973. __builtin_return_address(0));
  974. current->state = TASK_RUNNING;
  975. goto out;
  976. }
  977. }
  978. expire = timeout + jiffies;
  979. setup_timer(&timer, process_timeout, (unsigned long)current);
  980. __mod_timer(&timer, expire);
  981. schedule();
  982. del_singleshot_timer_sync(&timer);
  983. timeout = expire - jiffies;
  984. out:
  985. return timeout < 0 ? 0 : timeout;
  986. }
  987. EXPORT_SYMBOL(schedule_timeout);
  988. /*
  989. * We can use __set_current_state() here because schedule_timeout() calls
  990. * schedule() unconditionally.
  991. */
  992. signed long __sched schedule_timeout_interruptible(signed long timeout)
  993. {
  994. __set_current_state(TASK_INTERRUPTIBLE);
  995. return schedule_timeout(timeout);
  996. }
  997. EXPORT_SYMBOL(schedule_timeout_interruptible);
  998. signed long __sched schedule_timeout_uninterruptible(signed long timeout)
  999. {
  1000. __set_current_state(TASK_UNINTERRUPTIBLE);
  1001. return schedule_timeout(timeout);
  1002. }
  1003. EXPORT_SYMBOL(schedule_timeout_uninterruptible);
  1004. /* Thread ID - the internal kernel "pid" */
  1005. asmlinkage long sys_gettid(void)
  1006. {
  1007. return current->pid;
  1008. }
  1009. /*
  1010. * sys_sysinfo - fill in sysinfo struct
  1011. */
  1012. asmlinkage long sys_sysinfo(struct sysinfo __user *info)
  1013. {
  1014. struct sysinfo val;
  1015. unsigned long mem_total, sav_total;
  1016. unsigned int mem_unit, bitcount;
  1017. unsigned long seq;
  1018. memset((char *)&val, 0, sizeof(struct sysinfo));
  1019. do {
  1020. struct timespec tp;
  1021. seq = read_seqbegin(&xtime_lock);
  1022. /*
  1023. * This is annoying. The below is the same thing
  1024. * posix_get_clock_monotonic() does, but it wants to
  1025. * take the lock which we want to cover the loads stuff
  1026. * too.
  1027. */
  1028. getnstimeofday(&tp);
  1029. tp.tv_sec += wall_to_monotonic.tv_sec;
  1030. tp.tv_nsec += wall_to_monotonic.tv_nsec;
  1031. if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
  1032. tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
  1033. tp.tv_sec++;
  1034. }
  1035. val.uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
  1036. val.loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
  1037. val.loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
  1038. val.loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
  1039. val.procs = nr_threads;
  1040. } while (read_seqretry(&xtime_lock, seq));
  1041. si_meminfo(&val);
  1042. si_swapinfo(&val);
  1043. /*
  1044. * If the sum of all the available memory (i.e. ram + swap)
  1045. * is less than can be stored in a 32 bit unsigned long then
  1046. * we can be binary compatible with 2.2.x kernels. If not,
  1047. * well, in that case 2.2.x was broken anyways...
  1048. *
  1049. * -Erik Andersen <andersee@debian.org>
  1050. */
  1051. mem_total = val.totalram + val.totalswap;
  1052. if (mem_total < val.totalram || mem_total < val.totalswap)
  1053. goto out;
  1054. bitcount = 0;
  1055. mem_unit = val.mem_unit;
  1056. while (mem_unit > 1) {
  1057. bitcount++;
  1058. mem_unit >>= 1;
  1059. sav_total = mem_total;
  1060. mem_total <<= 1;
  1061. if (mem_total < sav_total)
  1062. goto out;
  1063. }
  1064. /*
  1065. * If mem_total did not overflow, multiply all memory values by
  1066. * val.mem_unit and set it to 1. This leaves things compatible
  1067. * with 2.2.x, and also retains compatibility with earlier 2.4.x
  1068. * kernels...
