sched_fair.c 122 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. #include <linux/sched.h>
  24. #include <linux/cpumask.h>
  25. /*
  26. * Targeted preemption latency for CPU-bound tasks:
  27. * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  28. *
  29. * NOTE: this latency value is not the same as the concept of
  30. * 'timeslice length' - timeslices in CFS are of variable length
  31. * and have no persistent notion like in traditional, time-slice
  32. * based scheduling concepts.
  33. *
  34. * (to see the precise effective timeslice length of your workload,
  35. * run vmstat and monitor the context-switches (cs) field)
  36. */
  37. unsigned int sysctl_sched_latency = 6000000ULL;
  38. unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  39. /*
  40. * The initial- and re-scaling of tunables is configurable
  41. * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  42. *
  43. * Options are:
  44. * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  45. * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  46. * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  47. */
  48. enum sched_tunable_scaling sysctl_sched_tunable_scaling
  49. = SCHED_TUNABLESCALING_LOG;
  50. /*
  51. * Minimal preemption granularity for CPU-bound tasks:
  52. * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  53. */
  54. unsigned int sysctl_sched_min_granularity = 750000ULL;
  55. unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  56. /*
  57. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  58. */
  59. static unsigned int sched_nr_latency = 8;
  60. /*
  61. * After fork, child runs first. If set to 0 (default) then
  62. * parent will (try to) run first.
  63. */
  64. unsigned int sysctl_sched_child_runs_first __read_mostly;
  65. /*
  66. * SCHED_OTHER wake-up granularity.
  67. * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  68. *
  69. * This option delays the preemption effects of decoupled workloads
  70. * and reduces their over-scheduling. Synchronous workloads will still
  71. * have immediate wakeup/sleep latencies.
  72. */
  73. unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  74. unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  75. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  76. /*
  77. * The exponential sliding window over which load is averaged for shares
  78. * distribution.
  79. * (default: 10msec)
  80. */
  81. unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
  82. #ifdef CONFIG_CFS_BANDWIDTH
  83. /*
  84. * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
  85. * each time a cfs_rq requests quota.
  86. *
  87. * Note: in the case that the slice exceeds the runtime remaining (either due
  88. * to consumption or the quota being specified to be smaller than the slice)
  89. * we will always only issue the remaining available time.
  90. *
  91. * default: 5 msec, units: microseconds
  92. */
  93. unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
  94. #endif
  95. static const struct sched_class fair_sched_class;
  96. /**************************************************************
  97. * CFS operations on generic schedulable entities:
  98. */
  99. #ifdef CONFIG_FAIR_GROUP_SCHED
  100. /* cpu runqueue to which this cfs_rq is attached */
  101. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  102. {
  103. return cfs_rq->rq;
  104. }
  105. /* An entity is a task if it doesn't "own" a runqueue */
  106. #define entity_is_task(se) (!se->my_q)
  107. static inline struct task_struct *task_of(struct sched_entity *se)
  108. {
  109. #ifdef CONFIG_SCHED_DEBUG
  110. WARN_ON_ONCE(!entity_is_task(se));
  111. #endif
  112. return container_of(se, struct task_struct, se);
  113. }
  114. /* Walk up scheduling entities hierarchy */
  115. #define for_each_sched_entity(se) \
  116. for (; se; se = se->parent)
  117. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  118. {
  119. return p->se.cfs_rq;
  120. }
  121. /* runqueue on which this entity is (to be) queued */
  122. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  123. {
  124. return se->cfs_rq;
  125. }
  126. /* runqueue "owned" by this group */
  127. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  128. {
  129. return grp->my_q;
  130. }
  131. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  132. {
  133. if (!cfs_rq->on_list) {
  134. /*
  135. * Ensure we either appear before our parent (if already
  136. * enqueued) or force our parent to appear after us when it is
  137. * enqueued. The fact that we always enqueue bottom-up
  138. * reduces this to two cases.
  139. */
  140. if (cfs_rq->tg->parent &&
  141. cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
  142. list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
  143. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  144. } else {
  145. list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
  146. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  147. }
  148. cfs_rq->on_list = 1;
  149. }
  150. }
  151. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  152. {
  153. if (cfs_rq->on_list) {
  154. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  155. cfs_rq->on_list = 0;
  156. }
  157. }
  158. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  159. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  160. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  161. /* Do the two (enqueued) entities belong to the same group ? */
  162. static inline int
  163. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  164. {
  165. if (se->cfs_rq == pse->cfs_rq)
  166. return 1;
  167. return 0;
  168. }
  169. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  170. {
  171. return se->parent;
  172. }
  173. /* return depth at which a sched entity is present in the hierarchy */
  174. static inline int depth_se(struct sched_entity *se)
  175. {
  176. int depth = 0;
  177. for_each_sched_entity(se)
  178. depth++;
  179. return depth;
  180. }
  181. static void
  182. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  183. {
  184. int se_depth, pse_depth;
  185. /*
  186. * preemption test can be made between sibling entities who are in the
  187. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  188. * both tasks until we find their ancestors who are siblings of common
  189. * parent.
  190. */
  191. /* First walk up until both entities are at same depth */
  192. se_depth = depth_se(*se);
  193. pse_depth = depth_se(*pse);
  194. while (se_depth > pse_depth) {
  195. se_depth--;
  196. *se = parent_entity(*se);
  197. }
  198. while (pse_depth > se_depth) {
  199. pse_depth--;
  200. *pse = parent_entity(*pse);
  201. }
  202. while (!is_same_group(*se, *pse)) {
  203. *se = parent_entity(*se);
  204. *pse = parent_entity(*pse);
  205. }
  206. }
  207. #else /* !CONFIG_FAIR_GROUP_SCHED */
  208. static inline struct task_struct *task_of(struct sched_entity *se)
  209. {
  210. return container_of(se, struct task_struct, se);
  211. }
  212. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  213. {
  214. return container_of(cfs_rq, struct rq, cfs);
  215. }
  216. #define entity_is_task(se) 1
  217. #define for_each_sched_entity(se) \
  218. for (; se; se = NULL)
  219. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  220. {
  221. return &task_rq(p)->cfs;
  222. }
  223. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  224. {
  225. struct task_struct *p = task_of(se);
  226. struct rq *rq = task_rq(p);
  227. return &rq->cfs;
  228. }
  229. /* runqueue "owned" by this group */
  230. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  231. {
  232. return NULL;
  233. }
  234. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  235. {
  236. }
  237. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  238. {
  239. }
  240. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  241. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  242. static inline int
  243. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  244. {
  245. return 1;
  246. }
  247. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  248. {
  249. return NULL;
  250. }
  251. static inline void
  252. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  253. {
  254. }
  255. #endif /* CONFIG_FAIR_GROUP_SCHED */
  256. static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
  257. unsigned long delta_exec);
  258. /**************************************************************
  259. * Scheduling class tree data structure manipulation methods:
  260. */
  261. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  262. {
  263. s64 delta = (s64)(vruntime - min_vruntime);
  264. if (delta > 0)
  265. min_vruntime = vruntime;
  266. return min_vruntime;
  267. }
  268. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  269. {
  270. s64 delta = (s64)(vruntime - min_vruntime);
  271. if (delta < 0)
  272. min_vruntime = vruntime;
  273. return min_vruntime;
  274. }
  275. static inline int entity_before(struct sched_entity *a,
  276. struct sched_entity *b)
  277. {
  278. return (s64)(a->vruntime - b->vruntime) < 0;
  279. }
  280. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  281. {
  282. u64 vruntime = cfs_rq->min_vruntime;
  283. if (cfs_rq->curr)
  284. vruntime = cfs_rq->curr->vruntime;
  285. if (cfs_rq->rb_leftmost) {
  286. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  287. struct sched_entity,
  288. run_node);
  289. if (!cfs_rq->curr)
  290. vruntime = se->vruntime;
  291. else
  292. vruntime = min_vruntime(vruntime, se->vruntime);
  293. }
  294. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  295. #ifndef CONFIG_64BIT
  296. smp_wmb();
  297. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  298. #endif
  299. }
  300. /*
  301. * Enqueue an entity into the rb-tree:
  302. */
  303. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  304. {
  305. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  306. struct rb_node *parent = NULL;
  307. struct sched_entity *entry;
  308. int leftmost = 1;
  309. /*
  310. * Find the right place in the rbtree:
  311. */
  312. while (*link) {
  313. parent = *link;
  314. entry = rb_entry(parent, struct sched_entity, run_node);
  315. /*
  316. * We dont care about collisions. Nodes with
  317. * the same key stay together.
  318. */
  319. if (entity_before(se, entry)) {
  320. link = &parent->rb_left;
  321. } else {
  322. link = &parent->rb_right;
  323. leftmost = 0;
  324. }
  325. }
  326. /*
  327. * Maintain a cache of leftmost tree entries (it is frequently
  328. * used):
  329. */
  330. if (leftmost)
  331. cfs_rq->rb_leftmost = &se->run_node;
  332. rb_link_node(&se->run_node, parent, link);
  333. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  334. }
  335. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  336. {
  337. if (cfs_rq->rb_leftmost == &se->run_node) {
  338. struct rb_node *next_node;
  339. next_node = rb_next(&se->run_node);
  340. cfs_rq->rb_leftmost = next_node;
  341. }
  342. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  343. }
  344. static struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
  345. {
  346. struct rb_node *left = cfs_rq->rb_leftmost;
  347. if (!left)
  348. return NULL;
  349. return rb_entry(left, struct sched_entity, run_node);
  350. }
  351. static struct sched_entity *__pick_next_entity(struct sched_entity *se)
  352. {
  353. struct rb_node *next = rb_next(&se->run_node);
  354. if (!next)
  355. return NULL;
  356. return rb_entry(next, struct sched_entity, run_node);
  357. }
  358. #ifdef CONFIG_SCHED_DEBUG
  359. static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  360. {
  361. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  362. if (!last)
  363. return NULL;
  364. return rb_entry(last, struct sched_entity, run_node);
  365. }
  366. /**************************************************************
  367. * Scheduling class statistics methods:
  368. */
  369. int sched_proc_update_handler(struct ctl_table *table, int write,
  370. void __user *buffer, size_t *lenp,
  371. loff_t *ppos)
  372. {
  373. int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  374. int factor = get_update_sysctl_factor();
  375. if (ret || !write)
  376. return ret;
  377. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  378. sysctl_sched_min_granularity);
  379. #define WRT_SYSCTL(name) \
  380. (normalized_sysctl_##name = sysctl_##name / (factor))
  381. WRT_SYSCTL(sched_min_granularity);
  382. WRT_SYSCTL(sched_latency);
  383. WRT_SYSCTL(sched_wakeup_granularity);
  384. #undef WRT_SYSCTL
  385. return 0;
  386. }
  387. #endif
  388. /*
  389. * delta /= w
  390. */
  391. static inline unsigned long
  392. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  393. {
  394. if (unlikely(se->load.weight != NICE_0_LOAD))
  395. delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
  396. return delta;
  397. }
  398. /*
  399. * The idea is to set a period in which each task runs once.
  400. *
  401. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  402. * this period because otherwise the slices get too small.
  403. *
  404. * p = (nr <= nl) ? l : l*nr/nl
  405. */
  406. static u64 __sched_period(unsigned long nr_running)
  407. {
  408. u64 period = sysctl_sched_latency;
  409. unsigned long nr_latency = sched_nr_latency;
  410. if (unlikely(nr_running > nr_latency)) {
  411. period = sysctl_sched_min_granularity;
  412. period *= nr_running;
  413. }
  414. return period;
  415. }
  416. /*
  417. * We calculate the wall-time slice from the period by taking a part
  418. * proportional to the weight.
  419. *
  420. * s = p*P[w/rw]
  421. */
  422. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  423. {
  424. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  425. for_each_sched_entity(se) {
  426. struct load_weight *load;
  427. struct load_weight lw;
  428. cfs_rq = cfs_rq_of(se);
  429. load = &cfs_rq->load;
  430. if (unlikely(!se->on_rq)) {
  431. lw = cfs_rq->load;
  432. update_load_add(&lw, se->load.weight);
  433. load = &lw;
  434. }
  435. slice = calc_delta_mine(slice, se->load.weight, load);
  436. }
  437. return slice;
  438. }
  439. /*
  440. * We calculate the vruntime slice of a to be inserted task
  441. *
  442. * vs = s/w
  443. */
  444. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  445. {
  446. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  447. }
  448. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
  449. static void update_cfs_shares(struct cfs_rq *cfs_rq);
  450. /*
  451. * Update the current task's runtime statistics. Skip current tasks that
  452. * are not in our scheduling class.
  453. */
  454. static inline void
  455. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  456. unsigned long delta_exec)
  457. {
  458. unsigned long delta_exec_weighted;
  459. schedstat_set(curr->statistics.exec_max,
  460. max((u64)delta_exec, curr->statistics.exec_max));
  461. curr->sum_exec_runtime += delta_exec;
  462. schedstat_add(cfs_rq, exec_clock, delta_exec);
  463. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  464. curr->vruntime += delta_exec_weighted;
  465. update_min_vruntime(cfs_rq);
  466. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  467. cfs_rq->load_unacc_exec_time += delta_exec;
  468. #endif
  469. }
  470. static void update_curr(struct cfs_rq *cfs_rq)
  471. {
  472. struct sched_entity *curr = cfs_rq->curr;
  473. u64 now = rq_of(cfs_rq)->clock_task;
  474. unsigned long delta_exec;
  475. if (unlikely(!curr))
  476. return;
  477. /*
  478. * Get the amount of time the current task was running
  479. * since the last time we changed load (this cannot
  480. * overflow on 32 bits):
  481. */
  482. delta_exec = (unsigned long)(now - curr->exec_start);
  483. if (!delta_exec)
  484. return;
  485. __update_curr(cfs_rq, curr, delta_exec);
  486. curr->exec_start = now;
  487. if (entity_is_task(curr)) {
  488. struct task_struct *curtask = task_of(curr);
  489. trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
  490. cpuacct_charge(curtask, delta_exec);
  491. account_group_exec_runtime(curtask, delta_exec);
  492. }
  493. account_cfs_rq_runtime(cfs_rq, delta_exec);
  494. }
  495. static inline void
  496. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  497. {
  498. schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
  499. }
  500. /*
  501. * Task is being enqueued - update stats:
  502. */
  503. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  504. {
  505. /*
  506. * Are we enqueueing a waiting task? (for current tasks
  507. * a dequeue/enqueue event is a NOP)
  508. */
  509. if (se != cfs_rq->curr)
  510. update_stats_wait_start(cfs_rq, se);
  511. }
  512. static void
  513. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  514. {
  515. schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
  516. rq_of(cfs_rq)->clock - se->statistics.wait_start));
  517. schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
  518. schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
  519. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  520. #ifdef CONFIG_SCHEDSTATS
  521. if (entity_is_task(se)) {
  522. trace_sched_stat_wait(task_of(se),
  523. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  524. }
  525. #endif
  526. schedstat_set(se->statistics.wait_start, 0);
  527. }
  528. static inline void
  529. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  530. {
  531. /*
  532. * Mark the end of the wait period if dequeueing a
  533. * waiting task:
  534. */
  535. if (se != cfs_rq->curr)
  536. update_stats_wait_end(cfs_rq, se);
  537. }
  538. /*
  539. * We are picking a new current task - update its stats:
  540. */
  541. static inline void
  542. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  543. {
  544. /*
  545. * We are starting a new run period:
  546. */
  547. se->exec_start = rq_of(cfs_rq)->clock_task;
  548. }
  549. /**************************************************
  550. * Scheduling class queueing methods:
  551. */
  552. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  553. static void
  554. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  555. {
  556. cfs_rq->task_weight += weight;
  557. }
  558. #else
  559. static inline void
  560. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  561. {
  562. }
  563. #endif
  564. static void
  565. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  566. {
  567. update_load_add(&cfs_rq->load, se->load.weight);
  568. if (!parent_entity(se))
  569. inc_cpu_load(rq_of(cfs_rq), se->load.weight);
  570. if (entity_is_task(se)) {
  571. add_cfs_task_weight(cfs_rq, se->load.weight);
  572. list_add(&se->group_node, &cfs_rq->tasks);
  573. }
  574. cfs_rq->nr_running++;
  575. }
  576. static void
  577. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  578. {
  579. update_load_sub(&cfs_rq->load, se->load.weight);
  580. if (!parent_entity(se))
  581. dec_cpu_load(rq_of(cfs_rq), se->load.weight);
  582. if (entity_is_task(se)) {
  583. add_cfs_task_weight(cfs_rq, -se->load.weight);
  584. list_del_init(&se->group_node);
  585. }
  586. cfs_rq->nr_running--;
  587. }
  588. #ifdef CONFIG_FAIR_GROUP_SCHED
  589. /* we need this in update_cfs_load and load-balance functions below */
  590. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
  591. # ifdef CONFIG_SMP
  592. static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
  593. int global_update)
  594. {
  595. struct task_group *tg = cfs_rq->tg;
  596. long load_avg;
  597. load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
  598. load_avg -= cfs_rq->load_contribution;
  599. if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
  600. atomic_add(load_avg, &tg->load_weight);
  601. cfs_rq->load_contribution += load_avg;
  602. }
  603. }
  604. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  605. {
  606. u64 period = sysctl_sched_shares_window;
  607. u64 now, delta;
  608. unsigned long load = cfs_rq->load.weight;
  609. if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
  610. return;
  611. now = rq_of(cfs_rq)->clock_task;
  612. delta = now - cfs_rq->load_stamp;
  613. /* truncate load history at 4 idle periods */
  614. if (cfs_rq->load_stamp > cfs_rq->load_last &&
  615. now - cfs_rq->load_last > 4 * period) {
  616. cfs_rq->load_period = 0;
  617. cfs_rq->load_avg = 0;
  618. delta = period - 1;
  619. }
  620. cfs_rq->load_stamp = now;
  621. cfs_rq->load_unacc_exec_time = 0;
  622. cfs_rq->load_period += delta;
  623. if (load) {
  624. cfs_rq->load_last = now;
  625. cfs_rq->load_avg += delta * load;
  626. }
  627. /* consider updating load contribution on each fold or truncate */
  628. if (global_update || cfs_rq->load_period > period
  629. || !cfs_rq->load_period)
  630. update_cfs_rq_load_contribution(cfs_rq, global_update);
  631. while (cfs_rq->load_period > period) {
  632. /*
  633. * Inline assembly required to prevent the compiler
  634. * optimising this loop into a divmod call.
