fs_enet-main.c 29 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279
  1. /*
  2. * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
  3. *
  4. * Copyright (c) 2003 Intracom S.A.
  5. * by Pantelis Antoniou <panto@intracom.gr>
  6. *
  7. * 2005 (c) MontaVista Software, Inc.
  8. * Vitaly Bordug <vbordug@ru.mvista.com>
  9. *
  10. * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
  11. * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
  12. *
  13. * This file is licensed under the terms of the GNU General Public License
  14. * version 2. This program is licensed "as is" without any warranty of any
  15. * kind, whether express or implied.
  16. */
  17. #include <linux/module.h>
  18. #include <linux/kernel.h>
  19. #include <linux/types.h>
  20. #include <linux/string.h>
  21. #include <linux/ptrace.h>
  22. #include <linux/errno.h>
  23. #include <linux/ioport.h>
  24. #include <linux/slab.h>
  25. #include <linux/interrupt.h>
  26. #include <linux/init.h>
  27. #include <linux/delay.h>
  28. #include <linux/netdevice.h>
  29. #include <linux/etherdevice.h>
  30. #include <linux/skbuff.h>
  31. #include <linux/spinlock.h>
  32. #include <linux/mii.h>
  33. #include <linux/ethtool.h>
  34. #include <linux/bitops.h>
  35. #include <linux/fs.h>
  36. #include <linux/platform_device.h>
  37. #include <linux/phy.h>
  38. #include <linux/vmalloc.h>
  39. #include <asm/pgtable.h>
  40. #include <asm/pgtable.h>
  41. #include <asm/irq.h>
  42. #include <asm/uaccess.h>
  43. #include "fs_enet.h"
  44. /*************************************************/
  45. static char version[] __devinitdata =
  46. DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")" "\n";
  47. MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
  48. MODULE_DESCRIPTION("Freescale Ethernet Driver");
  49. MODULE_LICENSE("GPL");
  50. MODULE_VERSION(DRV_MODULE_VERSION);
  51. int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
  52. module_param(fs_enet_debug, int, 0);
  53. MODULE_PARM_DESC(fs_enet_debug,
  54. "Freescale bitmapped debugging message enable value");
  55. static void fs_set_multicast_list(struct net_device *dev)
  56. {
  57. struct fs_enet_private *fep = netdev_priv(dev);
  58. (*fep->ops->set_multicast_list)(dev);
  59. }
  60. /* NAPI receive function */
  61. static int fs_enet_rx_napi(struct net_device *dev, int *budget)
  62. {
  63. struct fs_enet_private *fep = netdev_priv(dev);
  64. const struct fs_platform_info *fpi = fep->fpi;
  65. cbd_t *bdp;
  66. struct sk_buff *skb, *skbn, *skbt;
  67. int received = 0;
  68. u16 pkt_len, sc;
  69. int curidx;
  70. int rx_work_limit = 0; /* pacify gcc */
  71. rx_work_limit = min(dev->quota, *budget);
  72. if (!netif_running(dev))
  73. return 0;
  74. /*
  75. * First, grab all of the stats for the incoming packet.
  76. * These get messed up if we get called due to a busy condition.
  77. */
  78. bdp = fep->cur_rx;
  79. /* clear RX status bits for napi*/
  80. (*fep->ops->napi_clear_rx_event)(dev);
  81. while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
  82. curidx = bdp - fep->rx_bd_base;
  83. /*
  84. * Since we have allocated space to hold a complete frame,
  85. * the last indicator should be set.
  86. */
  87. if ((sc & BD_ENET_RX_LAST) == 0)
  88. printk(KERN_WARNING DRV_MODULE_NAME
  89. ": %s rcv is not +last\n",
  90. dev->name);
  91. /*
  92. * Check for errors.
  93. */
  94. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
  95. BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
  96. fep->stats.rx_errors++;
  97. /* Frame too long or too short. */
  98. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
  99. fep->stats.rx_length_errors++;
  100. /* Frame alignment */
  101. if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
  102. fep->stats.rx_frame_errors++;
  103. /* CRC Error */
  104. if (sc & BD_ENET_RX_CR)
  105. fep->stats.rx_crc_errors++;
  106. /* FIFO overrun */
  107. if (sc & BD_ENET_RX_OV)
  108. fep->stats.rx_crc_errors++;
  109. skb = fep->rx_skbuff[curidx];
  110. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  111. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  112. DMA_FROM_DEVICE);
  113. skbn = skb;
  114. } else {
  115. /* napi, got packet but no quota */
  116. if (--rx_work_limit < 0)
  117. break;
  118. skb = fep->rx_skbuff[curidx];
  119. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  120. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  121. DMA_FROM_DEVICE);
  122. /*
  123. * Process the incoming frame.