  1069. */
  1070. val.mem_unit = 1;
  1071. val.totalram <<= bitcount;
  1072. val.freeram <<= bitcount;
  1073. val.sharedram <<= bitcount;
  1074. val.bufferram <<= bitcount;
  1075. val.totalswap <<= bitcount;
  1076. val.freeswap <<= bitcount;
  1077. val.totalhigh <<= bitcount;
  1078. val.freehigh <<= bitcount;
  1079. out:
  1080. if (copy_to_user(info, &val, sizeof(struct sysinfo)))
  1081. return -EFAULT;
  1082. return 0;
  1083. }
  1084. static int __devinit init_timers_cpu(int cpu)
  1085. {
  1086. int j;
  1087. tvec_base_t *base;
  1088. static char __devinitdata tvec_base_done[NR_CPUS];
  1089. if (!tvec_base_done[cpu]) {
  1090. static char boot_done;
  1091. if (boot_done) {
  1092. /*
  1093. * The APs use this path later in boot
  1094. */
  1095. base = kmalloc_node(sizeof(*base), GFP_KERNEL,
  1096. cpu_to_node(cpu));
  1097. if (!base)
  1098. return -ENOMEM;
  1099. memset(base, 0, sizeof(*base));
  1100. per_cpu(tvec_bases, cpu) = base;
  1101. } else {
  1102. /*
  1103. * This is for the boot CPU - we use compile-time
  1104. * static initialisation because per-cpu memory isn't
  1105. * ready yet and because the memory allocators are not
  1106. * initialised either.
  1107. */
  1108. boot_done = 1;
  1109. base = &boot_tvec_bases;
  1110. }
  1111. tvec_base_done[cpu] = 1;
  1112. } else {
  1113. base = per_cpu(tvec_bases, cpu);
  1114. }
  1115. spin_lock_init(&base->lock);
  1116. for (j = 0; j < TVN_SIZE; j++) {
  1117. INIT_LIST_HEAD(base->tv5.vec + j);
  1118. INIT_LIST_HEAD(base->tv4.vec + j);
  1119. INIT_LIST_HEAD(base->tv3.vec + j);
  1120. INIT_LIST_HEAD(base->tv2.vec + j);
  1121. }
  1122. for (j = 0; j < TVR_SIZE; j++)
  1123. INIT_LIST_HEAD(base->tv1.vec + j);
  1124. base->timer_jiffies = jiffies;
  1125. return 0;
  1126. }
  1127. #ifdef CONFIG_HOTPLUG_CPU
  1128. static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head)
  1129. {
  1130. struct timer_list *timer;
  1131. while (!list_empty(head)) {
  1132. timer = list_entry(head->next, struct timer_list, entry);
  1133. detach_timer(timer, 0);
  1134. timer->base = new_base;
  1135. internal_add_timer(new_base, timer);
  1136. }
  1137. }
  1138. static void __devinit migrate_timers(int cpu)
  1139. {
  1140. tvec_base_t *old_base;
  1141. tvec_base_t *new_base;
  1142. int i;
  1143. BUG_ON(cpu_online(cpu));
  1144. old_base = per_cpu(tvec_bases, cpu);
  1145. new_base = get_cpu_var(tvec_bases);
  1146. local_irq_disable();
  1147. spin_lock(&new_base->lock);
  1148. spin_lock(&old_base->lock);
  1149. BUG_ON(old_base->running_timer);
  1150. for (i = 0; i < TVR_SIZE; i++)
  1151. migrate_timer_list(new_base, old_base->tv1.vec + i);
  1152. for (i = 0; i < TVN_SIZE; i++) {
  1153. migrate_timer_list(new_base, old_base->tv2.vec + i);
  1154. migrate_timer_list(new_base, old_base->tv3.vec + i);
  1155. migrate_timer_list(new_base, old_base->tv4.vec + i);
  1156. migrate_timer_list(new_base, old_base->tv5.vec + i);
  1157. }
  1158. spin_unlock(&old_base->lock);
  1159. spin_unlock(&new_base->lock);
  1160. local_irq_enable();
  1161. put_cpu_var(tvec_bases);
  1162. }
  1163. #endif /* CONFIG_HOTPLUG_CPU */
  1164. static int __devinit timer_cpu_notify(struct notifier_block *self,
  1165. unsigned long action, void *hcpu)
  1166. {
  1167. long cpu = (long)hcpu;
  1168. switch(action) {
  1169. case CPU_UP_PREPARE:
  1170. if (init_timers_cpu(cpu) < 0)
  1171. return NOTIFY_BAD;
  1172. break;
  1173. #ifdef CONFIG_HOTPLUG_CPU
  1174. case CPU_DEAD:
  1175. migrate_timers(cpu);
  1176. break;
  1177. #endif
  1178. default:
  1179. break;
  1180. }
  1181. return NOTIFY_OK;
  1182. }
  1183. static struct notifier_block timers_nb = {
  1184. .notifier_call = timer_cpu_notify,
  1185. };
  1186. void __init init_timers(void)
  1187. {
  1188. timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
