slub.c 130 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks or atomic operatios
  6. * and only uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. * (C) 2011 Linux Foundation, Christoph Lameter
  10. */
  11. #include <linux/mm.h>
  12. #include <linux/swap.h> /* struct reclaim_state */
  13. #include <linux/module.h>
  14. #include <linux/bit_spinlock.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/bitops.h>
  17. #include <linux/slab.h>
  18. #include "slab.h"
  19. #include <linux/proc_fs.h>
  20. #include <linux/seq_file.h>
  21. #include <linux/kmemcheck.h>
  22. #include <linux/cpu.h>
  23. #include <linux/cpuset.h>
  24. #include <linux/mempolicy.h>
  25. #include <linux/ctype.h>
  26. #include <linux/debugobjects.h>
  27. #include <linux/kallsyms.h>
  28. #include <linux/memory.h>
  29. #include <linux/math64.h>
  30. #include <linux/fault-inject.h>
  31. #include <linux/stacktrace.h>
  32. #include <linux/prefetch.h>
  33. #include <trace/events/kmem.h>
  34. #include "internal.h"
  35. /*
  36. * Lock order:
  37. * 1. slab_mutex (Global Mutex)
  38. * 2. node->list_lock
  39. * 3. slab_lock(page) (Only on some arches and for debugging)
  40. *
  41. * slab_mutex
  42. *
  43. * The role of the slab_mutex is to protect the list of all the slabs
  44. * and to synchronize major metadata changes to slab cache structures.
  45. *
  46. * The slab_lock is only used for debugging and on arches that do not
  47. * have the ability to do a cmpxchg_double. It only protects the second
  48. * double word in the page struct. Meaning
  49. * A. page->freelist -> List of object free in a page
  50. * B. page->counters -> Counters of objects
  51. * C. page->frozen -> frozen state
  52. *
  53. * If a slab is frozen then it is exempt from list management. It is not
  54. * on any list. The processor that froze the slab is the one who can
  55. * perform list operations on the page. Other processors may put objects
  56. * onto the freelist but the processor that froze the slab is the only
  57. * one that can retrieve the objects from the page's freelist.
  58. *
  59. * The list_lock protects the partial and full list on each node and
  60. * the partial slab counter. If taken then no new slabs may be added or
  61. * removed from the lists nor make the number of partial slabs be modified.
  62. * (Note that the total number of slabs is an atomic value that may be
  63. * modified without taking the list lock).
  64. *
  65. * The list_lock is a centralized lock and thus we avoid taking it as
  66. * much as possible. As long as SLUB does not have to handle partial
  67. * slabs, operations can continue without any centralized lock. F.e.
  68. * allocating a long series of objects that fill up slabs does not require
  69. * the list lock.
  70. * Interrupts are disabled during allocation and deallocation in order to
  71. * make the slab allocator safe to use in the context of an irq. In addition
  72. * interrupts are disabled to ensure that the processor does not change
  73. * while handling per_cpu slabs, due to kernel preemption.
  74. *
  75. * SLUB assigns one slab for allocation to each processor.
  76. * Allocations only occur from these slabs called cpu slabs.
  77. *
  78. * Slabs with free elements are kept on a partial list and during regular
  79. * operations no list for full slabs is used. If an object in a full slab is
  80. * freed then the slab will show up again on the partial lists.
  81. * We track full slabs for debugging purposes though because otherwise we
  82. * cannot scan all objects.
  83. *
  84. * Slabs are freed when they become empty. Teardown and setup is
  85. * minimal so we rely on the page allocators per cpu caches for
  86. * fast frees and allocs.
  87. *
  88. * Overloading of page flags that are otherwise used for LRU management.
  89. *
  90. * PageActive The slab is frozen and exempt from list processing.
  91. * This means that the slab is dedicated to a purpose
  92. * such as satisfying allocations for a specific
  93. * processor. Objects may be freed in the slab while
  94. * it is frozen but slab_free will then skip the usual
  95. * list operations. It is up to the processor holding
  96. * the slab to integrate the slab into the slab lists
  97. * when the slab is no longer needed.
  98. *
  99. * One use of this flag is to mark slabs that are
  100. * used for allocations. Then such a slab becomes a cpu
  101. * slab. The cpu slab may be equipped with an additional
  102. * freelist that allows lockless access to
  103. * free objects in addition to the regular freelist
  104. * that requires the slab lock.
  105. *
  106. * PageError Slab requires special handling due to debug
  107. * options set. This moves slab handling out of
  108. * the fast path and disables lockless freelists.
  109. */
  110. #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  111. SLAB_TRACE | SLAB_DEBUG_FREE)
  112. static inline int kmem_cache_debug(struct kmem_cache *s)
  113. {
  114. #ifdef CONFIG_SLUB_DEBUG
  115. return unlikely(s->flags & SLAB_DEBUG_FLAGS);
  116. #else
  117. return 0;
  118. #endif
  119. }
  120. /*
  121. * Issues still to be resolved:
  122. *
  123. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  124. *
  125. * - Variable sizing of the per node arrays
  126. */
  127. /* Enable to test recovery from slab corruption on boot */
  128. #undef SLUB_RESILIENCY_TEST
  129. /* Enable to log cmpxchg failures */
  130. #undef SLUB_DEBUG_CMPXCHG
  131. /*
  132. * Mininum number of partial slabs. These will be left on the partial
  133. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  134. */
  135. #define MIN_PARTIAL 5
  136. /*
  137. * Maximum number of desirable partial slabs.
  138. * The existence of more partial slabs makes kmem_cache_shrink
  139. * sort the partial list by the number of objects in the.
  140. */
  141. #define MAX_PARTIAL 10
  142. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  143. SLAB_POISON | SLAB_STORE_USER)
  144. /*
  145. * Debugging flags that require metadata to be stored in the slab. These get
  146. * disabled when slub_debug=O is used and a cache's min order increases with
  147. * metadata.
  148. */
  149. #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  150. /*
  151. * Set of flags that will prevent slab merging
  152. */
  153. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  154. SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
  155. SLAB_FAILSLAB)
  156. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  157. SLAB_CACHE_DMA | SLAB_NOTRACK)
  158. #define OO_SHIFT 16
  159. #define OO_MASK ((1 << OO_SHIFT) - 1)
  160. #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
  161. /* Internal SLUB flags */
  162. #define __OBJECT_POISON 0x80000000UL /* Poison object */
  163. #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
  164. static int kmem_size = sizeof(struct kmem_cache);
  165. #ifdef CONFIG_SMP
  166. static struct notifier_block slab_notifier;
  167. #endif
  168. /*
  169. * Tracking user of a slab.
  170. */
  171. #define TRACK_ADDRS_COUNT 16
  172. struct track {
  173. unsigned long addr; /* Called from address */
  174. #ifdef CONFIG_STACKTRACE
  175. unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
  176. #endif
  177. int cpu; /* Was running on cpu */
  178. int pid; /* Pid context */
  179. unsigned long when; /* When did the operation occur */
  180. };
  181. enum track_item { TRACK_ALLOC, TRACK_FREE };
  182. #ifdef CONFIG_SYSFS
  183. static int sysfs_slab_add(struct kmem_cache *);
  184. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  185. static void sysfs_slab_remove(struct kmem_cache *);
  186. #else
  187. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  188. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  189. { return 0; }
  190. static inline void sysfs_slab_remove(struct kmem_cache *s)
  191. {
  192. kfree(s->name);
  193. kfree(s);
  194. }
  195. #endif
  196. static inline void stat(const struct kmem_cache *s, enum stat_item si)
  197. {
  198. #ifdef CONFIG_SLUB_STATS
  199. __this_cpu_inc(s->cpu_slab->stat[si]);
  200. #endif
  201. }
  202. /********************************************************************
  203. * Core slab cache functions
  204. *******************************************************************/
  205. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  206. {
  207. return s->node[node];
  208. }
  209. /* Verify that a pointer has an address that is valid within a slab page */
  210. static inline int check_valid_pointer(struct kmem_cache *s,
  211. struct page *page, const void *object)
  212. {
  213. void *base;
  214. if (!object)
  215. return 1;
  216. base = page_address(page);
  217. if (object < base || object >= base + page->objects * s->size ||
  218. (object - base) % s->size) {
  219. return 0;
  220. }
  221. return 1;
  222. }
  223. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  224. {
  225. return *(void **)(object + s->offset);
  226. }
  227. static void prefetch_freepointer(const struct kmem_cache *s, void *object)
  228. {
  229. prefetch(object + s->offset);
  230. }
  231. static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
  232. {
  233. void *p;
  234. #ifdef CONFIG_DEBUG_PAGEALLOC
  235. probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
  236. #else
  237. p = get_freepointer(s, object);
  238. #endif
  239. return p;
  240. }
  241. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  242. {
  243. *(void **)(object + s->offset) = fp;
  244. }
  245. /* Loop over all objects in a slab */
  246. #define for_each_object(__p, __s, __addr, __objects) \
  247. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  248. __p += (__s)->size)
  249. /* Determine object index from a given position */
  250. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  251. {
  252. return (p - addr) / s->size;
  253. }
  254. static inline size_t slab_ksize(const struct kmem_cache *s)
  255. {
  256. #ifdef CONFIG_SLUB_DEBUG
  257. /*
  258. * Debugging requires use of the padding between object
  259. * and whatever may come after it.
  260. */
  261. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  262. return s->object_size;
  263. #endif
  264. /*
  265. * If we have the need to store the freelist pointer
  266. * back there or track user information then we can
  267. * only use the space before that information.
  268. */
  269. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  270. return s->inuse;
  271. /*
  272. * Else we can use all the padding etc for the allocation
  273. */
  274. return s->size;
  275. }
  276. static inline int order_objects(int order, unsigned long size, int reserved)
  277. {
  278. return ((PAGE_SIZE << order) - reserved) / size;
  279. }
  280. static inline struct kmem_cache_order_objects oo_make(int order,
  281. unsigned long size, int reserved)
  282. {
  283. struct kmem_cache_order_objects x = {
  284. (order << OO_SHIFT) + order_objects(order, size, reserved)
  285. };
  286. return x;
  287. }
  288. static inline int oo_order(struct kmem_cache_order_objects x)
  289. {
  290. return x.x >> OO_SHIFT;
  291. }
  292. static inline int oo_objects(struct kmem_cache_order_objects x)
  293. {
  294. return x.x & OO_MASK;
  295. }
  296. /*
  297. * Per slab locking using the pagelock
  298. */
  299. static __always_inline void slab_lock(struct page *page)
  300. {
  301. bit_spin_lock(PG_locked, &page->flags);
  302. }
  303. static __always_inline void slab_unlock(struct page *page)
  304. {
  305. __bit_spin_unlock(PG_locked, &page->flags);
  306. }
  307. /* Interrupts must be disabled (for the fallback code to work right) */
  308. static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  309. void *freelist_old, unsigned long counters_old,
  310. void *freelist_new, unsigned long counters_new,
  311. const char *n)
  312. {
  313. VM_BUG_ON(!irqs_disabled());
  314. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  315. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  316. if (s->flags & __CMPXCHG_DOUBLE) {
  317. if (cmpxchg_double(&page->freelist, &page->counters,
  318. freelist_old, counters_old,
  319. freelist_new, counters_new))
  320. return 1;
  321. } else
  322. #endif
  323. {
  324. slab_lock(page);
  325. if (page->freelist == freelist_old && page->counters == counters_old) {
  326. page->freelist = freelist_new;
  327. page->counters = counters_new;
  328. slab_unlock(page);
  329. return 1;
  330. }
  331. slab_unlock(page);
  332. }
  333. cpu_relax();
  334. stat(s, CMPXCHG_DOUBLE_FAIL);
  335. #ifdef SLUB_DEBUG_CMPXCHG
  336. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  337. #endif
  338. return 0;
  339. }
  340. static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  341. void *freelist_old, unsigned long counters_old,
  342. void *freelist_new, unsigned long counters_new,
  343. const char *n)
  344. {
  345. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  346. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  347. if (s->flags & __CMPXCHG_DOUBLE) {
  348. if (cmpxchg_double(&page->freelist, &page->counters,
  349. freelist_old, counters_old,
  350. freelist_new, counters_new))
  351. return 1;
  352. } else
  353. #endif
  354. {
  355. unsigned long flags;
  356. local_irq_save(flags);
  357. slab_lock(page);
  358. if (page->freelist == freelist_old && page->counters == counters_old) {
  359. page->freelist = freelist_new;
  360. page->counters = counters_new;
  361. slab_unlock(page);
  362. local_irq_restore(flags);
  363. return 1;
  364. }
  365. slab_unlock(page);
  366. local_irq_restore(flags);
  367. }
  368. cpu_relax();
  369. stat(s, CMPXCHG_DOUBLE_FAIL);
  370. #ifdef SLUB_DEBUG_CMPXCHG
  371. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  372. #endif
  373. return 0;
  374. }
  375. #ifdef CONFIG_SLUB_DEBUG
  376. /*
  377. * Determine a map of object in use on a page.
  378. *
  379. * Node listlock must be held to guarantee that the page does
  380. * not vanish from under us.