  635. * See __iter_div_u64_rem() for another example of this.
  636. */
  637. asm("" : "+rm" (cfs_rq->load_period));
  638. cfs_rq->load_period /= 2;
  639. cfs_rq->load_avg /= 2;
  640. }
  641. if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
  642. list_del_leaf_cfs_rq(cfs_rq);
  643. }
  644. static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  645. {
  646. long load_weight, load, shares;
  647. load = cfs_rq->load.weight;
  648. load_weight = atomic_read(&tg->load_weight);
  649. load_weight += load;
  650. load_weight -= cfs_rq->load_contribution;
  651. shares = (tg->shares * load);
  652. if (load_weight)
  653. shares /= load_weight;
  654. if (shares < MIN_SHARES)
  655. shares = MIN_SHARES;
  656. if (shares > tg->shares)
  657. shares = tg->shares;
  658. return shares;
  659. }
  660. static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  661. {
  662. if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
  663. update_cfs_load(cfs_rq, 0);
  664. update_cfs_shares(cfs_rq);
  665. }
  666. }
  667. # else /* CONFIG_SMP */
  668. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  669. {
  670. }
  671. static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  672. {
  673. return tg->shares;
  674. }
  675. static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  676. {
  677. }
  678. # endif /* CONFIG_SMP */
  679. static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
  680. unsigned long weight)
  681. {
  682. if (se->on_rq) {
  683. /* commit outstanding execution time */
  684. if (cfs_rq->curr == se)
  685. update_curr(cfs_rq);
  686. account_entity_dequeue(cfs_rq, se);
  687. }
  688. update_load_set(&se->load, weight);
  689. if (se->on_rq)
  690. account_entity_enqueue(cfs_rq, se);
  691. }
  692. static void update_cfs_shares(struct cfs_rq *cfs_rq)
  693. {
  694. struct task_group *tg;
  695. struct sched_entity *se;
  696. long shares;
  697. tg = cfs_rq->tg;
  698. se = tg->se[cpu_of(rq_of(cfs_rq))];
  699. if (!se || throttled_hierarchy(cfs_rq))
  700. return;
  701. #ifndef CONFIG_SMP
  702. if (likely(se->load.weight == tg->shares))
  703. return;
  704. #endif
  705. shares = calc_cfs_shares(cfs_rq, tg);
  706. reweight_entity(cfs_rq_of(se), se, shares);
  707. }
  708. #else /* CONFIG_FAIR_GROUP_SCHED */
  709. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  710. {
  711. }
  712. static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
  713. {
  714. }
  715. static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  716. {
  717. }
  718. #endif /* CONFIG_FAIR_GROUP_SCHED */
  719. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  720. {
  721. #ifdef CONFIG_SCHEDSTATS
  722. struct task_struct *tsk = NULL;
  723. if (entity_is_task(se))
  724. tsk = task_of(se);
  725. if (se->statistics.sleep_start) {
  726. u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
  727. if ((s64)delta < 0)
  728. delta = 0;
  729. if (unlikely(delta > se->statistics.sleep_max))
  730. se->statistics.sleep_max = delta;
  731. se->statistics.sleep_start = 0;
  732. se->statistics.sum_sleep_runtime += delta;
  733. if (tsk) {
  734. account_scheduler_latency(tsk, delta >> 10, 1);
  735. trace_sched_stat_sleep(tsk, delta);
  736. }
  737. }
  738. if (se->statistics.block_start) {
  739. u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
  740. if ((s64)delta < 0)
  741. delta = 0;
  742. if (unlikely(delta > se->statistics.block_max))
  743. se->statistics.block_max = delta;
  744. se->statistics.block_start = 0;
  745. se->statistics.sum_sleep_runtime += delta;
  746. if (tsk) {
  747. if (tsk->in_iowait) {
  748. se->statistics.iowait_sum += delta;
  749. se->statistics.iowait_count++;
  750. trace_sched_stat_iowait(tsk, delta);
  751. }
  752. /*
  753. * Blocking time is in units of nanosecs, so shift by
  754. * 20 to get a milliseconds-range estimation of the
  755. * amount of time that the task spent sleeping:
  756. */
  757. if (unlikely(prof_on == SLEEP_PROFILING)) {
  758. profile_hits(SLEEP_PROFILING,
  759. (void *)get_wchan(tsk),
  760. delta >> 20);
  761. }
  762. account_scheduler_latency(tsk, delta >> 10, 0);
  763. }
  764. }
  765. #endif
  766. }
  767. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  768. {
  769. #ifdef CONFIG_SCHED_DEBUG
  770. s64 d = se->vruntime - cfs_rq->min_vruntime;
  771. if (d < 0)
  772. d = -d;
  773. if (d > 3*sysctl_sched_latency)
  774. schedstat_inc(cfs_rq, nr_spread_over);
  775. #endif
  776. }
  777. static void
  778. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  779. {
  780. u64 vruntime = cfs_rq->min_vruntime;
  781. /*
  782. * The 'current' period is already promised to the current tasks,
  783. * however the extra weight of the new task will slow them down a
  784. * little, place the new task so that it fits in the slot that
  785. * stays open at the end.
  786. */
  787. if (initial && sched_feat(START_DEBIT))
  788. vruntime += sched_vslice(cfs_rq, se);
  789. /* sleeps up to a single latency don't count. */
  790. if (!initial) {
  791. unsigned long thresh = sysctl_sched_latency;
  792. /*
  793. * Halve their sleep time's effect, to allow
  794. * for a gentler effect of sleepers:
  795. */
  796. if (sched_feat(GENTLE_FAIR_SLEEPERS))
  797. thresh >>= 1;
  798. vruntime -= thresh;
  799. }
  800. /* ensure we never gain time by being placed backwards. */
  801. vruntime = max_vruntime(se->vruntime, vruntime);
  802. se->vruntime = vruntime;
  803. }
  804. static void
  805. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  806. {
  807. /*
  808. * Update the normalized vruntime before updating min_vruntime
  809. * through callig update_curr().
  810. */
  811. if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
  812. se->vruntime += cfs_rq->min_vruntime;
  813. /*
  814. * Update run-time statistics of the 'current'.
  815. */
  816. update_curr(cfs_rq);
  817. update_cfs_load(cfs_rq, 0);
  818. account_entity_enqueue(cfs_rq, se);
  819. update_cfs_shares(cfs_rq);
  820. if (flags & ENQUEUE_WAKEUP) {
  821. place_entity(cfs_rq, se, 0);
  822. enqueue_sleeper(cfs_rq, se);
  823. }
  824. update_stats_enqueue(cfs_rq, se);
  825. check_spread(cfs_rq, se);
  826. if (se != cfs_rq->curr)
  827. __enqueue_entity(cfs_rq, se);
  828. se->on_rq = 1;
  829. if (cfs_rq->nr_running == 1)
  830. list_add_leaf_cfs_rq(cfs_rq);
  831. }
  832. static void __clear_buddies_last(struct sched_entity *se)
  833. {
  834. for_each_sched_entity(se) {
  835. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  836. if (cfs_rq->last == se)
  837. cfs_rq->last = NULL;
  838. else
  839. break;
  840. }
  841. }
  842. static void __clear_buddies_next(struct sched_entity *se)
  843. {
  844. for_each_sched_entity(se) {
  845. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  846. if (cfs_rq->next == se)
  847. cfs_rq->next = NULL;
  848. else
  849. break;
  850. }
  851. }
  852. static void __clear_buddies_skip(struct sched_entity *se)
  853. {
  854. for_each_sched_entity(se) {
  855. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  856. if (cfs_rq->skip == se)
  857. cfs_rq->skip = NULL;
  858. else
  859. break;
  860. }
  861. }
  862. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  863. {
  864. if (cfs_rq->last == se)
  865. __clear_buddies_last(se);
  866. if (cfs_rq->next == se)
  867. __clear_buddies_next(se);
  868. if (cfs_rq->skip == se)
  869. __clear_buddies_skip(se);
  870. }
  871. static void
  872. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  873. {
  874. /*
  875. * Update run-time statistics of the 'current'.
  876. */
  877. update_curr(cfs_rq);
  878. update_stats_dequeue(cfs_rq, se);
  879. if (flags & DEQUEUE_SLEEP) {
  880. #ifdef CONFIG_SCHEDSTATS
  881. if (entity_is_task(se)) {
  882. struct task_struct *tsk = task_of(se);
  883. if (tsk->state & TASK_INTERRUPTIBLE)
  884. se->statistics.sleep_start = rq_of(cfs_rq)->clock;
  885. if (tsk->state & TASK_UNINTERRUPTIBLE)
  886. se->statistics.block_start = rq_of(cfs_rq)->clock;
  887. }
  888. #endif
  889. }
  890. clear_buddies(cfs_rq, se);
  891. if (se != cfs_rq->curr)
  892. __dequeue_entity(cfs_rq, se);
  893. se->on_rq = 0;
  894. update_cfs_load(cfs_rq, 0);
  895. account_entity_dequeue(cfs_rq, se);
  896. /*
  897. * Normalize the entity after updating the min_vruntime because the
  898. * update can refer to the ->curr item and we need to reflect this
  899. * movement in our normalized position.
  900. */
  901. if (!(flags & DEQUEUE_SLEEP))
  902. se->vruntime -= cfs_rq->min_vruntime;
  903. update_min_vruntime(cfs_rq);
  904. update_cfs_shares(cfs_rq);
  905. }
  906. /*
  907. * Preempt the current task with a newly woken task if needed:
  908. */
  909. static void
  910. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  911. {
  912. unsigned long ideal_runtime, delta_exec;
  913. ideal_runtime = sched_slice(cfs_rq, curr);
  914. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  915. if (delta_exec > ideal_runtime) {
  916. resched_task(rq_of(cfs_rq)->curr);
  917. /*
  918. * The current task ran long enough, ensure it doesn't get
  919. * re-elected due to buddy favours.
  920. */
  921. clear_buddies(cfs_rq, curr);
  922. return;
  923. }
  924. /*
  925. * Ensure that a task that missed wakeup preemption by a
  926. * narrow margin doesn't have to wait for a full slice.
  927. * This also mitigates buddy induced latencies under load.
  928. */
  929. if (delta_exec < sysctl_sched_min_granularity)
  930. return;
  931. if (cfs_rq->nr_running > 1) {
  932. struct sched_entity *se = __pick_first_entity(cfs_rq);
  933. s64 delta = curr->vruntime - se->vruntime;
  934. if (delta < 0)
  935. return;
  936. if (delta > ideal_runtime)
  937. resched_task(rq_of(cfs_rq)->curr);
  938. }
  939. }
  940. static void
  941. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  942. {
  943. /* 'current' is not kept within the tree. */
  944. if (se->on_rq) {
  945. /*
  946. * Any task has to be enqueued before it get to execute on
  947. * a CPU. So account for the time it spent waiting on the
  948. * runqueue.
  949. */
  950. update_stats_wait_end(cfs_rq, se);
  951. __dequeue_entity(cfs_rq, se);
  952. }
  953. update_stats_curr_start(cfs_rq, se);
  954. cfs_rq->curr = se;
  955. #ifdef CONFIG_SCHEDSTATS
  956. /*
  957. * Track our maximum slice length, if the CPU's load is at
  958. * least twice that of our own weight (i.e. dont track it
  959. * when there are only lesser-weight tasks around):
  960. */
  961. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  962. se->statistics.slice_max = max(se->statistics.slice_max,
  963. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  964. }
  965. #endif
  966. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  967. }
  968. static int
  969. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  970. /*
  971. * Pick the next process, keeping these things in mind, in this order:
  972. * 1) keep things fair between processes/task groups
  973. * 2) pick the "next" process, since someone really wants that to run
  974. * 3) pick the "last" process, for cache locality
  975. * 4) do not run the "skip" process, if something else is available
  976. */
  977. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  978. {
  979. struct sched_entity *se = __pick_first_entity(cfs_rq);
  980. struct sched_entity *left = se;
  981. /*
  982. * Avoid running the skip buddy, if running something else can
  983. * be done without getting too unfair.
  984. */
  985. if (cfs_rq->skip == se) {
  986. struct sched_entity *second = __pick_next_entity(se);
  987. if (second && wakeup_preempt_entity(second, left) < 1)
  988. se = second;
  989. }
  990. /*
  991. * Prefer last buddy, try to return the CPU to a preempted task.
  992. */
  993. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
  994. se = cfs_rq->last;
  995. /*
  996. * Someone really wants this to run. If it's not unfair, run it.
  997. */
  998. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
  999. se = cfs_rq->next;
  1000. clear_buddies(cfs_rq, se);
  1001. return se;
  1002. }
  1003. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  1004. {
  1005. /*
  1006. * If still on the runqueue then deactivate_task()
  1007. * was not called and update_curr() has to be done:
  1008. */
  1009. if (prev->on_rq)
  1010. update_curr(cfs_rq);
  1011. check_spread(cfs_rq, prev);
  1012. if (prev->on_rq) {
  1013. update_stats_wait_start(cfs_rq, prev);
  1014. /* Put 'current' back into the tree. */
  1015. __enqueue_entity(cfs_rq, prev);
  1016. }
  1017. cfs_rq->curr = NULL;
  1018. }
  1019. static void
  1020. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  1021. {
  1022. /*
  1023. * Update run-time statistics of the 'current'.
  1024. */
  1025. update_curr(cfs_rq);
  1026. /*
  1027. * Update share accounting for long-running entities.
  1028. */
  1029. update_entity_shares_tick(cfs_rq);
  1030. #ifdef CONFIG_SCHED_HRTICK
  1031. /*
  1032. * queued ticks are scheduled to match the slice, so don't bother
  1033. * validating it and just reschedule.
  1034. */
  1035. if (queued) {
  1036. resched_task(rq_of(cfs_rq)->curr);
  1037. return;
  1038. }
  1039. /*
  1040. * don't let the period tick interfere with the hrtick preemption
  1041. */
  1042. if (!sched_feat(DOUBLE_TICK) &&
  1043. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  1044. return;
  1045. #endif
  1046. if (cfs_rq->nr_running > 1)
  1047. check_preempt_tick(cfs_rq, curr);
  1048. }
  1049. /**************************************************
  1050. * CFS bandwidth control machinery
  1051. */
  1052. #ifdef CONFIG_CFS_BANDWIDTH
  1053. /*
  1054. * default period for cfs group bandwidth.
  1055. * default: 0.1s, units: nanoseconds
  1056. */
  1057. static inline u64 default_cfs_period(void)
  1058. {
  1059. return 100000000ULL;
  1060. }
  1061. static inline u64 sched_cfs_bandwidth_slice(void)
  1062. {
  1063. return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
  1064. }
  1065. /*
  1066. * Replenish runtime according to assigned quota and update expiration time.
  1067. * We use sched_clock_cpu directly instead of rq->clock to avoid adding
  1068. * additional synchronization around rq->lock.
  1069. *
  1070. * requires cfs_b->lock
  1071. */
  1072. static void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
  1073. {
  1074. u64 now;
  1075. if (cfs_b->quota == RUNTIME_INF)
  1076. return;
  1077. now = sched_clock_cpu(smp_processor_id());
  1078. cfs_b->runtime = cfs_b->quota;
  1079. cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
  1080. }
  1081. /* returns 0 on failure to allocate runtime */
  1082. static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1083. {
  1084. struct task_group *tg = cfs_rq->tg;
  1085. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
  1086. u64 amount = 0, min_amount, expires;
  1087. /* note: this is a positive sum as runtime_remaining <= 0 */
  1088. min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
  1089. raw_spin_lock(&cfs_b->lock);
  1090. if (cfs_b->quota == RUNTIME_INF)
  1091. amount = min_amount;
  1092. else {
  1093. /*
  1094. * If the bandwidth pool has become inactive, then at least one
  1095. * period must have elapsed since the last consumption.
  1096. * Refresh the global state and ensure bandwidth timer becomes
  1097. * active.
  1098. */
  1099. if (!cfs_b->timer_active) {
  1100. __refill_cfs_bandwidth_runtime(cfs_b);
  1101. __start_cfs_bandwidth(cfs_b);
  1102. }
  1103. if (cfs_b->runtime > 0) {
  1104. amount = min(cfs_b->runtime, min_amount);
  1105. cfs_b->runtime -= amount;
  1106. cfs_b->idle = 0;
  1107. }
  1108. }
  1109. expires = cfs_b->runtime_expires;
  1110. raw_spin_unlock(&cfs_b->lock);
  1111. cfs_rq->runtime_remaining += amount;
  1112. /*
  1113. * we may have advanced our local expiration to account for allowed
  1114. * spread between our sched_clock and the one on which runtime was
  1115. * issued.
  1116. */
  1117. if ((s64)(expires - cfs_rq->runtime_expires) > 0)
  1118. cfs_rq->runtime_expires = expires;
  1119. return cfs_rq->runtime_remaining > 0;
  1120. }
  1121. /*
  1122. * Note: This depends on the synchronization provided by sched_clock and the
  1123. * fact that rq->clock snapshots this value.
  1124. */
  1125. static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1126. {
  1127. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1128. struct rq *rq = rq_of(cfs_rq);
  1129. /* if the deadline is ahead of our clock, nothing to do */
  1130. if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
  1131. return;
  1132. if (cfs_rq->runtime_remaining < 0)
  1133. return;
  1134. /*
  1135. * If the local deadline has passed we have to consider the
  1136. * possibility that our sched_clock is 'fast' and the global deadline
  1137. * has not truly expired.
  1138. *
  1139. * Fortunately we can check determine whether this the case by checking
  1140. * whether the global deadline has advanced.