  1189. (void *)(long)smp_processor_id());
  1190. register_cpu_notifier(&timers_nb);
  1191. open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL);
  1192. }
  1193. #ifdef CONFIG_TIME_INTERPOLATION
  1194. struct time_interpolator *time_interpolator __read_mostly;
  1195. static struct time_interpolator *time_interpolator_list __read_mostly;
  1196. static DEFINE_SPINLOCK(time_interpolator_lock);
  1197. static inline u64 time_interpolator_get_cycles(unsigned int src)
  1198. {
  1199. unsigned long (*x)(void);
  1200. switch (src)
  1201. {
  1202. case TIME_SOURCE_FUNCTION:
  1203. x = time_interpolator->addr;
  1204. return x();
  1205. case TIME_SOURCE_MMIO64 :
  1206. return readq_relaxed((void __iomem *)time_interpolator->addr);
  1207. case TIME_SOURCE_MMIO32 :
  1208. return readl_relaxed((void __iomem *)time_interpolator->addr);
  1209. default: return get_cycles();
  1210. }
  1211. }
  1212. static inline u64 time_interpolator_get_counter(int writelock)
  1213. {
  1214. unsigned int src = time_interpolator->source;
  1215. if (time_interpolator->jitter)
  1216. {
  1217. u64 lcycle;
  1218. u64 now;
  1219. do {
  1220. lcycle = time_interpolator->last_cycle;
  1221. now = time_interpolator_get_cycles(src);
  1222. if (lcycle && time_after(lcycle, now))
  1223. return lcycle;
  1224. /* When holding the xtime write lock, there's no need
  1225. * to add the overhead of the cmpxchg. Readers are
  1226. * force to retry until the write lock is released.
  1227. */
  1228. if (writelock) {
  1229. time_interpolator->last_cycle = now;
  1230. return now;
  1231. }
  1232. /* Keep track of the last timer value returned. The use of cmpxchg here
  1233. * will cause contention in an SMP environment.
  1234. */
  1235. } while (unlikely(cmpxchg(&time_interpolator->last_cycle, lcycle, now) != lcycle));
  1236. return now;
  1237. }
  1238. else
  1239. return time_interpolator_get_cycles(src);
  1240. }
  1241. void time_interpolator_reset(void)
  1242. {
  1243. time_interpolator->offset = 0;
  1244. time_interpolator->last_counter = time_interpolator_get_counter(1);
  1245. }
  1246. #define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift)
  1247. unsigned long time_interpolator_get_offset(void)
  1248. {
  1249. /* If we do not have a time interpolator set up then just return zero */
  1250. if (!time_interpolator)
  1251. return 0;
  1252. return time_interpolator->offset +
  1253. GET_TI_NSECS(time_interpolator_get_counter(0), time_interpolator);
  1254. }
  1255. #define INTERPOLATOR_ADJUST 65536
  1256. #define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST
  1257. static void time_interpolator_update(long delta_nsec)
  1258. {
  1259. u64 counter;
  1260. unsigned long offset;
  1261. /* If there is no time interpolator set up then do nothing */
  1262. if (!time_interpolator)
  1263. return;
  1264. /*
  1265. * The interpolator compensates for late ticks by accumulating the late
  1266. * time in time_interpolator->offset. A tick earlier than expected will
  1267. * lead to a reset of the offset and a corresponding jump of the clock
  1268. * forward. Again this only works if the interpolator clock is running
  1269. * slightly slower than the regular clock and the tuning logic insures
  1270. * that.
  1271. */
  1272. counter = time_interpolator_get_counter(1);
  1273. offset = time_interpolator->offset +
  1274. GET_TI_NSECS(counter, time_interpolator);
  1275. if (delta_nsec < 0 || (unsigned long) delta_nsec < offset)
  1276. time_interpolator->offset = offset - delta_nsec;
  1277. else {
  1278. time_interpolator->skips++;
  1279. time_interpolator->ns_skipped += delta_nsec - offset;
  1280. time_interpolator->offset = 0;
  1281. }
  1282. time_interpolator->last_counter = counter;
  1283. /* Tuning logic for time interpolator invoked every minute or so.
