12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565 |
- /*
- * linux/kernel/timer.c
- *
- * Kernel internal timers, kernel timekeeping, basic process system calls
- *
- * Copyright (C) 1991, 1992 Linus Torvalds
- *
- * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
- *
- * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
- * "A Kernel Model for Precision Timekeeping" by Dave Mills
- * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
- * serialize accesses to xtime/lost_ticks).
- * Copyright (C) 1998 Andrea Arcangeli
- * 1999-03-10 Improved NTP compatibility by Ulrich Windl
- * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
- * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
- * Copyright (C) 2000, 2001, 2002 Ingo Molnar
- * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
- */
- #include <linux/kernel_stat.h>
- #include <linux/module.h>
- #include <linux/interrupt.h>
- #include <linux/percpu.h>
- #include <linux/init.h>
- #include <linux/mm.h>
- #include <linux/swap.h>
- #include <linux/notifier.h>
- #include <linux/thread_info.h>
- #include <linux/time.h>
- #include <linux/jiffies.h>
- #include <linux/posix-timers.h>
- #include <linux/cpu.h>
- #include <linux/syscalls.h>
- #include <linux/delay.h>
- #include <asm/uaccess.h>
- #include <asm/unistd.h>
- #include <asm/div64.h>
- #include <asm/timex.h>
- #include <asm/io.h>
- #ifdef CONFIG_TIME_INTERPOLATION
- static void time_interpolator_update(long delta_nsec);
- #else
- #define time_interpolator_update(x)
- #endif
- u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
- EXPORT_SYMBOL(jiffies_64);
- /*
- * per-CPU timer vector definitions:
- */
- #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
- #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
- #define TVN_SIZE (1 << TVN_BITS)
- #define TVR_SIZE (1 << TVR_BITS)
- #define TVN_MASK (TVN_SIZE - 1)
- #define TVR_MASK (TVR_SIZE - 1)
- typedef struct tvec_s {
- struct list_head vec[TVN_SIZE];
- } tvec_t;
- typedef struct tvec_root_s {
- struct list_head vec[TVR_SIZE];
- } tvec_root_t;
- struct tvec_t_base_s {
- spinlock_t lock;
- struct timer_list *running_timer;
- unsigned long timer_jiffies;
- tvec_root_t tv1;
- tvec_t tv2;
- tvec_t tv3;
- tvec_t tv4;
- tvec_t tv5;
- } ____cacheline_aligned_in_smp;
- typedef struct tvec_t_base_s tvec_base_t;
- tvec_base_t boot_tvec_bases;
- EXPORT_SYMBOL(boot_tvec_bases);
- static DEFINE_PER_CPU(tvec_base_t *, tvec_bases) = { &boot_tvec_bases };
- static inline void set_running_timer(tvec_base_t *base,
- struct timer_list *timer)
- {
- #ifdef CONFIG_SMP
- base->running_timer = timer;
- #endif
- }
- static void internal_add_timer(tvec_base_t *base, struct timer_list *timer)
- {
- unsigned long expires = timer->expires;
- unsigned long idx = expires - base->timer_jiffies;
- struct list_head *vec;
- if (idx < TVR_SIZE) {
- int i = expires & TVR_MASK;
- vec = base->tv1.vec + i;
- } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
- int i = (expires >> TVR_BITS) & TVN_MASK;
- vec = base->tv2.vec + i;
- } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
- int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
- vec = base->tv3.vec + i;
- } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
- int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
- vec = base->tv4.vec + i;
- } else if ((signed long) idx < 0) {
- /*
- * Can happen if you add a timer with expires == jiffies,
- * or you set a timer to go off in the past
- */
- vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
- } else {
- int i;
- /* If the timeout is larger than 0xffffffff on 64-bit
- * architectures then we use the maximum timeout:
- */
- if (idx > 0xffffffffUL) {
- idx = 0xffffffffUL;
- expires = idx + base->timer_jiffies;
- }
- i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
- vec = base->tv5.vec + i;
- }
- /*
- * Timers are FIFO:
- */
- list_add_tail(&timer->entry, vec);
- }
- /***
- * init_timer - initialize a timer.
- * @timer: the timer to be initialized
- *
- * init_timer() must be done to a timer prior calling *any* of the
- * other timer functions.
- */
- void fastcall init_timer(struct timer_list *timer)
- {
- timer->entry.next = NULL;
- timer->base = per_cpu(tvec_bases, raw_smp_processor_id());
- }
- EXPORT_SYMBOL(init_timer);
- static inline void detach_timer(struct timer_list *timer,
- int clear_pending)
- {
- struct list_head *entry = &timer->entry;
- __list_del(entry->prev, entry->next);
- if (clear_pending)
- entry->next = NULL;
- entry->prev = LIST_POISON2;
- }
- /*
- * We are using hashed locking: holding per_cpu(tvec_bases).lock
- * means that all timers which are tied to this base via timer->base are
- * locked, and the base itself is locked too.
- *
- * So __run_timers/migrate_timers can safely modify all timers which could
- * be found on ->tvX lists.
- *
- * When the timer's base is locked, and the timer removed from list, it is
- * possible to set timer->base = NULL and drop the lock: the timer remains
- * locked.
- */
- static tvec_base_t *lock_timer_base(struct timer_list *timer,
- unsigned long *flags)
- {
- tvec_base_t *base;
- for (;;) {
- base = timer->base;
- if (likely(base != NULL)) {
- spin_lock_irqsave(&base->lock, *flags);
- if (likely(base == timer->base))
- return base;
- /* The timer has migrated to another CPU */
- spin_unlock_irqrestore(&base->lock, *flags);
- }
- cpu_relax();
- }
- }
- int __mod_timer(struct timer_list *timer, unsigned long expires)
- {
- tvec_base_t *base, *new_base;
- unsigned long flags;
- int ret = 0;
- BUG_ON(!timer->function);
- base = lock_timer_base(timer, &flags);
- if (timer_pending(timer)) {
- detach_timer(timer, 0);
- ret = 1;
- }
- new_base = __get_cpu_var(tvec_bases);
- if (base != new_base) {
- /*
- * We are trying to schedule the timer on the local CPU.