  1141. */
  1142. if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
  1143. /* extend local deadline, drift is bounded above by 2 ticks */
  1144. cfs_rq->runtime_expires += TICK_NSEC;
  1145. } else {
  1146. /* global deadline is ahead, expiration has passed */
  1147. cfs_rq->runtime_remaining = 0;
  1148. }
  1149. }
  1150. static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
  1151. unsigned long delta_exec)
  1152. {
  1153. /* dock delta_exec before expiring quota (as it could span periods) */
  1154. cfs_rq->runtime_remaining -= delta_exec;
  1155. expire_cfs_rq_runtime(cfs_rq);
  1156. if (likely(cfs_rq->runtime_remaining > 0))
  1157. return;
  1158. /*
  1159. * if we're unable to extend our runtime we resched so that the active
  1160. * hierarchy can be throttled
  1161. */
  1162. if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
  1163. resched_task(rq_of(cfs_rq)->curr);
  1164. }
  1165. static __always_inline void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
  1166. unsigned long delta_exec)
  1167. {
  1168. if (!cfs_rq->runtime_enabled)
  1169. return;
  1170. __account_cfs_rq_runtime(cfs_rq, delta_exec);
  1171. }
  1172. static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
  1173. {
  1174. return cfs_rq->throttled;
  1175. }
  1176. /* check whether cfs_rq, or any parent, is throttled */
  1177. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
  1178. {
  1179. return cfs_rq->throttle_count;
  1180. }
  1181. /*
  1182. * Ensure that neither of the group entities corresponding to src_cpu or
  1183. * dest_cpu are members of a throttled hierarchy when performing group
  1184. * load-balance operations.
  1185. */
  1186. static inline int throttled_lb_pair(struct task_group *tg,
  1187. int src_cpu, int dest_cpu)
  1188. {
  1189. struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
  1190. src_cfs_rq = tg->cfs_rq[src_cpu];
  1191. dest_cfs_rq = tg->cfs_rq[dest_cpu];
  1192. return throttled_hierarchy(src_cfs_rq) ||
  1193. throttled_hierarchy(dest_cfs_rq);
  1194. }
  1195. /* updated child weight may affect parent so we have to do this bottom up */
  1196. static int tg_unthrottle_up(struct task_group *tg, void *data)
  1197. {
  1198. struct rq *rq = data;
  1199. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  1200. cfs_rq->throttle_count--;
  1201. #ifdef CONFIG_SMP
  1202. if (!cfs_rq->throttle_count) {
  1203. u64 delta = rq->clock_task - cfs_rq->load_stamp;
  1204. /* leaving throttled state, advance shares averaging windows */
  1205. cfs_rq->load_stamp += delta;
  1206. cfs_rq->load_last += delta;
  1207. /* update entity weight now that we are on_rq again */
  1208. update_cfs_shares(cfs_rq);
  1209. }
  1210. #endif
  1211. return 0;
  1212. }
  1213. static int tg_throttle_down(struct task_group *tg, void *data)
  1214. {
  1215. struct rq *rq = data;
  1216. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  1217. /* group is entering throttled state, record last load */
  1218. if (!cfs_rq->throttle_count)
  1219. update_cfs_load(cfs_rq, 0);
  1220. cfs_rq->throttle_count++;
  1221. return 0;
  1222. }
  1223. static __used void throttle_cfs_rq(struct cfs_rq *cfs_rq)
  1224. {
  1225. struct rq *rq = rq_of(cfs_rq);
  1226. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1227. struct sched_entity *se;
  1228. long task_delta, dequeue = 1;
  1229. se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
  1230. /* account load preceding throttle */
  1231. rcu_read_lock();
  1232. walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
  1233. rcu_read_unlock();
  1234. task_delta = cfs_rq->h_nr_running;
  1235. for_each_sched_entity(se) {
  1236. struct cfs_rq *qcfs_rq = cfs_rq_of(se);
  1237. /* throttled entity or throttle-on-deactivate */
  1238. if (!se->on_rq)
  1239. break;
  1240. if (dequeue)
  1241. dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
  1242. qcfs_rq->h_nr_running -= task_delta;
  1243. if (qcfs_rq->load.weight)
  1244. dequeue = 0;
  1245. }
  1246. if (!se)
  1247. rq->nr_running -= task_delta;
  1248. cfs_rq->throttled = 1;
  1249. raw_spin_lock(&cfs_b->lock);
  1250. list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
  1251. raw_spin_unlock(&cfs_b->lock);
  1252. }
  1253. static void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
  1254. {
  1255. struct rq *rq = rq_of(cfs_rq);
  1256. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1257. struct sched_entity *se;
  1258. int enqueue = 1;
  1259. long task_delta;
  1260. se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
  1261. cfs_rq->throttled = 0;
  1262. raw_spin_lock(&cfs_b->lock);
  1263. list_del_rcu(&cfs_rq->throttled_list);
  1264. raw_spin_unlock(&cfs_b->lock);
  1265. update_rq_clock(rq);
  1266. /* update hierarchical throttle state */
  1267. walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
  1268. if (!cfs_rq->load.weight)
  1269. return;
  1270. task_delta = cfs_rq->h_nr_running;
  1271. for_each_sched_entity(se) {
  1272. if (se->on_rq)
  1273. enqueue = 0;
  1274. cfs_rq = cfs_rq_of(se);
  1275. if (enqueue)
  1276. enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
  1277. cfs_rq->h_nr_running += task_delta;
  1278. if (cfs_rq_throttled(cfs_rq))
  1279. break;
  1280. }
  1281. if (!se)
  1282. rq->nr_running += task_delta;
  1283. /* determine whether we need to wake up potentially idle cpu */
  1284. if (rq->curr == rq->idle && rq->cfs.nr_running)
  1285. resched_task(rq->curr);
  1286. }
  1287. static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
  1288. u64 remaining, u64 expires)
  1289. {
  1290. struct cfs_rq *cfs_rq;
  1291. u64 runtime = remaining;
  1292. rcu_read_lock();
  1293. list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
  1294. throttled_list) {
  1295. struct rq *rq = rq_of(cfs_rq);
  1296. raw_spin_lock(&rq->lock);
  1297. if (!cfs_rq_throttled(cfs_rq))
  1298. goto next;
  1299. runtime = -cfs_rq->runtime_remaining + 1;
  1300. if (runtime > remaining)
  1301. runtime = remaining;
  1302. remaining -= runtime;
  1303. cfs_rq->runtime_remaining += runtime;
  1304. cfs_rq->runtime_expires = expires;
  1305. /* we check whether we're throttled above */
  1306. if (cfs_rq->runtime_remaining > 0)
  1307. unthrottle_cfs_rq(cfs_rq);
  1308. next:
  1309. raw_spin_unlock(&rq->lock);
  1310. if (!remaining)
  1311. break;
  1312. }
  1313. rcu_read_unlock();
  1314. return remaining;
  1315. }
  1316. /*
  1317. * Responsible for refilling a task_group's bandwidth and unthrottling its
  1318. * cfs_rqs as appropriate. If there has been no activity within the last
  1319. * period the timer is deactivated until scheduling resumes; cfs_b->idle is
  1320. * used to track this state.
  1321. */
  1322. static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
  1323. {
  1324. u64 runtime, runtime_expires;
  1325. int idle = 1, throttled;
  1326. raw_spin_lock(&cfs_b->lock);
  1327. /* no need to continue the timer with no bandwidth constraint */
  1328. if (cfs_b->quota == RUNTIME_INF)
  1329. goto out_unlock;
  1330. throttled = !list_empty(&cfs_b->throttled_cfs_rq);
  1331. /* idle depends on !throttled (for the case of a large deficit) */
  1332. idle = cfs_b->idle && !throttled;
  1333. /* if we're going inactive then everything else can be deferred */
  1334. if (idle)
  1335. goto out_unlock;
  1336. __refill_cfs_bandwidth_runtime(cfs_b);
  1337. if (!throttled) {
  1338. /* mark as potentially idle for the upcoming period */
  1339. cfs_b->idle = 1;
  1340. goto out_unlock;
  1341. }
  1342. /*
  1343. * There are throttled entities so we must first use the new bandwidth
  1344. * to unthrottle them before making it generally available. This
  1345. * ensures that all existing debts will be paid before a new cfs_rq is
  1346. * allowed to run.
  1347. */
  1348. runtime = cfs_b->runtime;
  1349. runtime_expires = cfs_b->runtime_expires;
  1350. cfs_b->runtime = 0;
  1351. /*
  1352. * This check is repeated as we are holding onto the new bandwidth
  1353. * while we unthrottle. This can potentially race with an unthrottled
  1354. * group trying to acquire new bandwidth from the global pool.
  1355. */
  1356. while (throttled && runtime > 0) {
  1357. raw_spin_unlock(&cfs_b->lock);
  1358. /* we can't nest cfs_b->lock while distributing bandwidth */
  1359. runtime = distribute_cfs_runtime(cfs_b, runtime,
  1360. runtime_expires);
  1361. raw_spin_lock(&cfs_b->lock);
  1362. throttled = !list_empty(&cfs_b->throttled_cfs_rq);
  1363. }
  1364. /* return (any) remaining runtime */
  1365. cfs_b->runtime = runtime;
  1366. /*
  1367. * While we are ensured activity in the period following an
  1368. * unthrottle, this also covers the case in which the new bandwidth is
  1369. * insufficient to cover the existing bandwidth deficit. (Forcing the
  1370. * timer to remain active while there are any throttled entities.)
  1371. */
  1372. cfs_b->idle = 0;
  1373. out_unlock:
  1374. if (idle)
  1375. cfs_b->timer_active = 0;
  1376. raw_spin_unlock(&cfs_b->lock);
  1377. return idle;
  1378. }
  1379. #else
  1380. static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
  1381. unsigned long delta_exec) {}
  1382. static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
  1383. {
  1384. return 0;
  1385. }
  1386. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
  1387. {
  1388. return 0;
  1389. }
  1390. static inline int throttled_lb_pair(struct task_group *tg,
  1391. int src_cpu, int dest_cpu)
  1392. {
  1393. return 0;
  1394. }
  1395. #endif
  1396. /**************************************************
  1397. * CFS operations on tasks:
  1398. */
  1399. #ifdef CONFIG_SCHED_HRTICK
  1400. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  1401. {
  1402. struct sched_entity *se = &p->se;
  1403. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1404. WARN_ON(task_rq(p) != rq);
  1405. if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
  1406. u64 slice = sched_slice(cfs_rq, se);
  1407. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  1408. s64 delta = slice - ran;
  1409. if (delta < 0) {
  1410. if (rq->curr == p)
  1411. resched_task(p);
  1412. return;
  1413. }
  1414. /*
  1415. * Don't schedule slices shorter than 10000ns, that just
  1416. * doesn't make sense. Rely on vruntime for fairness.
  1417. */
  1418. if (rq->curr != p)
  1419. delta = max_t(s64, 10000LL, delta);
  1420. hrtick_start(rq, delta);
  1421. }
  1422. }
  1423. /*
  1424. * called from enqueue/dequeue and updates the hrtick when the
  1425. * current task is from our class and nr_running is low enough
  1426. * to matter.
  1427. */
  1428. static void hrtick_update(struct rq *rq)
  1429. {
  1430. struct task_struct *curr = rq->curr;
  1431. if (curr->sched_class != &fair_sched_class)
  1432. return;
  1433. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  1434. hrtick_start_fair(rq, curr);
  1435. }
  1436. #else /* !CONFIG_SCHED_HRTICK */
  1437. static inline void
  1438. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  1439. {
  1440. }
  1441. static inline void hrtick_update(struct rq *rq)
  1442. {
  1443. }
  1444. #endif
  1445. /*
  1446. * The enqueue_task method is called before nr_running is
  1447. * increased. Here we update the fair scheduling stats and
  1448. * then put the task into the rbtree:
  1449. */
  1450. static void
  1451. enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  1452. {
  1453. struct cfs_rq *cfs_rq;
  1454. struct sched_entity *se = &p->se;
  1455. for_each_sched_entity(se) {
  1456. if (se->on_rq)
  1457. break;
  1458. cfs_rq = cfs_rq_of(se);
  1459. enqueue_entity(cfs_rq, se, flags);
  1460. /*
  1461. * end evaluation on encountering a throttled cfs_rq
  1462. *
  1463. * note: in the case of encountering a throttled cfs_rq we will
  1464. * post the final h_nr_running increment below.
  1465. */
  1466. if (cfs_rq_throttled(cfs_rq))
  1467. break;
  1468. cfs_rq->h_nr_running++;
  1469. flags = ENQUEUE_WAKEUP;
  1470. }
  1471. for_each_sched_entity(se) {
  1472. cfs_rq = cfs_rq_of(se);
  1473. cfs_rq->h_nr_running++;
  1474. if (cfs_rq_throttled(cfs_rq))
  1475. break;
  1476. update_cfs_load(cfs_rq, 0);
  1477. update_cfs_shares(cfs_rq);
  1478. }
  1479. if (!se)
  1480. inc_nr_running(rq);
  1481. hrtick_update(rq);
  1482. }
  1483. static void set_next_buddy(struct sched_entity *se);
  1484. /*
  1485. * The dequeue_task method is called before nr_running is
  1486. * decreased. We remove the task from the rbtree and
  1487. * update the fair scheduling stats:
  1488. */
  1489. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  1490. {
  1491. struct cfs_rq *cfs_rq;
  1492. struct sched_entity *se = &p->se;
  1493. int task_sleep = flags & DEQUEUE_SLEEP;
  1494. for_each_sched_entity(se) {
  1495. cfs_rq = cfs_rq_of(se);
  1496. dequeue_entity(cfs_rq, se, flags);
  1497. /*
  1498. * end evaluation on encountering a throttled cfs_rq
  1499. *
  1500. * note: in the case of encountering a throttled cfs_rq we will
  1501. * post the final h_nr_running decrement below.
  1502. */
  1503. if (cfs_rq_throttled(cfs_rq))
  1504. break;
  1505. cfs_rq->h_nr_running--;
  1506. /* Don't dequeue parent if it has other entities besides us */
  1507. if (cfs_rq->load.weight) {
  1508. /*
  1509. * Bias pick_next to pick a task from this cfs_rq, as
  1510. * p is sleeping when it is within its sched_slice.
  1511. */
  1512. if (task_sleep && parent_entity(se))
  1513. set_next_buddy(parent_entity(se));
  1514. /* avoid re-evaluating load for this entity */
  1515. se = parent_entity(se);
  1516. break;
  1517. }
  1518. flags |= DEQUEUE_SLEEP;
  1519. }
  1520. for_each_sched_entity(se) {
  1521. cfs_rq = cfs_rq_of(se);
  1522. cfs_rq->h_nr_running--;
  1523. if (cfs_rq_throttled(cfs_rq))
  1524. break;
  1525. update_cfs_load(cfs_rq, 0);
  1526. update_cfs_shares(cfs_rq);
  1527. }
  1528. if (!se)
  1529. dec_nr_running(rq);
  1530. hrtick_update(rq);
  1531. }
  1532. #ifdef CONFIG_SMP
  1533. static void task_waking_fair(struct task_struct *p)
  1534. {
  1535. struct sched_entity *se = &p->se;
  1536. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1537. u64 min_vruntime;
  1538. #ifndef CONFIG_64BIT
  1539. u64 min_vruntime_copy;
  1540. do {
  1541. min_vruntime_copy = cfs_rq->min_vruntime_copy;
  1542. smp_rmb();
  1543. min_vruntime = cfs_rq->min_vruntime;
  1544. } while (min_vruntime != min_vruntime_copy);
  1545. #else
  1546. min_vruntime = cfs_rq->min_vruntime;
  1547. #endif
  1548. se->vruntime -= min_vruntime;
  1549. }
  1550. #ifdef CONFIG_FAIR_GROUP_SCHED
  1551. /*
  1552. * effective_load() calculates the load change as seen from the root_task_group
  1553. *
  1554. * Adding load to a group doesn't make a group heavier, but can cause movement
  1555. * of group shares between cpus. Assuming the shares were perfectly aligned one
  1556. * can calculate the shift in shares.
  1557. */
  1558. static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
  1559. {
  1560. struct sched_entity *se = tg->se[cpu];
  1561. if (!tg->parent)
  1562. return wl;
  1563. for_each_sched_entity(se) {
  1564. long lw, w;
  1565. tg = se->my_q->tg;
  1566. w = se->my_q->load.weight;
  1567. /* use this cpu's instantaneous contribution */
  1568. lw = atomic_read(&tg->load_weight);
  1569. lw -= se->my_q->load_contribution;
  1570. lw += w + wg;
  1571. wl += w;
  1572. if (lw > 0 && wl < lw)
  1573. wl = (wl * tg->shares) / lw;
  1574. else
  1575. wl = tg->shares;
  1576. /* zero point is MIN_SHARES */
  1577. if (wl < MIN_SHARES)
  1578. wl = MIN_SHARES;
  1579. wl -= se->load.weight;
  1580. wg = 0;
  1581. }
  1582. return wl;
  1583. }
  1584. #else
  1585. static inline unsigned long effective_load(struct task_group *tg, int cpu,
  1586. unsigned long wl, unsigned long wg)
  1587. {
  1588. return wl;
  1589. }
  1590. #endif
  1591. static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
  1592. {
  1593. s64 this_load, load;
  1594. int idx, this_cpu, prev_cpu;
  1595. unsigned long tl_per_task;
  1596. struct task_group *tg;
  1597. unsigned long weight;
  1598. int balanced;
  1599. idx = sd->wake_idx;
  1600. this_cpu = smp_processor_id();
  1601. prev_cpu = task_cpu(p);
  1602. load = source_load(prev_cpu, idx);
  1603. this_load = target_load(this_cpu, idx);
  1604. /*
  1605. * If sync wakeup then subtract the (maximum possible)
  1606. * effect of the currently running task from the load
  1607. * of the current CPU:
  1608. */
  1609. if (sync) {
  1610. tg = task_group(current);
  1611. weight = current->se.load.weight;
  1612. this_load += effective_load(tg, this_cpu, -weight, -weight);
  1613. load += effective_load(tg, prev_cpu, 0, -weight);
  1614. }
  1615. tg = task_group(p);
  1616. weight = p->se.load.weight;
  1617. /*
  1618. * In low-load situations, where prev_cpu is idle and this_cpu is idle
  1619. * due to the sync cause above having dropped this_load to 0, we'll
  1620. * always have an imbalance, but there's really nothing you can do
  1621. * about that, so that's good too.
  1622. *
  1623. * Otherwise check if either cpus are near enough in load to allow this
  1624. * task to be woken on this_cpu.