  124. */
  125. fep->stats.rx_packets++;
  126. pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
  127. fep->stats.rx_bytes += pkt_len + 4;
  128. if (pkt_len <= fpi->rx_copybreak) {
  129. /* +2 to make IP header L1 cache aligned */
  130. skbn = dev_alloc_skb(pkt_len + 2);
  131. if (skbn != NULL) {
  132. skb_reserve(skbn, 2); /* align IP header */
  133. skb_copy_from_linear_data(skb,
  134. skbn->data, pkt_len);
  135. /* swap */
  136. skbt = skb;
  137. skb = skbn;
  138. skbn = skbt;
  139. }
  140. } else
  141. skbn = dev_alloc_skb(ENET_RX_FRSIZE);
  142. if (skbn != NULL) {
  143. skb_put(skb, pkt_len); /* Make room */
  144. skb->protocol = eth_type_trans(skb, dev);
  145. received++;
  146. netif_receive_skb(skb);
  147. } else {
  148. printk(KERN_WARNING DRV_MODULE_NAME
  149. ": %s Memory squeeze, dropping packet.\n",
  150. dev->name);
  151. fep->stats.rx_dropped++;
  152. skbn = skb;
  153. }
  154. }
  155. fep->rx_skbuff[curidx] = skbn;
  156. CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
  157. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  158. DMA_FROM_DEVICE));
  159. CBDW_DATLEN(bdp, 0);
  160. CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
  161. /*
  162. * Update BD pointer to next entry.
  163. */
  164. if ((sc & BD_ENET_RX_WRAP) == 0)
  165. bdp++;
  166. else
  167. bdp = fep->rx_bd_base;
  168. (*fep->ops->rx_bd_done)(dev);
  169. }
  170. fep->cur_rx = bdp;
  171. dev->quota -= received;
  172. *budget -= received;
  173. if (rx_work_limit < 0)
  174. return 1; /* not done */
  175. /* done */
  176. netif_rx_complete(dev);
  177. (*fep->ops->napi_enable_rx)(dev);
  178. return 0;
  179. }
  180. /* non NAPI receive function */
  181. static int fs_enet_rx_non_napi(struct net_device *dev)
  182. {
  183. struct fs_enet_private *fep = netdev_priv(dev);
  184. const struct fs_platform_info *fpi = fep->fpi;
  185. cbd_t *bdp;
  186. struct sk_buff *skb, *skbn, *skbt;
  187. int received = 0;
  188. u16 pkt_len, sc;
  189. int curidx;
  190. /*
  191. * First, grab all of the stats for the incoming packet.
  192. * These get messed up if we get called due to a busy condition.
  193. */
  194. bdp = fep->cur_rx;
  195. while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
  196. curidx = bdp - fep->rx_bd_base;
  197. /*
  198. * Since we have allocated space to hold a complete frame,
  199. * the last indicator should be set.
  200. */
  201. if ((sc & BD_ENET_RX_LAST) == 0)
  202. printk(KERN_WARNING DRV_MODULE_NAME
  203. ": %s rcv is not +last\n",
  204. dev->name);
  205. /*
  206. * Check for errors.
  207. */
  208. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
  209. BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
  210. fep->stats.rx_errors++;
  211. /* Frame too long or too short. */
  212. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
  213. fep->stats.rx_length_errors++;
  214. /* Frame alignment */
  215. if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
  216. fep->stats.rx_frame_errors++;
  217. /* CRC Error */
  218. if (sc & BD_ENET_RX_CR)
  219. fep->stats.rx_crc_errors++;
  220. /* FIFO overrun */
  221. if (sc & BD_ENET_RX_OV)
  222. fep->stats.rx_crc_errors++;
  223. skb = fep->rx_skbuff[curidx];
  224. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  225. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  226. DMA_FROM_DEVICE);
  227. skbn = skb;
  228. } else {
  229. skb = fep->rx_skbuff[curidx];
  230. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  231. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  232. DMA_FROM_DEVICE);
  233. /*
  234. * Process the incoming frame.
  235. */
  236. fep->stats.rx_packets++;
  237. pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
  238. fep->stats.rx_bytes += pkt_len + 4;
  239. if (pkt_len <= fpi->rx_copybreak) {
  240. /* +2 to make IP header L1 cache aligned */
  241. skbn = dev_alloc_skb(pkt_len + 2);
  242. if (skbn != NULL) {
  243. skb_reserve(skbn, 2); /* align IP header */
  244. skb_copy_from_linear_data(skb,
  245. skbn->data, pkt_len);
  246. /* swap */
  247. skbt = skb;
  248. skb = skbn;
  249. skbn = skbt;
  250. }
  251. } else
  252. skbn = dev_alloc_skb(ENET_RX_FRSIZE);
  253. if (skbn != NULL) {
  254. skb_put(skb, pkt_len); /* Make room */
  255. skb->protocol = eth_type_trans(skb, dev);
  256. received++;
  257. netif_rx(skb);
  258. } else {
  259. printk(KERN_WARNING DRV_MODULE_NAME
  260. ": %s Memory squeeze, dropping packet.\n",
  261. dev->name);
  262. fep->stats.rx_dropped++;
  263. skbn = skb;
  264. }
  265. }
  266. fep->rx_skbuff[curidx] = skbn;
  267. CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
  268. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  269. DMA_FROM_DEVICE));
  270. CBDW_DATLEN(bdp, 0);
  271. CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
  272. /*
  273. * Update BD pointer to next entry.