- * However we can't change timer's base while it is running,
- * otherwise del_timer_sync() can't detect that the timer's
- * handler yet has not finished. This also guarantees that
- * the timer is serialized wrt itself.
- */
- if (likely(base->running_timer != timer)) {
- /* See the comment in lock_timer_base() */
- timer->base = NULL;
- spin_unlock(&base->lock);
- base = new_base;
- spin_lock(&base->lock);
- timer->base = base;
- }
- }
- timer->expires = expires;
- internal_add_timer(base, timer);
- spin_unlock_irqrestore(&base->lock, flags);
- return ret;
- }
- EXPORT_SYMBOL(__mod_timer);
- /***
- * add_timer_on - start a timer on a particular CPU
- * @timer: the timer to be added
- * @cpu: the CPU to start it on
- *
- * This is not very scalable on SMP. Double adds are not possible.
- */
- void add_timer_on(struct timer_list *timer, int cpu)
- {
- tvec_base_t *base = per_cpu(tvec_bases, cpu);
- unsigned long flags;
- BUG_ON(timer_pending(timer) || !timer->function);
- spin_lock_irqsave(&base->lock, flags);
- timer->base = base;
- internal_add_timer(base, timer);
- spin_unlock_irqrestore(&base->lock, flags);
- }
- /***
- * mod_timer - modify a timer's timeout
- * @timer: the timer to be modified
- *
- * mod_timer is a more efficient way to update the expire field of an
- * active timer (if the timer is inactive it will be activated)
- *
- * mod_timer(timer, expires) is equivalent to:
- *
- * del_timer(timer); timer->expires = expires; add_timer(timer);
- *
- * Note that if there are multiple unserialized concurrent users of the
- * same timer, then mod_timer() is the only safe way to modify the timeout,
- * since add_timer() cannot modify an already running timer.
- *
- * The function returns whether it has modified a pending timer or not.
- * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
- * active timer returns 1.)
- */
- int mod_timer(struct timer_list *timer, unsigned long expires)
- {
- BUG_ON(!timer->function);
- /*
- * This is a common optimization triggered by the
- * networking code - if the timer is re-modified
- * to be the same thing then just return:
- */
- if (timer->expires == expires && timer_pending(timer))
- return 1;
- return __mod_timer(timer, expires);
- }
- EXPORT_SYMBOL(mod_timer);
- /***
- * del_timer - deactive a timer.
- * @timer: the timer to be deactivated
- *
- * del_timer() deactivates a timer - this works on both active and inactive
- * timers.
- *
- * The function returns whether it has deactivated a pending timer or not.
- * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
- * active timer returns 1.)
- */
- int del_timer(struct timer_list *timer)
- {
- tvec_base_t *base;
- unsigned long flags;
- int ret = 0;
- if (timer_pending(timer)) {
- base = lock_timer_base(timer, &flags);
- if (timer_pending(timer)) {
- detach_timer(timer, 1);
- ret = 1;
- }
- spin_unlock_irqrestore(&base->lock, flags);
- }
- return ret;
- }
- EXPORT_SYMBOL(del_timer);
- #ifdef CONFIG_SMP
- /*
- * This function tries to deactivate a timer. Upon successful (ret >= 0)
- * exit the timer is not queued and the handler is not running on any CPU.
- *
- * It must not be called from interrupt contexts.
- */
- int try_to_del_timer_sync(struct timer_list *timer)
- {
- tvec_base_t *base;
- unsigned long flags;
- int ret = -1;
- base = lock_timer_base(timer, &flags);
- if (base->running_timer == timer)
- goto out;
- ret = 0;
- if (timer_pending(timer)) {
- detach_timer(timer, 1);
- ret = 1;
- }
- out:
- spin_unlock_irqrestore(&base->lock, flags);
- return ret;
- }
- /***
- * del_timer_sync - deactivate a timer and wait for the handler to finish.
- * @timer: the timer to be deactivated
- *
- * This function only differs from del_timer() on SMP: besides deactivating
- * the timer it also makes sure the handler has finished executing on other
- * CPUs.
- *
- * Synchronization rules: callers must prevent restarting of the timer,
- * otherwise this function is meaningless. It must not be called from
- * interrupt contexts. The caller must not hold locks which would prevent
- * completion of the timer's handler. The timer's handler must not call
- * add_timer_on(). Upon exit the timer is not queued and the handler is
- * not running on any CPU.
- *
- * The function returns whether it has deactivated a pending timer or not.
- */
- int del_timer_sync(struct timer_list *timer)
- {
- for (;;) {
- int ret = try_to_del_timer_sync(timer);
- if (ret >= 0)
- return ret;
- }
- }
- EXPORT_SYMBOL(del_timer_sync);
- #endif
- static int cascade(tvec_base_t *base, tvec_t *tv, int index)
- {
- /* cascade all the timers from tv up one level */
- struct list_head *head, *curr;
- head = tv->vec + index;
- curr = head->next;
- /*
- * We are removing _all_ timers from the list, so we don't have to
- * detach them individually, just clear the list afterwards.
- */
- while (curr != head) {
- struct timer_list *tmp;
- tmp = list_entry(curr, struct timer_list, entry);
- BUG_ON(tmp->base != base);
- curr = curr->next;
- internal_add_timer(base, tmp);
- }
- INIT_LIST_HEAD(head);
- return index;
- }
- /***
- * __run_timers - run all expired timers (if any) on this CPU.
- * @base: the timer vector to be processed.
- *
- * This function cascades all vectors and executes all expired timer
- * vectors.