  381. */
  382. static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
  383. {
  384. void *p;
  385. void *addr = page_address(page);
  386. for (p = page->freelist; p; p = get_freepointer(s, p))
  387. set_bit(slab_index(p, s, addr), map);
  388. }
  389. /*
  390. * Debug settings:
  391. */
  392. #ifdef CONFIG_SLUB_DEBUG_ON
  393. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  394. #else
  395. static int slub_debug;
  396. #endif
  397. static char *slub_debug_slabs;
  398. static int disable_higher_order_debug;
  399. /*
  400. * Object debugging
  401. */
  402. static void print_section(char *text, u8 *addr, unsigned int length)
  403. {
  404. print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
  405. length, 1);
  406. }
  407. static struct track *get_track(struct kmem_cache *s, void *object,
  408. enum track_item alloc)
  409. {
  410. struct track *p;
  411. if (s->offset)
  412. p = object + s->offset + sizeof(void *);
  413. else
  414. p = object + s->inuse;
  415. return p + alloc;
  416. }
  417. static void set_track(struct kmem_cache *s, void *object,
  418. enum track_item alloc, unsigned long addr)
  419. {
  420. struct track *p = get_track(s, object, alloc);
  421. if (addr) {
  422. #ifdef CONFIG_STACKTRACE
  423. struct stack_trace trace;
  424. int i;
  425. trace.nr_entries = 0;
  426. trace.max_entries = TRACK_ADDRS_COUNT;
  427. trace.entries = p->addrs;
  428. trace.skip = 3;
  429. save_stack_trace(&trace);
  430. /* See rant in lockdep.c */
  431. if (trace.nr_entries != 0 &&
  432. trace.entries[trace.nr_entries - 1] == ULONG_MAX)
  433. trace.nr_entries--;
  434. for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
  435. p->addrs[i] = 0;
  436. #endif
  437. p->addr = addr;
  438. p->cpu = smp_processor_id();
  439. p->pid = current->pid;
  440. p->when = jiffies;
  441. } else
  442. memset(p, 0, sizeof(struct track));
  443. }
  444. static void init_tracking(struct kmem_cache *s, void *object)
  445. {
  446. if (!(s->flags & SLAB_STORE_USER))
  447. return;
  448. set_track(s, object, TRACK_FREE, 0UL);
  449. set_track(s, object, TRACK_ALLOC, 0UL);
  450. }
  451. static void print_track(const char *s, struct track *t)
  452. {
  453. if (!t->addr)
  454. return;
  455. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  456. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  457. #ifdef CONFIG_STACKTRACE
  458. {
  459. int i;
  460. for (i = 0; i < TRACK_ADDRS_COUNT; i++)
  461. if (t->addrs[i])
  462. printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
  463. else
  464. break;
  465. }
  466. #endif
  467. }
  468. static void print_tracking(struct kmem_cache *s, void *object)
  469. {
  470. if (!(s->flags & SLAB_STORE_USER))
  471. return;
  472. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  473. print_track("Freed", get_track(s, object, TRACK_FREE));
  474. }
  475. static void print_page_info(struct page *page)
  476. {
  477. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  478. page, page->objects, page->inuse, page->freelist, page->flags);
  479. }
  480. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  481. {
  482. va_list args;
  483. char buf[100];
  484. va_start(args, fmt);
  485. vsnprintf(buf, sizeof(buf), fmt, args);
  486. va_end(args);
  487. printk(KERN_ERR "========================================"
  488. "=====================================\n");
  489. printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
  490. printk(KERN_ERR "----------------------------------------"
  491. "-------------------------------------\n\n");
  492. add_taint(TAINT_BAD_PAGE);
  493. }
  494. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  495. {
  496. va_list args;
  497. char buf[100];
  498. va_start(args, fmt);
  499. vsnprintf(buf, sizeof(buf), fmt, args);
  500. va_end(args);
  501. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  502. }
  503. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  504. {
  505. unsigned int off; /* Offset of last byte */
  506. u8 *addr = page_address(page);
  507. print_tracking(s, p);
  508. print_page_info(page);
  509. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  510. p, p - addr, get_freepointer(s, p));
  511. if (p > addr + 16)
  512. print_section("Bytes b4 ", p - 16, 16);
  513. print_section("Object ", p, min_t(unsigned long, s->object_size,
  514. PAGE_SIZE));
  515. if (s->flags & SLAB_RED_ZONE)
  516. print_section("Redzone ", p + s->object_size,
  517. s->inuse - s->object_size);
  518. if (s->offset)
  519. off = s->offset + sizeof(void *);
  520. else
  521. off = s->inuse;
  522. if (s->flags & SLAB_STORE_USER)
  523. off += 2 * sizeof(struct track);
  524. if (off != s->size)
  525. /* Beginning of the filler is the free pointer */
  526. print_section("Padding ", p + off, s->size - off);
  527. dump_stack();
  528. }
  529. static void object_err(struct kmem_cache *s, struct page *page,
  530. u8 *object, char *reason)
  531. {
  532. slab_bug(s, "%s", reason);
  533. print_trailer(s, page, object);
  534. }
  535. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  536. {
  537. va_list args;
  538. char buf[100];
  539. va_start(args, fmt);
  540. vsnprintf(buf, sizeof(buf), fmt, args);
  541. va_end(args);
  542. slab_bug(s, "%s", buf);
  543. print_page_info(page);
  544. dump_stack();
  545. }
  546. static void init_object(struct kmem_cache *s, void *object, u8 val)
  547. {
  548. u8 *p = object;
  549. if (s->flags & __OBJECT_POISON) {
  550. memset(p, POISON_FREE, s->object_size - 1);
  551. p[s->object_size - 1] = POISON_END;
  552. }
  553. if (s->flags & SLAB_RED_ZONE)
  554. memset(p + s->object_size, val, s->inuse - s->object_size);
  555. }
  556. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  557. void *from, void *to)
  558. {
  559. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  560. memset(from, data, to - from);
  561. }
  562. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  563. u8 *object, char *what,
  564. u8 *start, unsigned int value, unsigned int bytes)
  565. {
  566. u8 *fault;
  567. u8 *end;
  568. fault = memchr_inv(start, value, bytes);
  569. if (!fault)
  570. return 1;
  571. end = start + bytes;
  572. while (end > fault && end[-1] == value)
  573. end--;
  574. slab_bug(s, "%s overwritten", what);
  575. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  576. fault, end - 1, fault[0], value);
  577. print_trailer(s, page, object);
  578. restore_bytes(s, what, value, fault, end);
  579. return 0;
  580. }
  581. /*
  582. * Object layout:
  583. *
  584. * object address
  585. * Bytes of the object to be managed.
  586. * If the freepointer may overlay the object then the free
  587. * pointer is the first word of the object.
  588. *
  589. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  590. * 0xa5 (POISON_END)
  591. *
  592. * object + s->object_size
  593. * Padding to reach word boundary. This is also used for Redzoning.
  594. * Padding is extended by another word if Redzoning is enabled and
  595. * object_size == inuse.
  596. *
  597. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  598. * 0xcc (RED_ACTIVE) for objects in use.
  599. *
  600. * object + s->inuse
  601. * Meta data starts here.
  602. *
  603. * A. Free pointer (if we cannot overwrite object on free)
  604. * B. Tracking data for SLAB_STORE_USER
  605. * C. Padding to reach required alignment boundary or at mininum
  606. * one word if debugging is on to be able to detect writes
  607. * before the word boundary.
  608. *
  609. * Padding is done using 0x5a (POISON_INUSE)
  610. *
  611. * object + s->size
  612. * Nothing is used beyond s->size.
  613. *
  614. * If slabcaches are merged then the object_size and inuse boundaries are mostly
  615. * ignored. And therefore no slab options that rely on these boundaries
  616. * may be used with merged slabcaches.
  617. */
  618. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  619. {
  620. unsigned long off = s->inuse; /* The end of info */
  621. if (s->offset)
  622. /* Freepointer is placed after the object. */
  623. off += sizeof(void *);
  624. if (s->flags & SLAB_STORE_USER)
  625. /* We also have user information there */
  626. off += 2 * sizeof(struct track);
  627. if (s->size == off)
  628. return 1;
  629. return check_bytes_and_report(s, page, p, "Object padding",
  630. p + off, POISON_INUSE, s->size - off);
  631. }
  632. /* Check the pad bytes at the end of a slab page */
  633. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  634. {
  635. u8 *start;
  636. u8 *fault;
  637. u8 *end;
  638. int length;
  639. int remainder;
  640. if (!(s->flags & SLAB_POISON))
  641. return 1;
  642. start = page_address(page);
  643. length = (PAGE_SIZE << compound_order(page)) - s->reserved;
  644. end = start + length;
  645. remainder = length % s->size;
  646. if (!remainder)
  647. return 1;
  648. fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
  649. if (!fault)
  650. return 1;
  651. while (end > fault && end[-1] == POISON_INUSE)
  652. end--;
  653. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  654. print_section("Padding ", end - remainder, remainder);
  655. restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
  656. return 0;
  657. }
  658. static int check_object(struct kmem_cache *s, struct page *page,
  659. void *object, u8 val)
  660. {
  661. u8 *p = object;
  662. u8 *endobject = object + s->object_size;
  663. if (s->flags & SLAB_RED_ZONE) {
  664. if (!check_bytes_and_report(s, page, object, "Redzone",
  665. endobject, val, s->inuse - s->object_size))
  666. return 0;
  667. } else {
  668. if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
  669. check_bytes_and_report(s, page, p, "Alignment padding",
  670. endobject, POISON_INUSE, s->inuse - s->object_size);
  671. }
  672. }
  673. if (s->flags & SLAB_POISON) {
  674. if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
  675. (!check_bytes_and_report(s, page, p, "Poison", p,
  676. POISON_FREE, s->object_size - 1) ||
  677. !check_bytes_and_report(s, page, p, "Poison",
  678. p + s->object_size - 1, POISON_END, 1)))
  679. return 0;
  680. /*
  681. * check_pad_bytes cleans up on its own.
  682. */
  683. check_pad_bytes(s, page, p);
  684. }
  685. if (!s->offset && val == SLUB_RED_ACTIVE)
  686. /*
  687. * Object and freepointer overlap. Cannot check
  688. * freepointer while object is allocated.
  689. */
  690. return 1;
  691. /* Check free pointer validity */
  692. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  693. object_err(s, page, p, "Freepointer corrupt");
  694. /*
  695. * No choice but to zap it and thus lose the remainder
  696. * of the free objects in this slab. May cause
  697. * another error because the object count is now wrong.
  698. */
  699. set_freepointer(s, p, NULL);
  700. return 0;
  701. }
  702. return 1;
  703. }
  704. static int check_slab(struct kmem_cache *s, struct page *page)
  705. {
  706. int maxobj;
  707. VM_BUG_ON(!irqs_disabled());
  708. if (!PageSlab(page)) {
  709. slab_err(s, page, "Not a valid slab page");
  710. return 0;
  711. }
  712. maxobj = order_objects(compound_order(page), s->size, s->reserved);
  713. if (page->objects > maxobj) {
  714. slab_err(s, page, "objects %u > max %u",
  715. s->name, page->objects, maxobj);
  716. return 0;
  717. }
  718. if (page->inuse > page->objects) {
  719. slab_err(s, page, "inuse %u > max %u",
  720. s->name, page->inuse, page->objects);
  721. return 0;
  722. }
  723. /* Slab_pad_check fixes things up after itself */
  724. slab_pad_check(s, page);
  725. return 1;
  726. }
  727. /*
  728. * Determine if a certain object on a page is on the freelist. Must hold the
  729. * slab lock to guarantee that the chains are in a consistent state.
  730. */
  731. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  732. {
  733. int nr = 0;
  734. void *fp;
  735. void *object = NULL;
  736. unsigned long max_objects;
  737. fp = page->freelist;
  738. while (fp && nr <= page->objects) {
  739. if (fp == search)
  740. return 1;
  741. if (!check_valid_pointer(s, page, fp)) {
  742. if (object) {
  743. object_err(s, page, object,
  744. "Freechain corrupt");
  745. set_freepointer(s, object, NULL);
  746. break;
  747. } else {
  748. slab_err(s, page, "Freepointer corrupt");
  749. page->freelist = NULL;
  750. page->inuse = page->objects;
  751. slab_fix(s, "Freelist cleared");
  752. return 0;
  753. }
  754. break;
  755. }
  756. object = fp;
  757. fp = get_freepointer(s, object);
  758. nr++;
  759. }
  760. max_objects = order_objects(compound_order(page), s->size, s->reserved);
  761. if (max_objects > MAX_OBJS_PER_PAGE)
  762. max_objects = MAX_OBJS_PER_PAGE;
  763. if (page->objects != max_objects) {
  764. slab_err(s, page, "Wrong number of objects. Found %d but "
  765. "should be %d", page->objects, max_objects);
  766. page->objects = max_objects;
  767. slab_fix(s, "Number of objects adjusted.");
  768. }
  769. if (page->inuse != page->objects - nr) {
  770. slab_err(s, page, "Wrong object count. Counter is %d but "
  771. "counted were %d", page->inuse, page->objects - nr);
  772. page->inuse = page->objects - nr;
  773. slab_fix(s, "Object count adjusted.");
  774. }
  775. return search == NULL;
  776. }
  777. static void trace(struct kmem_cache *s, struct page *page, void *object,
  778. int alloc)
  779. {
  780. if (s->flags & SLAB_TRACE) {
  781. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  782. s->name,
  783. alloc ? "alloc" : "free",
  784. object, page->inuse,
  785. page->freelist);
  786. if (!alloc)
  787. print_section("Object ", (void *)object, s->object_size);
  788. dump_stack();
  789. }
  790. }
  791. /*
  792. * Hooks for other subsystems that check memory allocations. In a typical
  793. * production configuration these hooks all should produce no code at all.
  794. */
  795. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  796. {
  797. flags &= gfp_allowed_mask;
  798. lockdep_trace_alloc(flags);
  799. might_sleep_if(flags & __GFP_WAIT);
  800. return should_failslab(s->object_size, flags, s->flags);
  801. }
  802. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
  803. {
  804. flags &= gfp_allowed_mask;
  805. kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
  806. kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
  807. }
  808. static inline void slab_free_hook(struct kmem_cache *s, void *x)
  809. {
  810. kmemleak_free_recursive(x, s->flags);
  811. /*
  812. * Trouble is that we may no longer disable interupts in the fast path
  813. * So in order to make the debug calls that expect irqs to be
  814. * disabled we need to disable interrupts temporarily.
  815. */
  816. #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
  817. {
  818. unsigned long flags;
  819. local_irq_save(flags);
  820. kmemcheck_slab_free(s, x, s->object_size);
  821. debug_check_no_locks_freed(x, s->object_size);
  822. local_irq_restore(flags);
  823. }
  824. #endif
  825. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  826. debug_check_no_obj_freed(x, s->object_size);
  827. }
  828. /*
  829. * Tracking of fully allocated slabs for debugging purposes.
  830. *
  831. * list_lock must be held.
  832. */
  833. static void add_full(struct kmem_cache *s,
  834. struct kmem_cache_node *n, struct page *page)
  835. {
  836. if (!(s->flags & SLAB_STORE_USER))
  837. return;
  838. list_add(&page->lru, &n->full);
  839. }
  840. /*
  841. * list_lock must be held.
  842. */
  843. static void remove_full(struct kmem_cache *s, struct page *page)
  844. {
  845. if (!(s->flags & SLAB_STORE_USER))
  846. return;
  847. list_del(&page->lru);
  848. }
  849. /* Tracking of the number of slabs for debugging purposes */
  850. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  851. {
  852. struct kmem_cache_node *n = get_node(s, node);
  853. return atomic_long_read(&n->nr_slabs);
  854. }
  855. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  856. {
  857. return atomic_long_read(&n->nr_slabs);
  858. }
  859. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  860. {
  861. struct kmem_cache_node *n = get_node(s, node);
  862. /*
  863. * May be called early in order to allocate a slab for the
  864. * kmem_cache_node structure. Solve the chicken-egg
  865. * dilemma by deferring the increment of the count during
  866. * bootstrap (see early_kmem_cache_node_alloc).
  867. */
  868. if (n) {
  869. atomic_long_inc(&n->nr_slabs);
  870. atomic_long_add(objects, &n->total_objects);
  871. }
  872. }
  873. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  874. {
  875. struct kmem_cache_node *n = get_node(s, node);
  876. atomic_long_dec(&n->nr_slabs);
  877. atomic_long_sub(objects, &n->total_objects);
  878. }
  879. /* Object debug checks for alloc/free paths */
  880. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  881. void *object)
  882. {
  883. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  884. return;
  885. init_object(s, object, SLUB_RED_INACTIVE);
  886. init_tracking(s, object);
  887. }
  888. static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  889. void *object, unsigned long addr)
  890. {
  891. if (!check_slab(s, page))
  892. goto bad;
  893. if (!check_valid_pointer(s, page, object)) {
  894. object_err(s, page, object, "Freelist Pointer check fails");
  895. goto bad;
  896. }
  897. if (!check_object(s, page, object, SLUB_RED_INACTIVE))
  898. goto bad;
  899. /* Success perform special debug activities for allocs */
  900. if (s->flags & SLAB_STORE_USER)
  901. set_track(s, object, TRACK_ALLOC, addr);
  902. trace(s, page, object, 1);
  903. init_object(s, object, SLUB_RED_ACTIVE);
  904. return 1;
  905. bad:
  906. if (PageSlab(page)) {
  907. /*
  908. * If this is a slab page then lets do the best we can
  909. * to avoid issues in the future. Marking all objects
  910. * as used avoids touching the remaining objects.