  1625. */
  1626. if (this_load > 0) {
  1627. s64 this_eff_load, prev_eff_load;
  1628. this_eff_load = 100;
  1629. this_eff_load *= power_of(prev_cpu);
  1630. this_eff_load *= this_load +
  1631. effective_load(tg, this_cpu, weight, weight);
  1632. prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
  1633. prev_eff_load *= power_of(this_cpu);
  1634. prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
  1635. balanced = this_eff_load <= prev_eff_load;
  1636. } else
  1637. balanced = true;
  1638. /*
  1639. * If the currently running task will sleep within
  1640. * a reasonable amount of time then attract this newly
  1641. * woken task:
  1642. */
  1643. if (sync && balanced)
  1644. return 1;
  1645. schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
  1646. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1647. if (balanced ||
  1648. (this_load <= load &&
  1649. this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
  1650. /*
  1651. * This domain has SD_WAKE_AFFINE and
  1652. * p is cache cold in this domain, and
  1653. * there is no bad imbalance.
  1654. */
  1655. schedstat_inc(sd, ttwu_move_affine);
  1656. schedstat_inc(p, se.statistics.nr_wakeups_affine);
  1657. return 1;
  1658. }
  1659. return 0;
  1660. }
  1661. /*
  1662. * find_idlest_group finds and returns the least busy CPU group within the
  1663. * domain.
  1664. */
  1665. static struct sched_group *
  1666. find_idlest_group(struct sched_domain *sd, struct task_struct *p,
  1667. int this_cpu, int load_idx)
  1668. {
  1669. struct sched_group *idlest = NULL, *group = sd->groups;
  1670. unsigned long min_load = ULONG_MAX, this_load = 0;
  1671. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1672. do {
  1673. unsigned long load, avg_load;
  1674. int local_group;
  1675. int i;
  1676. /* Skip over this group if it has no CPUs allowed */
  1677. if (!cpumask_intersects(sched_group_cpus(group),
  1678. &p->cpus_allowed))
  1679. continue;
  1680. local_group = cpumask_test_cpu(this_cpu,
  1681. sched_group_cpus(group));
  1682. /* Tally up the load of all CPUs in the group */
  1683. avg_load = 0;
  1684. for_each_cpu(i, sched_group_cpus(group)) {
  1685. /* Bias balancing toward cpus of our domain */
  1686. if (local_group)
  1687. load = source_load(i, load_idx);
  1688. else
  1689. load = target_load(i, load_idx);
  1690. avg_load += load;
  1691. }
  1692. /* Adjust by relative CPU power of the group */
  1693. avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
  1694. if (local_group) {
  1695. this_load = avg_load;
  1696. } else if (avg_load < min_load) {
  1697. min_load = avg_load;
  1698. idlest = group;
  1699. }
  1700. } while (group = group->next, group != sd->groups);
  1701. if (!idlest || 100*this_load < imbalance*min_load)
  1702. return NULL;
  1703. return idlest;
  1704. }
  1705. /*
  1706. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1707. */
  1708. static int
  1709. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1710. {
  1711. unsigned long load, min_load = ULONG_MAX;
  1712. int idlest = -1;
  1713. int i;
  1714. /* Traverse only the allowed CPUs */
  1715. for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
  1716. load = weighted_cpuload(i);
  1717. if (load < min_load || (load == min_load && i == this_cpu)) {
  1718. min_load = load;
  1719. idlest = i;
  1720. }
  1721. }
  1722. return idlest;
  1723. }
  1724. /*
  1725. * Try and locate an idle CPU in the sched_domain.
  1726. */
  1727. static int select_idle_sibling(struct task_struct *p, int target)
  1728. {
  1729. int cpu = smp_processor_id();
  1730. int prev_cpu = task_cpu(p);
  1731. struct sched_domain *sd;
  1732. int i;
  1733. /*
  1734. * If the task is going to be woken-up on this cpu and if it is
  1735. * already idle, then it is the right target.
  1736. */
  1737. if (target == cpu && idle_cpu(cpu))
  1738. return cpu;
  1739. /*
  1740. * If the task is going to be woken-up on the cpu where it previously
  1741. * ran and if it is currently idle, then it the right target.
  1742. */
  1743. if (target == prev_cpu && idle_cpu(prev_cpu))
  1744. return prev_cpu;
  1745. /*
  1746. * Otherwise, iterate the domains and find an elegible idle cpu.
  1747. */
  1748. rcu_read_lock();
  1749. for_each_domain(target, sd) {
  1750. if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
  1751. break;
  1752. for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
  1753. if (idle_cpu(i)) {
  1754. target = i;
  1755. break;
  1756. }
  1757. }
  1758. /*
  1759. * Lets stop looking for an idle sibling when we reached
  1760. * the domain that spans the current cpu and prev_cpu.
  1761. */
  1762. if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
  1763. cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
  1764. break;
  1765. }
  1766. rcu_read_unlock();
  1767. return target;
  1768. }
  1769. /*
  1770. * sched_balance_self: balance the current task (running on cpu) in domains
  1771. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1772. * SD_BALANCE_EXEC.
  1773. *
  1774. * Balance, ie. select the least loaded group.
  1775. *
  1776. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1777. *
  1778. * preempt must be disabled.
  1779. */
  1780. static int
  1781. select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
  1782. {
  1783. struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
  1784. int cpu = smp_processor_id();
  1785. int prev_cpu = task_cpu(p);
  1786. int new_cpu = cpu;
  1787. int want_affine = 0;
  1788. int want_sd = 1;
  1789. int sync = wake_flags & WF_SYNC;
  1790. if (sd_flag & SD_BALANCE_WAKE) {
  1791. if (cpumask_test_cpu(cpu, &p->cpus_allowed))
  1792. want_affine = 1;
  1793. new_cpu = prev_cpu;
  1794. }
  1795. rcu_read_lock();
  1796. for_each_domain(cpu, tmp) {
  1797. if (!(tmp->flags & SD_LOAD_BALANCE))
  1798. continue;
  1799. /*
  1800. * If power savings logic is enabled for a domain, see if we
  1801. * are not overloaded, if so, don't balance wider.
  1802. */
  1803. if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
  1804. unsigned long power = 0;
  1805. unsigned long nr_running = 0;
  1806. unsigned long capacity;
  1807. int i;
  1808. for_each_cpu(i, sched_domain_span(tmp)) {
  1809. power += power_of(i);
  1810. nr_running += cpu_rq(i)->cfs.nr_running;
  1811. }
  1812. capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
  1813. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1814. nr_running /= 2;
  1815. if (nr_running < capacity)
  1816. want_sd = 0;
  1817. }
  1818. /*
  1819. * If both cpu and prev_cpu are part of this domain,
  1820. * cpu is a valid SD_WAKE_AFFINE target.
  1821. */
  1822. if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
  1823. cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
  1824. affine_sd = tmp;
  1825. want_affine = 0;
  1826. }
  1827. if (!want_sd && !want_affine)
  1828. break;
  1829. if (!(tmp->flags & sd_flag))
  1830. continue;
  1831. if (want_sd)
  1832. sd = tmp;
  1833. }
  1834. if (affine_sd) {
  1835. if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
  1836. prev_cpu = cpu;
  1837. new_cpu = select_idle_sibling(p, prev_cpu);
  1838. goto unlock;
  1839. }
  1840. while (sd) {
  1841. int load_idx = sd->forkexec_idx;
  1842. struct sched_group *group;
  1843. int weight;
  1844. if (!(sd->flags & sd_flag)) {
  1845. sd = sd->child;
  1846. continue;
  1847. }
  1848. if (sd_flag & SD_BALANCE_WAKE)
  1849. load_idx = sd->wake_idx;
  1850. group = find_idlest_group(sd, p, cpu, load_idx);
  1851. if (!group) {
  1852. sd = sd->child;
  1853. continue;
  1854. }
  1855. new_cpu = find_idlest_cpu(group, p, cpu);
  1856. if (new_cpu == -1 || new_cpu == cpu) {
  1857. /* Now try balancing at a lower domain level of cpu */
  1858. sd = sd->child;
  1859. continue;
  1860. }
  1861. /* Now try balancing at a lower domain level of new_cpu */
  1862. cpu = new_cpu;
  1863. weight = sd->span_weight;
  1864. sd = NULL;
  1865. for_each_domain(cpu, tmp) {
  1866. if (weight <= tmp->span_weight)
  1867. break;
  1868. if (tmp->flags & sd_flag)
  1869. sd = tmp;
  1870. }
  1871. /* while loop will break here if sd == NULL */
  1872. }
  1873. unlock:
  1874. rcu_read_unlock();
  1875. return new_cpu;
  1876. }
  1877. #endif /* CONFIG_SMP */
  1878. static unsigned long
  1879. wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
  1880. {
  1881. unsigned long gran = sysctl_sched_wakeup_granularity;
  1882. /*
  1883. * Since its curr running now, convert the gran from real-time
  1884. * to virtual-time in his units.
  1885. *
  1886. * By using 'se' instead of 'curr' we penalize light tasks, so
  1887. * they get preempted easier. That is, if 'se' < 'curr' then
  1888. * the resulting gran will be larger, therefore penalizing the
  1889. * lighter, if otoh 'se' > 'curr' then the resulting gran will
  1890. * be smaller, again penalizing the lighter task.
  1891. *
  1892. * This is especially important for buddies when the leftmost
  1893. * task is higher priority than the buddy.
  1894. */
  1895. return calc_delta_fair(gran, se);
  1896. }
  1897. /*
  1898. * Should 'se' preempt 'curr'.
  1899. *
  1900. * |s1
  1901. * |s2
  1902. * |s3
  1903. * g
  1904. * |<--->|c
  1905. *
  1906. * w(c, s1) = -1
  1907. * w(c, s2) = 0
  1908. * w(c, s3) = 1
  1909. *
  1910. */
  1911. static int
  1912. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  1913. {
  1914. s64 gran, vdiff = curr->vruntime - se->vruntime;
  1915. if (vdiff <= 0)
  1916. return -1;
  1917. gran = wakeup_gran(curr, se);
  1918. if (vdiff > gran)
  1919. return 1;
  1920. return 0;
  1921. }
  1922. static void set_last_buddy(struct sched_entity *se)
  1923. {
  1924. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  1925. return;
  1926. for_each_sched_entity(se)
  1927. cfs_rq_of(se)->last = se;
  1928. }
  1929. static void set_next_buddy(struct sched_entity *se)
  1930. {
  1931. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  1932. return;
  1933. for_each_sched_entity(se)
  1934. cfs_rq_of(se)->next = se;
  1935. }
  1936. static void set_skip_buddy(struct sched_entity *se)
  1937. {
  1938. for_each_sched_entity(se)
  1939. cfs_rq_of(se)->skip = se;
  1940. }
  1941. /*
  1942. * Preempt the current task with a newly woken task if needed:
  1943. */
  1944. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1945. {
  1946. struct task_struct *curr = rq->curr;
  1947. struct sched_entity *se = &curr->se, *pse = &p->se;
  1948. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1949. int scale = cfs_rq->nr_running >= sched_nr_latency;
  1950. int next_buddy_marked = 0;
  1951. if (unlikely(se == pse))
  1952. return;
  1953. if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
  1954. set_next_buddy(pse);
  1955. next_buddy_marked = 1;
  1956. }
  1957. /*
  1958. * We can come here with TIF_NEED_RESCHED already set from new task
  1959. * wake up path.
  1960. */
  1961. if (test_tsk_need_resched(curr))
  1962. return;
  1963. /* Idle tasks are by definition preempted by non-idle tasks. */
  1964. if (unlikely(curr->policy == SCHED_IDLE) &&
  1965. likely(p->policy != SCHED_IDLE))
  1966. goto preempt;
  1967. /*
  1968. * Batch and idle tasks do not preempt non-idle tasks (their preemption
  1969. * is driven by the tick):
  1970. */
  1971. if (unlikely(p->policy != SCHED_NORMAL))
  1972. return;
  1973. find_matching_se(&se, &pse);
  1974. update_curr(cfs_rq_of(se));
  1975. BUG_ON(!pse);
  1976. if (wakeup_preempt_entity(se, pse) == 1) {
  1977. /*
  1978. * Bias pick_next to pick the sched entity that is
  1979. * triggering this preemption.
  1980. */
  1981. if (!next_buddy_marked)
  1982. set_next_buddy(pse);
  1983. goto preempt;
  1984. }
  1985. return;
  1986. preempt:
  1987. resched_task(curr);
  1988. /*
  1989. * Only set the backward buddy when the current task is still
  1990. * on the rq. This can happen when a wakeup gets interleaved
  1991. * with schedule on the ->pre_schedule() or idle_balance()
  1992. * point, either of which can * drop the rq lock.
  1993. *
  1994. * Also, during early boot the idle thread is in the fair class,
  1995. * for obvious reasons its a bad idea to schedule back to it.
  1996. */
  1997. if (unlikely(!se->on_rq || curr == rq->idle))
  1998. return;
  1999. if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
  2000. set_last_buddy(se);
  2001. }
  2002. static struct task_struct *pick_next_task_fair(struct rq *rq)
  2003. {
  2004. struct task_struct *p;
  2005. struct cfs_rq *cfs_rq = &rq->cfs;
  2006. struct sched_entity *se;
  2007. if (!cfs_rq->nr_running)
  2008. return NULL;
  2009. do {
  2010. se = pick_next_entity(cfs_rq);
  2011. set_next_entity(cfs_rq, se);
  2012. cfs_rq = group_cfs_rq(se);
  2013. } while (cfs_rq);
  2014. p = task_of(se);
  2015. hrtick_start_fair(rq, p);
  2016. return p;
  2017. }
  2018. /*
  2019. * Account for a descheduled task:
  2020. */
  2021. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  2022. {
  2023. struct sched_entity *se = &prev->se;
  2024. struct cfs_rq *cfs_rq;
  2025. for_each_sched_entity(se) {
  2026. cfs_rq = cfs_rq_of(se);
  2027. put_prev_entity(cfs_rq, se);
  2028. }
  2029. }
  2030. /*
  2031. * sched_yield() is very simple
  2032. *
  2033. * The magic of dealing with the ->skip buddy is in pick_next_entity.
  2034. */
  2035. static void yield_task_fair(struct rq *rq)
  2036. {
  2037. struct task_struct *curr = rq->curr;
  2038. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  2039. struct sched_entity *se = &curr->se;
  2040. /*
  2041. * Are we the only task in the tree?
  2042. */
  2043. if (unlikely(rq->nr_running == 1))
  2044. return;
  2045. clear_buddies(cfs_rq, se);
  2046. if (curr->policy != SCHED_BATCH) {
  2047. update_rq_clock(rq);
  2048. /*
  2049. * Update run-time statistics of the 'current'.
  2050. */
  2051. update_curr(cfs_rq);
  2052. }
  2053. set_skip_buddy(se);
  2054. }
  2055. static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
  2056. {
  2057. struct sched_entity *se = &p->se;
  2058. if (!se->on_rq)
  2059. return false;
  2060. /* Tell the scheduler that we'd really like pse to run next. */
  2061. set_next_buddy(se);
  2062. yield_task_fair(rq);
  2063. return true;
  2064. }
  2065. #ifdef CONFIG_SMP
  2066. /**************************************************
  2067. * Fair scheduling class load-balancing methods:
  2068. */
  2069. /*
  2070. * pull_task - move a task from a remote runqueue to the local runqueue.
  2071. * Both runqueues must be locked.
  2072. */
  2073. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2074. struct rq *this_rq, int this_cpu)
  2075. {
  2076. deactivate_task(src_rq, p, 0);
  2077. set_task_cpu(p, this_cpu);
  2078. activate_task(this_rq, p, 0);
  2079. check_preempt_curr(this_rq, p, 0);
  2080. }
  2081. /*
  2082. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2083. */
  2084. static
  2085. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2086. struct sched_domain *sd, enum cpu_idle_type idle,
  2087. int *all_pinned)
  2088. {
  2089. int tsk_cache_hot = 0;
  2090. /*
  2091. * We do not migrate tasks that are:
  2092. * 1) running (obviously), or
  2093. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2094. * 3) are cache-hot on their current CPU.
  2095. */
  2096. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  2097. schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
  2098. return 0;
  2099. }
  2100. *all_pinned = 0;
  2101. if (task_running(rq, p)) {
  2102. schedstat_inc(p, se.statistics.nr_failed_migrations_running);
  2103. return 0;
  2104. }
  2105. /*
  2106. * Aggressive migration if:
  2107. * 1) task is cache cold, or
  2108. * 2) too many balance attempts have failed.
  2109. */
  2110. tsk_cache_hot = task_hot(p, rq->clock_task, sd);
  2111. if (!tsk_cache_hot ||
  2112. sd->nr_balance_failed > sd->cache_nice_tries) {
  2113. #ifdef CONFIG_SCHEDSTATS
  2114. if (tsk_cache_hot) {
  2115. schedstat_inc(sd, lb_hot_gained[idle]);
  2116. schedstat_inc(p, se.statistics.nr_forced_migrations);
  2117. }
  2118. #endif
  2119. return 1;
  2120. }
  2121. if (tsk_cache_hot) {
  2122. schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
  2123. return 0;
  2124. }
  2125. return 1;
  2126. }
  2127. /*
  2128. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2129. * part of active balancing operations within "domain".
  2130. * Returns 1 if successful and 0 otherwise.
  2131. *
  2132. * Called with both runqueues locked.
  2133. */
  2134. static int
  2135. move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2136. struct sched_domain *sd, enum cpu_idle_type idle)
  2137. {
  2138. struct task_struct *p, *n;
  2139. struct cfs_rq *cfs_rq;
  2140. int pinned = 0;
  2141. for_each_leaf_cfs_rq(busiest, cfs_rq) {
  2142. list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
  2143. if (throttled_lb_pair(task_group(p),
  2144. busiest->cpu, this_cpu))
  2145. break;
  2146. if (!can_migrate_task(p, busiest, this_cpu,
  2147. sd, idle, &pinned))
  2148. continue;
  2149. pull_task(busiest, p, this_rq, this_cpu);
  2150. /*
  2151. * Right now, this is only the second place pull_task()
  2152. * is called, so we can safely collect pull_task()
  2153. * stats here rather than inside pull_task().