- */
- #define INDEX(N) (base->timer_jiffies >> (TVR_BITS + N * TVN_BITS)) & TVN_MASK
- static inline void __run_timers(tvec_base_t *base)
- {
- struct timer_list *timer;
- spin_lock_irq(&base->lock);
- while (time_after_eq(jiffies, base->timer_jiffies)) {
- struct list_head work_list = LIST_HEAD_INIT(work_list);
- struct list_head *head = &work_list;
- int index = base->timer_jiffies & TVR_MASK;
-
- /*
- * Cascade timers:
- */
- if (!index &&
- (!cascade(base, &base->tv2, INDEX(0))) &&
- (!cascade(base, &base->tv3, INDEX(1))) &&
- !cascade(base, &base->tv4, INDEX(2)))
- cascade(base, &base->tv5, INDEX(3));
- ++base->timer_jiffies;
- list_splice_init(base->tv1.vec + index, &work_list);
- while (!list_empty(head)) {
- void (*fn)(unsigned long);
- unsigned long data;
- timer = list_entry(head->next,struct timer_list,entry);
- fn = timer->function;
- data = timer->data;
- set_running_timer(base, timer);
- detach_timer(timer, 1);
- spin_unlock_irq(&base->lock);
- {
- int preempt_count = preempt_count();
- fn(data);
- if (preempt_count != preempt_count()) {
- printk(KERN_WARNING "huh, entered %p "
- "with preempt_count %08x, exited"
- " with %08x?\n",
- fn, preempt_count,
- preempt_count());
- BUG();
- }
- }
- spin_lock_irq(&base->lock);
- }
- }
- set_running_timer(base, NULL);
- spin_unlock_irq(&base->lock);
- }
- #ifdef CONFIG_NO_IDLE_HZ
- /*
- * Find out when the next timer event is due to happen. This
- * is used on S/390 to stop all activity when a cpus is idle.
- * This functions needs to be called disabled.
- */
- unsigned long next_timer_interrupt(void)
- {
- tvec_base_t *base;
- struct list_head *list;
- struct timer_list *nte;
- unsigned long expires;
- unsigned long hr_expires = MAX_JIFFY_OFFSET;
- ktime_t hr_delta;
- tvec_t *varray[4];
- int i, j;
- hr_delta = hrtimer_get_next_event();
- if (hr_delta.tv64 != KTIME_MAX) {
- struct timespec tsdelta;
- tsdelta = ktime_to_timespec(hr_delta);
- hr_expires = timespec_to_jiffies(&tsdelta);
- if (hr_expires < 3)
- return hr_expires + jiffies;
- }
- hr_expires += jiffies;
- base = __get_cpu_var(tvec_bases);
- spin_lock(&base->lock);
- expires = base->timer_jiffies + (LONG_MAX >> 1);
- list = NULL;
- /* Look for timer events in tv1. */
- j = base->timer_jiffies & TVR_MASK;
- do {
- list_for_each_entry(nte, base->tv1.vec + j, entry) {
- expires = nte->expires;
- if (j < (base->timer_jiffies & TVR_MASK))
- list = base->tv2.vec + (INDEX(0));
- goto found;
- }
- j = (j + 1) & TVR_MASK;
- } while (j != (base->timer_jiffies & TVR_MASK));
- /* Check tv2-tv5. */
- varray[0] = &base->tv2;
- varray[1] = &base->tv3;
- varray[2] = &base->tv4;
- varray[3] = &base->tv5;
- for (i = 0; i < 4; i++) {
- j = INDEX(i);
- do {
- if (list_empty(varray[i]->vec + j)) {
- j = (j + 1) & TVN_MASK;
- continue;
- }
- list_for_each_entry(nte, varray[i]->vec + j, entry)
- if (time_before(nte->expires, expires))
- expires = nte->expires;
- if (j < (INDEX(i)) && i < 3)
- list = varray[i + 1]->vec + (INDEX(i + 1));
- goto found;
- } while (j != (INDEX(i)));
- }
- found:
- if (list) {
- /*
- * The search wrapped. We need to look at the next list
- * from next tv element that would cascade into tv element
- * where we found the timer element.
- */
- list_for_each_entry(nte, list, entry) {
- if (time_before(nte->expires, expires))
- expires = nte->expires;
- }
- }
- spin_unlock(&base->lock);
- if (time_before(hr_expires, expires))
- return hr_expires;
- return expires;
- }
- #endif
- /******************************************************************/
- /*
- * Timekeeping variables
- */
- unsigned long tick_usec = TICK_USEC; /* USER_HZ period (usec) */
- unsigned long tick_nsec = TICK_NSEC; /* ACTHZ period (nsec) */
- /*
- * The current time
- * wall_to_monotonic is what we need to add to xtime (or xtime corrected
- * for sub jiffie times) to get to monotonic time. Monotonic is pegged
- * at zero at system boot time, so wall_to_monotonic will be negative,
- * however, we will ALWAYS keep the tv_nsec part positive so we can use
- * the usual normalization.
- */
- struct timespec xtime __attribute__ ((aligned (16)));
- struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
- EXPORT_SYMBOL(xtime);
- /* Don't completely fail for HZ > 500. */
- int tickadj = 500/HZ ? : 1; /* microsecs */
- /*
- * phase-lock loop variables
- */
- /* TIME_ERROR prevents overwriting the CMOS clock */
- int time_state = TIME_OK; /* clock synchronization status */
- int time_status = STA_UNSYNC; /* clock status bits */
- long time_offset; /* time adjustment (us) */
- long time_constant = 2; /* pll time constant */
- long time_tolerance = MAXFREQ; /* frequency tolerance (ppm) */
- long time_precision = 1; /* clock precision (us) */
- long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */
- long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */
- static long time_phase; /* phase offset (scaled us) */
- long time_freq = (((NSEC_PER_SEC + HZ/2) % HZ - HZ/2) << SHIFT_USEC) / NSEC_PER_USEC;
- /* frequency offset (scaled ppm)*/
- static long time_adj; /* tick adjust (scaled 1 / HZ) */
- long time_reftime; /* time at last adjustment (s) */
- long time_adjust;
- long time_next_adjust;
- /*
- * this routine handles the overflow of the microsecond field
- *
- * The tricky bits of code to handle the accurate clock support
- * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
- * They were originally developed for SUN and DEC kernels.