  274. */
  275. if ((sc & BD_ENET_RX_WRAP) == 0)
  276. bdp++;
  277. else
  278. bdp = fep->rx_bd_base;
  279. (*fep->ops->rx_bd_done)(dev);
  280. }
  281. fep->cur_rx = bdp;
  282. return 0;
  283. }
  284. static void fs_enet_tx(struct net_device *dev)
  285. {
  286. struct fs_enet_private *fep = netdev_priv(dev);
  287. cbd_t *bdp;
  288. struct sk_buff *skb;
  289. int dirtyidx, do_wake, do_restart;
  290. u16 sc;
  291. spin_lock(&fep->lock);
  292. bdp = fep->dirty_tx;
  293. do_wake = do_restart = 0;
  294. while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
  295. dirtyidx = bdp - fep->tx_bd_base;
  296. if (fep->tx_free == fep->tx_ring)
  297. break;
  298. skb = fep->tx_skbuff[dirtyidx];
  299. /*
  300. * Check for errors.
  301. */
  302. if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
  303. BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
  304. if (sc & BD_ENET_TX_HB) /* No heartbeat */
  305. fep->stats.tx_heartbeat_errors++;
  306. if (sc & BD_ENET_TX_LC) /* Late collision */
  307. fep->stats.tx_window_errors++;
  308. if (sc & BD_ENET_TX_RL) /* Retrans limit */
  309. fep->stats.tx_aborted_errors++;
  310. if (sc & BD_ENET_TX_UN) /* Underrun */
  311. fep->stats.tx_fifo_errors++;
  312. if (sc & BD_ENET_TX_CSL) /* Carrier lost */
  313. fep->stats.tx_carrier_errors++;
  314. if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
  315. fep->stats.tx_errors++;
  316. do_restart = 1;
  317. }
  318. } else
  319. fep->stats.tx_packets++;
  320. if (sc & BD_ENET_TX_READY)
  321. printk(KERN_WARNING DRV_MODULE_NAME
  322. ": %s HEY! Enet xmit interrupt and TX_READY.\n",
  323. dev->name);
  324. /*
  325. * Deferred means some collisions occurred during transmit,
  326. * but we eventually sent the packet OK.
  327. */
  328. if (sc & BD_ENET_TX_DEF)
  329. fep->stats.collisions++;
  330. /* unmap */
  331. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  332. skb->len, DMA_TO_DEVICE);
  333. /*
  334. * Free the sk buffer associated with this last transmit.
  335. */
  336. dev_kfree_skb_irq(skb);
  337. fep->tx_skbuff[dirtyidx] = NULL;
  338. /*
  339. * Update pointer to next buffer descriptor to be transmitted.
  340. */
  341. if ((sc & BD_ENET_TX_WRAP) == 0)
  342. bdp++;
  343. else
  344. bdp = fep->tx_bd_base;
  345. /*
  346. * Since we have freed up a buffer, the ring is no longer
  347. * full.
  348. */
  349. if (!fep->tx_free++)
  350. do_wake = 1;
  351. }
  352. fep->dirty_tx = bdp;
  353. if (do_restart)
  354. (*fep->ops->tx_restart)(dev);
  355. spin_unlock(&fep->lock);
  356. if (do_wake)
  357. netif_wake_queue(dev);
  358. }
  359. /*
  360. * The interrupt handler.
  361. * This is called from the MPC core interrupt.
  362. */
  363. static irqreturn_t
  364. fs_enet_interrupt(int irq, void *dev_id)
  365. {
  366. struct net_device *dev = dev_id;
  367. struct fs_enet_private *fep;
  368. const struct fs_platform_info *fpi;
  369. u32 int_events;
  370. u32 int_clr_events;
  371. int nr, napi_ok;
  372. int handled;
  373. fep = netdev_priv(dev);
  374. fpi = fep->fpi;
  375. nr = 0;
  376. while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
  377. nr++;
  378. int_clr_events = int_events;
  379. if (fpi->use_napi)
  380. int_clr_events &= ~fep->ev_napi_rx;
  381. (*fep->ops->clear_int_events)(dev, int_clr_events);
  382. if (int_events & fep->ev_err)
  383. (*fep->ops->ev_error)(dev, int_events);
  384. if (int_events & fep->ev_rx) {
  385. if (!fpi->use_napi)
  386. fs_enet_rx_non_napi(dev);
  387. else {
  388. napi_ok = netif_rx_schedule_prep(dev);
  389. (*fep->ops->napi_disable_rx)(dev);
  390. (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
  391. /* NOTE: it is possible for FCCs in NAPI mode */
  392. /* to submit a spurious interrupt while in poll */
  393. if (napi_ok)
  394. __netif_rx_schedule(dev);
  395. }
  396. }
  397. if (int_events & fep->ev_tx)
  398. fs_enet_tx(dev);
  399. }
  400. handled = nr > 0;
  401. return IRQ_RETVAL(handled);
  402. }
  403. void fs_init_bds(struct net_device *dev)
  404. {
  405. struct fs_enet_private *fep = netdev_priv(dev);
  406. cbd_t *bdp;
  407. struct sk_buff *skb;
  408. int i;
  409. fs_cleanup_bds(dev);
  410. fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
  411. fep->tx_free = fep->tx_ring;
  412. fep->cur_rx = fep->rx_bd_base;
  413. /*
  414. * Initialize the receive buffer descriptors.