  911. */
  912. slab_fix(s, "Marking all objects used");
  913. page->inuse = page->objects;
  914. page->freelist = NULL;
  915. }
  916. return 0;
  917. }
  918. static noinline struct kmem_cache_node *free_debug_processing(
  919. struct kmem_cache *s, struct page *page, void *object,
  920. unsigned long addr, unsigned long *flags)
  921. {
  922. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  923. spin_lock_irqsave(&n->list_lock, *flags);
  924. slab_lock(page);
  925. if (!check_slab(s, page))
  926. goto fail;
  927. if (!check_valid_pointer(s, page, object)) {
  928. slab_err(s, page, "Invalid object pointer 0x%p", object);
  929. goto fail;
  930. }
  931. if (on_freelist(s, page, object)) {
  932. object_err(s, page, object, "Object already free");
  933. goto fail;
  934. }
  935. if (!check_object(s, page, object, SLUB_RED_ACTIVE))
  936. goto out;
  937. if (unlikely(s != page->slab)) {
  938. if (!PageSlab(page)) {
  939. slab_err(s, page, "Attempt to free object(0x%p) "
  940. "outside of slab", object);
  941. } else if (!page->slab) {
  942. printk(KERN_ERR
  943. "SLUB <none>: no slab for object 0x%p.\n",
  944. object);
  945. dump_stack();
  946. } else
  947. object_err(s, page, object,
  948. "page slab pointer corrupt.");
  949. goto fail;
  950. }
  951. if (s->flags & SLAB_STORE_USER)
  952. set_track(s, object, TRACK_FREE, addr);
  953. trace(s, page, object, 0);
  954. init_object(s, object, SLUB_RED_INACTIVE);
  955. out:
  956. slab_unlock(page);
  957. /*
  958. * Keep node_lock to preserve integrity
  959. * until the object is actually freed
  960. */
  961. return n;
  962. fail:
  963. slab_unlock(page);
  964. spin_unlock_irqrestore(&n->list_lock, *flags);
  965. slab_fix(s, "Object at 0x%p not freed", object);
  966. return NULL;
  967. }
  968. static int __init setup_slub_debug(char *str)
  969. {
  970. slub_debug = DEBUG_DEFAULT_FLAGS;
  971. if (*str++ != '=' || !*str)
  972. /*
  973. * No options specified. Switch on full debugging.
  974. */
  975. goto out;
  976. if (*str == ',')
  977. /*
  978. * No options but restriction on slabs. This means full
  979. * debugging for slabs matching a pattern.
  980. */
  981. goto check_slabs;
  982. if (tolower(*str) == 'o') {
  983. /*
  984. * Avoid enabling debugging on caches if its minimum order
  985. * would increase as a result.
  986. */
  987. disable_higher_order_debug = 1;
  988. goto out;
  989. }
  990. slub_debug = 0;
  991. if (*str == '-')
  992. /*
  993. * Switch off all debugging measures.
  994. */
  995. goto out;
  996. /*
  997. * Determine which debug features should be switched on
  998. */
  999. for (; *str && *str != ','; str++) {
  1000. switch (tolower(*str)) {
  1001. case 'f':
  1002. slub_debug |= SLAB_DEBUG_FREE;
  1003. break;
  1004. case 'z':
  1005. slub_debug |= SLAB_RED_ZONE;
  1006. break;
  1007. case 'p':
  1008. slub_debug |= SLAB_POISON;
  1009. break;
  1010. case 'u':
  1011. slub_debug |= SLAB_STORE_USER;
  1012. break;
  1013. case 't':
  1014. slub_debug |= SLAB_TRACE;
  1015. break;
  1016. case 'a':
  1017. slub_debug |= SLAB_FAILSLAB;
  1018. break;
  1019. default:
  1020. printk(KERN_ERR "slub_debug option '%c' "
  1021. "unknown. skipped\n", *str);
  1022. }
  1023. }
  1024. check_slabs:
  1025. if (*str == ',')
  1026. slub_debug_slabs = str + 1;
  1027. out:
  1028. return 1;
  1029. }
  1030. __setup("slub_debug", setup_slub_debug);
  1031. static unsigned long kmem_cache_flags(unsigned long object_size,
  1032. unsigned long flags, const char *name,
  1033. void (*ctor)(void *))
  1034. {
  1035. /*
  1036. * Enable debugging if selected on the kernel commandline.
  1037. */
  1038. if (slub_debug && (!slub_debug_slabs ||
  1039. !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
  1040. flags |= slub_debug;
  1041. return flags;
  1042. }
  1043. #else
  1044. static inline void setup_object_debug(struct kmem_cache *s,
  1045. struct page *page, void *object) {}
  1046. static inline int alloc_debug_processing(struct kmem_cache *s,
  1047. struct page *page, void *object, unsigned long addr) { return 0; }
  1048. static inline struct kmem_cache_node *free_debug_processing(
  1049. struct kmem_cache *s, struct page *page, void *object,
  1050. unsigned long addr, unsigned long *flags) { return NULL; }
  1051. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  1052. { return 1; }
  1053. static inline int check_object(struct kmem_cache *s, struct page *page,
  1054. void *object, u8 val) { return 1; }
  1055. static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
  1056. struct page *page) {}
  1057. static inline void remove_full(struct kmem_cache *s, struct page *page) {}
  1058. static inline unsigned long kmem_cache_flags(unsigned long object_size,
  1059. unsigned long flags, const char *name,
  1060. void (*ctor)(void *))
  1061. {
  1062. return flags;
  1063. }
  1064. #define slub_debug 0
  1065. #define disable_higher_order_debug 0
  1066. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  1067. { return 0; }
  1068. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  1069. { return 0; }
  1070. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  1071. int objects) {}
  1072. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  1073. int objects) {}
  1074. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  1075. { return 0; }
  1076. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
  1077. void *object) {}
  1078. static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
  1079. #endif /* CONFIG_SLUB_DEBUG */
  1080. /*
  1081. * Slab allocation and freeing
  1082. */
  1083. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  1084. struct kmem_cache_order_objects oo)
  1085. {
  1086. int order = oo_order(oo);
  1087. flags |= __GFP_NOTRACK;
  1088. if (node == NUMA_NO_NODE)
  1089. return alloc_pages(flags, order);
  1090. else
  1091. return alloc_pages_exact_node(node, flags, order);
  1092. }
  1093. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  1094. {
  1095. struct page *page;
  1096. struct kmem_cache_order_objects oo = s->oo;
  1097. gfp_t alloc_gfp;
  1098. flags &= gfp_allowed_mask;
  1099. if (flags & __GFP_WAIT)
  1100. local_irq_enable();
  1101. flags |= s->allocflags;
  1102. /*
  1103. * Let the initial higher-order allocation fail under memory pressure
  1104. * so we fall-back to the minimum order allocation.
  1105. */
  1106. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  1107. page = alloc_slab_page(alloc_gfp, node, oo);
  1108. if (unlikely(!page)) {
  1109. oo = s->min;
  1110. /*
  1111. * Allocation may have failed due to fragmentation.
  1112. * Try a lower order alloc if possible
  1113. */
  1114. page = alloc_slab_page(flags, node, oo);
  1115. if (page)
  1116. stat(s, ORDER_FALLBACK);
  1117. }
  1118. if (kmemcheck_enabled && page
  1119. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
  1120. int pages = 1 << oo_order(oo);
  1121. kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
  1122. /*
  1123. * Objects from caches that have a constructor don't get
  1124. * cleared when they're allocated, so we need to do it here.
  1125. */
  1126. if (s->ctor)
  1127. kmemcheck_mark_uninitialized_pages(page, pages);
  1128. else
  1129. kmemcheck_mark_unallocated_pages(page, pages);
  1130. }
  1131. if (flags & __GFP_WAIT)
  1132. local_irq_disable();
  1133. if (!page)
  1134. return NULL;
  1135. page->objects = oo_objects(oo);
  1136. mod_zone_page_state(page_zone(page),
  1137. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1138. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1139. 1 << oo_order(oo));
  1140. return page;
  1141. }
  1142. static void setup_object(struct kmem_cache *s, struct page *page,
  1143. void *object)
  1144. {
  1145. setup_object_debug(s, page, object);
  1146. if (unlikely(s->ctor))
  1147. s->ctor(object);
  1148. }
  1149. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  1150. {
  1151. struct page *page;
  1152. void *start;
  1153. void *last;
  1154. void *p;
  1155. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  1156. page = allocate_slab(s,
  1157. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  1158. if (!page)
  1159. goto out;
  1160. inc_slabs_node(s, page_to_nid(page), page->objects);
  1161. page->slab = s;
  1162. __SetPageSlab(page);
  1163. if (page->pfmemalloc)
  1164. SetPageSlabPfmemalloc(page);
  1165. start = page_address(page);
  1166. if (unlikely(s->flags & SLAB_POISON))
  1167. memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
  1168. last = start;
  1169. for_each_object(p, s, start, page->objects) {
  1170. setup_object(s, page, last);
  1171. set_freepointer(s, last, p);
  1172. last = p;
  1173. }
  1174. setup_object(s, page, last);
  1175. set_freepointer(s, last, NULL);
  1176. page->freelist = start;
  1177. page->inuse = page->objects;
  1178. page->frozen = 1;
  1179. out:
  1180. return page;
  1181. }
  1182. static void __free_slab(struct kmem_cache *s, struct page *page)
  1183. {
  1184. int order = compound_order(page);
  1185. int pages = 1 << order;
  1186. if (kmem_cache_debug(s)) {
  1187. void *p;
  1188. slab_pad_check(s, page);
  1189. for_each_object(p, s, page_address(page),
  1190. page->objects)
  1191. check_object(s, page, p, SLUB_RED_INACTIVE);
  1192. }
  1193. kmemcheck_free_shadow(page, compound_order(page));
  1194. mod_zone_page_state(page_zone(page),
  1195. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1196. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1197. -pages);
  1198. __ClearPageSlabPfmemalloc(page);
  1199. __ClearPageSlab(page);
  1200. reset_page_mapcount(page);
  1201. if (current->reclaim_state)
  1202. current->reclaim_state->reclaimed_slab += pages;
  1203. __free_pages(page, order);
  1204. }
  1205. #define need_reserve_slab_rcu \
  1206. (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
  1207. static void rcu_free_slab(struct rcu_head *h)
  1208. {
  1209. struct page *page;
  1210. if (need_reserve_slab_rcu)
  1211. page = virt_to_head_page(h);
  1212. else
  1213. page = container_of((struct list_head *)h, struct page, lru);
  1214. __free_slab(page->slab, page);
  1215. }
  1216. static void free_slab(struct kmem_cache *s, struct page *page)
  1217. {
  1218. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1219. struct rcu_head *head;
  1220. if (need_reserve_slab_rcu) {
  1221. int order = compound_order(page);
  1222. int offset = (PAGE_SIZE << order) - s->reserved;
  1223. VM_BUG_ON(s->reserved != sizeof(*head));
  1224. head = page_address(page) + offset;
  1225. } else {
  1226. /*
  1227. * RCU free overloads the RCU head over the LRU
  1228. */
  1229. head = (void *)&page->lru;
  1230. }
  1231. call_rcu(head, rcu_free_slab);
  1232. } else
  1233. __free_slab(s, page);
  1234. }
  1235. static void discard_slab(struct kmem_cache *s, struct page *page)
  1236. {
  1237. dec_slabs_node(s, page_to_nid(page), page->objects);
  1238. free_slab(s, page);
  1239. }
  1240. /*
  1241. * Management of partially allocated slabs.
  1242. *
  1243. * list_lock must be held.
  1244. */
  1245. static inline void add_partial(struct kmem_cache_node *n,
  1246. struct page *page, int tail)
  1247. {
  1248. n->nr_partial++;
  1249. if (tail == DEACTIVATE_TO_TAIL)
  1250. list_add_tail(&page->lru, &n->partial);
  1251. else
  1252. list_add(&page->lru, &n->partial);
  1253. }
  1254. /*
  1255. * list_lock must be held.
  1256. */
  1257. static inline void remove_partial(struct kmem_cache_node *n,
  1258. struct page *page)
  1259. {
  1260. list_del(&page->lru);
  1261. n->nr_partial--;
  1262. }
  1263. /*
  1264. * Remove slab from the partial list, freeze it and
  1265. * return the pointer to the freelist.
  1266. *
  1267. * Returns a list of objects or NULL if it fails.
  1268. *
  1269. * Must hold list_lock since we modify the partial list.
  1270. */
  1271. static inline void *acquire_slab(struct kmem_cache *s,
  1272. struct kmem_cache_node *n, struct page *page,
  1273. int mode)
  1274. {
  1275. void *freelist;
  1276. unsigned long counters;
  1277. struct page new;
  1278. /*
  1279. * Zap the freelist and set the frozen bit.
  1280. * The old freelist is the list of objects for the
  1281. * per cpu allocation list.
  1282. */
  1283. freelist = page->freelist;
  1284. counters = page->counters;
  1285. new.counters = counters;
  1286. if (mode) {
  1287. new.inuse = page->objects;
  1288. new.freelist = NULL;
  1289. } else {
  1290. new.freelist = freelist;
  1291. }
  1292. VM_BUG_ON(new.frozen);
  1293. new.frozen = 1;
  1294. if (!__cmpxchg_double_slab(s, page,
  1295. freelist, counters,
  1296. new.freelist, new.counters,
  1297. "acquire_slab"))
  1298. return NULL;
  1299. remove_partial(n, page);
  1300. WARN_ON(!freelist);
  1301. return freelist;
  1302. }
  1303. static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
  1304. /*
  1305. * Try to allocate a partial slab from a specific node.
  1306. */
  1307. static void *get_partial_node(struct kmem_cache *s,
  1308. struct kmem_cache_node *n, struct kmem_cache_cpu *c)
  1309. {
  1310. struct page *page, *page2;
  1311. void *object = NULL;
  1312. /*
  1313. * Racy check. If we mistakenly see no partial slabs then we
  1314. * just allocate an empty slab. If we mistakenly try to get a
  1315. * partial slab and there is none available then get_partials()
  1316. * will return NULL.
  1317. */
  1318. if (!n || !n->nr_partial)
  1319. return NULL;
  1320. spin_lock(&n->list_lock);
  1321. list_for_each_entry_safe(page, page2, &n->partial, lru) {
  1322. void *t = acquire_slab(s, n, page, object == NULL);
  1323. int available;
  1324. if (!t)
  1325. break;
  1326. if (!object) {
  1327. c->page = page;
  1328. stat(s, ALLOC_FROM_PARTIAL);
  1329. object = t;
  1330. available = page->objects - page->inuse;
  1331. } else {
  1332. available = put_cpu_partial(s, page, 0);
  1333. stat(s, CPU_PARTIAL_NODE);
  1334. }
  1335. if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
  1336. break;
  1337. }
  1338. spin_unlock(&n->list_lock);
  1339. return object;
  1340. }
  1341. /*
  1342. * Get a page from somewhere. Search in increasing NUMA distances.
  1343. */
  1344. static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
  1345. struct kmem_cache_cpu *c)
  1346. {
  1347. #ifdef CONFIG_NUMA
  1348. struct zonelist *zonelist;
  1349. struct zoneref *z;
  1350. struct zone *zone;
  1351. enum zone_type high_zoneidx = gfp_zone(flags);
  1352. void *object;
  1353. unsigned int cpuset_mems_cookie;
  1354. /*
  1355. * The defrag ratio allows a configuration of the tradeoffs between
  1356. * inter node defragmentation and node local allocations. A lower
  1357. * defrag_ratio increases the tendency to do local allocations
  1358. * instead of attempting to obtain partial slabs from other nodes.
  1359. *
  1360. * If the defrag_ratio is set to 0 then kmalloc() always
  1361. * returns node local objects. If the ratio is higher then kmalloc()
  1362. * may return off node objects because partial slabs are obtained
  1363. * from other nodes and filled up.
  1364. *
  1365. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1366. * defrag_ratio = 1000) then every (well almost) allocation will
  1367. * first attempt to defrag slab caches on other nodes. This means
  1368. * scanning over all nodes to look for partial slabs which may be
  1369. * expensive if we do it every time we are trying to find a slab
  1370. * with available objects.
  1371. */
  1372. if (!s->remote_node_defrag_ratio ||
  1373. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1374. return NULL;
  1375. do {
  1376. cpuset_mems_cookie = get_mems_allowed();
  1377. zonelist = node_zonelist(slab_node(), flags);
  1378. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1379. struct kmem_cache_node *n;
  1380. n = get_node(s, zone_to_nid(zone));
  1381. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1382. n->nr_partial > s->min_partial) {
  1383. object = get_partial_node(s, n, c);
  1384. if (object) {
  1385. /*
  1386. * Return the object even if
  1387. * put_mems_allowed indicated that
  1388. * the cpuset mems_allowed was
  1389. * updated in parallel. It's a
  1390. * harmless race between the alloc
  1391. * and the cpuset update.