- * All the kudos should go to Dave for this stuff.
- *
- */
- static void second_overflow(void)
- {
- long ltemp;
- /* Bump the maxerror field */
- time_maxerror += time_tolerance >> SHIFT_USEC;
- if (time_maxerror > NTP_PHASE_LIMIT) {
- time_maxerror = NTP_PHASE_LIMIT;
- time_status |= STA_UNSYNC;
- }
- /*
- * Leap second processing. If in leap-insert state at the end of the
- * day, the system clock is set back one second; if in leap-delete
- * state, the system clock is set ahead one second. The microtime()
- * routine or external clock driver will insure that reported time is
- * always monotonic. The ugly divides should be replaced.
- */
- switch (time_state) {
- case TIME_OK:
- if (time_status & STA_INS)
- time_state = TIME_INS;
- else if (time_status & STA_DEL)
- time_state = TIME_DEL;
- break;
- case TIME_INS:
- if (xtime.tv_sec % 86400 == 0) {
- xtime.tv_sec--;
- wall_to_monotonic.tv_sec++;
- /*
- * The timer interpolator will make time change
- * gradually instead of an immediate jump by one second
- */
- time_interpolator_update(-NSEC_PER_SEC);
- time_state = TIME_OOP;
- clock_was_set();
- printk(KERN_NOTICE "Clock: inserting leap second "
- "23:59:60 UTC\n");
- }
- break;
- case TIME_DEL:
- if ((xtime.tv_sec + 1) % 86400 == 0) {
- xtime.tv_sec++;
- wall_to_monotonic.tv_sec--;
- /*
- * Use of time interpolator for a gradual change of
- * time
- */
- time_interpolator_update(NSEC_PER_SEC);
- time_state = TIME_WAIT;
- clock_was_set();
- printk(KERN_NOTICE "Clock: deleting leap second "
- "23:59:59 UTC\n");
- }
- break;
- case TIME_OOP:
- time_state = TIME_WAIT;
- break;
- case TIME_WAIT:
- if (!(time_status & (STA_INS | STA_DEL)))
- time_state = TIME_OK;
- }
- /*
- * Compute the phase adjustment for the next second. In PLL mode, the
- * offset is reduced by a fixed factor times the time constant. In FLL
- * mode the offset is used directly. In either mode, the maximum phase
- * adjustment for each second is clamped so as to spread the adjustment
- * over not more than the number of seconds between updates.
- */
- ltemp = time_offset;
- if (!(time_status & STA_FLL))
- ltemp = shift_right(ltemp, SHIFT_KG + time_constant);
- ltemp = min(ltemp, (MAXPHASE / MINSEC) << SHIFT_UPDATE);
- ltemp = max(ltemp, -(MAXPHASE / MINSEC) << SHIFT_UPDATE);
- time_offset -= ltemp;
- time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
- /*
- * Compute the frequency estimate and additional phase adjustment due
- * to frequency error for the next second.
- */
- ltemp = time_freq;
- time_adj += shift_right(ltemp,(SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE));
- #if HZ == 100
- /*
- * Compensate for (HZ==100) != (1 << SHIFT_HZ). Add 25% and 3.125% to
- * get 128.125; => only 0.125% error (p. 14)
- */
- time_adj += shift_right(time_adj, 2) + shift_right(time_adj, 5);
- #endif
- #if HZ == 250
- /*
- * Compensate for (HZ==250) != (1 << SHIFT_HZ). Add 1.5625% and
- * 0.78125% to get 255.85938; => only 0.05% error (p. 14)
- */
- time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7);
- #endif
- #if HZ == 1000
- /*
- * Compensate for (HZ==1000) != (1 << SHIFT_HZ). Add 1.5625% and
- * 0.78125% to get 1023.4375; => only 0.05% error (p. 14)
- */
- time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7);
- #endif
- }
- /*
- * Returns how many microseconds we need to add to xtime this tick
- * in doing an adjustment requested with adjtime.
- */
- static long adjtime_adjustment(void)
- {
- long time_adjust_step;
- time_adjust_step = time_adjust;
- if (time_adjust_step) {
- /*
- * We are doing an adjtime thing. Prepare time_adjust_step to
- * be within bounds. Note that a positive time_adjust means we
- * want the clock to run faster.
- *
- * Limit the amount of the step to be in the range
- * -tickadj .. +tickadj
- */
- time_adjust_step = min(time_adjust_step, (long)tickadj);
- time_adjust_step = max(time_adjust_step, (long)-tickadj);
- }
- return time_adjust_step;
- }
- /* in the NTP reference this is called "hardclock()" */
- static void update_wall_time_one_tick(void)
- {
- long time_adjust_step, delta_nsec;
- time_adjust_step = adjtime_adjustment();
- if (time_adjust_step)
- /* Reduce by this step the amount of time left */
- time_adjust -= time_adjust_step;
- delta_nsec = tick_nsec + time_adjust_step * 1000;
- /*
- * Advance the phase, once it gets to one microsecond, then
- * advance the tick more.