  415. */
  416. for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
  417. skb = dev_alloc_skb(ENET_RX_FRSIZE);
  418. if (skb == NULL) {
  419. printk(KERN_WARNING DRV_MODULE_NAME
  420. ": %s Memory squeeze, unable to allocate skb\n",
  421. dev->name);
  422. break;
  423. }
  424. fep->rx_skbuff[i] = skb;
  425. CBDW_BUFADDR(bdp,
  426. dma_map_single(fep->dev, skb->data,
  427. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  428. DMA_FROM_DEVICE));
  429. CBDW_DATLEN(bdp, 0); /* zero */
  430. CBDW_SC(bdp, BD_ENET_RX_EMPTY |
  431. ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
  432. }
  433. /*
  434. * if we failed, fillup remainder
  435. */
  436. for (; i < fep->rx_ring; i++, bdp++) {
  437. fep->rx_skbuff[i] = NULL;
  438. CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
  439. }
  440. /*
  441. * ...and the same for transmit.
  442. */
  443. for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
  444. fep->tx_skbuff[i] = NULL;
  445. CBDW_BUFADDR(bdp, 0);
  446. CBDW_DATLEN(bdp, 0);
  447. CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
  448. }
  449. }
  450. void fs_cleanup_bds(struct net_device *dev)
  451. {
  452. struct fs_enet_private *fep = netdev_priv(dev);
  453. struct sk_buff *skb;
  454. cbd_t *bdp;
  455. int i;
  456. /*
  457. * Reset SKB transmit buffers.
  458. */
  459. for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
  460. if ((skb = fep->tx_skbuff[i]) == NULL)
  461. continue;
  462. /* unmap */
  463. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  464. skb->len, DMA_TO_DEVICE);
  465. fep->tx_skbuff[i] = NULL;
  466. dev_kfree_skb(skb);
  467. }
  468. /*
  469. * Reset SKB receive buffers
  470. */
  471. for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
  472. if ((skb = fep->rx_skbuff[i]) == NULL)
  473. continue;
  474. /* unmap */
  475. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  476. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  477. DMA_FROM_DEVICE);
  478. fep->rx_skbuff[i] = NULL;
  479. dev_kfree_skb(skb);
  480. }
  481. }
  482. /**********************************************************************************/
  483. static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
  484. {
  485. struct fs_enet_private *fep = netdev_priv(dev);
  486. cbd_t *bdp;
  487. int curidx;
  488. u16 sc;
  489. unsigned long flags;
  490. spin_lock_irqsave(&fep->tx_lock, flags);
  491. /*
  492. * Fill in a Tx ring entry
  493. */
  494. bdp = fep->cur_tx;
  495. if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
  496. netif_stop_queue(dev);
  497. spin_unlock_irqrestore(&fep->tx_lock, flags);
  498. /*
  499. * Ooops. All transmit buffers are full. Bail out.
  500. * This should not happen, since the tx queue should be stopped.
  501. */
  502. printk(KERN_WARNING DRV_MODULE_NAME
  503. ": %s tx queue full!.\n", dev->name);
  504. return NETDEV_TX_BUSY;
  505. }
  506. curidx = bdp - fep->tx_bd_base;
  507. /*
  508. * Clear all of the status flags.
  509. */
  510. CBDC_SC(bdp, BD_ENET_TX_STATS);
  511. /*
  512. * Save skb pointer.
  513. */
  514. fep->tx_skbuff[curidx] = skb;
  515. fep->stats.tx_bytes += skb->len;
  516. /*
  517. * Push the data cache so the CPM does not get stale memory data.
  518. */
  519. CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
  520. skb->data, skb->len, DMA_TO_DEVICE));
  521. CBDW_DATLEN(bdp, skb->len);
  522. dev->trans_start = jiffies;
  523. /*
  524. * If this was the last BD in the ring, start at the beginning again.