  1392. */
  1393. put_mems_allowed(cpuset_mems_cookie);
  1394. return object;
  1395. }
  1396. }
  1397. }
  1398. } while (!put_mems_allowed(cpuset_mems_cookie));
  1399. #endif
  1400. return NULL;
  1401. }
  1402. /*
  1403. * Get a partial page, lock it and return it.
  1404. */
  1405. static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
  1406. struct kmem_cache_cpu *c)
  1407. {
  1408. void *object;
  1409. int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
  1410. object = get_partial_node(s, get_node(s, searchnode), c);
  1411. if (object || node != NUMA_NO_NODE)
  1412. return object;
  1413. return get_any_partial(s, flags, c);
  1414. }
  1415. #ifdef CONFIG_PREEMPT
  1416. /*
  1417. * Calculate the next globally unique transaction for disambiguiation
  1418. * during cmpxchg. The transactions start with the cpu number and are then
  1419. * incremented by CONFIG_NR_CPUS.
  1420. */
  1421. #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
  1422. #else
  1423. /*
  1424. * No preemption supported therefore also no need to check for
  1425. * different cpus.
  1426. */
  1427. #define TID_STEP 1
  1428. #endif
  1429. static inline unsigned long next_tid(unsigned long tid)
  1430. {
  1431. return tid + TID_STEP;
  1432. }
  1433. static inline unsigned int tid_to_cpu(unsigned long tid)
  1434. {
  1435. return tid % TID_STEP;
  1436. }
  1437. static inline unsigned long tid_to_event(unsigned long tid)
  1438. {
  1439. return tid / TID_STEP;
  1440. }
  1441. static inline unsigned int init_tid(int cpu)
  1442. {
  1443. return cpu;
  1444. }
  1445. static inline void note_cmpxchg_failure(const char *n,
  1446. const struct kmem_cache *s, unsigned long tid)
  1447. {
  1448. #ifdef SLUB_DEBUG_CMPXCHG
  1449. unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
  1450. printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
  1451. #ifdef CONFIG_PREEMPT
  1452. if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
  1453. printk("due to cpu change %d -> %d\n",
  1454. tid_to_cpu(tid), tid_to_cpu(actual_tid));
  1455. else
  1456. #endif
  1457. if (tid_to_event(tid) != tid_to_event(actual_tid))
  1458. printk("due to cpu running other code. Event %ld->%ld\n",
  1459. tid_to_event(tid), tid_to_event(actual_tid));
  1460. else
  1461. printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
  1462. actual_tid, tid, next_tid(tid));
  1463. #endif
  1464. stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
  1465. }
  1466. void init_kmem_cache_cpus(struct kmem_cache *s)
  1467. {
  1468. int cpu;
  1469. for_each_possible_cpu(cpu)
  1470. per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
  1471. }
  1472. /*
  1473. * Remove the cpu slab
  1474. */
  1475. static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
  1476. {
  1477. enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
  1478. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1479. int lock = 0;
  1480. enum slab_modes l = M_NONE, m = M_NONE;
  1481. void *nextfree;
  1482. int tail = DEACTIVATE_TO_HEAD;
  1483. struct page new;
  1484. struct page old;
  1485. if (page->freelist) {
  1486. stat(s, DEACTIVATE_REMOTE_FREES);
  1487. tail = DEACTIVATE_TO_TAIL;
  1488. }
  1489. /*
  1490. * Stage one: Free all available per cpu objects back
  1491. * to the page freelist while it is still frozen. Leave the
  1492. * last one.
  1493. *
  1494. * There is no need to take the list->lock because the page
  1495. * is still frozen.
  1496. */
  1497. while (freelist && (nextfree = get_freepointer(s, freelist))) {
  1498. void *prior;
  1499. unsigned long counters;
  1500. do {
  1501. prior = page->freelist;
  1502. counters = page->counters;
  1503. set_freepointer(s, freelist, prior);
  1504. new.counters = counters;
  1505. new.inuse--;
  1506. VM_BUG_ON(!new.frozen);
  1507. } while (!__cmpxchg_double_slab(s, page,
  1508. prior, counters,
  1509. freelist, new.counters,
  1510. "drain percpu freelist"));
  1511. freelist = nextfree;
  1512. }
  1513. /*
  1514. * Stage two: Ensure that the page is unfrozen while the
  1515. * list presence reflects the actual number of objects
  1516. * during unfreeze.
  1517. *
  1518. * We setup the list membership and then perform a cmpxchg
  1519. * with the count. If there is a mismatch then the page
  1520. * is not unfrozen but the page is on the wrong list.
  1521. *
  1522. * Then we restart the process which may have to remove
  1523. * the page from the list that we just put it on again
  1524. * because the number of objects in the slab may have
  1525. * changed.
  1526. */
  1527. redo:
  1528. old.freelist = page->freelist;
  1529. old.counters = page->counters;
  1530. VM_BUG_ON(!old.frozen);
  1531. /* Determine target state of the slab */
  1532. new.counters = old.counters;
  1533. if (freelist) {
  1534. new.inuse--;
  1535. set_freepointer(s, freelist, old.freelist);
  1536. new.freelist = freelist;
  1537. } else
  1538. new.freelist = old.freelist;
  1539. new.frozen = 0;
  1540. if (!new.inuse && n->nr_partial > s->min_partial)
  1541. m = M_FREE;
  1542. else if (new.freelist) {
  1543. m = M_PARTIAL;
  1544. if (!lock) {
  1545. lock = 1;
  1546. /*
  1547. * Taking the spinlock removes the possiblity
  1548. * that acquire_slab() will see a slab page that
  1549. * is frozen
  1550. */
  1551. spin_lock(&n->list_lock);
  1552. }
  1553. } else {
  1554. m = M_FULL;
  1555. if (kmem_cache_debug(s) && !lock) {
  1556. lock = 1;
  1557. /*
  1558. * This also ensures that the scanning of full
  1559. * slabs from diagnostic functions will not see
  1560. * any frozen slabs.
  1561. */
  1562. spin_lock(&n->list_lock);
  1563. }
  1564. }
  1565. if (l != m) {
  1566. if (l == M_PARTIAL)
  1567. remove_partial(n, page);
  1568. else if (l == M_FULL)
  1569. remove_full(s, page);
  1570. if (m == M_PARTIAL) {
  1571. add_partial(n, page, tail);
  1572. stat(s, tail);
  1573. } else if (m == M_FULL) {
  1574. stat(s, DEACTIVATE_FULL);
  1575. add_full(s, n, page);
  1576. }
  1577. }
  1578. l = m;
  1579. if (!__cmpxchg_double_slab(s, page,
  1580. old.freelist, old.counters,
  1581. new.freelist, new.counters,
  1582. "unfreezing slab"))
  1583. goto redo;
  1584. if (lock)
  1585. spin_unlock(&n->list_lock);
  1586. if (m == M_FREE) {
  1587. stat(s, DEACTIVATE_EMPTY);
  1588. discard_slab(s, page);
  1589. stat(s, FREE_SLAB);
  1590. }
  1591. }
  1592. /*
  1593. * Unfreeze all the cpu partial slabs.
  1594. *
  1595. * This function must be called with interrupt disabled.
  1596. */
  1597. static void unfreeze_partials(struct kmem_cache *s)
  1598. {
  1599. struct kmem_cache_node *n = NULL, *n2 = NULL;
  1600. struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
  1601. struct page *page, *discard_page = NULL;
  1602. while ((page = c->partial)) {
  1603. struct page new;
  1604. struct page old;
  1605. c->partial = page->next;
  1606. n2 = get_node(s, page_to_nid(page));
  1607. if (n != n2) {
  1608. if (n)
  1609. spin_unlock(&n->list_lock);
  1610. n = n2;
  1611. spin_lock(&n->list_lock);
  1612. }
  1613. do {
  1614. old.freelist = page->freelist;
  1615. old.counters = page->counters;
  1616. VM_BUG_ON(!old.frozen);
  1617. new.counters = old.counters;
  1618. new.freelist = old.freelist;
  1619. new.frozen = 0;
  1620. } while (!__cmpxchg_double_slab(s, page,
  1621. old.freelist, old.counters,
  1622. new.freelist, new.counters,
  1623. "unfreezing slab"));
  1624. if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
  1625. page->next = discard_page;
  1626. discard_page = page;
  1627. } else {
  1628. add_partial(n, page, DEACTIVATE_TO_TAIL);
  1629. stat(s, FREE_ADD_PARTIAL);
  1630. }
  1631. }
  1632. if (n)
  1633. spin_unlock(&n->list_lock);
  1634. while (discard_page) {
  1635. page = discard_page;
  1636. discard_page = discard_page->next;
  1637. stat(s, DEACTIVATE_EMPTY);
  1638. discard_slab(s, page);
  1639. stat(s, FREE_SLAB);
  1640. }
  1641. }
  1642. /*
  1643. * Put a page that was just frozen (in __slab_free) into a partial page
  1644. * slot if available. This is done without interrupts disabled and without
  1645. * preemption disabled. The cmpxchg is racy and may put the partial page
  1646. * onto a random cpus partial slot.
  1647. *
  1648. * If we did not find a slot then simply move all the partials to the
  1649. * per node partial list.
  1650. */
  1651. int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
  1652. {
  1653. struct page *oldpage;
  1654. int pages;
  1655. int pobjects;
  1656. do {
  1657. pages = 0;
  1658. pobjects = 0;
  1659. oldpage = this_cpu_read(s->cpu_slab->partial);
  1660. if (oldpage) {
  1661. pobjects = oldpage->pobjects;
  1662. pages = oldpage->pages;
  1663. if (drain && pobjects > s->cpu_partial) {
  1664. unsigned long flags;
  1665. /*
  1666. * partial array is full. Move the existing
  1667. * set to the per node partial list.
  1668. */
  1669. local_irq_save(flags);
  1670. unfreeze_partials(s);
  1671. local_irq_restore(flags);
  1672. oldpage = NULL;
  1673. pobjects = 0;
  1674. pages = 0;
  1675. stat(s, CPU_PARTIAL_DRAIN);
  1676. }
  1677. }
  1678. pages++;
  1679. pobjects += page->objects - page->inuse;
  1680. page->pages = pages;
  1681. page->pobjects = pobjects;
  1682. page->next = oldpage;
  1683. } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
  1684. return pobjects;
  1685. }
  1686. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1687. {
  1688. stat(s, CPUSLAB_FLUSH);
  1689. deactivate_slab(s, c->page, c->freelist);
  1690. c->tid = next_tid(c->tid);
  1691. c->page = NULL;
  1692. c->freelist = NULL;
  1693. }
  1694. /*
  1695. * Flush cpu slab.
  1696. *
  1697. * Called from IPI handler with interrupts disabled.
  1698. */
  1699. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1700. {
  1701. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1702. if (likely(c)) {
  1703. if (c->page)
  1704. flush_slab(s, c);
  1705. unfreeze_partials(s);
  1706. }
  1707. }
  1708. static void flush_cpu_slab(void *d)
  1709. {
  1710. struct kmem_cache *s = d;
  1711. __flush_cpu_slab(s, smp_processor_id());
  1712. }
  1713. static bool has_cpu_slab(int cpu, void *info)
  1714. {
  1715. struct kmem_cache *s = info;
  1716. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1717. return c->page || c->partial;
  1718. }
  1719. static void flush_all(struct kmem_cache *s)
  1720. {
  1721. on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
  1722. }
  1723. /*
  1724. * Check if the objects in a per cpu structure fit numa
  1725. * locality expectations.
  1726. */
  1727. static inline int node_match(struct page *page, int node)
  1728. {
  1729. #ifdef CONFIG_NUMA
  1730. if (node != NUMA_NO_NODE && page_to_nid(page) != node)
  1731. return 0;
  1732. #endif
  1733. return 1;
  1734. }
  1735. static int count_free(struct page *page)
  1736. {
  1737. return page->objects - page->inuse;
  1738. }
  1739. static unsigned long count_partial(struct kmem_cache_node *n,
  1740. int (*get_count)(struct page *))
  1741. {
  1742. unsigned long flags;
  1743. unsigned long x = 0;
  1744. struct page *page;
  1745. spin_lock_irqsave(&n->list_lock, flags);
  1746. list_for_each_entry(page, &n->partial, lru)
  1747. x += get_count(page);
  1748. spin_unlock_irqrestore(&n->list_lock, flags);
  1749. return x;
  1750. }
  1751. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1752. {
  1753. #ifdef CONFIG_SLUB_DEBUG
  1754. return atomic_long_read(&n->total_objects);
  1755. #else
  1756. return 0;
  1757. #endif
  1758. }
  1759. static noinline void
  1760. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1761. {
  1762. int node;
  1763. printk(KERN_WARNING
  1764. "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1765. nid, gfpflags);
  1766. printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
  1767. "default order: %d, min order: %d\n", s->name, s->object_size,
  1768. s->size, oo_order(s->oo), oo_order(s->min));
  1769. if (oo_order(s->min) > get_order(s->object_size))
  1770. printk(KERN_WARNING " %s debugging increased min order, use "
  1771. "slub_debug=O to disable.\n", s->name);
  1772. for_each_online_node(node) {
  1773. struct kmem_cache_node *n = get_node(s, node);
  1774. unsigned long nr_slabs;
  1775. unsigned long nr_objs;
  1776. unsigned long nr_free;
  1777. if (!n)
  1778. continue;
  1779. nr_free = count_partial(n, count_free);
  1780. nr_slabs = node_nr_slabs(n);
  1781. nr_objs = node_nr_objs(n);
  1782. printk(KERN_WARNING
  1783. " node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1784. node, nr_slabs, nr_objs, nr_free);
  1785. }
  1786. }
  1787. static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
  1788. int node, struct kmem_cache_cpu **pc)
  1789. {
  1790. void *freelist;
  1791. struct kmem_cache_cpu *c = *pc;
  1792. struct page *page;
  1793. freelist = get_partial(s, flags, node, c);
  1794. if (freelist)
  1795. return freelist;
  1796. page = new_slab(s, flags, node);
  1797. if (page) {
  1798. c = __this_cpu_ptr(s->cpu_slab);
  1799. if (c->page)
  1800. flush_slab(s, c);
  1801. /*
  1802. * No other reference to the page yet so we can
  1803. * muck around with it freely without cmpxchg
  1804. */
  1805. freelist = page->freelist;
  1806. page->freelist = NULL;
  1807. stat(s, ALLOC_SLAB);
  1808. c->page = page;
  1809. *pc = c;
  1810. } else
  1811. freelist = NULL;
  1812. return freelist;
  1813. }
  1814. static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
  1815. {
  1816. if (unlikely(PageSlabPfmemalloc(page)))
  1817. return gfp_pfmemalloc_allowed(gfpflags);
  1818. return true;
  1819. }
  1820. /*
  1821. * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
  1822. * or deactivate the page.
  1823. *
  1824. * The page is still frozen if the return value is not NULL.
  1825. *
  1826. * If this function returns NULL then the page has been unfrozen.
  1827. *
  1828. * This function must be called with interrupt disabled.
  1829. */
  1830. static inline void *get_freelist(struct kmem_cache *s, struct page *page)
  1831. {
  1832. struct page new;
  1833. unsigned long counters;
  1834. void *freelist;
  1835. do {
  1836. freelist = page->freelist;
  1837. counters = page->counters;
  1838. new.counters = counters;
  1839. VM_BUG_ON(!new.frozen);
  1840. new.inuse = page->objects;
  1841. new.frozen = freelist != NULL;
  1842. } while (!__cmpxchg_double_slab(s, page,
  1843. freelist, counters,
  1844. NULL, new.counters,
  1845. "get_freelist"));
  1846. return freelist;
  1847. }
  1848. /*
  1849. * Slow path. The lockless freelist is empty or we need to perform
  1850. * debugging duties.
  1851. *
  1852. * Processing is still very fast if new objects have been freed to the
  1853. * regular freelist. In that case we simply take over the regular freelist
  1854. * as the lockless freelist and zap the regular freelist.