- */
- time_phase += time_adj;
- if ((time_phase >= FINENSEC) || (time_phase <= -FINENSEC)) {
- long ltemp = shift_right(time_phase, (SHIFT_SCALE - 10));
- time_phase -= ltemp << (SHIFT_SCALE - 10);
- delta_nsec += ltemp;
- }
- xtime.tv_nsec += delta_nsec;
- time_interpolator_update(delta_nsec);
- /* Changes by adjtime() do not take effect till next tick. */
- if (time_next_adjust != 0) {
- time_adjust = time_next_adjust;
- time_next_adjust = 0;
- }
- }
- /*
- * Return how long ticks are at the moment, that is, how much time
- * update_wall_time_one_tick will add to xtime next time we call it
- * (assuming no calls to do_adjtimex in the meantime).
- * The return value is in fixed-point nanoseconds with SHIFT_SCALE-10
- * bits to the right of the binary point.
- * This function has no side-effects.
- */
- u64 current_tick_length(void)
- {
- long delta_nsec;
- delta_nsec = tick_nsec + adjtime_adjustment() * 1000;
- return ((u64) delta_nsec << (SHIFT_SCALE - 10)) + time_adj;
- }
- /*
- * Using a loop looks inefficient, but "ticks" is
- * usually just one (we shouldn't be losing ticks,
- * we're doing this this way mainly for interrupt
- * latency reasons, not because we think we'll
- * have lots of lost timer ticks
- */
- static void update_wall_time(unsigned long ticks)
- {
- do {
- ticks--;
- update_wall_time_one_tick();
- if (xtime.tv_nsec >= 1000000000) {
- xtime.tv_nsec -= 1000000000;
- xtime.tv_sec++;
- second_overflow();
- }
- } while (ticks);
- }
- /*
- * Called from the timer interrupt handler to charge one tick to the current
- * process. user_tick is 1 if the tick is user time, 0 for system.
- */
- void update_process_times(int user_tick)
- {
- struct task_struct *p = current;
- int cpu = smp_processor_id();
- /* Note: this timer irq context must be accounted for as well. */
- if (user_tick)
- account_user_time(p, jiffies_to_cputime(1));
- else
- account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1));
- run_local_timers();
- if (rcu_pending(cpu))
- rcu_check_callbacks(cpu, user_tick);
- scheduler_tick();
- run_posix_cpu_timers(p);
- }
- /*
- * Nr of active tasks - counted in fixed-point numbers
- */
- static unsigned long count_active_tasks(void)
- {
- return nr_active() * FIXED_1;
- }
- /*
- * Hmm.. Changed this, as the GNU make sources (load.c) seems to
- * imply that avenrun[] is the standard name for this kind of thing.
- * Nothing else seems to be standardized: the fractional size etc
- * all seem to differ on different machines.
- *
- * Requires xtime_lock to access.
- */
- unsigned long avenrun[3];
- EXPORT_SYMBOL(avenrun);
- /*
- * calc_load - given tick count, update the avenrun load estimates.
- * This is called while holding a write_lock on xtime_lock.
- */
- static inline void calc_load(unsigned long ticks)
- {
- unsigned long active_tasks; /* fixed-point */
- static int count = LOAD_FREQ;
- count -= ticks;
- if (count < 0) {
- count += LOAD_FREQ;
- active_tasks = count_active_tasks();
- CALC_LOAD(avenrun[0], EXP_1, active_tasks);
- CALC_LOAD(avenrun[1], EXP_5, active_tasks);
- CALC_LOAD(avenrun[2], EXP_15, active_tasks);
- }
- }
- /* jiffies at the most recent update of wall time */
- unsigned long wall_jiffies = INITIAL_JIFFIES;
- /*
- * This read-write spinlock protects us from races in SMP while
- * playing with xtime and avenrun.
- */
- #ifndef ARCH_HAVE_XTIME_LOCK
- seqlock_t xtime_lock __cacheline_aligned_in_smp = SEQLOCK_UNLOCKED;
- EXPORT_SYMBOL(xtime_lock);
- #endif
- /*
- * This function runs timers and the timer-tq in bottom half context.
- */
- static void run_timer_softirq(struct softirq_action *h)
- {
- tvec_base_t *base = __get_cpu_var(tvec_bases);
- hrtimer_run_queues();
- if (time_after_eq(jiffies, base->timer_jiffies))
- __run_timers(base);
- }
- /*
- * Called by the local, per-CPU timer interrupt on SMP.
- */
- void run_local_timers(void)
- {
- raise_softirq(TIMER_SOFTIRQ);
- softlockup_tick();
- }
- /*
- * Called by the timer interrupt. xtime_lock must already be taken
- * by the timer IRQ!
- */
- static inline void update_times(void)
- {
- unsigned long ticks;
- ticks = jiffies - wall_jiffies;
- if (ticks) {
- wall_jiffies += ticks;
- update_wall_time(ticks);
- }
- calc_load(ticks);
- }
-
- /*
- * The 64-bit jiffies value is not atomic - you MUST NOT read it
- * without sampling the sequence number in xtime_lock.
- * jiffies is defined in the linker script...
- */
- void do_timer(struct pt_regs *regs)
- {
- jiffies_64++;
- /* prevent loading jiffies before storing new jiffies_64 value. */
- barrier();
- update_times();
- }
- #ifdef __ARCH_WANT_SYS_ALARM
- /*
- * For backwards compatibility? This can be done in libc so Alpha
- * and all newer ports shouldn't need it.
- */
- asmlinkage unsigned long sys_alarm(unsigned int seconds)
- {
- return alarm_setitimer(seconds);
- }
- #endif
- #ifndef __alpha__
- /*
- * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
- * should be moved into arch/i386 instead?
- */
- /**
- * sys_getpid - return the thread group id of the current process
- *
- * Note, despite the name, this returns the tgid not the pid. The tgid and
- * the pid are identical unless CLONE_THREAD was specified on clone() in
- * which case the tgid is the same in all threads of the same group.
- *
- * This is SMP safe as current->tgid does not change.