  1284. * Decrease interpolator clock speed if no skips occurred and an offset is carried.
  1285. * Increase interpolator clock speed if we skip too much time.
  1286. */
  1287. if (jiffies % INTERPOLATOR_ADJUST == 0)
  1288. {
  1289. if (time_interpolator->skips == 0 && time_interpolator->offset > tick_nsec)
  1290. time_interpolator->nsec_per_cyc--;
  1291. if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0)
  1292. time_interpolator->nsec_per_cyc++;
  1293. time_interpolator->skips = 0;
  1294. time_interpolator->ns_skipped = 0;
  1295. }
  1296. }
  1297. static inline int
  1298. is_better_time_interpolator(struct time_interpolator *new)
  1299. {
  1300. if (!time_interpolator)
  1301. return 1;
  1302. return new->frequency > 2*time_interpolator->frequency ||
  1303. (unsigned long)new->drift < (unsigned long)time_interpolator->drift;
  1304. }
  1305. void
  1306. register_time_interpolator(struct time_interpolator *ti)
  1307. {
  1308. unsigned long flags;
  1309. /* Sanity check */
  1310. BUG_ON(ti->frequency == 0 || ti->mask == 0);
  1311. ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency;
  1312. spin_lock(&time_interpolator_lock);
  1313. write_seqlock_irqsave(&xtime_lock, flags);
  1314. if (is_better_time_interpolator(ti)) {
  1315. time_interpolator = ti;
  1316. time_interpolator_reset();
  1317. }
  1318. write_sequnlock_irqrestore(&xtime_lock, flags);
  1319. ti->next = time_interpolator_list;
  1320. time_interpolator_list = ti;
  1321. spin_unlock(&time_interpolator_lock);
  1322. }
  1323. void
  1324. unregister_time_interpolator(struct time_interpolator *ti)
  1325. {
  1326. struct time_interpolator *curr, **prev;
  1327. unsigned long flags;
  1328. spin_lock(&time_interpolator_lock);
  1329. prev = &time_interpolator_list;
  1330. for (curr = *prev; curr; curr = curr->next) {
  1331. if (curr == ti) {
  1332. *prev = curr->next;
  1333. break;
  1334. }
  1335. prev = &curr->next;
  1336. }
  1337. write_seqlock_irqsave(&xtime_lock, flags);
  1338. if (ti == time_interpolator) {
  1339. /* we lost the best time-interpolator: */
  1340. time_interpolator = NULL;
  1341. /* find the next-best interpolator */
  1342. for (curr = time_interpolator_list; curr; curr = curr->next)
  1343. if (is_better_time_interpolator(curr))
  1344. time_interpolator = curr;
  1345. time_interpolator_reset();
  1346. }
  1347. write_sequnlock_irqrestore(&xtime_lock, flags);
  1348. spin_unlock(&time_interpolator_lock);
  1349. }
  1350. #endif /* CONFIG_TIME_INTERPOLATION */
  1351. /**
  1352. * msleep - sleep safely even with waitqueue interruptions
  1353. * @msecs: Time in milliseconds to sleep for
  1354. */
  1355. void msleep(unsigned int msecs)
  1356. {
  1357. unsigned long timeout = msecs_to_jiffies(msecs) + 1;
  1358. while (timeout)
  1359. timeout = schedule_timeout_uninterruptible(timeout);
  1360. }
  1361. EXPORT_SYMBOL(msleep);
  1362. /**
  1363. * msleep_interruptible - sleep waiting for signals
  1364. * @msecs: Time in milliseconds to sleep for
  1365. */
  1366. unsigned long msleep_interruptible(unsigned int msecs)
  1367. {
  1368. unsigned long timeout = msecs_to_jiffies(msecs) + 1;
  1369. while (timeout && !signal_pending(current))
  1370. timeout = schedule_timeout_interruptible(timeout);
  1371. return jiffies_to_msecs(timeout);
  1372. }
  1373. EXPORT_SYMBOL(msleep_interruptible);