  1855. *
  1856. * If that is not working then we fall back to the partial lists. We take the
  1857. * first element of the freelist as the object to allocate now and move the
  1858. * rest of the freelist to the lockless freelist.
  1859. *
  1860. * And if we were unable to get a new slab from the partial slab lists then
  1861. * we need to allocate a new slab. This is the slowest path since it involves
  1862. * a call to the page allocator and the setup of a new slab.
  1863. */
  1864. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1865. unsigned long addr, struct kmem_cache_cpu *c)
  1866. {
  1867. void *freelist;
  1868. struct page *page;
  1869. unsigned long flags;
  1870. local_irq_save(flags);
  1871. #ifdef CONFIG_PREEMPT
  1872. /*
  1873. * We may have been preempted and rescheduled on a different
  1874. * cpu before disabling interrupts. Need to reload cpu area
  1875. * pointer.
  1876. */
  1877. c = this_cpu_ptr(s->cpu_slab);
  1878. #endif
  1879. page = c->page;
  1880. if (!page)
  1881. goto new_slab;
  1882. redo:
  1883. if (unlikely(!node_match(page, node))) {
  1884. stat(s, ALLOC_NODE_MISMATCH);
  1885. deactivate_slab(s, page, c->freelist);
  1886. c->page = NULL;
  1887. c->freelist = NULL;
  1888. goto new_slab;
  1889. }
  1890. /*
  1891. * By rights, we should be searching for a slab page that was
  1892. * PFMEMALLOC but right now, we are losing the pfmemalloc
  1893. * information when the page leaves the per-cpu allocator
  1894. */
  1895. if (unlikely(!pfmemalloc_match(page, gfpflags))) {
  1896. deactivate_slab(s, page, c->freelist);
  1897. c->page = NULL;
  1898. c->freelist = NULL;
  1899. goto new_slab;
  1900. }
  1901. /* must check again c->freelist in case of cpu migration or IRQ */
  1902. freelist = c->freelist;
  1903. if (freelist)
  1904. goto load_freelist;
  1905. stat(s, ALLOC_SLOWPATH);
  1906. freelist = get_freelist(s, page);
  1907. if (!freelist) {
  1908. c->page = NULL;
  1909. stat(s, DEACTIVATE_BYPASS);
  1910. goto new_slab;
  1911. }
  1912. stat(s, ALLOC_REFILL);
  1913. load_freelist:
  1914. /*
  1915. * freelist is pointing to the list of objects to be used.
  1916. * page is pointing to the page from which the objects are obtained.
  1917. * That page must be frozen for per cpu allocations to work.
  1918. */
  1919. VM_BUG_ON(!c->page->frozen);
  1920. c->freelist = get_freepointer(s, freelist);
  1921. c->tid = next_tid(c->tid);
  1922. local_irq_restore(flags);
  1923. return freelist;
  1924. new_slab:
  1925. if (c->partial) {
  1926. page = c->page = c->partial;
  1927. c->partial = page->next;
  1928. stat(s, CPU_PARTIAL_ALLOC);
  1929. c->freelist = NULL;
  1930. goto redo;
  1931. }
  1932. freelist = new_slab_objects(s, gfpflags, node, &c);
  1933. if (unlikely(!freelist)) {
  1934. if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
  1935. slab_out_of_memory(s, gfpflags, node);
  1936. local_irq_restore(flags);
  1937. return NULL;
  1938. }
  1939. page = c->page;
  1940. if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
  1941. goto load_freelist;
  1942. /* Only entered in the debug case */
  1943. if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
  1944. goto new_slab; /* Slab failed checks. Next slab needed */
  1945. deactivate_slab(s, page, get_freepointer(s, freelist));
  1946. c->page = NULL;
  1947. c->freelist = NULL;
  1948. local_irq_restore(flags);
  1949. return freelist;
  1950. }
  1951. /*
  1952. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1953. * have the fastpath folded into their functions. So no function call
  1954. * overhead for requests that can be satisfied on the fastpath.
  1955. *
  1956. * The fastpath works by first checking if the lockless freelist can be used.
  1957. * If not then __slab_alloc is called for slow processing.
  1958. *
  1959. * Otherwise we can simply pick the next object from the lockless free list.
  1960. */
  1961. static __always_inline void *slab_alloc(struct kmem_cache *s,
  1962. gfp_t gfpflags, int node, unsigned long addr)
  1963. {
  1964. void **object;
  1965. struct kmem_cache_cpu *c;
  1966. struct page *page;
  1967. unsigned long tid;
  1968. if (slab_pre_alloc_hook(s, gfpflags))
  1969. return NULL;
  1970. redo:
  1971. /*
  1972. * Must read kmem_cache cpu data via this cpu ptr. Preemption is
  1973. * enabled. We may switch back and forth between cpus while
  1974. * reading from one cpu area. That does not matter as long
  1975. * as we end up on the original cpu again when doing the cmpxchg.
  1976. */
  1977. c = __this_cpu_ptr(s->cpu_slab);
  1978. /*
  1979. * The transaction ids are globally unique per cpu and per operation on
  1980. * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
  1981. * occurs on the right processor and that there was no operation on the
  1982. * linked list in between.
  1983. */
  1984. tid = c->tid;
  1985. barrier();
  1986. object = c->freelist;
  1987. page = c->page;
  1988. if (unlikely(!object || !node_match(page, node)))
  1989. object = __slab_alloc(s, gfpflags, node, addr, c);
  1990. else {
  1991. void *next_object = get_freepointer_safe(s, object);
  1992. /*
  1993. * The cmpxchg will only match if there was no additional
  1994. * operation and if we are on the right processor.
  1995. *
  1996. * The cmpxchg does the following atomically (without lock semantics!)
  1997. * 1. Relocate first pointer to the current per cpu area.
  1998. * 2. Verify that tid and freelist have not been changed
  1999. * 3. If they were not changed replace tid and freelist
  2000. *
  2001. * Since this is without lock semantics the protection is only against
  2002. * code executing on this cpu *not* from access by other cpus.
  2003. */
  2004. if (unlikely(!this_cpu_cmpxchg_double(
  2005. s->cpu_slab->freelist, s->cpu_slab->tid,
  2006. object, tid,
  2007. next_object, next_tid(tid)))) {
  2008. note_cmpxchg_failure("slab_alloc", s, tid);
  2009. goto redo;
  2010. }
  2011. prefetch_freepointer(s, next_object);
  2012. stat(s, ALLOC_FASTPATH);
  2013. }
  2014. if (unlikely(gfpflags & __GFP_ZERO) && object)
  2015. memset(object, 0, s->object_size);
  2016. slab_post_alloc_hook(s, gfpflags, object);
  2017. return object;
  2018. }
  2019. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  2020. {
  2021. void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  2022. trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
  2023. return ret;
  2024. }
  2025. EXPORT_SYMBOL(kmem_cache_alloc);
  2026. #ifdef CONFIG_TRACING
  2027. void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
  2028. {
  2029. void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  2030. trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
  2031. return ret;
  2032. }
  2033. EXPORT_SYMBOL(kmem_cache_alloc_trace);
  2034. void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
  2035. {
  2036. void *ret = kmalloc_order(size, flags, order);
  2037. trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
  2038. return ret;
  2039. }
  2040. EXPORT_SYMBOL(kmalloc_order_trace);
  2041. #endif
  2042. #ifdef CONFIG_NUMA
  2043. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  2044. {
  2045. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  2046. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  2047. s->object_size, s->size, gfpflags, node);
  2048. return ret;
  2049. }
  2050. EXPORT_SYMBOL(kmem_cache_alloc_node);
  2051. #ifdef CONFIG_TRACING
  2052. void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
  2053. gfp_t gfpflags,
  2054. int node, size_t size)
  2055. {
  2056. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  2057. trace_kmalloc_node(_RET_IP_, ret,
  2058. size, s->size, gfpflags, node);
  2059. return ret;
  2060. }
  2061. EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
  2062. #endif
  2063. #endif
  2064. /*
  2065. * Slow patch handling. This may still be called frequently since objects
  2066. * have a longer lifetime than the cpu slabs in most processing loads.
  2067. *
  2068. * So we still attempt to reduce cache line usage. Just take the slab
  2069. * lock and free the item. If there is no additional partial page
  2070. * handling required then we can return immediately.
  2071. */
  2072. static void __slab_free(struct kmem_cache *s, struct page *page,
  2073. void *x, unsigned long addr)
  2074. {
  2075. void *prior;
  2076. void **object = (void *)x;
  2077. int was_frozen;
  2078. int inuse;
  2079. struct page new;
  2080. unsigned long counters;
  2081. struct kmem_cache_node *n = NULL;
  2082. unsigned long uninitialized_var(flags);
  2083. stat(s, FREE_SLOWPATH);
  2084. if (kmem_cache_debug(s) &&
  2085. !(n = free_debug_processing(s, page, x, addr, &flags)))
  2086. return;
  2087. do {
  2088. prior = page->freelist;
  2089. counters = page->counters;
  2090. set_freepointer(s, object, prior);
  2091. new.counters = counters;
  2092. was_frozen = new.frozen;
  2093. new.inuse--;
  2094. if ((!new.inuse || !prior) && !was_frozen && !n) {
  2095. if (!kmem_cache_debug(s) && !prior)
  2096. /*
  2097. * Slab was on no list before and will be partially empty
  2098. * We can defer the list move and instead freeze it.
  2099. */
  2100. new.frozen = 1;
  2101. else { /* Needs to be taken off a list */
  2102. n = get_node(s, page_to_nid(page));
  2103. /*
  2104. * Speculatively acquire the list_lock.
  2105. * If the cmpxchg does not succeed then we may
  2106. * drop the list_lock without any processing.
  2107. *
  2108. * Otherwise the list_lock will synchronize with
  2109. * other processors updating the list of slabs.
  2110. */
  2111. spin_lock_irqsave(&n->list_lock, flags);
  2112. }
  2113. }
  2114. inuse = new.inuse;
  2115. } while (!cmpxchg_double_slab(s, page,
  2116. prior, counters,
  2117. object, new.counters,
  2118. "__slab_free"));
  2119. if (likely(!n)) {
  2120. /*
  2121. * If we just froze the page then put it onto the
  2122. * per cpu partial list.
  2123. */
  2124. if (new.frozen && !was_frozen) {
  2125. put_cpu_partial(s, page, 1);
  2126. stat(s, CPU_PARTIAL_FREE);
  2127. }
  2128. /*
  2129. * The list lock was not taken therefore no list
  2130. * activity can be necessary.
  2131. */
  2132. if (was_frozen)
  2133. stat(s, FREE_FROZEN);
  2134. return;
  2135. }
  2136. /*
  2137. * was_frozen may have been set after we acquired the list_lock in
  2138. * an earlier loop. So we need to check it here again.
  2139. */
  2140. if (was_frozen)
  2141. stat(s, FREE_FROZEN);
  2142. else {
  2143. if (unlikely(!inuse && n->nr_partial > s->min_partial))
  2144. goto slab_empty;
  2145. /*
  2146. * Objects left in the slab. If it was not on the partial list before
  2147. * then add it.
  2148. */
  2149. if (unlikely(!prior)) {
  2150. remove_full(s, page);
  2151. add_partial(n, page, DEACTIVATE_TO_TAIL);
  2152. stat(s, FREE_ADD_PARTIAL);
  2153. }
  2154. }
  2155. spin_unlock_irqrestore(&n->list_lock, flags);
  2156. return;
  2157. slab_empty:
  2158. if (prior) {
  2159. /*
  2160. * Slab on the partial list.
  2161. */
  2162. remove_partial(n, page);
  2163. stat(s, FREE_REMOVE_PARTIAL);
  2164. } else
  2165. /* Slab must be on the full list */
  2166. remove_full(s, page);
  2167. spin_unlock_irqrestore(&n->list_lock, flags);
  2168. stat(s, FREE_SLAB);
  2169. discard_slab(s, page);
  2170. }
  2171. /*
  2172. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  2173. * can perform fastpath freeing without additional function calls.
  2174. *
  2175. * The fastpath is only possible if we are freeing to the current cpu slab
  2176. * of this processor. This typically the case if we have just allocated
  2177. * the item before.
  2178. *
  2179. * If fastpath is not possible then fall back to __slab_free where we deal
  2180. * with all sorts of special processing.
  2181. */
  2182. static __always_inline void slab_free(struct kmem_cache *s,
  2183. struct page *page, void *x, unsigned long addr)
  2184. {
  2185. void **object = (void *)x;
  2186. struct kmem_cache_cpu *c;
  2187. unsigned long tid;
  2188. slab_free_hook(s, x);
  2189. redo:
  2190. /*
  2191. * Determine the currently cpus per cpu slab.
  2192. * The cpu may change afterward. However that does not matter since
  2193. * data is retrieved via this pointer. If we are on the same cpu
  2194. * during the cmpxchg then the free will succedd.
  2195. */
  2196. c = __this_cpu_ptr(s->cpu_slab);
  2197. tid = c->tid;
  2198. barrier();
  2199. if (likely(page == c->page)) {
  2200. set_freepointer(s, object, c->freelist);
  2201. if (unlikely(!this_cpu_cmpxchg_double(
  2202. s->cpu_slab->freelist, s->cpu_slab->tid,
  2203. c->freelist, tid,
  2204. object, next_tid(tid)))) {
  2205. note_cmpxchg_failure("slab_free", s, tid);
  2206. goto redo;
  2207. }
  2208. stat(s, FREE_FASTPATH);
  2209. } else
  2210. __slab_free(s, page, x, addr);
  2211. }
  2212. void kmem_cache_free(struct kmem_cache *s, void *x)
  2213. {
  2214. struct page *page;
  2215. page = virt_to_head_page(x);
  2216. slab_free(s, page, x, _RET_IP_);
  2217. trace_kmem_cache_free(_RET_IP_, x);
  2218. }
  2219. EXPORT_SYMBOL(kmem_cache_free);
  2220. /*
  2221. * Object placement in a slab is made very easy because we always start at
  2222. * offset 0. If we tune the size of the object to the alignment then we can
  2223. * get the required alignment by putting one properly sized object after
  2224. * another.
  2225. *
  2226. * Notice that the allocation order determines the sizes of the per cpu
  2227. * caches. Each processor has always one slab available for allocations.
  2228. * Increasing the allocation order reduces the number of times that slabs
  2229. * must be moved on and off the partial lists and is therefore a factor in
  2230. * locking overhead.
  2231. */
  2232. /*
  2233. * Mininum / Maximum order of slab pages. This influences locking overhead
  2234. * and slab fragmentation. A higher order reduces the number of partial slabs
  2235. * and increases the number of allocations possible without having to
  2236. * take the list_lock.
  2237. */
  2238. static int slub_min_order;
  2239. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  2240. static int slub_min_objects;
  2241. /*
  2242. * Merge control. If this is set then no merging of slab caches will occur.
  2243. * (Could be removed. This was introduced to pacify the merge skeptics.)
  2244. */
  2245. static int slub_nomerge;
  2246. /*
  2247. * Calculate the order of allocation given an slab object size.
  2248. *
  2249. * The order of allocation has significant impact on performance and other
  2250. * system components. Generally order 0 allocations should be preferred since
  2251. * order 0 does not cause fragmentation in the page allocator. Larger objects
  2252. * be problematic to put into order 0 slabs because there may be too much
  2253. * unused space left. We go to a higher order if more than 1/16th of the slab
  2254. * would be wasted.
  2255. *
  2256. * In order to reach satisfactory performance we must ensure that a minimum
  2257. * number of objects is in one slab. Otherwise we may generate too much
  2258. * activity on the partial lists which requires taking the list_lock. This is
  2259. * less a concern for large slabs though which are rarely used.
  2260. *
  2261. * slub_max_order specifies the order where we begin to stop considering the
  2262. * number of objects in a slab as critical. If we reach slub_max_order then
  2263. * we try to keep the page order as low as possible. So we accept more waste
  2264. * of space in favor of a small page order.