  525. */
  526. if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
  527. fep->cur_tx++;
  528. else
  529. fep->cur_tx = fep->tx_bd_base;
  530. if (!--fep->tx_free)
  531. netif_stop_queue(dev);
  532. /* Trigger transmission start */
  533. sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
  534. BD_ENET_TX_LAST | BD_ENET_TX_TC;
  535. /* note that while FEC does not have this bit
  536. * it marks it as available for software use
  537. * yay for hw reuse :) */
  538. if (skb->len <= 60)
  539. sc |= BD_ENET_TX_PAD;
  540. CBDS_SC(bdp, sc);
  541. (*fep->ops->tx_kickstart)(dev);
  542. spin_unlock_irqrestore(&fep->tx_lock, flags);
  543. return NETDEV_TX_OK;
  544. }
  545. static int fs_request_irq(struct net_device *dev, int irq, const char *name,
  546. irq_handler_t irqf)
  547. {
  548. struct fs_enet_private *fep = netdev_priv(dev);
  549. (*fep->ops->pre_request_irq)(dev, irq);
  550. return request_irq(irq, irqf, IRQF_SHARED, name, dev);
  551. }
  552. static void fs_free_irq(struct net_device *dev, int irq)
  553. {
  554. struct fs_enet_private *fep = netdev_priv(dev);
  555. free_irq(irq, dev);
  556. (*fep->ops->post_free_irq)(dev, irq);
  557. }
  558. static void fs_timeout(struct net_device *dev)
  559. {
  560. struct fs_enet_private *fep = netdev_priv(dev);
  561. unsigned long flags;
  562. int wake = 0;
  563. fep->stats.tx_errors++;
  564. spin_lock_irqsave(&fep->lock, flags);
  565. if (dev->flags & IFF_UP) {
  566. phy_stop(fep->phydev);
  567. (*fep->ops->stop)(dev);
  568. (*fep->ops->restart)(dev);
  569. phy_start(fep->phydev);
  570. }
  571. phy_start(fep->phydev);
  572. wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
  573. spin_unlock_irqrestore(&fep->lock, flags);
  574. if (wake)
  575. netif_wake_queue(dev);
  576. }
  577. /*-----------------------------------------------------------------------------
  578. * generic link-change handler - should be sufficient for most cases
  579. *-----------------------------------------------------------------------------*/
  580. static void generic_adjust_link(struct net_device *dev)
  581. {
  582. struct fs_enet_private *fep = netdev_priv(dev);
  583. struct phy_device *phydev = fep->phydev;
  584. int new_state = 0;
  585. if (phydev->link) {
  586. /* adjust to duplex mode */
  587. if (phydev->duplex != fep->oldduplex){
  588. new_state = 1;
  589. fep->oldduplex = phydev->duplex;
  590. }
  591. if (phydev->speed != fep->oldspeed) {
  592. new_state = 1;
  593. fep->oldspeed = phydev->speed;
  594. }
  595. if (!fep->oldlink) {
  596. new_state = 1;
  597. fep->oldlink = 1;
  598. netif_schedule(dev);
  599. netif_carrier_on(dev);
  600. netif_start_queue(dev);
  601. }
  602. if (new_state)
  603. fep->ops->restart(dev);
  604. } else if (fep->oldlink) {
  605. new_state = 1;
  606. fep->oldlink = 0;
  607. fep->oldspeed = 0;
  608. fep->oldduplex = -1;
  609. netif_carrier_off(dev);
  610. netif_stop_queue(dev);
  611. }
  612. if (new_state && netif_msg_link(fep))
  613. phy_print_status(phydev);
  614. }
  615. static void fs_adjust_link(struct net_device *dev)
  616. {
  617. struct fs_enet_private *fep = netdev_priv(dev);
  618. unsigned long flags;
  619. spin_lock_irqsave(&fep->lock, flags);
  620. if(fep->ops->adjust_link)
  621. fep->ops->adjust_link(dev);
  622. else
  623. generic_adjust_link(dev);
  624. spin_unlock_irqrestore(&fep->lock, flags);
  625. }
  626. static int fs_init_phy(struct net_device *dev)
  627. {
  628. struct fs_enet_private *fep = netdev_priv(dev);
  629. struct phy_device *phydev;
  630. fep->oldlink = 0;
  631. fep->oldspeed = 0;
  632. fep->oldduplex = -1;
  633. if(fep->fpi->bus_id)
  634. phydev = phy_connect(dev, fep->fpi->bus_id, &fs_adjust_link, 0,
  635. PHY_INTERFACE_MODE_MII);
  636. else {
  637. printk("No phy bus ID specified in BSP code\n");
  638. return -EINVAL;
  639. }
  640. if (IS_ERR(phydev)) {
  641. printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
  642. return PTR_ERR(phydev);
  643. }
  644. fep->phydev = phydev;
  645. return 0;
  646. }
  647. static int fs_enet_open(struct net_device *dev)