  2154. */
  2155. schedstat_inc(sd, lb_gained[idle]);
  2156. return 1;
  2157. }
  2158. }
  2159. return 0;
  2160. }
  2161. static unsigned long
  2162. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2163. unsigned long max_load_move, struct sched_domain *sd,
  2164. enum cpu_idle_type idle, int *all_pinned,
  2165. struct cfs_rq *busiest_cfs_rq)
  2166. {
  2167. int loops = 0, pulled = 0;
  2168. long rem_load_move = max_load_move;
  2169. struct task_struct *p, *n;
  2170. if (max_load_move == 0)
  2171. goto out;
  2172. list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
  2173. if (loops++ > sysctl_sched_nr_migrate)
  2174. break;
  2175. if ((p->se.load.weight >> 1) > rem_load_move ||
  2176. !can_migrate_task(p, busiest, this_cpu, sd, idle,
  2177. all_pinned))
  2178. continue;
  2179. pull_task(busiest, p, this_rq, this_cpu);
  2180. pulled++;
  2181. rem_load_move -= p->se.load.weight;
  2182. #ifdef CONFIG_PREEMPT
  2183. /*
  2184. * NEWIDLE balancing is a source of latency, so preemptible
  2185. * kernels will stop after the first task is pulled to minimize
  2186. * the critical section.
  2187. */
  2188. if (idle == CPU_NEWLY_IDLE)
  2189. break;
  2190. #endif
  2191. /*
  2192. * We only want to steal up to the prescribed amount of
  2193. * weighted load.
  2194. */
  2195. if (rem_load_move <= 0)
  2196. break;
  2197. }
  2198. out:
  2199. /*
  2200. * Right now, this is one of only two places pull_task() is called,
  2201. * so we can safely collect pull_task() stats here rather than
  2202. * inside pull_task().
  2203. */
  2204. schedstat_add(sd, lb_gained[idle], pulled);
  2205. return max_load_move - rem_load_move;
  2206. }
  2207. #ifdef CONFIG_FAIR_GROUP_SCHED
  2208. /*
  2209. * update tg->load_weight by folding this cpu's load_avg
  2210. */
  2211. static int update_shares_cpu(struct task_group *tg, int cpu)
  2212. {
  2213. struct cfs_rq *cfs_rq;
  2214. unsigned long flags;
  2215. struct rq *rq;
  2216. if (!tg->se[cpu])
  2217. return 0;
  2218. rq = cpu_rq(cpu);
  2219. cfs_rq = tg->cfs_rq[cpu];
  2220. raw_spin_lock_irqsave(&rq->lock, flags);
  2221. update_rq_clock(rq);
  2222. update_cfs_load(cfs_rq, 1);
  2223. /*
  2224. * We need to update shares after updating tg->load_weight in
  2225. * order to adjust the weight of groups with long running tasks.
  2226. */
  2227. update_cfs_shares(cfs_rq);
  2228. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2229. return 0;
  2230. }
  2231. static void update_shares(int cpu)
  2232. {
  2233. struct cfs_rq *cfs_rq;
  2234. struct rq *rq = cpu_rq(cpu);
  2235. rcu_read_lock();
  2236. /*
  2237. * Iterates the task_group tree in a bottom up fashion, see
  2238. * list_add_leaf_cfs_rq() for details.
  2239. */
  2240. for_each_leaf_cfs_rq(rq, cfs_rq) {
  2241. /* throttled entities do not contribute to load */
  2242. if (throttled_hierarchy(cfs_rq))
  2243. continue;
  2244. update_shares_cpu(cfs_rq->tg, cpu);
  2245. }
  2246. rcu_read_unlock();
  2247. }
  2248. /*
  2249. * Compute the cpu's hierarchical load factor for each task group.
  2250. * This needs to be done in a top-down fashion because the load of a child
  2251. * group is a fraction of its parents load.
  2252. */
  2253. static int tg_load_down(struct task_group *tg, void *data)
  2254. {
  2255. unsigned long load;
  2256. long cpu = (long)data;
  2257. if (!tg->parent) {
  2258. load = cpu_rq(cpu)->load.weight;
  2259. } else {
  2260. load = tg->parent->cfs_rq[cpu]->h_load;
  2261. load *= tg->se[cpu]->load.weight;
  2262. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  2263. }
  2264. tg->cfs_rq[cpu]->h_load = load;
  2265. return 0;
  2266. }
  2267. static void update_h_load(long cpu)
  2268. {
  2269. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  2270. }
  2271. static unsigned long
  2272. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2273. unsigned long max_load_move,
  2274. struct sched_domain *sd, enum cpu_idle_type idle,
  2275. int *all_pinned)
  2276. {
  2277. long rem_load_move = max_load_move;
  2278. struct cfs_rq *busiest_cfs_rq;
  2279. rcu_read_lock();
  2280. update_h_load(cpu_of(busiest));
  2281. for_each_leaf_cfs_rq(busiest, busiest_cfs_rq) {
  2282. unsigned long busiest_h_load = busiest_cfs_rq->h_load;
  2283. unsigned long busiest_weight = busiest_cfs_rq->load.weight;
  2284. u64 rem_load, moved_load;
  2285. /*
  2286. * empty group or part of a throttled hierarchy
  2287. */
  2288. if (!busiest_cfs_rq->task_weight ||
  2289. throttled_lb_pair(busiest_cfs_rq->tg, cpu_of(busiest), this_cpu))
  2290. continue;
  2291. rem_load = (u64)rem_load_move * busiest_weight;
  2292. rem_load = div_u64(rem_load, busiest_h_load + 1);
  2293. moved_load = balance_tasks(this_rq, this_cpu, busiest,
  2294. rem_load, sd, idle, all_pinned,
  2295. busiest_cfs_rq);
  2296. if (!moved_load)
  2297. continue;
  2298. moved_load *= busiest_h_load;
  2299. moved_load = div_u64(moved_load, busiest_weight + 1);
  2300. rem_load_move -= moved_load;
  2301. if (rem_load_move < 0)
  2302. break;
  2303. }
  2304. rcu_read_unlock();
  2305. return max_load_move - rem_load_move;
  2306. }
  2307. #else
  2308. static inline void update_shares(int cpu)
  2309. {
  2310. }
  2311. static unsigned long
  2312. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2313. unsigned long max_load_move,
  2314. struct sched_domain *sd, enum cpu_idle_type idle,
  2315. int *all_pinned)
  2316. {
  2317. return balance_tasks(this_rq, this_cpu, busiest,
  2318. max_load_move, sd, idle, all_pinned,
  2319. &busiest->cfs);
  2320. }
  2321. #endif
  2322. /*
  2323. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2324. * this_rq, as part of a balancing operation within domain "sd".
  2325. * Returns 1 if successful and 0 otherwise.
  2326. *
  2327. * Called with both runqueues locked.
  2328. */
  2329. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2330. unsigned long max_load_move,
  2331. struct sched_domain *sd, enum cpu_idle_type idle,
  2332. int *all_pinned)
  2333. {
  2334. unsigned long total_load_moved = 0, load_moved;
  2335. do {
  2336. load_moved = load_balance_fair(this_rq, this_cpu, busiest,
  2337. max_load_move - total_load_moved,
  2338. sd, idle, all_pinned);
  2339. total_load_moved += load_moved;
  2340. #ifdef CONFIG_PREEMPT
  2341. /*
  2342. * NEWIDLE balancing is a source of latency, so preemptible
  2343. * kernels will stop after the first task is pulled to minimize
  2344. * the critical section.
  2345. */
  2346. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2347. break;
  2348. if (raw_spin_is_contended(&this_rq->lock) ||
  2349. raw_spin_is_contended(&busiest->lock))
  2350. break;
  2351. #endif
  2352. } while (load_moved && max_load_move > total_load_moved);
  2353. return total_load_moved > 0;
  2354. }
  2355. /********** Helpers for find_busiest_group ************************/
  2356. /*
  2357. * sd_lb_stats - Structure to store the statistics of a sched_domain
  2358. * during load balancing.
  2359. */
  2360. struct sd_lb_stats {
  2361. struct sched_group *busiest; /* Busiest group in this sd */
  2362. struct sched_group *this; /* Local group in this sd */
  2363. unsigned long total_load; /* Total load of all groups in sd */
  2364. unsigned long total_pwr; /* Total power of all groups in sd */
  2365. unsigned long avg_load; /* Average load across all groups in sd */
  2366. /** Statistics of this group */
  2367. unsigned long this_load;
  2368. unsigned long this_load_per_task;
  2369. unsigned long this_nr_running;
  2370. unsigned long this_has_capacity;
  2371. unsigned int this_idle_cpus;
  2372. /* Statistics of the busiest group */
  2373. unsigned int busiest_idle_cpus;
  2374. unsigned long max_load;
  2375. unsigned long busiest_load_per_task;
  2376. unsigned long busiest_nr_running;
  2377. unsigned long busiest_group_capacity;
  2378. unsigned long busiest_has_capacity;
  2379. unsigned int busiest_group_weight;
  2380. int group_imb; /* Is there imbalance in this sd */
  2381. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2382. int power_savings_balance; /* Is powersave balance needed for this sd */
  2383. struct sched_group *group_min; /* Least loaded group in sd */
  2384. struct sched_group *group_leader; /* Group which relieves group_min */
  2385. unsigned long min_load_per_task; /* load_per_task in group_min */
  2386. unsigned long leader_nr_running; /* Nr running of group_leader */
  2387. unsigned long min_nr_running; /* Nr running of group_min */
  2388. #endif
  2389. };
  2390. /*
  2391. * sg_lb_stats - stats of a sched_group required for load_balancing
  2392. */
  2393. struct sg_lb_stats {
  2394. unsigned long avg_load; /*Avg load across the CPUs of the group */
  2395. unsigned long group_load; /* Total load over the CPUs of the group */
  2396. unsigned long sum_nr_running; /* Nr tasks running in the group */
  2397. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  2398. unsigned long group_capacity;
  2399. unsigned long idle_cpus;
  2400. unsigned long group_weight;
  2401. int group_imb; /* Is there an imbalance in the group ? */
  2402. int group_has_capacity; /* Is there extra capacity in the group? */
  2403. };
  2404. /**
  2405. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  2406. * @group: The group whose first cpu is to be returned.
  2407. */
  2408. static inline unsigned int group_first_cpu(struct sched_group *group)
  2409. {
  2410. return cpumask_first(sched_group_cpus(group));
  2411. }
  2412. /**
  2413. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2414. * @sd: The sched_domain whose load_idx is to be obtained.
  2415. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2416. */
  2417. static inline int get_sd_load_idx(struct sched_domain *sd,
  2418. enum cpu_idle_type idle)
  2419. {
  2420. int load_idx;
  2421. switch (idle) {
  2422. case CPU_NOT_IDLE:
  2423. load_idx = sd->busy_idx;
  2424. break;
  2425. case CPU_NEWLY_IDLE:
  2426. load_idx = sd->newidle_idx;
  2427. break;
  2428. default:
  2429. load_idx = sd->idle_idx;
  2430. break;
  2431. }
  2432. return load_idx;
  2433. }
  2434. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2435. /**
  2436. * init_sd_power_savings_stats - Initialize power savings statistics for
  2437. * the given sched_domain, during load balancing.
  2438. *
  2439. * @sd: Sched domain whose power-savings statistics are to be initialized.
  2440. * @sds: Variable containing the statistics for sd.
  2441. * @idle: Idle status of the CPU at which we're performing load-balancing.
  2442. */
  2443. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2444. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2445. {
  2446. /*
  2447. * Busy processors will not participate in power savings
  2448. * balance.
  2449. */
  2450. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2451. sds->power_savings_balance = 0;
  2452. else {
  2453. sds->power_savings_balance = 1;
  2454. sds->min_nr_running = ULONG_MAX;
  2455. sds->leader_nr_running = 0;
  2456. }
  2457. }
  2458. /**
  2459. * update_sd_power_savings_stats - Update the power saving stats for a
  2460. * sched_domain while performing load balancing.
  2461. *
  2462. * @group: sched_group belonging to the sched_domain under consideration.
  2463. * @sds: Variable containing the statistics of the sched_domain
  2464. * @local_group: Does group contain the CPU for which we're performing
  2465. * load balancing ?
  2466. * @sgs: Variable containing the statistics of the group.
  2467. */
  2468. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2469. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2470. {
  2471. if (!sds->power_savings_balance)
  2472. return;
  2473. /*
  2474. * If the local group is idle or completely loaded
  2475. * no need to do power savings balance at this domain
  2476. */
  2477. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  2478. !sds->this_nr_running))
  2479. sds->power_savings_balance = 0;
  2480. /*
  2481. * If a group is already running at full capacity or idle,
  2482. * don't include that group in power savings calculations
  2483. */
  2484. if (!sds->power_savings_balance ||
  2485. sgs->sum_nr_running >= sgs->group_capacity ||
  2486. !sgs->sum_nr_running)
  2487. return;
  2488. /*
  2489. * Calculate the group which has the least non-idle load.
  2490. * This is the group from where we need to pick up the load
  2491. * for saving power
  2492. */
  2493. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  2494. (sgs->sum_nr_running == sds->min_nr_running &&
  2495. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  2496. sds->group_min = group;
  2497. sds->min_nr_running = sgs->sum_nr_running;
  2498. sds->min_load_per_task = sgs->sum_weighted_load /
  2499. sgs->sum_nr_running;
  2500. }
  2501. /*
  2502. * Calculate the group which is almost near its
  2503. * capacity but still has some space to pick up some load
  2504. * from other group and save more power
  2505. */
  2506. if (sgs->sum_nr_running + 1 > sgs->group_capacity)
  2507. return;
  2508. if (sgs->sum_nr_running > sds->leader_nr_running ||
  2509. (sgs->sum_nr_running == sds->leader_nr_running &&
  2510. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  2511. sds->group_leader = group;
  2512. sds->leader_nr_running = sgs->sum_nr_running;
  2513. }
  2514. }
  2515. /**
  2516. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  2517. * @sds: Variable containing the statistics of the sched_domain
  2518. * under consideration.
  2519. * @this_cpu: Cpu at which we're currently performing load-balancing.
  2520. * @imbalance: Variable to store the imbalance.
  2521. *
  2522. * Description:
  2523. * Check if we have potential to perform some power-savings balance.
  2524. * If yes, set the busiest group to be the least loaded group in the
  2525. * sched_domain, so that it's CPUs can be put to idle.
  2526. *
  2527. * Returns 1 if there is potential to perform power-savings balance.
  2528. * Else returns 0.
  2529. */
  2530. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2531. int this_cpu, unsigned long *imbalance)
  2532. {
  2533. if (!sds->power_savings_balance)
  2534. return 0;
  2535. if (sds->this != sds->group_leader ||
  2536. sds->group_leader == sds->group_min)
  2537. return 0;
  2538. *imbalance = sds->min_load_per_task;
  2539. sds->busiest = sds->group_min;
  2540. return 1;
  2541. }
  2542. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2543. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2544. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2545. {
  2546. return;
  2547. }
  2548. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2549. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2550. {
  2551. return;
  2552. }
  2553. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2554. int this_cpu, unsigned long *imbalance)
  2555. {
  2556. return 0;
  2557. }
  2558. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2559. unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  2560. {
  2561. return SCHED_POWER_SCALE;
  2562. }
  2563. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  2564. {
  2565. return default_scale_freq_power(sd, cpu);
  2566. }
  2567. unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  2568. {
  2569. unsigned long weight = sd->span_weight;
  2570. unsigned long smt_gain = sd->smt_gain;
  2571. smt_gain /= weight;
  2572. return smt_gain;
  2573. }
  2574. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  2575. {
  2576. return default_scale_smt_power(sd, cpu);
  2577. }
  2578. unsigned long scale_rt_power(int cpu)
  2579. {
  2580. struct rq *rq = cpu_rq(cpu);
  2581. u64 total, available;
  2582. total = sched_avg_period() + (rq->clock - rq->age_stamp);
  2583. if (unlikely(total < rq->rt_avg)) {
  2584. /* Ensures that power won't end up being negative */
  2585. available = 0;
  2586. } else {
  2587. available = total - rq->rt_avg;
  2588. }
  2589. if (unlikely((s64)total < SCHED_POWER_SCALE))
  2590. total = SCHED_POWER_SCALE;
  2591. total >>= SCHED_POWER_SHIFT;
  2592. return div_u64(available, total);
  2593. }
  2594. static void update_cpu_power(struct sched_domain *sd, int cpu)
  2595. {
  2596. unsigned long weight = sd->span_weight;
  2597. unsigned long power = SCHED_POWER_SCALE;
  2598. struct sched_group *sdg = sd->groups;
  2599. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  2600. if (sched_feat(ARCH_POWER))
  2601. power *= arch_scale_smt_power(sd, cpu);
  2602. else
  2603. power *= default_scale_smt_power(sd, cpu);
  2604. power >>= SCHED_POWER_SHIFT;
  2605. }
  2606. sdg->sgp->power_orig = power;
  2607. if (sched_feat(ARCH_POWER))
  2608. power *= arch_scale_freq_power(sd, cpu);
  2609. else
  2610. power *= default_scale_freq_power(sd, cpu);
  2611. power >>= SCHED_POWER_SHIFT;
  2612. power *= scale_rt_power(cpu);
  2613. power >>= SCHED_POWER_SHIFT;
  2614. if (!power)
  2615. power = 1;
  2616. cpu_rq(cpu)->cpu_power = power;
  2617. sdg->sgp->power = power;
  2618. }
  2619. static void update_group_power(struct sched_domain *sd, int cpu)
  2620. {
  2621. struct sched_domain *child = sd->child;
  2622. struct sched_group *group, *sdg = sd->groups;
  2623. unsigned long power;
  2624. if (!child) {
  2625. update_cpu_power(sd, cpu);
  2626. return;
  2627. }
  2628. power = 0;
  2629. group = child->groups;
  2630. do {
  2631. power += group->sgp->power;
  2632. group = group->next;
  2633. } while (group != child->groups);
  2634. sdg->sgp->power = power;
  2635. }
  2636. /*
  2637. * Try and fix up capacity for tiny siblings, this is needed when
  2638. * things like SD_ASYM_PACKING need f_b_g to select another sibling
  2639. * which on its own isn't powerful enough.
  2640. *
  2641. * See update_sd_pick_busiest() and check_asym_packing().