  2265. *
  2266. * Higher order allocations also allow the placement of more objects in a
  2267. * slab and thereby reduce object handling overhead. If the user has
  2268. * requested a higher mininum order then we start with that one instead of
  2269. * the smallest order which will fit the object.
  2270. */
  2271. static inline int slab_order(int size, int min_objects,
  2272. int max_order, int fract_leftover, int reserved)
  2273. {
  2274. int order;
  2275. int rem;
  2276. int min_order = slub_min_order;
  2277. if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
  2278. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  2279. for (order = max(min_order,
  2280. fls(min_objects * size - 1) - PAGE_SHIFT);
  2281. order <= max_order; order++) {
  2282. unsigned long slab_size = PAGE_SIZE << order;
  2283. if (slab_size < min_objects * size + reserved)
  2284. continue;
  2285. rem = (slab_size - reserved) % size;
  2286. if (rem <= slab_size / fract_leftover)
  2287. break;
  2288. }
  2289. return order;
  2290. }
  2291. static inline int calculate_order(int size, int reserved)
  2292. {
  2293. int order;
  2294. int min_objects;
  2295. int fraction;
  2296. int max_objects;
  2297. /*
  2298. * Attempt to find best configuration for a slab. This
  2299. * works by first attempting to generate a layout with
  2300. * the best configuration and backing off gradually.
  2301. *
  2302. * First we reduce the acceptable waste in a slab. Then
  2303. * we reduce the minimum objects required in a slab.
  2304. */
  2305. min_objects = slub_min_objects;
  2306. if (!min_objects)
  2307. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  2308. max_objects = order_objects(slub_max_order, size, reserved);
  2309. min_objects = min(min_objects, max_objects);
  2310. while (min_objects > 1) {
  2311. fraction = 16;
  2312. while (fraction >= 4) {
  2313. order = slab_order(size, min_objects,
  2314. slub_max_order, fraction, reserved);
  2315. if (order <= slub_max_order)
  2316. return order;
  2317. fraction /= 2;
  2318. }
  2319. min_objects--;
  2320. }
  2321. /*
  2322. * We were unable to place multiple objects in a slab. Now
  2323. * lets see if we can place a single object there.
  2324. */
  2325. order = slab_order(size, 1, slub_max_order, 1, reserved);
  2326. if (order <= slub_max_order)
  2327. return order;
  2328. /*
  2329. * Doh this slab cannot be placed using slub_max_order.
  2330. */
  2331. order = slab_order(size, 1, MAX_ORDER, 1, reserved);
  2332. if (order < MAX_ORDER)
  2333. return order;
  2334. return -ENOSYS;
  2335. }
  2336. /*
  2337. * Figure out what the alignment of the objects will be.
  2338. */
  2339. static unsigned long calculate_alignment(unsigned long flags,
  2340. unsigned long align, unsigned long size)
  2341. {
  2342. /*
  2343. * If the user wants hardware cache aligned objects then follow that
  2344. * suggestion if the object is sufficiently large.
  2345. *
  2346. * The hardware cache alignment cannot override the specified
  2347. * alignment though. If that is greater then use it.
  2348. */
  2349. if (flags & SLAB_HWCACHE_ALIGN) {
  2350. unsigned long ralign = cache_line_size();
  2351. while (size <= ralign / 2)
  2352. ralign /= 2;
  2353. align = max(align, ralign);
  2354. }
  2355. if (align < ARCH_SLAB_MINALIGN)
  2356. align = ARCH_SLAB_MINALIGN;
  2357. return ALIGN(align, sizeof(void *));
  2358. }
  2359. static void
  2360. init_kmem_cache_node(struct kmem_cache_node *n)
  2361. {
  2362. n->nr_partial = 0;
  2363. spin_lock_init(&n->list_lock);
  2364. INIT_LIST_HEAD(&n->partial);
  2365. #ifdef CONFIG_SLUB_DEBUG
  2366. atomic_long_set(&n->nr_slabs, 0);
  2367. atomic_long_set(&n->total_objects, 0);
  2368. INIT_LIST_HEAD(&n->full);
  2369. #endif
  2370. }
  2371. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
  2372. {
  2373. BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
  2374. SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
  2375. /*
  2376. * Must align to double word boundary for the double cmpxchg
  2377. * instructions to work; see __pcpu_double_call_return_bool().
  2378. */
  2379. s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
  2380. 2 * sizeof(void *));
  2381. if (!s->cpu_slab)
  2382. return 0;
  2383. init_kmem_cache_cpus(s);
  2384. return 1;
  2385. }
  2386. static struct kmem_cache *kmem_cache_node;
  2387. /*
  2388. * No kmalloc_node yet so do it by hand. We know that this is the first
  2389. * slab on the node for this slabcache. There are no concurrent accesses
  2390. * possible.
  2391. *
  2392. * Note that this function only works on the kmalloc_node_cache
  2393. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  2394. * memory on a fresh node that has no slab structures yet.
  2395. */
  2396. static void early_kmem_cache_node_alloc(int node)
  2397. {
  2398. struct page *page;
  2399. struct kmem_cache_node *n;
  2400. BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
  2401. page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
  2402. BUG_ON(!page);
  2403. if (page_to_nid(page) != node) {
  2404. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  2405. "node %d\n", node);
  2406. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  2407. "in order to be able to continue\n");
  2408. }
  2409. n = page->freelist;
  2410. BUG_ON(!n);
  2411. page->freelist = get_freepointer(kmem_cache_node, n);
  2412. page->inuse = 1;
  2413. page->frozen = 0;
  2414. kmem_cache_node->node[node] = n;
  2415. #ifdef CONFIG_SLUB_DEBUG
  2416. init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
  2417. init_tracking(kmem_cache_node, n);
  2418. #endif
  2419. init_kmem_cache_node(n);
  2420. inc_slabs_node(kmem_cache_node, node, page->objects);
  2421. add_partial(n, page, DEACTIVATE_TO_HEAD);
  2422. }
  2423. static void free_kmem_cache_nodes(struct kmem_cache *s)
  2424. {
  2425. int node;
  2426. for_each_node_state(node, N_NORMAL_MEMORY) {
  2427. struct kmem_cache_node *n = s->node[node];
  2428. if (n)
  2429. kmem_cache_free(kmem_cache_node, n);
  2430. s->node[node] = NULL;
  2431. }
  2432. }
  2433. static int init_kmem_cache_nodes(struct kmem_cache *s)
  2434. {
  2435. int node;
  2436. for_each_node_state(node, N_NORMAL_MEMORY) {
  2437. struct kmem_cache_node *n;
  2438. if (slab_state == DOWN) {
  2439. early_kmem_cache_node_alloc(node);
  2440. continue;
  2441. }
  2442. n = kmem_cache_alloc_node(kmem_cache_node,
  2443. GFP_KERNEL, node);
  2444. if (!n) {
  2445. free_kmem_cache_nodes(s);
  2446. return 0;
  2447. }
  2448. s->node[node] = n;
  2449. init_kmem_cache_node(n);
  2450. }
  2451. return 1;
  2452. }
  2453. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  2454. {
  2455. if (min < MIN_PARTIAL)
  2456. min = MIN_PARTIAL;
  2457. else if (min > MAX_PARTIAL)
  2458. min = MAX_PARTIAL;
  2459. s->min_partial = min;
  2460. }
  2461. /*
  2462. * calculate_sizes() determines the order and the distribution of data within
  2463. * a slab object.
  2464. */
  2465. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  2466. {
  2467. unsigned long flags = s->flags;
  2468. unsigned long size = s->object_size;
  2469. unsigned long align = s->align;
  2470. int order;
  2471. /*
  2472. * Round up object size to the next word boundary. We can only
  2473. * place the free pointer at word boundaries and this determines
  2474. * the possible location of the free pointer.
  2475. */
  2476. size = ALIGN(size, sizeof(void *));
  2477. #ifdef CONFIG_SLUB_DEBUG
  2478. /*
  2479. * Determine if we can poison the object itself. If the user of
  2480. * the slab may touch the object after free or before allocation
  2481. * then we should never poison the object itself.
  2482. */
  2483. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  2484. !s->ctor)
  2485. s->flags |= __OBJECT_POISON;
  2486. else
  2487. s->flags &= ~__OBJECT_POISON;
  2488. /*
  2489. * If we are Redzoning then check if there is some space between the
  2490. * end of the object and the free pointer. If not then add an
  2491. * additional word to have some bytes to store Redzone information.
  2492. */
  2493. if ((flags & SLAB_RED_ZONE) && size == s->object_size)
  2494. size += sizeof(void *);
  2495. #endif
  2496. /*
  2497. * With that we have determined the number of bytes in actual use
  2498. * by the object. This is the potential offset to the free pointer.
  2499. */
  2500. s->inuse = size;
  2501. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  2502. s->ctor)) {
  2503. /*
  2504. * Relocate free pointer after the object if it is not
  2505. * permitted to overwrite the first word of the object on
  2506. * kmem_cache_free.
  2507. *
  2508. * This is the case if we do RCU, have a constructor or
  2509. * destructor or are poisoning the objects.
  2510. */
  2511. s->offset = size;
  2512. size += sizeof(void *);
  2513. }
  2514. #ifdef CONFIG_SLUB_DEBUG
  2515. if (flags & SLAB_STORE_USER)
  2516. /*
  2517. * Need to store information about allocs and frees after
  2518. * the object.
  2519. */
  2520. size += 2 * sizeof(struct track);
  2521. if (flags & SLAB_RED_ZONE)
  2522. /*
  2523. * Add some empty padding so that we can catch
  2524. * overwrites from earlier objects rather than let
  2525. * tracking information or the free pointer be
  2526. * corrupted if a user writes before the start
  2527. * of the object.
  2528. */
  2529. size += sizeof(void *);
  2530. #endif
  2531. /*
  2532. * Determine the alignment based on various parameters that the
  2533. * user specified and the dynamic determination of cache line size
  2534. * on bootup.
  2535. */
  2536. align = calculate_alignment(flags, align, s->object_size);
  2537. s->align = align;
  2538. /*
  2539. * SLUB stores one object immediately after another beginning from
  2540. * offset 0. In order to align the objects we have to simply size
  2541. * each object to conform to the alignment.
  2542. */
  2543. size = ALIGN(size, align);
  2544. s->size = size;
  2545. if (forced_order >= 0)
  2546. order = forced_order;
  2547. else
  2548. order = calculate_order(size, s->reserved);
  2549. if (order < 0)
  2550. return 0;
  2551. s->allocflags = 0;
  2552. if (order)
  2553. s->allocflags |= __GFP_COMP;
  2554. if (s->flags & SLAB_CACHE_DMA)
  2555. s->allocflags |= SLUB_DMA;
  2556. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  2557. s->allocflags |= __GFP_RECLAIMABLE;
  2558. /*
  2559. * Determine the number of objects per slab
  2560. */
  2561. s->oo = oo_make(order, size, s->reserved);
  2562. s->min = oo_make(get_order(size), size, s->reserved);
  2563. if (oo_objects(s->oo) > oo_objects(s->max))
  2564. s->max = s->oo;
  2565. return !!oo_objects(s->oo);
  2566. }
  2567. static int kmem_cache_open(struct kmem_cache *s,
  2568. const char *name, size_t size,
  2569. size_t align, unsigned long flags,
  2570. void (*ctor)(void *))
  2571. {
  2572. memset(s, 0, kmem_size);
  2573. s->name = name;
  2574. s->ctor = ctor;
  2575. s->object_size = size;
  2576. s->align = align;
  2577. s->flags = kmem_cache_flags(size, flags, name, ctor);
  2578. s->reserved = 0;
  2579. if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
  2580. s->reserved = sizeof(struct rcu_head);
  2581. if (!calculate_sizes(s, -1))
  2582. goto error;
  2583. if (disable_higher_order_debug) {
  2584. /*
  2585. * Disable debugging flags that store metadata if the min slab
  2586. * order increased.
  2587. */
  2588. if (get_order(s->size) > get_order(s->object_size)) {
  2589. s->flags &= ~DEBUG_METADATA_FLAGS;
  2590. s->offset = 0;
  2591. if (!calculate_sizes(s, -1))
  2592. goto error;
  2593. }
  2594. }
  2595. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  2596. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  2597. if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
  2598. /* Enable fast mode */
  2599. s->flags |= __CMPXCHG_DOUBLE;
  2600. #endif
  2601. /*
  2602. * The larger the object size is, the more pages we want on the partial
  2603. * list to avoid pounding the page allocator excessively.
  2604. */
  2605. set_min_partial(s, ilog2(s->size) / 2);
  2606. /*
  2607. * cpu_partial determined the maximum number of objects kept in the
  2608. * per cpu partial lists of a processor.
  2609. *
  2610. * Per cpu partial lists mainly contain slabs that just have one
  2611. * object freed. If they are used for allocation then they can be
  2612. * filled up again with minimal effort. The slab will never hit the
  2613. * per node partial lists and therefore no locking will be required.
  2614. *
  2615. * This setting also determines
  2616. *
  2617. * A) The number of objects from per cpu partial slabs dumped to the
  2618. * per node list when we reach the limit.
  2619. * B) The number of objects in cpu partial slabs to extract from the
  2620. * per node list when we run out of per cpu objects. We only fetch 50%
  2621. * to keep some capacity around for frees.
  2622. */
  2623. if (kmem_cache_debug(s))
  2624. s->cpu_partial = 0;
  2625. else if (s->size >= PAGE_SIZE)
  2626. s->cpu_partial = 2;
  2627. else if (s->size >= 1024)
  2628. s->cpu_partial = 6;
  2629. else if (s->size >= 256)
  2630. s->cpu_partial = 13;
  2631. else
  2632. s->cpu_partial = 30;
  2633. s->refcount = 1;
  2634. #ifdef CONFIG_NUMA
  2635. s->remote_node_defrag_ratio = 1000;
  2636. #endif
  2637. if (!init_kmem_cache_nodes(s))
  2638. goto error;
  2639. if (alloc_kmem_cache_cpus(s))
  2640. return 1;
  2641. free_kmem_cache_nodes(s);
  2642. error:
  2643. if (flags & SLAB_PANIC)
  2644. panic("Cannot create slab %s size=%lu realsize=%u "
  2645. "order=%u offset=%u flags=%lx\n",
  2646. s->name, (unsigned long)size, s->size, oo_order(s->oo),
  2647. s->offset, flags);
  2648. return 0;
  2649. }
  2650. /*
  2651. * Determine the size of a slab object
  2652. */
  2653. unsigned int kmem_cache_size(struct kmem_cache *s)
  2654. {
  2655. return s->object_size;
  2656. }
  2657. EXPORT_SYMBOL(kmem_cache_size);
  2658. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2659. const char *text)
  2660. {
  2661. #ifdef CONFIG_SLUB_DEBUG
  2662. void *addr = page_address(page);
  2663. void *p;
  2664. unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
  2665. sizeof(long), GFP_ATOMIC);
  2666. if (!map)
  2667. return;
  2668. slab_err(s, page, "%s", text);
  2669. slab_lock(page);
  2670. get_map(s, page, map);
  2671. for_each_object(p, s, addr, page->objects) {
  2672. if (!test_bit(slab_index(p, s, addr), map)) {
  2673. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2674. p, p - addr);
  2675. print_tracking(s, p);
  2676. }
  2677. }
  2678. slab_unlock(page);
  2679. kfree(map);
  2680. #endif
  2681. }
  2682. /*
  2683. * Attempt to free all partial slabs on a node.
  2684. * This is called from kmem_cache_close(). We must be the last thread
  2685. * using the cache and therefore we do not need to lock anymore.
  2686. */
  2687. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2688. {
  2689. struct page *page, *h;
  2690. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2691. if (!page->inuse) {
  2692. remove_partial(n, page);
  2693. discard_slab(s, page);
  2694. } else {
  2695. list_slab_objects(s, page,
  2696. "Objects remaining on kmem_cache_close()");
  2697. }
  2698. }
  2699. }
  2700. /*
  2701. * Release all resources used by a slab cache.