- */
- asmlinkage long sys_getpid(void)
- {
- return current->tgid;
- }
- /*
- * Accessing ->group_leader->real_parent is not SMP-safe, it could
- * change from under us. However, rather than getting any lock
- * we can use an optimistic algorithm: get the parent
- * pid, and go back and check that the parent is still
- * the same. If it has changed (which is extremely unlikely
- * indeed), we just try again..
- *
- * NOTE! This depends on the fact that even if we _do_
- * get an old value of "parent", we can happily dereference
- * the pointer (it was and remains a dereferencable kernel pointer
- * no matter what): we just can't necessarily trust the result
- * until we know that the parent pointer is valid.
- *
- * NOTE2: ->group_leader never changes from under us.
- */
- asmlinkage long sys_getppid(void)
- {
- int pid;
- struct task_struct *me = current;
- struct task_struct *parent;
- parent = me->group_leader->real_parent;
- for (;;) {
- pid = parent->tgid;
- #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
- {
- struct task_struct *old = parent;
- /*
- * Make sure we read the pid before re-reading the
- * parent pointer:
- */
- smp_rmb();
- parent = me->group_leader->real_parent;
- if (old != parent)
- continue;
- }
- #endif
- break;
- }
- return pid;
- }
- asmlinkage long sys_getuid(void)
- {
- /* Only we change this so SMP safe */
- return current->uid;
- }
- asmlinkage long sys_geteuid(void)
- {
- /* Only we change this so SMP safe */
- return current->euid;
- }
- asmlinkage long sys_getgid(void)
- {
- /* Only we change this so SMP safe */
- return current->gid;
- }
- asmlinkage long sys_getegid(void)
- {
- /* Only we change this so SMP safe */
- return current->egid;
- }
- #endif
- static void process_timeout(unsigned long __data)
- {
- wake_up_process((task_t *)__data);
- }
- /**
- * schedule_timeout - sleep until timeout
- * @timeout: timeout value in jiffies
- *
- * Make the current task sleep until @timeout jiffies have
- * elapsed. The routine will return immediately unless
- * the current task state has been set (see set_current_state()).
- *
- * You can set the task state as follows -
- *
- * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
- * pass before the routine returns. The routine will return 0
- *
- * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
- * delivered to the current task. In this case the remaining time
- * in jiffies will be returned, or 0 if the timer expired in time
- *
- * The current task state is guaranteed to be TASK_RUNNING when this
- * routine returns.
- *
- * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
- * the CPU away without a bound on the timeout. In this case the return
- * value will be %MAX_SCHEDULE_TIMEOUT.
- *
- * In all cases the return value is guaranteed to be non-negative.
- */
- fastcall signed long __sched schedule_timeout(signed long timeout)
- {
- struct timer_list timer;
- unsigned long expire;
- switch (timeout)
- {
- case MAX_SCHEDULE_TIMEOUT:
- /*
- * These two special cases are useful to be comfortable
- * in the caller. Nothing more. We could take
- * MAX_SCHEDULE_TIMEOUT from one of the negative value
- * but I' d like to return a valid offset (>=0) to allow
- * the caller to do everything it want with the retval.
- */
- schedule();
- goto out;
- default:
- /*
- * Another bit of PARANOID. Note that the retval will be
- * 0 since no piece of kernel is supposed to do a check
- * for a negative retval of schedule_timeout() (since it
- * should never happens anyway). You just have the printk()
- * that will tell you if something is gone wrong and where.
- */
- if (timeout < 0)
- {
- printk(KERN_ERR "schedule_timeout: wrong timeout "
- "value %lx from %p\n", timeout,
- __builtin_return_address(0));
- current->state = TASK_RUNNING;
- goto out;
- }
- }
- expire = timeout + jiffies;
- setup_timer(&timer, process_timeout, (unsigned long)current);
- __mod_timer(&timer, expire);
- schedule();
- del_singleshot_timer_sync(&timer);
- timeout = expire - jiffies;
- out:
- return timeout < 0 ? 0 : timeout;
- }
- EXPORT_SYMBOL(schedule_timeout);
- /*
- * We can use __set_current_state() here because schedule_timeout() calls
- * schedule() unconditionally.
- */
- signed long __sched schedule_timeout_interruptible(signed long timeout)
- {
- __set_current_state(TASK_INTERRUPTIBLE);
- return schedule_timeout(timeout);
- }
- EXPORT_SYMBOL(schedule_timeout_interruptible);
- signed long __sched schedule_timeout_uninterruptible(signed long timeout)
- {
- __set_current_state(TASK_UNINTERRUPTIBLE);
- return schedule_timeout(timeout);
- }
- EXPORT_SYMBOL(schedule_timeout_uninterruptible);
- /* Thread ID - the internal kernel "pid" */
- asmlinkage long sys_gettid(void)
- {
- return current->pid;
- }
- /*
- * sys_sysinfo - fill in sysinfo struct
- */
- asmlinkage long sys_sysinfo(struct sysinfo __user *info)
- {
- struct sysinfo val;
- unsigned long mem_total, sav_total;
- unsigned int mem_unit, bitcount;
- unsigned long seq;
- memset((char *)&val, 0, sizeof(struct sysinfo));
- do {
- struct timespec tp;
- seq = read_seqbegin(&xtime_lock);
- /*
- * This is annoying. The below is the same thing
- * posix_get_clock_monotonic() does, but it wants to
- * take the lock which we want to cover the loads stuff
- * too.
- */
- getnstimeofday(&tp);
- tp.tv_sec += wall_to_monotonic.tv_sec;
- tp.tv_nsec += wall_to_monotonic.tv_nsec;
- if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
- tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
- tp.tv_sec++;
- }
- val.uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
- val.loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
- val.loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
- val.loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
- val.procs = nr_threads;
- } while (read_seqretry(&xtime_lock, seq));
- si_meminfo(&val);
- si_swapinfo(&val);
- /*
- * If the sum of all the available memory (i.e. ram + swap)
- * is less than can be stored in a 32 bit unsigned long then
- * we can be binary compatible with 2.2.x kernels. If not,
- * well, in that case 2.2.x was broken anyways...