  648. {
  649. struct fs_enet_private *fep = netdev_priv(dev);
  650. int r;
  651. int err;
  652. /* Install our interrupt handler. */
  653. r = fs_request_irq(dev, fep->interrupt, "fs_enet-mac", fs_enet_interrupt);
  654. if (r != 0) {
  655. printk(KERN_ERR DRV_MODULE_NAME
  656. ": %s Could not allocate FS_ENET IRQ!", dev->name);
  657. return -EINVAL;
  658. }
  659. err = fs_init_phy(dev);
  660. if(err)
  661. return err;
  662. phy_start(fep->phydev);
  663. return 0;
  664. }
  665. static int fs_enet_close(struct net_device *dev)
  666. {
  667. struct fs_enet_private *fep = netdev_priv(dev);
  668. unsigned long flags;
  669. netif_stop_queue(dev);
  670. netif_carrier_off(dev);
  671. phy_stop(fep->phydev);
  672. spin_lock_irqsave(&fep->lock, flags);
  673. (*fep->ops->stop)(dev);
  674. spin_unlock_irqrestore(&fep->lock, flags);
  675. /* release any irqs */
  676. phy_disconnect(fep->phydev);
  677. fep->phydev = NULL;
  678. fs_free_irq(dev, fep->interrupt);
  679. return 0;
  680. }
  681. static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
  682. {
  683. struct fs_enet_private *fep = netdev_priv(dev);
  684. return &fep->stats;
  685. }
  686. /*************************************************************************/
  687. static void fs_get_drvinfo(struct net_device *dev,
  688. struct ethtool_drvinfo *info)
  689. {
  690. strcpy(info->driver, DRV_MODULE_NAME);
  691. strcpy(info->version, DRV_MODULE_VERSION);
  692. }
  693. static int fs_get_regs_len(struct net_device *dev)
  694. {
  695. struct fs_enet_private *fep = netdev_priv(dev);
  696. return (*fep->ops->get_regs_len)(dev);
  697. }
  698. static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  699. void *p)
  700. {
  701. struct fs_enet_private *fep = netdev_priv(dev);
  702. unsigned long flags;
  703. int r, len;
  704. len = regs->len;
  705. spin_lock_irqsave(&fep->lock, flags);
  706. r = (*fep->ops->get_regs)(dev, p, &len);
  707. spin_unlock_irqrestore(&fep->lock, flags);
  708. if (r == 0)
  709. regs->version = 0;
  710. }
  711. static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  712. {
  713. struct fs_enet_private *fep = netdev_priv(dev);
  714. return phy_ethtool_gset(fep->phydev, cmd);
  715. }
  716. static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  717. {
  718. struct fs_enet_private *fep = netdev_priv(dev);
  719. phy_ethtool_sset(fep->phydev, cmd);
  720. return 0;
  721. }
  722. static int fs_nway_reset(struct net_device *dev)
  723. {
  724. return 0;
  725. }
  726. static u32 fs_get_msglevel(struct net_device *dev)
  727. {
  728. struct fs_enet_private *fep = netdev_priv(dev);
  729. return fep->msg_enable;
  730. }
  731. static void fs_set_msglevel(struct net_device *dev, u32 value)
  732. {
  733. struct fs_enet_private *fep = netdev_priv(dev);
  734. fep->msg_enable = value;
  735. }
  736. static const struct ethtool_ops fs_ethtool_ops = {
  737. .get_drvinfo = fs_get_drvinfo,
  738. .get_regs_len = fs_get_regs_len,
  739. .get_settings = fs_get_settings,
  740. .set_settings = fs_set_settings,
  741. .nway_reset = fs_nway_reset,
  742. .get_link = ethtool_op_get_link,
  743. .get_msglevel = fs_get_msglevel,
  744. .set_msglevel = fs_set_msglevel,
  745. .get_tx_csum = ethtool_op_get_tx_csum,
  746. .set_tx_csum = ethtool_op_set_tx_csum, /* local! */
  747. .get_sg = ethtool_op_get_sg,
  748. .set_sg = ethtool_op_set_sg,
  749. .get_regs = fs_get_regs,
  750. };
  751. static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
  752. {
  753. struct fs_enet_private *fep = netdev_priv(dev);
  754. struct mii_ioctl_data *mii = (struct mii_ioctl_data *)&rq->ifr_data;
  755. unsigned long flags;
  756. int rc;
  757. if (!netif_running(dev))
  758. return -EINVAL;
  759. spin_lock_irqsave(&fep->lock, flags);
  760. rc = phy_mii_ioctl(fep->phydev, mii, cmd);
  761. spin_unlock_irqrestore(&fep->lock, flags);
  762. return rc;
  763. }
  764. extern int fs_mii_connect(struct net_device *dev);
  765. extern void fs_mii_disconnect(struct net_device *dev);
  766. static struct net_device *fs_init_instance(struct device *dev,