  2642. */
  2643. static inline int
  2644. fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
  2645. {
  2646. /*
  2647. * Only siblings can have significantly less than SCHED_POWER_SCALE
  2648. */
  2649. if (!(sd->flags & SD_SHARE_CPUPOWER))
  2650. return 0;
  2651. /*
  2652. * If ~90% of the cpu_power is still there, we're good.
  2653. */
  2654. if (group->sgp->power * 32 > group->sgp->power_orig * 29)
  2655. return 1;
  2656. return 0;
  2657. }
  2658. /**
  2659. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  2660. * @sd: The sched_domain whose statistics are to be updated.
  2661. * @group: sched_group whose statistics are to be updated.
  2662. * @this_cpu: Cpu for which load balance is currently performed.
  2663. * @idle: Idle status of this_cpu
  2664. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  2665. * @local_group: Does group contain this_cpu.
  2666. * @cpus: Set of cpus considered for load balancing.
  2667. * @balance: Should we balance.
  2668. * @sgs: variable to hold the statistics for this group.
  2669. */
  2670. static inline void update_sg_lb_stats(struct sched_domain *sd,
  2671. struct sched_group *group, int this_cpu,
  2672. enum cpu_idle_type idle, int load_idx,
  2673. int local_group, const struct cpumask *cpus,
  2674. int *balance, struct sg_lb_stats *sgs)
  2675. {
  2676. unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
  2677. int i;
  2678. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2679. unsigned long avg_load_per_task = 0;
  2680. if (local_group)
  2681. balance_cpu = group_first_cpu(group);
  2682. /* Tally up the load of all CPUs in the group */
  2683. max_cpu_load = 0;
  2684. min_cpu_load = ~0UL;
  2685. max_nr_running = 0;
  2686. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  2687. struct rq *rq = cpu_rq(i);
  2688. /* Bias balancing toward cpus of our domain */
  2689. if (local_group) {
  2690. if (idle_cpu(i) && !first_idle_cpu) {
  2691. first_idle_cpu = 1;
  2692. balance_cpu = i;
  2693. }
  2694. load = target_load(i, load_idx);
  2695. } else {
  2696. load = source_load(i, load_idx);
  2697. if (load > max_cpu_load) {
  2698. max_cpu_load = load;
  2699. max_nr_running = rq->nr_running;
  2700. }
  2701. if (min_cpu_load > load)
  2702. min_cpu_load = load;
  2703. }
  2704. sgs->group_load += load;
  2705. sgs->sum_nr_running += rq->nr_running;
  2706. sgs->sum_weighted_load += weighted_cpuload(i);
  2707. if (idle_cpu(i))
  2708. sgs->idle_cpus++;
  2709. }
  2710. /*
  2711. * First idle cpu or the first cpu(busiest) in this sched group
  2712. * is eligible for doing load balancing at this and above
  2713. * domains. In the newly idle case, we will allow all the cpu's
  2714. * to do the newly idle load balance.
  2715. */
  2716. if (idle != CPU_NEWLY_IDLE && local_group) {
  2717. if (balance_cpu != this_cpu) {
  2718. *balance = 0;
  2719. return;
  2720. }
  2721. update_group_power(sd, this_cpu);
  2722. }
  2723. /* Adjust by relative CPU power of the group */
  2724. sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
  2725. /*
  2726. * Consider the group unbalanced when the imbalance is larger
  2727. * than the average weight of a task.
  2728. *
  2729. * APZ: with cgroup the avg task weight can vary wildly and
  2730. * might not be a suitable number - should we keep a
  2731. * normalized nr_running number somewhere that negates
  2732. * the hierarchy?
  2733. */
  2734. if (sgs->sum_nr_running)
  2735. avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
  2736. if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
  2737. sgs->group_imb = 1;
  2738. sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
  2739. SCHED_POWER_SCALE);
  2740. if (!sgs->group_capacity)
  2741. sgs->group_capacity = fix_small_capacity(sd, group);
  2742. sgs->group_weight = group->group_weight;
  2743. if (sgs->group_capacity > sgs->sum_nr_running)
  2744. sgs->group_has_capacity = 1;
  2745. }
  2746. /**
  2747. * update_sd_pick_busiest - return 1 on busiest group
  2748. * @sd: sched_domain whose statistics are to be checked
  2749. * @sds: sched_domain statistics
  2750. * @sg: sched_group candidate to be checked for being the busiest
  2751. * @sgs: sched_group statistics
  2752. * @this_cpu: the current cpu
  2753. *
  2754. * Determine if @sg is a busier group than the previously selected
  2755. * busiest group.
  2756. */
  2757. static bool update_sd_pick_busiest(struct sched_domain *sd,
  2758. struct sd_lb_stats *sds,
  2759. struct sched_group *sg,
  2760. struct sg_lb_stats *sgs,
  2761. int this_cpu)
  2762. {
  2763. if (sgs->avg_load <= sds->max_load)
  2764. return false;
  2765. if (sgs->sum_nr_running > sgs->group_capacity)
  2766. return true;
  2767. if (sgs->group_imb)
  2768. return true;
  2769. /*
  2770. * ASYM_PACKING needs to move all the work to the lowest
  2771. * numbered CPUs in the group, therefore mark all groups
  2772. * higher than ourself as busy.
  2773. */
  2774. if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
  2775. this_cpu < group_first_cpu(sg)) {
  2776. if (!sds->busiest)
  2777. return true;
  2778. if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
  2779. return true;
  2780. }
  2781. return false;
  2782. }
  2783. /**
  2784. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  2785. * @sd: sched_domain whose statistics are to be updated.
  2786. * @this_cpu: Cpu for which load balance is currently performed.
  2787. * @idle: Idle status of this_cpu
  2788. * @cpus: Set of cpus considered for load balancing.
  2789. * @balance: Should we balance.
  2790. * @sds: variable to hold the statistics for this sched_domain.
  2791. */
  2792. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  2793. enum cpu_idle_type idle, const struct cpumask *cpus,
  2794. int *balance, struct sd_lb_stats *sds)
  2795. {
  2796. struct sched_domain *child = sd->child;
  2797. struct sched_group *sg = sd->groups;
  2798. struct sg_lb_stats sgs;
  2799. int load_idx, prefer_sibling = 0;
  2800. if (child && child->flags & SD_PREFER_SIBLING)
  2801. prefer_sibling = 1;
  2802. init_sd_power_savings_stats(sd, sds, idle);
  2803. load_idx = get_sd_load_idx(sd, idle);
  2804. do {
  2805. int local_group;
  2806. local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
  2807. memset(&sgs, 0, sizeof(sgs));
  2808. update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
  2809. local_group, cpus, balance, &sgs);
  2810. if (local_group && !(*balance))
  2811. return;
  2812. sds->total_load += sgs.group_load;
  2813. sds->total_pwr += sg->sgp->power;
  2814. /*
  2815. * In case the child domain prefers tasks go to siblings
  2816. * first, lower the sg capacity to one so that we'll try
  2817. * and move all the excess tasks away. We lower the capacity
  2818. * of a group only if the local group has the capacity to fit
  2819. * these excess tasks, i.e. nr_running < group_capacity. The
  2820. * extra check prevents the case where you always pull from the
  2821. * heaviest group when it is already under-utilized (possible
  2822. * with a large weight task outweighs the tasks on the system).
  2823. */
  2824. if (prefer_sibling && !local_group && sds->this_has_capacity)
  2825. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  2826. if (local_group) {
  2827. sds->this_load = sgs.avg_load;
  2828. sds->this = sg;
  2829. sds->this_nr_running = sgs.sum_nr_running;
  2830. sds->this_load_per_task = sgs.sum_weighted_load;
  2831. sds->this_has_capacity = sgs.group_has_capacity;
  2832. sds->this_idle_cpus = sgs.idle_cpus;
  2833. } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
  2834. sds->max_load = sgs.avg_load;
  2835. sds->busiest = sg;
  2836. sds->busiest_nr_running = sgs.sum_nr_running;
  2837. sds->busiest_idle_cpus = sgs.idle_cpus;
  2838. sds->busiest_group_capacity = sgs.group_capacity;
  2839. sds->busiest_load_per_task = sgs.sum_weighted_load;
  2840. sds->busiest_has_capacity = sgs.group_has_capacity;
  2841. sds->busiest_group_weight = sgs.group_weight;
  2842. sds->group_imb = sgs.group_imb;
  2843. }
  2844. update_sd_power_savings_stats(sg, sds, local_group, &sgs);
  2845. sg = sg->next;
  2846. } while (sg != sd->groups);
  2847. }
  2848. int __weak arch_sd_sibling_asym_packing(void)
  2849. {
  2850. return 0*SD_ASYM_PACKING;
  2851. }
  2852. /**
  2853. * check_asym_packing - Check to see if the group is packed into the
  2854. * sched doman.
  2855. *
  2856. * This is primarily intended to used at the sibling level. Some
  2857. * cores like POWER7 prefer to use lower numbered SMT threads. In the
  2858. * case of POWER7, it can move to lower SMT modes only when higher
  2859. * threads are idle. When in lower SMT modes, the threads will
  2860. * perform better since they share less core resources. Hence when we
  2861. * have idle threads, we want them to be the higher ones.
  2862. *
  2863. * This packing function is run on idle threads. It checks to see if
  2864. * the busiest CPU in this domain (core in the P7 case) has a higher
  2865. * CPU number than the packing function is being run on. Here we are
  2866. * assuming lower CPU number will be equivalent to lower a SMT thread
  2867. * number.
  2868. *
  2869. * Returns 1 when packing is required and a task should be moved to
  2870. * this CPU. The amount of the imbalance is returned in *imbalance.
  2871. *
  2872. * @sd: The sched_domain whose packing is to be checked.
  2873. * @sds: Statistics of the sched_domain which is to be packed
  2874. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  2875. * @imbalance: returns amount of imbalanced due to packing.
  2876. */
  2877. static int check_asym_packing(struct sched_domain *sd,
  2878. struct sd_lb_stats *sds,
  2879. int this_cpu, unsigned long *imbalance)
  2880. {
  2881. int busiest_cpu;
  2882. if (!(sd->flags & SD_ASYM_PACKING))
  2883. return 0;
  2884. if (!sds->busiest)
  2885. return 0;
  2886. busiest_cpu = group_first_cpu(sds->busiest);
  2887. if (this_cpu > busiest_cpu)
  2888. return 0;
  2889. *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power,
  2890. SCHED_POWER_SCALE);
  2891. return 1;
  2892. }
  2893. /**
  2894. * fix_small_imbalance - Calculate the minor imbalance that exists
  2895. * amongst the groups of a sched_domain, during
  2896. * load balancing.
  2897. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  2898. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  2899. * @imbalance: Variable to store the imbalance.
  2900. */
  2901. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  2902. int this_cpu, unsigned long *imbalance)
  2903. {
  2904. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  2905. unsigned int imbn = 2;
  2906. unsigned long scaled_busy_load_per_task;
  2907. if (sds->this_nr_running) {
  2908. sds->this_load_per_task /= sds->this_nr_running;
  2909. if (sds->busiest_load_per_task >
  2910. sds->this_load_per_task)
  2911. imbn = 1;
  2912. } else
  2913. sds->this_load_per_task =
  2914. cpu_avg_load_per_task(this_cpu);
  2915. scaled_busy_load_per_task = sds->busiest_load_per_task
  2916. * SCHED_POWER_SCALE;
  2917. scaled_busy_load_per_task /= sds->busiest->sgp->power;
  2918. if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
  2919. (scaled_busy_load_per_task * imbn)) {
  2920. *imbalance = sds->busiest_load_per_task;
  2921. return;
  2922. }
  2923. /*
  2924. * OK, we don't have enough imbalance to justify moving tasks,
  2925. * however we may be able to increase total CPU power used by
  2926. * moving them.
  2927. */
  2928. pwr_now += sds->busiest->sgp->power *
  2929. min(sds->busiest_load_per_task, sds->max_load);
  2930. pwr_now += sds->this->sgp->power *
  2931. min(sds->this_load_per_task, sds->this_load);
  2932. pwr_now /= SCHED_POWER_SCALE;
  2933. /* Amount of load we'd subtract */
  2934. tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
  2935. sds->busiest->sgp->power;
  2936. if (sds->max_load > tmp)
  2937. pwr_move += sds->busiest->sgp->power *
  2938. min(sds->busiest_load_per_task, sds->max_load - tmp);
  2939. /* Amount of load we'd add */
  2940. if (sds->max_load * sds->busiest->sgp->power <
  2941. sds->busiest_load_per_task * SCHED_POWER_SCALE)
  2942. tmp = (sds->max_load * sds->busiest->sgp->power) /
  2943. sds->this->sgp->power;
  2944. else
  2945. tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
  2946. sds->this->sgp->power;
  2947. pwr_move += sds->this->sgp->power *
  2948. min(sds->this_load_per_task, sds->this_load + tmp);
  2949. pwr_move /= SCHED_POWER_SCALE;
  2950. /* Move if we gain throughput */
  2951. if (pwr_move > pwr_now)
  2952. *imbalance = sds->busiest_load_per_task;
  2953. }
  2954. /**
  2955. * calculate_imbalance - Calculate the amount of imbalance present within the
  2956. * groups of a given sched_domain during load balance.
  2957. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  2958. * @this_cpu: Cpu for which currently load balance is being performed.
  2959. * @imbalance: The variable to store the imbalance.
  2960. */
  2961. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  2962. unsigned long *imbalance)
  2963. {
  2964. unsigned long max_pull, load_above_capacity = ~0UL;
  2965. sds->busiest_load_per_task /= sds->busiest_nr_running;
  2966. if (sds->group_imb) {
  2967. sds->busiest_load_per_task =
  2968. min(sds->busiest_load_per_task, sds->avg_load);
  2969. }
  2970. /*
  2971. * In the presence of smp nice balancing, certain scenarios can have
  2972. * max load less than avg load(as we skip the groups at or below
  2973. * its cpu_power, while calculating max_load..)
  2974. */
  2975. if (sds->max_load < sds->avg_load) {
  2976. *imbalance = 0;
  2977. return fix_small_imbalance(sds, this_cpu, imbalance);
  2978. }
  2979. if (!sds->group_imb) {
  2980. /*
  2981. * Don't want to pull so many tasks that a group would go idle.
  2982. */
  2983. load_above_capacity = (sds->busiest_nr_running -
  2984. sds->busiest_group_capacity);
  2985. load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
  2986. load_above_capacity /= sds->busiest->sgp->power;
  2987. }
  2988. /*
  2989. * We're trying to get all the cpus to the average_load, so we don't
  2990. * want to push ourselves above the average load, nor do we wish to
  2991. * reduce the max loaded cpu below the average load. At the same time,
  2992. * we also don't want to reduce the group load below the group capacity
  2993. * (so that we can implement power-savings policies etc). Thus we look
  2994. * for the minimum possible imbalance.
  2995. * Be careful of negative numbers as they'll appear as very large values
  2996. * with unsigned longs.
  2997. */
  2998. max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
  2999. /* How much load to actually move to equalise the imbalance */
  3000. *imbalance = min(max_pull * sds->busiest->sgp->power,
  3001. (sds->avg_load - sds->this_load) * sds->this->sgp->power)
  3002. / SCHED_POWER_SCALE;
  3003. /*
  3004. * if *imbalance is less than the average load per runnable task
  3005. * there is no guarantee that any tasks will be moved so we'll have
  3006. * a think about bumping its value to force at least one task to be
  3007. * moved
  3008. */
  3009. if (*imbalance < sds->busiest_load_per_task)
  3010. return fix_small_imbalance(sds, this_cpu, imbalance);
  3011. }
  3012. /******* find_busiest_group() helpers end here *********************/
  3013. /**
  3014. * find_busiest_group - Returns the busiest group within the sched_domain
  3015. * if there is an imbalance. If there isn't an imbalance, and
  3016. * the user has opted for power-savings, it returns a group whose
  3017. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  3018. * such a group exists.
  3019. *
  3020. * Also calculates the amount of weighted load which should be moved
  3021. * to restore balance.
  3022. *
  3023. * @sd: The sched_domain whose busiest group is to be returned.
  3024. * @this_cpu: The cpu for which load balancing is currently being performed.
  3025. * @imbalance: Variable which stores amount of weighted load which should
  3026. * be moved to restore balance/put a group to idle.
  3027. * @idle: The idle status of this_cpu.
  3028. * @cpus: The set of CPUs under consideration for load-balancing.
  3029. * @balance: Pointer to a variable indicating if this_cpu
  3030. * is the appropriate cpu to perform load balancing at this_level.
  3031. *
  3032. * Returns: - the busiest group if imbalance exists.
  3033. * - If no imbalance and user has opted for power-savings balance,
  3034. * return the least loaded group whose CPUs can be
  3035. * put to idle by rebalancing its tasks onto our group.
  3036. */
  3037. static struct sched_group *
  3038. find_busiest_group(struct sched_domain *sd, int this_cpu,
  3039. unsigned long *imbalance, enum cpu_idle_type idle,
  3040. const struct cpumask *cpus, int *balance)
  3041. {
  3042. struct sd_lb_stats sds;
  3043. memset(&sds, 0, sizeof(sds));
  3044. /*
  3045. * Compute the various statistics relavent for load balancing at
  3046. * this level.
  3047. */
  3048. update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
  3049. /*
  3050. * this_cpu is not the appropriate cpu to perform load balancing at
  3051. * this level.
  3052. */
  3053. if (!(*balance))
  3054. goto ret;
  3055. if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
  3056. check_asym_packing(sd, &sds, this_cpu, imbalance))
  3057. return sds.busiest;
  3058. /* There is no busy sibling group to pull tasks from */
  3059. if (!sds.busiest || sds.busiest_nr_running == 0)
  3060. goto out_balanced;
  3061. sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
  3062. /*
  3063. * If the busiest group is imbalanced the below checks don't
  3064. * work because they assumes all things are equal, which typically
  3065. * isn't true due to cpus_allowed constraints and the like.
  3066. */
  3067. if (sds.group_imb)
  3068. goto force_balance;
  3069. /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
  3070. if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
  3071. !sds.busiest_has_capacity)
  3072. goto force_balance;
  3073. /*
  3074. * If the local group is more busy than the selected busiest group
  3075. * don't try and pull any tasks.
  3076. */
  3077. if (sds.this_load >= sds.max_load)
  3078. goto out_balanced;
  3079. /*
  3080. * Don't pull any tasks if this group is already above the domain
  3081. * average load.