- *
- * -Erik Andersen <andersee@debian.org>
- */
- mem_total = val.totalram + val.totalswap;
- if (mem_total < val.totalram || mem_total < val.totalswap)
- goto out;
- bitcount = 0;
- mem_unit = val.mem_unit;
- while (mem_unit > 1) {
- bitcount++;
- mem_unit >>= 1;
- sav_total = mem_total;
- mem_total <<= 1;
- if (mem_total < sav_total)
- goto out;
- }
- /*
- * If mem_total did not overflow, multiply all memory values by
- * val.mem_unit and set it to 1. This leaves things compatible
- * with 2.2.x, and also retains compatibility with earlier 2.4.x
- * kernels...
- */
- val.mem_unit = 1;
- val.totalram <<= bitcount;
- val.freeram <<= bitcount;
- val.sharedram <<= bitcount;
- val.bufferram <<= bitcount;
- val.totalswap <<= bitcount;
- val.freeswap <<= bitcount;
- val.totalhigh <<= bitcount;
- val.freehigh <<= bitcount;
- out:
- if (copy_to_user(info, &val, sizeof(struct sysinfo)))
- return -EFAULT;
- return 0;
- }
- static int __devinit init_timers_cpu(int cpu)
- {
- int j;
- tvec_base_t *base;
- static char __devinitdata tvec_base_done[NR_CPUS];
- if (!tvec_base_done[cpu]) {
- static char boot_done;
- if (boot_done) {
- /*
- * The APs use this path later in boot
- */
- base = kmalloc_node(sizeof(*base), GFP_KERNEL,
- cpu_to_node(cpu));
- if (!base)
- return -ENOMEM;
- memset(base, 0, sizeof(*base));
- per_cpu(tvec_bases, cpu) = base;
- } else {
- /*
- * This is for the boot CPU - we use compile-time
- * static initialisation because per-cpu memory isn't
- * ready yet and because the memory allocators are not
- * initialised either.
- */
- boot_done = 1;
- base = &boot_tvec_bases;
- }
- tvec_base_done[cpu] = 1;
- } else {
- base = per_cpu(tvec_bases, cpu);
- }
- spin_lock_init(&base->lock);
- for (j = 0; j < TVN_SIZE; j++) {
- INIT_LIST_HEAD(base->tv5.vec + j);
- INIT_LIST_HEAD(base->tv4.vec + j);
- INIT_LIST_HEAD(base->tv3.vec + j);
- INIT_LIST_HEAD(base->tv2.vec + j);
- }
- for (j = 0; j < TVR_SIZE; j++)
- INIT_LIST_HEAD(base->tv1.vec + j);
- base->timer_jiffies = jiffies;
- return 0;
- }
- #ifdef CONFIG_HOTPLUG_CPU
- static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head)
- {
- struct timer_list *timer;
- while (!list_empty(head)) {
- timer = list_entry(head->next, struct timer_list, entry);
- detach_timer(timer, 0);
- timer->base = new_base;
- internal_add_timer(new_base, timer);
- }
- }
- static void __devinit migrate_timers(int cpu)
- {
- tvec_base_t *old_base;
- tvec_base_t *new_base;
- int i;
- BUG_ON(cpu_online(cpu));
- old_base = per_cpu(tvec_bases, cpu);
- new_base = get_cpu_var(tvec_bases);
- local_irq_disable();
- spin_lock(&new_base->lock);
- spin_lock(&old_base->lock);
- BUG_ON(old_base->running_timer);
- for (i = 0; i < TVR_SIZE; i++)
- migrate_timer_list(new_base, old_base->tv1.vec + i);
- for (i = 0; i < TVN_SIZE; i++) {
- migrate_timer_list(new_base, old_base->tv2.vec + i);
- migrate_timer_list(new_base, old_base->tv3.vec + i);
- migrate_timer_list(new_base, old_base->tv4.vec + i);
- migrate_timer_list(new_base, old_base->tv5.vec + i);
- }
- spin_unlock(&old_base->lock);
- spin_unlock(&new_base->lock);
- local_irq_enable();
- put_cpu_var(tvec_bases);
- }
- #endif /* CONFIG_HOTPLUG_CPU */
- static int __devinit timer_cpu_notify(struct notifier_block *self,
- unsigned long action, void *hcpu)
- {
- long cpu = (long)hcpu;
- switch(action) {
- case CPU_UP_PREPARE:
- if (init_timers_cpu(cpu) < 0)
- return NOTIFY_BAD;
- break;
- #ifdef CONFIG_HOTPLUG_CPU
- case CPU_DEAD:
- migrate_timers(cpu);
- break;
- #endif
- default:
- break;
- }
- return NOTIFY_OK;
- }
- static struct notifier_block timers_nb = {
- .notifier_call = timer_cpu_notify,
- };
- void __init init_timers(void)
- {
- timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
- (void *)(long)smp_processor_id());
- register_cpu_notifier(&timers_nb);
- open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL);
- }
- #ifdef CONFIG_TIME_INTERPOLATION
- struct time_interpolator *time_interpolator __read_mostly;
- static struct time_interpolator *time_interpolator_list __read_mostly;
- static DEFINE_SPINLOCK(time_interpolator_lock);
- static inline u64 time_interpolator_get_cycles(unsigned int src)
- {
- unsigned long (*x)(void);
- switch (src)
- {
- case TIME_SOURCE_FUNCTION:
- x = time_interpolator->addr;
- return x();
- case TIME_SOURCE_MMIO64 :
- return readq_relaxed((void __iomem *)time_interpolator->addr);
- case TIME_SOURCE_MMIO32 :
- return readl_relaxed((void __iomem *)time_interpolator->addr);
- default: return get_cycles();
- }
- }
- static inline u64 time_interpolator_get_counter(int writelock)
- {
- unsigned int src = time_interpolator->source;
- if (time_interpolator->jitter)
- {
- u64 lcycle;
- u64 now;
- do {
- lcycle = time_interpolator->last_cycle;
- now = time_interpolator_get_cycles(src);
- if (lcycle && time_after(lcycle, now))
- return lcycle;
- /* When holding the xtime write lock, there's no need
- * to add the overhead of the cmpxchg. Readers are
- * force to retry until the write lock is released.