  767. struct fs_platform_info *fpi)
  768. {
  769. struct net_device *ndev = NULL;
  770. struct fs_enet_private *fep = NULL;
  771. int privsize, i, r, err = 0, registered = 0;
  772. fpi->fs_no = fs_get_id(fpi);
  773. /* guard */
  774. if ((unsigned int)fpi->fs_no >= FS_MAX_INDEX)
  775. return ERR_PTR(-EINVAL);
  776. privsize = sizeof(*fep) + (sizeof(struct sk_buff **) *
  777. (fpi->rx_ring + fpi->tx_ring));
  778. ndev = alloc_etherdev(privsize);
  779. if (!ndev) {
  780. err = -ENOMEM;
  781. goto err;
  782. }
  783. SET_MODULE_OWNER(ndev);
  784. fep = netdev_priv(ndev);
  785. memset(fep, 0, privsize); /* clear everything */
  786. fep->dev = dev;
  787. dev_set_drvdata(dev, ndev);
  788. fep->fpi = fpi;
  789. if (fpi->init_ioports)
  790. fpi->init_ioports((struct fs_platform_info *)fpi);
  791. #ifdef CONFIG_FS_ENET_HAS_FEC
  792. if (fs_get_fec_index(fpi->fs_no) >= 0)
  793. fep->ops = &fs_fec_ops;
  794. #endif
  795. #ifdef CONFIG_FS_ENET_HAS_SCC
  796. if (fs_get_scc_index(fpi->fs_no) >=0 )
  797. fep->ops = &fs_scc_ops;
  798. #endif
  799. #ifdef CONFIG_FS_ENET_HAS_FCC
  800. if (fs_get_fcc_index(fpi->fs_no) >= 0)
  801. fep->ops = &fs_fcc_ops;
  802. #endif
  803. if (fep->ops == NULL) {
  804. printk(KERN_ERR DRV_MODULE_NAME
  805. ": %s No matching ops found (%d).\n",
  806. ndev->name, fpi->fs_no);
  807. err = -EINVAL;
  808. goto err;
  809. }
  810. r = (*fep->ops->setup_data)(ndev);
  811. if (r != 0) {
  812. printk(KERN_ERR DRV_MODULE_NAME
  813. ": %s setup_data failed\n",
  814. ndev->name);
  815. err = r;
  816. goto err;
  817. }
  818. /* point rx_skbuff, tx_skbuff */
  819. fep->rx_skbuff = (struct sk_buff **)&fep[1];
  820. fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
  821. /* init locks */
  822. spin_lock_init(&fep->lock);
  823. spin_lock_init(&fep->tx_lock);
  824. /*
  825. * Set the Ethernet address.
  826. */
  827. for (i = 0; i < 6; i++)
  828. ndev->dev_addr[i] = fpi->macaddr[i];
  829. r = (*fep->ops->allocate_bd)(ndev);
  830. if (fep->ring_base == NULL) {
  831. printk(KERN_ERR DRV_MODULE_NAME
  832. ": %s buffer descriptor alloc failed (%d).\n", ndev->name, r);
  833. err = r;
  834. goto err;
  835. }
  836. /*
  837. * Set receive and transmit descriptor base.
  838. */
  839. fep->rx_bd_base = fep->ring_base;
  840. fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
  841. /* initialize ring size variables */
  842. fep->tx_ring = fpi->tx_ring;
  843. fep->rx_ring = fpi->rx_ring;
  844. /*
  845. * The FEC Ethernet specific entries in the device structure.
  846. */
  847. ndev->open = fs_enet_open;
  848. ndev->hard_start_xmit = fs_enet_start_xmit;
  849. ndev->tx_timeout = fs_timeout;
  850. ndev->watchdog_timeo = 2 * HZ;
  851. ndev->stop = fs_enet_close;
  852. ndev->get_stats = fs_enet_get_stats;
  853. ndev->set_multicast_list = fs_set_multicast_list;
  854. if (fpi->use_napi) {
  855. ndev->poll = fs_enet_rx_napi;
  856. ndev->weight = fpi->napi_weight;
  857. }
  858. ndev->ethtool_ops = &fs_ethtool_ops;
  859. ndev->do_ioctl = fs_ioctl;
  860. init_timer(&fep->phy_timer_list);
  861. netif_carrier_off(ndev);
  862. err = register_netdev(ndev);
  863. if (err != 0) {
  864. printk(KERN_ERR DRV_MODULE_NAME
  865. ": %s register_netdev failed.\n", ndev->name);
  866. goto err;
  867. }
  868. registered = 1;
  869. return ndev;
  870. err:
  871. if (ndev != NULL) {
  872. if (registered)
  873. unregister_netdev(ndev);
  874. if (fep != NULL) {
  875. (*fep->ops->free_bd)(ndev);
  876. (*fep->ops->cleanup_data)(ndev);
  877. }
  878. free_netdev(ndev);
  879. }
  880. dev_set_drvdata(dev, NULL);
  881. return ERR_PTR(err);
  882. }
  883. static int fs_cleanup_instance(struct net_device *ndev)
  884. {
  885. struct fs_enet_private *fep;
  886. const struct fs_platform_info *fpi;
  887. struct device *dev;
  888. if (ndev == NULL)
  889. return -EINVAL;
  890. fep = netdev_priv(ndev);
  891. if (fep == NULL)
  892. return -EINVAL;
  893. fpi = fep->fpi;
  894. unregister_netdev(ndev);
  895. dma_free_coherent(fep->dev, (fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
  896. fep->ring_base, fep->ring_mem_addr);