  2702. */
  2703. static inline int kmem_cache_close(struct kmem_cache *s)
  2704. {
  2705. int node;
  2706. flush_all(s);
  2707. free_percpu(s->cpu_slab);
  2708. /* Attempt to free all objects */
  2709. for_each_node_state(node, N_NORMAL_MEMORY) {
  2710. struct kmem_cache_node *n = get_node(s, node);
  2711. free_partial(s, n);
  2712. if (n->nr_partial || slabs_node(s, node))
  2713. return 1;
  2714. }
  2715. free_kmem_cache_nodes(s);
  2716. return 0;
  2717. }
  2718. /*
  2719. * Close a cache and release the kmem_cache structure
  2720. * (must be used for caches created using kmem_cache_create)
  2721. */
  2722. void kmem_cache_destroy(struct kmem_cache *s)
  2723. {
  2724. mutex_lock(&slab_mutex);
  2725. s->refcount--;
  2726. if (!s->refcount) {
  2727. list_del(&s->list);
  2728. mutex_unlock(&slab_mutex);
  2729. if (kmem_cache_close(s)) {
  2730. printk(KERN_ERR "SLUB %s: %s called for cache that "
  2731. "still has objects.\n", s->name, __func__);
  2732. dump_stack();
  2733. }
  2734. if (s->flags & SLAB_DESTROY_BY_RCU)
  2735. rcu_barrier();
  2736. sysfs_slab_remove(s);
  2737. } else
  2738. mutex_unlock(&slab_mutex);
  2739. }
  2740. EXPORT_SYMBOL(kmem_cache_destroy);
  2741. /********************************************************************
  2742. * Kmalloc subsystem
  2743. *******************************************************************/
  2744. struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
  2745. EXPORT_SYMBOL(kmalloc_caches);
  2746. static struct kmem_cache *kmem_cache;
  2747. #ifdef CONFIG_ZONE_DMA
  2748. static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
  2749. #endif
  2750. static int __init setup_slub_min_order(char *str)
  2751. {
  2752. get_option(&str, &slub_min_order);
  2753. return 1;
  2754. }
  2755. __setup("slub_min_order=", setup_slub_min_order);
  2756. static int __init setup_slub_max_order(char *str)
  2757. {
  2758. get_option(&str, &slub_max_order);
  2759. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2760. return 1;
  2761. }
  2762. __setup("slub_max_order=", setup_slub_max_order);
  2763. static int __init setup_slub_min_objects(char *str)
  2764. {
  2765. get_option(&str, &slub_min_objects);
  2766. return 1;
  2767. }
  2768. __setup("slub_min_objects=", setup_slub_min_objects);
  2769. static int __init setup_slub_nomerge(char *str)
  2770. {
  2771. slub_nomerge = 1;
  2772. return 1;
  2773. }
  2774. __setup("slub_nomerge", setup_slub_nomerge);
  2775. static struct kmem_cache *__init create_kmalloc_cache(const char *name,
  2776. int size, unsigned int flags)
  2777. {
  2778. struct kmem_cache *s;
  2779. s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  2780. /*
  2781. * This function is called with IRQs disabled during early-boot on
  2782. * single CPU so there's no need to take slab_mutex here.
  2783. */
  2784. if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
  2785. flags, NULL))
  2786. goto panic;
  2787. list_add(&s->list, &slab_caches);
  2788. return s;
  2789. panic:
  2790. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2791. return NULL;
  2792. }
  2793. /*
  2794. * Conversion table for small slabs sizes / 8 to the index in the
  2795. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2796. * of two cache sizes there. The size of larger slabs can be determined using
  2797. * fls.
  2798. */
  2799. static s8 size_index[24] = {
  2800. 3, /* 8 */
  2801. 4, /* 16 */
  2802. 5, /* 24 */
  2803. 5, /* 32 */
  2804. 6, /* 40 */
  2805. 6, /* 48 */
  2806. 6, /* 56 */
  2807. 6, /* 64 */
  2808. 1, /* 72 */
  2809. 1, /* 80 */
  2810. 1, /* 88 */
  2811. 1, /* 96 */
  2812. 7, /* 104 */
  2813. 7, /* 112 */
  2814. 7, /* 120 */
  2815. 7, /* 128 */
  2816. 2, /* 136 */
  2817. 2, /* 144 */
  2818. 2, /* 152 */
  2819. 2, /* 160 */
  2820. 2, /* 168 */
  2821. 2, /* 176 */
  2822. 2, /* 184 */
  2823. 2 /* 192 */
  2824. };
  2825. static inline int size_index_elem(size_t bytes)
  2826. {
  2827. return (bytes - 1) / 8;
  2828. }
  2829. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2830. {
  2831. int index;
  2832. if (size <= 192) {
  2833. if (!size)
  2834. return ZERO_SIZE_PTR;
  2835. index = size_index[size_index_elem(size)];
  2836. } else
  2837. index = fls(size - 1);
  2838. #ifdef CONFIG_ZONE_DMA
  2839. if (unlikely((flags & SLUB_DMA)))
  2840. return kmalloc_dma_caches[index];
  2841. #endif
  2842. return kmalloc_caches[index];
  2843. }
  2844. void *__kmalloc(size_t size, gfp_t flags)
  2845. {
  2846. struct kmem_cache *s;
  2847. void *ret;
  2848. if (unlikely(size > SLUB_MAX_SIZE))
  2849. return kmalloc_large(size, flags);
  2850. s = get_slab(size, flags);
  2851. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2852. return s;
  2853. ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
  2854. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2855. return ret;
  2856. }
  2857. EXPORT_SYMBOL(__kmalloc);
  2858. #ifdef CONFIG_NUMA
  2859. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2860. {
  2861. struct page *page;
  2862. void *ptr = NULL;
  2863. flags |= __GFP_COMP | __GFP_NOTRACK;
  2864. page = alloc_pages_node(node, flags, get_order(size));
  2865. if (page)
  2866. ptr = page_address(page);
  2867. kmemleak_alloc(ptr, size, 1, flags);
  2868. return ptr;
  2869. }
  2870. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2871. {
  2872. struct kmem_cache *s;
  2873. void *ret;
  2874. if (unlikely(size > SLUB_MAX_SIZE)) {
  2875. ret = kmalloc_large_node(size, flags, node);
  2876. trace_kmalloc_node(_RET_IP_, ret,
  2877. size, PAGE_SIZE << get_order(size),
  2878. flags, node);
  2879. return ret;
  2880. }
  2881. s = get_slab(size, flags);
  2882. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2883. return s;
  2884. ret = slab_alloc(s, flags, node, _RET_IP_);
  2885. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2886. return ret;
  2887. }
  2888. EXPORT_SYMBOL(__kmalloc_node);
  2889. #endif
  2890. size_t ksize(const void *object)
  2891. {
  2892. struct page *page;
  2893. if (unlikely(object == ZERO_SIZE_PTR))
  2894. return 0;
  2895. page = virt_to_head_page(object);
  2896. if (unlikely(!PageSlab(page))) {
  2897. WARN_ON(!PageCompound(page));
  2898. return PAGE_SIZE << compound_order(page);
  2899. }
  2900. return slab_ksize(page->slab);
  2901. }
  2902. EXPORT_SYMBOL(ksize);
  2903. #ifdef CONFIG_SLUB_DEBUG
  2904. bool verify_mem_not_deleted(const void *x)
  2905. {
  2906. struct page *page;
  2907. void *object = (void *)x;
  2908. unsigned long flags;
  2909. bool rv;
  2910. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2911. return false;
  2912. local_irq_save(flags);
  2913. page = virt_to_head_page(x);
  2914. if (unlikely(!PageSlab(page))) {
  2915. /* maybe it was from stack? */
  2916. rv = true;
  2917. goto out_unlock;
  2918. }
  2919. slab_lock(page);
  2920. if (on_freelist(page->slab, page, object)) {
  2921. object_err(page->slab, page, object, "Object is on free-list");
  2922. rv = false;
  2923. } else {
  2924. rv = true;
  2925. }
  2926. slab_unlock(page);
  2927. out_unlock:
  2928. local_irq_restore(flags);
  2929. return rv;
  2930. }
  2931. EXPORT_SYMBOL(verify_mem_not_deleted);
  2932. #endif
  2933. void kfree(const void *x)
  2934. {
  2935. struct page *page;
  2936. void *object = (void *)x;
  2937. trace_kfree(_RET_IP_, x);
  2938. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2939. return;
  2940. page = virt_to_head_page(x);
  2941. if (unlikely(!PageSlab(page))) {
  2942. BUG_ON(!PageCompound(page));
  2943. kmemleak_free(x);
  2944. __free_pages(page, compound_order(page));
  2945. return;
  2946. }
  2947. slab_free(page->slab, page, object, _RET_IP_);
  2948. }
  2949. EXPORT_SYMBOL(kfree);
  2950. /*
  2951. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2952. * the remaining slabs by the number of items in use. The slabs with the
  2953. * most items in use come first. New allocations will then fill those up
  2954. * and thus they can be removed from the partial lists.
  2955. *
  2956. * The slabs with the least items are placed last. This results in them
  2957. * being allocated from last increasing the chance that the last objects
  2958. * are freed in them.
  2959. */
  2960. int kmem_cache_shrink(struct kmem_cache *s)
  2961. {
  2962. int node;
  2963. int i;
  2964. struct kmem_cache_node *n;
  2965. struct page *page;
  2966. struct page *t;
  2967. int objects = oo_objects(s->max);
  2968. struct list_head *slabs_by_inuse =
  2969. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2970. unsigned long flags;
  2971. if (!slabs_by_inuse)
  2972. return -ENOMEM;
  2973. flush_all(s);
  2974. for_each_node_state(node, N_NORMAL_MEMORY) {
  2975. n = get_node(s, node);
  2976. if (!n->nr_partial)
  2977. continue;
  2978. for (i = 0; i < objects; i++)
  2979. INIT_LIST_HEAD(slabs_by_inuse + i);
  2980. spin_lock_irqsave(&n->list_lock, flags);
  2981. /*
  2982. * Build lists indexed by the items in use in each slab.
  2983. *
  2984. * Note that concurrent frees may occur while we hold the
  2985. * list_lock. page->inuse here is the upper limit.
  2986. */
  2987. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2988. list_move(&page->lru, slabs_by_inuse + page->inuse);
  2989. if (!page->inuse)
  2990. n->nr_partial--;
  2991. }
  2992. /*
  2993. * Rebuild the partial list with the slabs filled up most
  2994. * first and the least used slabs at the end.
  2995. */
  2996. for (i = objects - 1; i > 0; i--)
  2997. list_splice(slabs_by_inuse + i, n->partial.prev);
  2998. spin_unlock_irqrestore(&n->list_lock, flags);
  2999. /* Release empty slabs */
  3000. list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
  3001. discard_slab(s, page);
  3002. }
  3003. kfree(slabs_by_inuse);
  3004. return 0;
  3005. }
  3006. EXPORT_SYMBOL(kmem_cache_shrink);
  3007. #if defined(CONFIG_MEMORY_HOTPLUG)
  3008. static int slab_mem_going_offline_callback(void *arg)
  3009. {
  3010. struct kmem_cache *s;
  3011. mutex_lock(&slab_mutex);
  3012. list_for_each_entry(s, &slab_caches, list)
  3013. kmem_cache_shrink(s);
  3014. mutex_unlock(&slab_mutex);
  3015. return 0;
  3016. }
  3017. static void slab_mem_offline_callback(void *arg)
  3018. {
  3019. struct kmem_cache_node *n;
  3020. struct kmem_cache *s;
  3021. struct memory_notify *marg = arg;
  3022. int offline_node;
  3023. offline_node = marg->status_change_nid;
  3024. /*
  3025. * If the node still has available memory. we need kmem_cache_node
  3026. * for it yet.
  3027. */
  3028. if (offline_node < 0)
  3029. return;
  3030. mutex_lock(&slab_mutex);
  3031. list_for_each_entry(s, &slab_caches, list) {
  3032. n = get_node(s, offline_node);
  3033. if (n) {
  3034. /*
  3035. * if n->nr_slabs > 0, slabs still exist on the node
  3036. * that is going down. We were unable to free them,
  3037. * and offline_pages() function shouldn't call this
  3038. * callback. So, we must fail.
  3039. */
  3040. BUG_ON(slabs_node(s, offline_node));
  3041. s->node[offline_node] = NULL;
  3042. kmem_cache_free(kmem_cache_node, n);
  3043. }
  3044. }
  3045. mutex_unlock(&slab_mutex);
  3046. }
  3047. static int slab_mem_going_online_callback(void *arg)
  3048. {
  3049. struct kmem_cache_node *n;
  3050. struct kmem_cache *s;
  3051. struct memory_notify *marg = arg;
  3052. int nid = marg->status_change_nid;
  3053. int ret = 0;
  3054. /*
  3055. * If the node's memory is already available, then kmem_cache_node is
  3056. * already created. Nothing to do.
  3057. */
  3058. if (nid < 0)
  3059. return 0;
  3060. /*
  3061. * We are bringing a node online. No memory is available yet. We must
  3062. * allocate a kmem_cache_node structure in order to bring the node
  3063. * online.
  3064. */
  3065. mutex_lock(&slab_mutex);
  3066. list_for_each_entry(s, &slab_caches, list) {
  3067. /*
  3068. * XXX: kmem_cache_alloc_node will fallback to other nodes
  3069. * since memory is not yet available from the node that
  3070. * is brought up.
  3071. */
  3072. n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
  3073. if (!n) {
  3074. ret = -ENOMEM;
  3075. goto out;
  3076. }
  3077. init_kmem_cache_node(n);
  3078. s->node[nid] = n;
  3079. }
  3080. out:
  3081. mutex_unlock(&slab_mutex);
  3082. return ret;
  3083. }
  3084. static int slab_memory_callback(struct notifier_block *self,
  3085. unsigned long action, void *arg)
  3086. {
  3087. int ret = 0;
  3088. switch (action) {
  3089. case MEM_GOING_ONLINE:
  3090. ret = slab_mem_going_online_callback(arg);
  3091. break;
  3092. case MEM_GOING_OFFLINE:
  3093. ret = slab_mem_going_offline_callback(arg);
  3094. break;
  3095. case MEM_OFFLINE:
  3096. case MEM_CANCEL_ONLINE:
  3097. slab_mem_offline_callback(arg);
  3098. break;
  3099. case MEM_ONLINE:
  3100. case MEM_CANCEL_OFFLINE:
  3101. break;
  3102. }
  3103. if (ret)
  3104. ret = notifier_from_errno(ret);
  3105. else
  3106. ret = NOTIFY_OK;
  3107. return ret;
  3108. }
  3109. #endif /* CONFIG_MEMORY_HOTPLUG */
  3110. /********************************************************************
  3111. * Basic setup of slabs
  3112. *******************************************************************/
  3113. /*
  3114. * Used for early kmem_cache structures that were allocated using
  3115. * the page allocator
  3116. */
  3117. static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
  3118. {
  3119. int node;
  3120. list_add(&s->list, &slab_caches);
  3121. s->refcount = -1;
  3122. for_each_node_state(node, N_NORMAL_MEMORY) {
  3123. struct kmem_cache_node *n = get_node(s, node);
  3124. struct page *p;
  3125. if (n) {
  3126. list_for_each_entry(p, &n->partial, lru)
  3127. p->slab = s;
  3128. #ifdef CONFIG_SLUB_DEBUG
  3129. list_for_each_entry(p, &n->full, lru)
  3130. p->slab = s;
  3131. #endif
  3132. }
  3133. }
  3134. }
  3135. void __init kmem_cache_init(void)
  3136. {
  3137. int i;
  3138. int caches = 0;
  3139. struct kmem_cache *temp_kmem_cache;
  3140. int order;
  3141. struct kmem_cache *temp_kmem_cache_node;
  3142. unsigned long kmalloc_size;
  3143. if (debug_guardpage_minorder())
  3144. slub_max_order = 0;
  3145. kmem_size = offsetof(struct kmem_cache, node) +
  3146. nr_node_ids * sizeof(struct kmem_cache_node *);
  3147. /* Allocate two kmem_caches from the page allocator */
  3148. kmalloc_size = ALIGN(kmem_size, cache_line_size());
  3149. order = get_order(2 * kmalloc_size);
  3150. kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
  3151. /*
  3152. * Must first have the slab cache available for the allocations of the
  3153. * struct kmem_cache_node's. There is special bootstrap code in
  3154. * kmem_cache_open for slab_state == DOWN.