  3082. */
  3083. if (sds.this_load >= sds.avg_load)
  3084. goto out_balanced;
  3085. if (idle == CPU_IDLE) {
  3086. /*
  3087. * This cpu is idle. If the busiest group load doesn't
  3088. * have more tasks than the number of available cpu's and
  3089. * there is no imbalance between this and busiest group
  3090. * wrt to idle cpu's, it is balanced.
  3091. */
  3092. if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
  3093. sds.busiest_nr_running <= sds.busiest_group_weight)
  3094. goto out_balanced;
  3095. } else {
  3096. /*
  3097. * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
  3098. * imbalance_pct to be conservative.
  3099. */
  3100. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  3101. goto out_balanced;
  3102. }
  3103. force_balance:
  3104. /* Looks like there is an imbalance. Compute it */
  3105. calculate_imbalance(&sds, this_cpu, imbalance);
  3106. return sds.busiest;
  3107. out_balanced:
  3108. /*
  3109. * There is no obvious imbalance. But check if we can do some balancing
  3110. * to save power.
  3111. */
  3112. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  3113. return sds.busiest;
  3114. ret:
  3115. *imbalance = 0;
  3116. return NULL;
  3117. }
  3118. /*
  3119. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3120. */
  3121. static struct rq *
  3122. find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
  3123. enum cpu_idle_type idle, unsigned long imbalance,
  3124. const struct cpumask *cpus)
  3125. {
  3126. struct rq *busiest = NULL, *rq;
  3127. unsigned long max_load = 0;
  3128. int i;
  3129. for_each_cpu(i, sched_group_cpus(group)) {
  3130. unsigned long power = power_of(i);
  3131. unsigned long capacity = DIV_ROUND_CLOSEST(power,
  3132. SCHED_POWER_SCALE);
  3133. unsigned long wl;
  3134. if (!capacity)
  3135. capacity = fix_small_capacity(sd, group);
  3136. if (!cpumask_test_cpu(i, cpus))
  3137. continue;
  3138. rq = cpu_rq(i);
  3139. wl = weighted_cpuload(i);
  3140. /*
  3141. * When comparing with imbalance, use weighted_cpuload()
  3142. * which is not scaled with the cpu power.
  3143. */
  3144. if (capacity && rq->nr_running == 1 && wl > imbalance)
  3145. continue;
  3146. /*
  3147. * For the load comparisons with the other cpu's, consider
  3148. * the weighted_cpuload() scaled with the cpu power, so that
  3149. * the load can be moved away from the cpu that is potentially
  3150. * running at a lower capacity.
  3151. */
  3152. wl = (wl * SCHED_POWER_SCALE) / power;
  3153. if (wl > max_load) {
  3154. max_load = wl;
  3155. busiest = rq;
  3156. }
  3157. }
  3158. return busiest;
  3159. }
  3160. /*
  3161. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3162. * so long as it is large enough.
  3163. */
  3164. #define MAX_PINNED_INTERVAL 512
  3165. /* Working cpumask for load_balance and load_balance_newidle. */
  3166. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  3167. static int need_active_balance(struct sched_domain *sd, int idle,
  3168. int busiest_cpu, int this_cpu)
  3169. {
  3170. if (idle == CPU_NEWLY_IDLE) {
  3171. /*
  3172. * ASYM_PACKING needs to force migrate tasks from busy but
  3173. * higher numbered CPUs in order to pack all tasks in the
  3174. * lowest numbered CPUs.
  3175. */
  3176. if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
  3177. return 1;
  3178. /*
  3179. * The only task running in a non-idle cpu can be moved to this
  3180. * cpu in an attempt to completely freeup the other CPU
  3181. * package.
  3182. *
  3183. * The package power saving logic comes from
  3184. * find_busiest_group(). If there are no imbalance, then
  3185. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3186. * f_b_g() will select a group from which a running task may be
  3187. * pulled to this cpu in order to make the other package idle.
  3188. * If there is no opportunity to make a package idle and if
  3189. * there are no imbalance, then f_b_g() will return NULL and no
  3190. * action will be taken in load_balance_newidle().
  3191. *
  3192. * Under normal task pull operation due to imbalance, there
  3193. * will be more than one task in the source run queue and
  3194. * move_tasks() will succeed. ld_moved will be true and this
  3195. * active balance code will not be triggered.
  3196. */
  3197. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3198. return 0;
  3199. }
  3200. return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
  3201. }
  3202. static int active_load_balance_cpu_stop(void *data);
  3203. /*
  3204. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3205. * tasks if there is an imbalance.
  3206. */
  3207. static int load_balance(int this_cpu, struct rq *this_rq,
  3208. struct sched_domain *sd, enum cpu_idle_type idle,
  3209. int *balance)
  3210. {
  3211. int ld_moved, all_pinned = 0, active_balance = 0;
  3212. struct sched_group *group;
  3213. unsigned long imbalance;
  3214. struct rq *busiest;
  3215. unsigned long flags;
  3216. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3217. cpumask_copy(cpus, cpu_active_mask);
  3218. schedstat_inc(sd, lb_count[idle]);
  3219. redo:
  3220. group = find_busiest_group(sd, this_cpu, &imbalance, idle,
  3221. cpus, balance);
  3222. if (*balance == 0)
  3223. goto out_balanced;
  3224. if (!group) {
  3225. schedstat_inc(sd, lb_nobusyg[idle]);
  3226. goto out_balanced;
  3227. }
  3228. busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
  3229. if (!busiest) {
  3230. schedstat_inc(sd, lb_nobusyq[idle]);
  3231. goto out_balanced;
  3232. }
  3233. BUG_ON(busiest == this_rq);
  3234. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3235. ld_moved = 0;
  3236. if (busiest->nr_running > 1) {
  3237. /*
  3238. * Attempt to move tasks. If find_busiest_group has found
  3239. * an imbalance but busiest->nr_running <= 1, the group is
  3240. * still unbalanced. ld_moved simply stays zero, so it is
  3241. * correctly treated as an imbalance.
  3242. */
  3243. all_pinned = 1;
  3244. local_irq_save(flags);
  3245. double_rq_lock(this_rq, busiest);
  3246. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3247. imbalance, sd, idle, &all_pinned);
  3248. double_rq_unlock(this_rq, busiest);
  3249. local_irq_restore(flags);
  3250. /*
  3251. * some other cpu did the load balance for us.
  3252. */
  3253. if (ld_moved && this_cpu != smp_processor_id())
  3254. resched_cpu(this_cpu);
  3255. /* All tasks on this runqueue were pinned by CPU affinity */
  3256. if (unlikely(all_pinned)) {
  3257. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3258. if (!cpumask_empty(cpus))
  3259. goto redo;
  3260. goto out_balanced;
  3261. }
  3262. }
  3263. if (!ld_moved) {
  3264. schedstat_inc(sd, lb_failed[idle]);
  3265. /*
  3266. * Increment the failure counter only on periodic balance.
  3267. * We do not want newidle balance, which can be very
  3268. * frequent, pollute the failure counter causing
  3269. * excessive cache_hot migrations and active balances.
  3270. */
  3271. if (idle != CPU_NEWLY_IDLE)
  3272. sd->nr_balance_failed++;
  3273. if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
  3274. raw_spin_lock_irqsave(&busiest->lock, flags);
  3275. /* don't kick the active_load_balance_cpu_stop,
  3276. * if the curr task on busiest cpu can't be
  3277. * moved to this_cpu
  3278. */
  3279. if (!cpumask_test_cpu(this_cpu,
  3280. &busiest->curr->cpus_allowed)) {
  3281. raw_spin_unlock_irqrestore(&busiest->lock,
  3282. flags);
  3283. all_pinned = 1;
  3284. goto out_one_pinned;
  3285. }
  3286. /*
  3287. * ->active_balance synchronizes accesses to
  3288. * ->active_balance_work. Once set, it's cleared
  3289. * only after active load balance is finished.
  3290. */
  3291. if (!busiest->active_balance) {
  3292. busiest->active_balance = 1;
  3293. busiest->push_cpu = this_cpu;
  3294. active_balance = 1;
  3295. }
  3296. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  3297. if (active_balance)
  3298. stop_one_cpu_nowait(cpu_of(busiest),
  3299. active_load_balance_cpu_stop, busiest,
  3300. &busiest->active_balance_work);
  3301. /*
  3302. * We've kicked active balancing, reset the failure
  3303. * counter.
  3304. */
  3305. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3306. }
  3307. } else
  3308. sd->nr_balance_failed = 0;
  3309. if (likely(!active_balance)) {
  3310. /* We were unbalanced, so reset the balancing interval */
  3311. sd->balance_interval = sd->min_interval;
  3312. } else {
  3313. /*
  3314. * If we've begun active balancing, start to back off. This
  3315. * case may not be covered by the all_pinned logic if there
  3316. * is only 1 task on the busy runqueue (because we don't call
  3317. * move_tasks).
  3318. */
  3319. if (sd->balance_interval < sd->max_interval)
  3320. sd->balance_interval *= 2;
  3321. }
  3322. goto out;
  3323. out_balanced:
  3324. schedstat_inc(sd, lb_balanced[idle]);
  3325. sd->nr_balance_failed = 0;
  3326. out_one_pinned:
  3327. /* tune up the balancing interval */
  3328. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3329. (sd->balance_interval < sd->max_interval))
  3330. sd->balance_interval *= 2;
  3331. ld_moved = 0;
  3332. out:
  3333. return ld_moved;
  3334. }
  3335. /*
  3336. * idle_balance is called by schedule() if this_cpu is about to become
  3337. * idle. Attempts to pull tasks from other CPUs.
  3338. */
  3339. static void idle_balance(int this_cpu, struct rq *this_rq)
  3340. {
  3341. struct sched_domain *sd;
  3342. int pulled_task = 0;
  3343. unsigned long next_balance = jiffies + HZ;
  3344. this_rq->idle_stamp = this_rq->clock;
  3345. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  3346. return;
  3347. /*
  3348. * Drop the rq->lock, but keep IRQ/preempt disabled.
  3349. */
  3350. raw_spin_unlock(&this_rq->lock);
  3351. update_shares(this_cpu);
  3352. rcu_read_lock();
  3353. for_each_domain(this_cpu, sd) {
  3354. unsigned long interval;
  3355. int balance = 1;
  3356. if (!(sd->flags & SD_LOAD_BALANCE))
  3357. continue;
  3358. if (sd->flags & SD_BALANCE_NEWIDLE) {
  3359. /* If we've pulled tasks over stop searching: */
  3360. pulled_task = load_balance(this_cpu, this_rq,
  3361. sd, CPU_NEWLY_IDLE, &balance);
  3362. }
  3363. interval = msecs_to_jiffies(sd->balance_interval);
  3364. if (time_after(next_balance, sd->last_balance + interval))
  3365. next_balance = sd->last_balance + interval;
  3366. if (pulled_task) {
  3367. this_rq->idle_stamp = 0;
  3368. break;
  3369. }
  3370. }
  3371. rcu_read_unlock();
  3372. raw_spin_lock(&this_rq->lock);
  3373. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3374. /*
  3375. * We are going idle. next_balance may be set based on
  3376. * a busy processor. So reset next_balance.
  3377. */
  3378. this_rq->next_balance = next_balance;
  3379. }
  3380. }
  3381. /*
  3382. * active_load_balance_cpu_stop is run by cpu stopper. It pushes
  3383. * running tasks off the busiest CPU onto idle CPUs. It requires at
  3384. * least 1 task to be running on each physical CPU where possible, and
  3385. * avoids physical / logical imbalances.
  3386. */
  3387. static int active_load_balance_cpu_stop(void *data)
  3388. {
  3389. struct rq *busiest_rq = data;
  3390. int busiest_cpu = cpu_of(busiest_rq);
  3391. int target_cpu = busiest_rq->push_cpu;
  3392. struct rq *target_rq = cpu_rq(target_cpu);
  3393. struct sched_domain *sd;
  3394. raw_spin_lock_irq(&busiest_rq->lock);
  3395. /* make sure the requested cpu hasn't gone down in the meantime */
  3396. if (unlikely(busiest_cpu != smp_processor_id() ||
  3397. !busiest_rq->active_balance))
  3398. goto out_unlock;
  3399. /* Is there any task to move? */
  3400. if (busiest_rq->nr_running <= 1)
  3401. goto out_unlock;
  3402. /*
  3403. * This condition is "impossible", if it occurs
  3404. * we need to fix it. Originally reported by
  3405. * Bjorn Helgaas on a 128-cpu setup.
  3406. */
  3407. BUG_ON(busiest_rq == target_rq);
  3408. /* move a task from busiest_rq to target_rq */
  3409. double_lock_balance(busiest_rq, target_rq);
  3410. /* Search for an sd spanning us and the target CPU. */
  3411. rcu_read_lock();
  3412. for_each_domain(target_cpu, sd) {
  3413. if ((sd->flags & SD_LOAD_BALANCE) &&
  3414. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3415. break;
  3416. }
  3417. if (likely(sd)) {
  3418. schedstat_inc(sd, alb_count);
  3419. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3420. sd, CPU_IDLE))
  3421. schedstat_inc(sd, alb_pushed);
  3422. else
  3423. schedstat_inc(sd, alb_failed);
  3424. }
  3425. rcu_read_unlock();
  3426. double_unlock_balance(busiest_rq, target_rq);
  3427. out_unlock:
  3428. busiest_rq->active_balance = 0;
  3429. raw_spin_unlock_irq(&busiest_rq->lock);
  3430. return 0;
  3431. }
  3432. #ifdef CONFIG_NO_HZ
  3433. static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
  3434. static void trigger_sched_softirq(void *data)
  3435. {
  3436. raise_softirq_irqoff(SCHED_SOFTIRQ);
  3437. }
  3438. static inline void init_sched_softirq_csd(struct call_single_data *csd)
  3439. {
  3440. csd->func = trigger_sched_softirq;
  3441. csd->info = NULL;
  3442. csd->flags = 0;
  3443. csd->priv = 0;
  3444. }
  3445. /*
  3446. * idle load balancing details
  3447. * - One of the idle CPUs nominates itself as idle load_balancer, while
  3448. * entering idle.
  3449. * - This idle load balancer CPU will also go into tickless mode when
  3450. * it is idle, just like all other idle CPUs
  3451. * - When one of the busy CPUs notice that there may be an idle rebalancing
  3452. * needed, they will kick the idle load balancer, which then does idle
  3453. * load balancing for all the idle CPUs.
  3454. */
  3455. static struct {
  3456. atomic_t load_balancer;
  3457. atomic_t first_pick_cpu;
  3458. atomic_t second_pick_cpu;
  3459. cpumask_var_t idle_cpus_mask;
  3460. cpumask_var_t grp_idle_mask;
  3461. unsigned long next_balance; /* in jiffy units */
  3462. } nohz ____cacheline_aligned;
  3463. int get_nohz_load_balancer(void)
  3464. {
  3465. return atomic_read(&nohz.load_balancer);
  3466. }
  3467. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  3468. /**
  3469. * lowest_flag_domain - Return lowest sched_domain containing flag.
  3470. * @cpu: The cpu whose lowest level of sched domain is to
  3471. * be returned.
  3472. * @flag: The flag to check for the lowest sched_domain
  3473. * for the given cpu.
  3474. *
  3475. * Returns the lowest sched_domain of a cpu which contains the given flag.
  3476. */
  3477. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  3478. {
  3479. struct sched_domain *sd;
  3480. for_each_domain(cpu, sd)
  3481. if (sd->flags & flag)
  3482. break;
  3483. return sd;
  3484. }
  3485. /**
  3486. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  3487. * @cpu: The cpu whose domains we're iterating over.
  3488. * @sd: variable holding the value of the power_savings_sd
  3489. * for cpu.
  3490. * @flag: The flag to filter the sched_domains to be iterated.
  3491. *
  3492. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  3493. * set, starting from the lowest sched_domain to the highest.
  3494. */
  3495. #define for_each_flag_domain(cpu, sd, flag) \
  3496. for (sd = lowest_flag_domain(cpu, flag); \
  3497. (sd && (sd->flags & flag)); sd = sd->parent)
  3498. /**
  3499. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  3500. * @ilb_group: group to be checked for semi-idleness
  3501. *
  3502. * Returns: 1 if the group is semi-idle. 0 otherwise.
  3503. *
  3504. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  3505. * and atleast one non-idle CPU. This helper function checks if the given
  3506. * sched_group is semi-idle or not.
  3507. */
  3508. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  3509. {
  3510. cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
  3511. sched_group_cpus(ilb_group));
  3512. /*
  3513. * A sched_group is semi-idle when it has atleast one busy cpu
  3514. * and atleast one idle cpu.
  3515. */
  3516. if (cpumask_empty(nohz.grp_idle_mask))
  3517. return 0;
  3518. if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
  3519. return 0;
  3520. return 1;
  3521. }
  3522. /**
  3523. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  3524. * @cpu: The cpu which is nominating a new idle_load_balancer.
  3525. *
  3526. * Returns: Returns the id of the idle load balancer if it exists,
  3527. * Else, returns >= nr_cpu_ids.
  3528. *
  3529. * This algorithm picks the idle load balancer such that it belongs to a
  3530. * semi-idle powersavings sched_domain. The idea is to try and avoid
  3531. * completely idle packages/cores just for the purpose of idle load balancing
  3532. * when there are other idle cpu's which are better suited for that job.
  3533. */
  3534. static int find_new_ilb(int cpu)
  3535. {
  3536. struct sched_domain *sd;
  3537. struct sched_group *ilb_group;
  3538. int ilb = nr_cpu_ids;
  3539. /*
  3540. * Have idle load balancer selection from semi-idle packages only
  3541. * when power-aware load balancing is enabled
  3542. */
  3543. if (!(sched_smt_power_savings || sched_mc_power_savings))
  3544. goto out_done;
  3545. /*
  3546. * Optimize for the case when we have no idle CPUs or only one
  3547. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  3548. */
  3549. if (cpumask_weight(nohz.idle_cpus_mask) < 2)
  3550. goto out_done;
  3551. rcu_read_lock();
  3552. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  3553. ilb_group = sd->groups;
  3554. do {
  3555. if (is_semi_idle_group(ilb_group)) {
  3556. ilb = cpumask_first(nohz.grp_idle_mask);
  3557. goto unlock;
  3558. }
  3559. ilb_group = ilb_group->next;
  3560. } while (ilb_group != sd->groups);
  3561. }
  3562. unlock:
  3563. rcu_read_unlock();
  3564. out_done:
  3565. return ilb;
  3566. }
  3567. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  3568. static inline int find_new_ilb(int call_cpu)
  3569. {
  3570. return nr_cpu_ids;
  3571. }
  3572. #endif
  3573. /*
  3574. * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
  3575. * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
  3576. * CPU (if there is one).