  897. /* reset it */
  898. (*fep->ops->cleanup_data)(ndev);
  899. dev = fep->dev;
  900. if (dev != NULL) {
  901. dev_set_drvdata(dev, NULL);
  902. fep->dev = NULL;
  903. }
  904. free_netdev(ndev);
  905. return 0;
  906. }
  907. /**************************************************************************************/
  908. /* handy pointer to the immap */
  909. void *fs_enet_immap = NULL;
  910. static int setup_immap(void)
  911. {
  912. phys_addr_t paddr = 0;
  913. unsigned long size = 0;
  914. #ifdef CONFIG_CPM1
  915. paddr = IMAP_ADDR;
  916. size = 0x10000; /* map 64K */
  917. #endif
  918. #ifdef CONFIG_CPM2
  919. paddr = CPM_MAP_ADDR;
  920. size = 0x40000; /* map 256 K */
  921. #endif
  922. fs_enet_immap = ioremap(paddr, size);
  923. if (fs_enet_immap == NULL)
  924. return -EBADF; /* XXX ahem; maybe just BUG_ON? */
  925. return 0;
  926. }
  927. static void cleanup_immap(void)
  928. {
  929. if (fs_enet_immap != NULL) {
  930. iounmap(fs_enet_immap);
  931. fs_enet_immap = NULL;
  932. }
  933. }
  934. /**************************************************************************************/
  935. static int __devinit fs_enet_probe(struct device *dev)
  936. {
  937. struct net_device *ndev;
  938. /* no fixup - no device */
  939. if (dev->platform_data == NULL) {
  940. printk(KERN_INFO "fs_enet: "
  941. "probe called with no platform data; "
  942. "remove unused devices\n");
  943. return -ENODEV;
  944. }
  945. ndev = fs_init_instance(dev, dev->platform_data);
  946. if (IS_ERR(ndev))
  947. return PTR_ERR(ndev);
  948. return 0;
  949. }
  950. static int fs_enet_remove(struct device *dev)
  951. {
  952. return fs_cleanup_instance(dev_get_drvdata(dev));
  953. }
  954. static struct device_driver fs_enet_fec_driver = {
  955. .name = "fsl-cpm-fec",
  956. .bus = &platform_bus_type,
  957. .probe = fs_enet_probe,
  958. .remove = fs_enet_remove,
  959. #ifdef CONFIG_PM
  960. /* .suspend = fs_enet_suspend, TODO */
  961. /* .resume = fs_enet_resume, TODO */
  962. #endif
  963. };
  964. static struct device_driver fs_enet_scc_driver = {
  965. .name = "fsl-cpm-scc",
  966. .bus = &platform_bus_type,
  967. .probe = fs_enet_probe,
  968. .remove = fs_enet_remove,
  969. #ifdef CONFIG_PM
  970. /* .suspend = fs_enet_suspend, TODO */
  971. /* .resume = fs_enet_resume, TODO */
  972. #endif
  973. };
  974. static struct device_driver fs_enet_fcc_driver = {
  975. .name = "fsl-cpm-fcc",
  976. .bus = &platform_bus_type,
  977. .probe = fs_enet_probe,
  978. .remove = fs_enet_remove,
  979. #ifdef CONFIG_PM
  980. /* .suspend = fs_enet_suspend, TODO */
  981. /* .resume = fs_enet_resume, TODO */
  982. #endif
  983. };
  984. static int __init fs_init(void)
  985. {
  986. int r;
  987. printk(KERN_INFO
  988. "%s", version);
  989. r = setup_immap();
  990. if (r != 0)
  991. return r;
  992. #ifdef CONFIG_FS_ENET_HAS_FCC
  993. /* let's insert mii stuff */
  994. r = fs_enet_mdio_bb_init();
  995. if (r != 0) {
  996. printk(KERN_ERR DRV_MODULE_NAME
  997. "BB PHY init failed.\n");
  998. return r;
  999. }
  1000. r = driver_register(&fs_enet_fcc_driver);
  1001. if (r != 0)
  1002. goto err;
  1003. #endif
  1004. #ifdef CONFIG_FS_ENET_HAS_FEC
  1005. r = fs_enet_mdio_fec_init();
  1006. if (r != 0) {
  1007. printk(KERN_ERR DRV_MODULE_NAME
  1008. "FEC PHY init failed.\n");
  1009. return r;
  1010. }
  1011. r = driver_register(&fs_enet_fec_driver);
  1012. if (r != 0)
  1013. goto err;
  1014. #endif
  1015. #ifdef CONFIG_FS_ENET_HAS_SCC
  1016. r = driver_register(&fs_enet_scc_driver);
  1017. if (r != 0)
  1018. goto err;
  1019. #endif
  1020. return 0;
  1021. err:
  1022. cleanup_immap();
  1023. return r;
  1024. }
  1025. static void __exit fs_cleanup(void)
  1026. {
  1027. driver_unregister(&fs_enet_fec_driver);
  1028. driver_unregister(&fs_enet_fcc_driver);
  1029. driver_unregister(&fs_enet_scc_driver);
  1030. cleanup_immap();
  1031. }
  1032. /**************************************************************************************/
  1033. module_init(fs_init);
  1034. module_exit(fs_cleanup);