- */
- if (writelock) {
- time_interpolator->last_cycle = now;
- return now;
- }
- /* Keep track of the last timer value returned. The use of cmpxchg here
- * will cause contention in an SMP environment.
- */
- } while (unlikely(cmpxchg(&time_interpolator->last_cycle, lcycle, now) != lcycle));
- return now;
- }
- else
- return time_interpolator_get_cycles(src);
- }
- void time_interpolator_reset(void)
- {
- time_interpolator->offset = 0;
- time_interpolator->last_counter = time_interpolator_get_counter(1);
- }
- #define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift)
- unsigned long time_interpolator_get_offset(void)
- {
- /* If we do not have a time interpolator set up then just return zero */
- if (!time_interpolator)
- return 0;
- return time_interpolator->offset +
- GET_TI_NSECS(time_interpolator_get_counter(0), time_interpolator);
- }
- #define INTERPOLATOR_ADJUST 65536
- #define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST
- static void time_interpolator_update(long delta_nsec)
- {
- u64 counter;
- unsigned long offset;
- /* If there is no time interpolator set up then do nothing */
- if (!time_interpolator)
- return;
- /*
- * The interpolator compensates for late ticks by accumulating the late
- * time in time_interpolator->offset. A tick earlier than expected will
- * lead to a reset of the offset and a corresponding jump of the clock
- * forward. Again this only works if the interpolator clock is running
- * slightly slower than the regular clock and the tuning logic insures
- * that.
- */
- counter = time_interpolator_get_counter(1);
- offset = time_interpolator->offset +
- GET_TI_NSECS(counter, time_interpolator);
- if (delta_nsec < 0 || (unsigned long) delta_nsec < offset)
- time_interpolator->offset = offset - delta_nsec;
- else {
- time_interpolator->skips++;
- time_interpolator->ns_skipped += delta_nsec - offset;
- time_interpolator->offset = 0;
- }
- time_interpolator->last_counter = counter;
- /* Tuning logic for time interpolator invoked every minute or so.
- * Decrease interpolator clock speed if no skips occurred and an offset is carried.
- * Increase interpolator clock speed if we skip too much time.
- */
- if (jiffies % INTERPOLATOR_ADJUST == 0)
- {
- if (time_interpolator->skips == 0 && time_interpolator->offset > tick_nsec)
- time_interpolator->nsec_per_cyc--;
- if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0)
- time_interpolator->nsec_per_cyc++;
- time_interpolator->skips = 0;
- time_interpolator->ns_skipped = 0;
- }
- }
- static inline int
- is_better_time_interpolator(struct time_interpolator *new)
- {
- if (!time_interpolator)
- return 1;
- return new->frequency > 2*time_interpolator->frequency ||
- (unsigned long)new->drift < (unsigned long)time_interpolator->drift;
- }
- void
- register_time_interpolator(struct time_interpolator *ti)
- {
- unsigned long flags;
- /* Sanity check */
- BUG_ON(ti->frequency == 0 || ti->mask == 0);
- ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency;
- spin_lock(&time_interpolator_lock);
- write_seqlock_irqsave(&xtime_lock, flags);
- if (is_better_time_interpolator(ti)) {
- time_interpolator = ti;
- time_interpolator_reset();
- }
- write_sequnlock_irqrestore(&xtime_lock, flags);
- ti->next = time_interpolator_list;
- time_interpolator_list = ti;
- spin_unlock(&time_interpolator_lock);
- }
- void
- unregister_time_interpolator(struct time_interpolator *ti)
- {
- struct time_interpolator *curr, **prev;
- unsigned long flags;
- spin_lock(&time_interpolator_lock);
- prev = &time_interpolator_list;
- for (curr = *prev; curr; curr = curr->next) {
- if (curr == ti) {
- *prev = curr->next;
- break;
- }
- prev = &curr->next;
- }
- write_seqlock_irqsave(&xtime_lock, flags);
- if (ti == time_interpolator) {
- /* we lost the best time-interpolator: */
- time_interpolator = NULL;
- /* find the next-best interpolator */
- for (curr = time_interpolator_list; curr; curr = curr->next)
- if (is_better_time_interpolator(curr))
- time_interpolator = curr;
- time_interpolator_reset();
- }
- write_sequnlock_irqrestore(&xtime_lock, flags);
- spin_unlock(&time_interpolator_lock);
- }
- #endif /* CONFIG_TIME_INTERPOLATION */
- /**
- * msleep - sleep safely even with waitqueue interruptions
- * @msecs: Time in milliseconds to sleep for
- */
- void msleep(unsigned int msecs)
- {
- unsigned long timeout = msecs_to_jiffies(msecs) + 1;
- while (timeout)
- timeout = schedule_timeout_uninterruptible(timeout);
- }
- EXPORT_SYMBOL(msleep);
- /**
- * msleep_interruptible - sleep waiting for signals
- * @msecs: Time in milliseconds to sleep for
- */
- unsigned long msleep_interruptible(unsigned int msecs)
- {
- unsigned long timeout = msecs_to_jiffies(msecs) + 1;
- while (timeout && !signal_pending(current))
- timeout = schedule_timeout_interruptible(timeout);
- return jiffies_to_msecs(timeout);
- }
- EXPORT_SYMBOL(msleep_interruptible);
|