  3577. */
  3578. static void nohz_balancer_kick(int cpu)
  3579. {
  3580. int ilb_cpu;
  3581. nohz.next_balance++;
  3582. ilb_cpu = get_nohz_load_balancer();
  3583. if (ilb_cpu >= nr_cpu_ids) {
  3584. ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
  3585. if (ilb_cpu >= nr_cpu_ids)
  3586. return;
  3587. }
  3588. if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
  3589. struct call_single_data *cp;
  3590. cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
  3591. cp = &per_cpu(remote_sched_softirq_cb, cpu);
  3592. __smp_call_function_single(ilb_cpu, cp, 0);
  3593. }
  3594. return;
  3595. }
  3596. /*
  3597. * This routine will try to nominate the ilb (idle load balancing)
  3598. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3599. * load balancing on behalf of all those cpus.
  3600. *
  3601. * When the ilb owner becomes busy, we will not have new ilb owner until some
  3602. * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
  3603. * idle load balancing by kicking one of the idle CPUs.
  3604. *
  3605. * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
  3606. * ilb owner CPU in future (when there is a need for idle load balancing on
  3607. * behalf of all idle CPUs).
  3608. */
  3609. void select_nohz_load_balancer(int stop_tick)
  3610. {
  3611. int cpu = smp_processor_id();
  3612. if (stop_tick) {
  3613. if (!cpu_active(cpu)) {
  3614. if (atomic_read(&nohz.load_balancer) != cpu)
  3615. return;
  3616. /*
  3617. * If we are going offline and still the leader,
  3618. * give up!
  3619. */
  3620. if (atomic_cmpxchg(&nohz.load_balancer, cpu,
  3621. nr_cpu_ids) != cpu)
  3622. BUG();
  3623. return;
  3624. }
  3625. cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
  3626. if (atomic_read(&nohz.first_pick_cpu) == cpu)
  3627. atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
  3628. if (atomic_read(&nohz.second_pick_cpu) == cpu)
  3629. atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
  3630. if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
  3631. int new_ilb;
  3632. /* make me the ilb owner */
  3633. if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
  3634. cpu) != nr_cpu_ids)
  3635. return;
  3636. /*
  3637. * Check to see if there is a more power-efficient
  3638. * ilb.
  3639. */
  3640. new_ilb = find_new_ilb(cpu);
  3641. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  3642. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  3643. resched_cpu(new_ilb);
  3644. return;
  3645. }
  3646. return;
  3647. }
  3648. } else {
  3649. if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
  3650. return;
  3651. cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
  3652. if (atomic_read(&nohz.load_balancer) == cpu)
  3653. if (atomic_cmpxchg(&nohz.load_balancer, cpu,
  3654. nr_cpu_ids) != cpu)
  3655. BUG();
  3656. }
  3657. return;
  3658. }
  3659. #endif
  3660. static DEFINE_SPINLOCK(balancing);
  3661. static unsigned long __read_mostly max_load_balance_interval = HZ/10;
  3662. /*
  3663. * Scale the max load_balance interval with the number of CPUs in the system.
  3664. * This trades load-balance latency on larger machines for less cross talk.
  3665. */
  3666. static void update_max_interval(void)
  3667. {
  3668. max_load_balance_interval = HZ*num_online_cpus()/10;
  3669. }
  3670. /*
  3671. * It checks each scheduling domain to see if it is due to be balanced,
  3672. * and initiates a balancing operation if so.
  3673. *
  3674. * Balancing parameters are set up in arch_init_sched_domains.
  3675. */
  3676. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3677. {
  3678. int balance = 1;
  3679. struct rq *rq = cpu_rq(cpu);
  3680. unsigned long interval;
  3681. struct sched_domain *sd;
  3682. /* Earliest time when we have to do rebalance again */
  3683. unsigned long next_balance = jiffies + 60*HZ;
  3684. int update_next_balance = 0;
  3685. int need_serialize;
  3686. update_shares(cpu);
  3687. rcu_read_lock();
  3688. for_each_domain(cpu, sd) {
  3689. if (!(sd->flags & SD_LOAD_BALANCE))
  3690. continue;
  3691. interval = sd->balance_interval;
  3692. if (idle != CPU_IDLE)
  3693. interval *= sd->busy_factor;
  3694. /* scale ms to jiffies */
  3695. interval = msecs_to_jiffies(interval);
  3696. interval = clamp(interval, 1UL, max_load_balance_interval);
  3697. need_serialize = sd->flags & SD_SERIALIZE;
  3698. if (need_serialize) {
  3699. if (!spin_trylock(&balancing))
  3700. goto out;
  3701. }
  3702. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3703. if (load_balance(cpu, rq, sd, idle, &balance)) {
  3704. /*
  3705. * We've pulled tasks over so either we're no
  3706. * longer idle.
  3707. */
  3708. idle = CPU_NOT_IDLE;
  3709. }
  3710. sd->last_balance = jiffies;
  3711. }
  3712. if (need_serialize)
  3713. spin_unlock(&balancing);
  3714. out:
  3715. if (time_after(next_balance, sd->last_balance + interval)) {
  3716. next_balance = sd->last_balance + interval;
  3717. update_next_balance = 1;
  3718. }
  3719. /*
  3720. * Stop the load balance at this level. There is another
  3721. * CPU in our sched group which is doing load balancing more
  3722. * actively.
  3723. */
  3724. if (!balance)
  3725. break;
  3726. }
  3727. rcu_read_unlock();
  3728. /*
  3729. * next_balance will be updated only when there is a need.
  3730. * When the cpu is attached to null domain for ex, it will not be
  3731. * updated.
  3732. */
  3733. if (likely(update_next_balance))
  3734. rq->next_balance = next_balance;
  3735. }
  3736. #ifdef CONFIG_NO_HZ
  3737. /*
  3738. * In CONFIG_NO_HZ case, the idle balance kickee will do the
  3739. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3740. */
  3741. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
  3742. {
  3743. struct rq *this_rq = cpu_rq(this_cpu);
  3744. struct rq *rq;
  3745. int balance_cpu;
  3746. if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
  3747. return;
  3748. for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
  3749. if (balance_cpu == this_cpu)
  3750. continue;
  3751. /*
  3752. * If this cpu gets work to do, stop the load balancing
  3753. * work being done for other cpus. Next load
  3754. * balancing owner will pick it up.
  3755. */
  3756. if (need_resched()) {
  3757. this_rq->nohz_balance_kick = 0;
  3758. break;
  3759. }
  3760. raw_spin_lock_irq(&this_rq->lock);
  3761. update_rq_clock(this_rq);
  3762. update_cpu_load(this_rq);
  3763. raw_spin_unlock_irq(&this_rq->lock);
  3764. rebalance_domains(balance_cpu, CPU_IDLE);
  3765. rq = cpu_rq(balance_cpu);
  3766. if (time_after(this_rq->next_balance, rq->next_balance))
  3767. this_rq->next_balance = rq->next_balance;
  3768. }
  3769. nohz.next_balance = this_rq->next_balance;
  3770. this_rq->nohz_balance_kick = 0;
  3771. }
  3772. /*
  3773. * Current heuristic for kicking the idle load balancer
  3774. * - first_pick_cpu is the one of the busy CPUs. It will kick
  3775. * idle load balancer when it has more than one process active. This
  3776. * eliminates the need for idle load balancing altogether when we have
  3777. * only one running process in the system (common case).
  3778. * - If there are more than one busy CPU, idle load balancer may have
  3779. * to run for active_load_balance to happen (i.e., two busy CPUs are
  3780. * SMT or core siblings and can run better if they move to different
  3781. * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
  3782. * which will kick idle load balancer as soon as it has any load.
  3783. */
  3784. static inline int nohz_kick_needed(struct rq *rq, int cpu)
  3785. {
  3786. unsigned long now = jiffies;
  3787. int ret;
  3788. int first_pick_cpu, second_pick_cpu;
  3789. if (time_before(now, nohz.next_balance))
  3790. return 0;
  3791. if (rq->idle_at_tick)
  3792. return 0;
  3793. first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
  3794. second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
  3795. if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
  3796. second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
  3797. return 0;
  3798. ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
  3799. if (ret == nr_cpu_ids || ret == cpu) {
  3800. atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
  3801. if (rq->nr_running > 1)
  3802. return 1;
  3803. } else {
  3804. ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
  3805. if (ret == nr_cpu_ids || ret == cpu) {
  3806. if (rq->nr_running)
  3807. return 1;
  3808. }
  3809. }
  3810. return 0;
  3811. }
  3812. #else
  3813. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
  3814. #endif
  3815. /*
  3816. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3817. * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
  3818. */
  3819. static void run_rebalance_domains(struct softirq_action *h)
  3820. {
  3821. int this_cpu = smp_processor_id();
  3822. struct rq *this_rq = cpu_rq(this_cpu);
  3823. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3824. CPU_IDLE : CPU_NOT_IDLE;
  3825. rebalance_domains(this_cpu, idle);
  3826. /*
  3827. * If this cpu has a pending nohz_balance_kick, then do the
  3828. * balancing on behalf of the other idle cpus whose ticks are
  3829. * stopped.
  3830. */
  3831. nohz_idle_balance(this_cpu, idle);
  3832. }
  3833. static inline int on_null_domain(int cpu)
  3834. {
  3835. return !rcu_dereference_sched(cpu_rq(cpu)->sd);
  3836. }
  3837. /*
  3838. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3839. */
  3840. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3841. {
  3842. /* Don't need to rebalance while attached to NULL domain */
  3843. if (time_after_eq(jiffies, rq->next_balance) &&
  3844. likely(!on_null_domain(cpu)))
  3845. raise_softirq(SCHED_SOFTIRQ);
  3846. #ifdef CONFIG_NO_HZ
  3847. else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
  3848. nohz_balancer_kick(cpu);
  3849. #endif
  3850. }
  3851. static void rq_online_fair(struct rq *rq)
  3852. {
  3853. update_sysctl();
  3854. }
  3855. static void rq_offline_fair(struct rq *rq)
  3856. {
  3857. update_sysctl();
  3858. }
  3859. #else /* CONFIG_SMP */
  3860. /*
  3861. * on UP we do not need to balance between CPUs:
  3862. */
  3863. static inline void idle_balance(int cpu, struct rq *rq)
  3864. {
  3865. }
  3866. #endif /* CONFIG_SMP */
  3867. /*
  3868. * scheduler tick hitting a task of our scheduling class:
  3869. */
  3870. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  3871. {
  3872. struct cfs_rq *cfs_rq;
  3873. struct sched_entity *se = &curr->se;
  3874. for_each_sched_entity(se) {
  3875. cfs_rq = cfs_rq_of(se);
  3876. entity_tick(cfs_rq, se, queued);
  3877. }
  3878. }
  3879. /*
  3880. * called on fork with the child task as argument from the parent's context
  3881. * - child not yet on the tasklist
  3882. * - preemption disabled
  3883. */
  3884. static void task_fork_fair(struct task_struct *p)
  3885. {
  3886. struct cfs_rq *cfs_rq = task_cfs_rq(current);
  3887. struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
  3888. int this_cpu = smp_processor_id();
  3889. struct rq *rq = this_rq();
  3890. unsigned long flags;
  3891. raw_spin_lock_irqsave(&rq->lock, flags);
  3892. update_rq_clock(rq);
  3893. if (unlikely(task_cpu(p) != this_cpu)) {
  3894. rcu_read_lock();
  3895. __set_task_cpu(p, this_cpu);
  3896. rcu_read_unlock();
  3897. }
  3898. update_curr(cfs_rq);
  3899. if (curr)
  3900. se->vruntime = curr->vruntime;
  3901. place_entity(cfs_rq, se, 1);
  3902. if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
  3903. /*
  3904. * Upon rescheduling, sched_class::put_prev_task() will place
  3905. * 'current' within the tree based on its new key value.
  3906. */
  3907. swap(curr->vruntime, se->vruntime);
  3908. resched_task(rq->curr);
  3909. }
  3910. se->vruntime -= cfs_rq->min_vruntime;
  3911. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3912. }
  3913. /*
  3914. * Priority of the task has changed. Check to see if we preempt
  3915. * the current task.
  3916. */
  3917. static void
  3918. prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
  3919. {
  3920. if (!p->se.on_rq)
  3921. return;
  3922. /*
  3923. * Reschedule if we are currently running on this runqueue and
  3924. * our priority decreased, or if we are not currently running on
  3925. * this runqueue and our priority is higher than the current's
  3926. */
  3927. if (rq->curr == p) {
  3928. if (p->prio > oldprio)
  3929. resched_task(rq->curr);
  3930. } else
  3931. check_preempt_curr(rq, p, 0);
  3932. }
  3933. static void switched_from_fair(struct rq *rq, struct task_struct *p)
  3934. {
  3935. struct sched_entity *se = &p->se;
  3936. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  3937. /*
  3938. * Ensure the task's vruntime is normalized, so that when its
  3939. * switched back to the fair class the enqueue_entity(.flags=0) will
  3940. * do the right thing.
  3941. *
  3942. * If it was on_rq, then the dequeue_entity(.flags=0) will already
  3943. * have normalized the vruntime, if it was !on_rq, then only when
  3944. * the task is sleeping will it still have non-normalized vruntime.
  3945. */
  3946. if (!se->on_rq && p->state != TASK_RUNNING) {
  3947. /*
  3948. * Fix up our vruntime so that the current sleep doesn't
  3949. * cause 'unlimited' sleep bonus.
  3950. */
  3951. place_entity(cfs_rq, se, 0);
  3952. se->vruntime -= cfs_rq->min_vruntime;
  3953. }
  3954. }
  3955. /*
  3956. * We switched to the sched_fair class.
  3957. */
  3958. static void switched_to_fair(struct rq *rq, struct task_struct *p)
  3959. {
  3960. if (!p->se.on_rq)
  3961. return;
  3962. /*
  3963. * We were most likely switched from sched_rt, so
  3964. * kick off the schedule if running, otherwise just see
  3965. * if we can still preempt the current task.
  3966. */
  3967. if (rq->curr == p)
  3968. resched_task(rq->curr);
  3969. else
  3970. check_preempt_curr(rq, p, 0);
  3971. }
  3972. /* Account for a task changing its policy or group.
  3973. *
  3974. * This routine is mostly called to set cfs_rq->curr field when a task
  3975. * migrates between groups/classes.
  3976. */
  3977. static void set_curr_task_fair(struct rq *rq)
  3978. {
  3979. struct sched_entity *se = &rq->curr->se;
  3980. for_each_sched_entity(se) {
  3981. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  3982. set_next_entity(cfs_rq, se);
  3983. /* ensure bandwidth has been allocated on our new cfs_rq */
  3984. account_cfs_rq_runtime(cfs_rq, 0);
  3985. }
  3986. }
  3987. #ifdef CONFIG_FAIR_GROUP_SCHED
  3988. static void task_move_group_fair(struct task_struct *p, int on_rq)
  3989. {
  3990. /*
  3991. * If the task was not on the rq at the time of this cgroup movement
  3992. * it must have been asleep, sleeping tasks keep their ->vruntime
  3993. * absolute on their old rq until wakeup (needed for the fair sleeper
  3994. * bonus in place_entity()).
  3995. *
  3996. * If it was on the rq, we've just 'preempted' it, which does convert
  3997. * ->vruntime to a relative base.
  3998. *
  3999. * Make sure both cases convert their relative position when migrating
  4000. * to another cgroup's rq. This does somewhat interfere with the
  4001. * fair sleeper stuff for the first placement, but who cares.
  4002. */
  4003. if (!on_rq)
  4004. p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
  4005. set_task_rq(p, task_cpu(p));
  4006. if (!on_rq)
  4007. p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
  4008. }
  4009. #endif
  4010. static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
  4011. {
  4012. struct sched_entity *se = &task->se;
  4013. unsigned int rr_interval = 0;
  4014. /*
  4015. * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
  4016. * idle runqueue:
  4017. */
  4018. if (rq->cfs.load.weight)
  4019. rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4020. return rr_interval;
  4021. }
  4022. /*
  4023. * All the scheduling class methods:
  4024. */
  4025. static const struct sched_class fair_sched_class = {
  4026. .next = &idle_sched_class,
  4027. .enqueue_task = enqueue_task_fair,
  4028. .dequeue_task = dequeue_task_fair,
  4029. .yield_task = yield_task_fair,
  4030. .yield_to_task = yield_to_task_fair,
  4031. .check_preempt_curr = check_preempt_wakeup,
  4032. .pick_next_task = pick_next_task_fair,
  4033. .put_prev_task = put_prev_task_fair,
  4034. #ifdef CONFIG_SMP
  4035. .select_task_rq = select_task_rq_fair,
  4036. .rq_online = rq_online_fair,
  4037. .rq_offline = rq_offline_fair,
  4038. .task_waking = task_waking_fair,
  4039. #endif
  4040. .set_curr_task = set_curr_task_fair,
  4041. .task_tick = task_tick_fair,
  4042. .task_fork = task_fork_fair,
  4043. .prio_changed = prio_changed_fair,
  4044. .switched_from = switched_from_fair,
  4045. .switched_to = switched_to_fair,
  4046. .get_rr_interval = get_rr_interval_fair,
  4047. #ifdef CONFIG_FAIR_GROUP_SCHED
  4048. .task_move_group = task_move_group_fair,
  4049. #endif
  4050. };
  4051. #ifdef CONFIG_SCHED_DEBUG
  4052. static void print_cfs_stats(struct seq_file *m, int cpu)
  4053. {
  4054. struct cfs_rq *cfs_rq;
  4055. rcu_read_lock();
  4056. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  4057. print_cfs_rq(m, cpu, cfs_rq);
  4058. rcu_read_unlock();
  4059. }
  4060. #endif