  3155. */
  3156. kmem_cache_node = (void *)kmem_cache + kmalloc_size;
  3157. kmem_cache_open(kmem_cache_node, "kmem_cache_node",
  3158. sizeof(struct kmem_cache_node),
  3159. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  3160. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  3161. /* Able to allocate the per node structures */
  3162. slab_state = PARTIAL;
  3163. temp_kmem_cache = kmem_cache;
  3164. kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
  3165. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  3166. kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  3167. memcpy(kmem_cache, temp_kmem_cache, kmem_size);
  3168. /*
  3169. * Allocate kmem_cache_node properly from the kmem_cache slab.
  3170. * kmem_cache_node is separately allocated so no need to
  3171. * update any list pointers.
  3172. */
  3173. temp_kmem_cache_node = kmem_cache_node;
  3174. kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  3175. memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
  3176. kmem_cache_bootstrap_fixup(kmem_cache_node);
  3177. caches++;
  3178. kmem_cache_bootstrap_fixup(kmem_cache);
  3179. caches++;
  3180. /* Free temporary boot structure */
  3181. free_pages((unsigned long)temp_kmem_cache, order);
  3182. /* Now we can use the kmem_cache to allocate kmalloc slabs */
  3183. /*
  3184. * Patch up the size_index table if we have strange large alignment
  3185. * requirements for the kmalloc array. This is only the case for
  3186. * MIPS it seems. The standard arches will not generate any code here.
  3187. *
  3188. * Largest permitted alignment is 256 bytes due to the way we
  3189. * handle the index determination for the smaller caches.
  3190. *
  3191. * Make sure that nothing crazy happens if someone starts tinkering
  3192. * around with ARCH_KMALLOC_MINALIGN
  3193. */
  3194. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  3195. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  3196. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
  3197. int elem = size_index_elem(i);
  3198. if (elem >= ARRAY_SIZE(size_index))
  3199. break;
  3200. size_index[elem] = KMALLOC_SHIFT_LOW;
  3201. }
  3202. if (KMALLOC_MIN_SIZE == 64) {
  3203. /*
  3204. * The 96 byte size cache is not used if the alignment
  3205. * is 64 byte.
  3206. */
  3207. for (i = 64 + 8; i <= 96; i += 8)
  3208. size_index[size_index_elem(i)] = 7;
  3209. } else if (KMALLOC_MIN_SIZE == 128) {
  3210. /*
  3211. * The 192 byte sized cache is not used if the alignment
  3212. * is 128 byte. Redirect kmalloc to use the 256 byte cache
  3213. * instead.
  3214. */
  3215. for (i = 128 + 8; i <= 192; i += 8)
  3216. size_index[size_index_elem(i)] = 8;
  3217. }
  3218. /* Caches that are not of the two-to-the-power-of size */
  3219. if (KMALLOC_MIN_SIZE <= 32) {
  3220. kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
  3221. caches++;
  3222. }
  3223. if (KMALLOC_MIN_SIZE <= 64) {
  3224. kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
  3225. caches++;
  3226. }
  3227. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  3228. kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
  3229. caches++;
  3230. }
  3231. slab_state = UP;
  3232. /* Provide the correct kmalloc names now that the caches are up */
  3233. if (KMALLOC_MIN_SIZE <= 32) {
  3234. kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
  3235. BUG_ON(!kmalloc_caches[1]->name);
  3236. }
  3237. if (KMALLOC_MIN_SIZE <= 64) {
  3238. kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
  3239. BUG_ON(!kmalloc_caches[2]->name);
  3240. }
  3241. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  3242. char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
  3243. BUG_ON(!s);
  3244. kmalloc_caches[i]->name = s;
  3245. }
  3246. #ifdef CONFIG_SMP
  3247. register_cpu_notifier(&slab_notifier);
  3248. #endif
  3249. #ifdef CONFIG_ZONE_DMA
  3250. for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
  3251. struct kmem_cache *s = kmalloc_caches[i];
  3252. if (s && s->size) {
  3253. char *name = kasprintf(GFP_NOWAIT,
  3254. "dma-kmalloc-%d", s->object_size);
  3255. BUG_ON(!name);
  3256. kmalloc_dma_caches[i] = create_kmalloc_cache(name,
  3257. s->object_size, SLAB_CACHE_DMA);
  3258. }
  3259. }
  3260. #endif
  3261. printk(KERN_INFO
  3262. "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  3263. " CPUs=%d, Nodes=%d\n",
  3264. caches, cache_line_size(),
  3265. slub_min_order, slub_max_order, slub_min_objects,
  3266. nr_cpu_ids, nr_node_ids);
  3267. }
  3268. void __init kmem_cache_init_late(void)
  3269. {
  3270. }
  3271. /*
  3272. * Find a mergeable slab cache
  3273. */
  3274. static int slab_unmergeable(struct kmem_cache *s)
  3275. {
  3276. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  3277. return 1;
  3278. if (s->ctor)
  3279. return 1;
  3280. /*
  3281. * We may have set a slab to be unmergeable during bootstrap.
  3282. */
  3283. if (s->refcount < 0)
  3284. return 1;
  3285. return 0;
  3286. }
  3287. static struct kmem_cache *find_mergeable(size_t size,
  3288. size_t align, unsigned long flags, const char *name,
  3289. void (*ctor)(void *))
  3290. {
  3291. struct kmem_cache *s;
  3292. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  3293. return NULL;
  3294. if (ctor)
  3295. return NULL;
  3296. size = ALIGN(size, sizeof(void *));
  3297. align = calculate_alignment(flags, align, size);
  3298. size = ALIGN(size, align);
  3299. flags = kmem_cache_flags(size, flags, name, NULL);
  3300. list_for_each_entry(s, &slab_caches, list) {
  3301. if (slab_unmergeable(s))
  3302. continue;
  3303. if (size > s->size)
  3304. continue;
  3305. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  3306. continue;
  3307. /*
  3308. * Check if alignment is compatible.
  3309. * Courtesy of Adrian Drzewiecki
  3310. */
  3311. if ((s->size & ~(align - 1)) != s->size)
  3312. continue;
  3313. if (s->size - size >= sizeof(void *))
  3314. continue;
  3315. return s;
  3316. }
  3317. return NULL;
  3318. }
  3319. struct kmem_cache *__kmem_cache_create(const char *name, size_t size,
  3320. size_t align, unsigned long flags, void (*ctor)(void *))
  3321. {
  3322. struct kmem_cache *s;
  3323. char *n;
  3324. s = find_mergeable(size, align, flags, name, ctor);
  3325. if (s) {
  3326. s->refcount++;
  3327. /*
  3328. * Adjust the object sizes so that we clear
  3329. * the complete object on kzalloc.
  3330. */
  3331. s->object_size = max(s->object_size, (int)size);
  3332. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  3333. if (sysfs_slab_alias(s, name)) {
  3334. s->refcount--;
  3335. return NULL;
  3336. }
  3337. return s;
  3338. }
  3339. n = kstrdup(name, GFP_KERNEL);
  3340. if (!n)
  3341. return NULL;
  3342. s = kmalloc(kmem_size, GFP_KERNEL);
  3343. if (s) {
  3344. if (kmem_cache_open(s, n,
  3345. size, align, flags, ctor)) {
  3346. int r;
  3347. list_add(&s->list, &slab_caches);
  3348. mutex_unlock(&slab_mutex);
  3349. r = sysfs_slab_add(s);
  3350. mutex_lock(&slab_mutex);
  3351. if (!r)
  3352. return s;
  3353. list_del(&s->list);
  3354. kmem_cache_close(s);
  3355. }
  3356. kfree(s);
  3357. }
  3358. kfree(n);
  3359. return NULL;
  3360. }
  3361. #ifdef CONFIG_SMP
  3362. /*
  3363. * Use the cpu notifier to insure that the cpu slabs are flushed when
  3364. * necessary.
  3365. */
  3366. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  3367. unsigned long action, void *hcpu)
  3368. {
  3369. long cpu = (long)hcpu;
  3370. struct kmem_cache *s;
  3371. unsigned long flags;
  3372. switch (action) {
  3373. case CPU_UP_CANCELED:
  3374. case CPU_UP_CANCELED_FROZEN:
  3375. case CPU_DEAD:
  3376. case CPU_DEAD_FROZEN:
  3377. mutex_lock(&slab_mutex);
  3378. list_for_each_entry(s, &slab_caches, list) {
  3379. local_irq_save(flags);
  3380. __flush_cpu_slab(s, cpu);
  3381. local_irq_restore(flags);
  3382. }
  3383. mutex_unlock(&slab_mutex);
  3384. break;
  3385. default:
  3386. break;
  3387. }
  3388. return NOTIFY_OK;
  3389. }
  3390. static struct notifier_block __cpuinitdata slab_notifier = {
  3391. .notifier_call = slab_cpuup_callback
  3392. };
  3393. #endif
  3394. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  3395. {
  3396. struct kmem_cache *s;
  3397. void *ret;
  3398. if (unlikely(size > SLUB_MAX_SIZE))
  3399. return kmalloc_large(size, gfpflags);
  3400. s = get_slab(size, gfpflags);
  3401. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3402. return s;
  3403. ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
  3404. /* Honor the call site pointer we received. */
  3405. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  3406. return ret;
  3407. }
  3408. #ifdef CONFIG_NUMA
  3409. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  3410. int node, unsigned long caller)
  3411. {
  3412. struct kmem_cache *s;
  3413. void *ret;
  3414. if (unlikely(size > SLUB_MAX_SIZE)) {
  3415. ret = kmalloc_large_node(size, gfpflags, node);
  3416. trace_kmalloc_node(caller, ret,
  3417. size, PAGE_SIZE << get_order(size),
  3418. gfpflags, node);
  3419. return ret;
  3420. }
  3421. s = get_slab(size, gfpflags);
  3422. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3423. return s;
  3424. ret = slab_alloc(s, gfpflags, node, caller);
  3425. /* Honor the call site pointer we received. */
  3426. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  3427. return ret;
  3428. }
  3429. #endif
  3430. #ifdef CONFIG_SYSFS
  3431. static int count_inuse(struct page *page)
  3432. {
  3433. return page->inuse;
  3434. }
  3435. static int count_total(struct page *page)
  3436. {
  3437. return page->objects;
  3438. }
  3439. #endif
  3440. #ifdef CONFIG_SLUB_DEBUG
  3441. static int validate_slab(struct kmem_cache *s, struct page *page,
  3442. unsigned long *map)
  3443. {
  3444. void *p;
  3445. void *addr = page_address(page);
  3446. if (!check_slab(s, page) ||
  3447. !on_freelist(s, page, NULL))
  3448. return 0;
  3449. /* Now we know that a valid freelist exists */
  3450. bitmap_zero(map, page->objects);
  3451. get_map(s, page, map);
  3452. for_each_object(p, s, addr, page->objects) {
  3453. if (test_bit(slab_index(p, s, addr), map))
  3454. if (!check_object(s, page, p, SLUB_RED_INACTIVE))
  3455. return 0;
  3456. }
  3457. for_each_object(p, s, addr, page->objects)
  3458. if (!test_bit(slab_index(p, s, addr), map))
  3459. if (!check_object(s, page, p, SLUB_RED_ACTIVE))
  3460. return 0;
  3461. return 1;
  3462. }
  3463. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  3464. unsigned long *map)
  3465. {
  3466. slab_lock(page);
  3467. validate_slab(s, page, map);
  3468. slab_unlock(page);
  3469. }
  3470. static int validate_slab_node(struct kmem_cache *s,
  3471. struct kmem_cache_node *n, unsigned long *map)
  3472. {
  3473. unsigned long count = 0;
  3474. struct page *page;
  3475. unsigned long flags;
  3476. spin_lock_irqsave(&n->list_lock, flags);
  3477. list_for_each_entry(page, &n->partial, lru) {
  3478. validate_slab_slab(s, page, map);
  3479. count++;
  3480. }
  3481. if (count != n->nr_partial)
  3482. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  3483. "counter=%ld\n", s->name, count, n->nr_partial);
  3484. if (!(s->flags & SLAB_STORE_USER))
  3485. goto out;
  3486. list_for_each_entry(page, &n->full, lru) {
  3487. validate_slab_slab(s, page, map);
  3488. count++;
  3489. }
  3490. if (count != atomic_long_read(&n->nr_slabs))
  3491. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  3492. "counter=%ld\n", s->name, count,
  3493. atomic_long_read(&n->nr_slabs));
  3494. out:
  3495. spin_unlock_irqrestore(&n->list_lock, flags);
  3496. return count;
  3497. }
  3498. static long validate_slab_cache(struct kmem_cache *s)
  3499. {
  3500. int node;
  3501. unsigned long count = 0;
  3502. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3503. sizeof(unsigned long), GFP_KERNEL);
  3504. if (!map)
  3505. return -ENOMEM;
  3506. flush_all(s);
  3507. for_each_node_state(node, N_NORMAL_MEMORY) {
  3508. struct kmem_cache_node *n = get_node(s, node);
  3509. count += validate_slab_node(s, n, map);
  3510. }
  3511. kfree(map);
  3512. return count;
  3513. }
  3514. /*
  3515. * Generate lists of code addresses where slabcache objects are allocated
  3516. * and freed.
  3517. */
  3518. struct location {
  3519. unsigned long count;
  3520. unsigned long addr;
  3521. long long sum_time;
  3522. long min_time;
  3523. long max_time;
  3524. long min_pid;
  3525. long max_pid;
  3526. DECLARE_BITMAP(cpus, NR_CPUS);
  3527. nodemask_t nodes;
  3528. };
  3529. struct loc_track {
  3530. unsigned long max;
  3531. unsigned long count;
  3532. struct location *loc;
  3533. };
  3534. static void free_loc_track(struct loc_track *t)
  3535. {
  3536. if (t->max)
  3537. free_pages((unsigned long)t->loc,
  3538. get_order(sizeof(struct location) * t->max));
  3539. }
  3540. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  3541. {
  3542. struct location *l;
  3543. int order;
  3544. order = get_order(sizeof(struct location) * max);
  3545. l = (void *)__get_free_pages(flags, order);
  3546. if (!l)
  3547. return 0;
  3548. if (t->count) {
  3549. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3550. free_loc_track(t);
  3551. }
  3552. t->max = max;
  3553. t->loc = l;
  3554. return 1;
  3555. }
  3556. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3557. const struct track *track)
  3558. {
  3559. long start, end, pos;
  3560. struct location *l;
  3561. unsigned long caddr;
  3562. unsigned long age = jiffies - track->when;
  3563. start = -1;
  3564. end = t->count;
  3565. for ( ; ; ) {
  3566. pos = start + (end - start + 1) / 2;
  3567. /*
  3568. * There is nothing at "end". If we end up there
  3569. * we need to add something to before end.
  3570. */
  3571. if (pos == end)
  3572. break;
  3573. caddr = t->loc[pos].addr;
  3574. if (track->addr == caddr) {
  3575. l = &t->loc[pos];
  3576. l->count++;
  3577. if (track->when) {
  3578. l->sum_time += age;
  3579. if (age < l->min_time)
  3580. l->min_time = age;
  3581. if (age > l->max_time)
  3582. l->max_time = age;
  3583. if (track->pid < l->min_pid)
  3584. l->min_pid = track->pid;
  3585. if (track->pid > l->max_pid)
  3586. l->max_pid = track->pid;
  3587. cpumask_set_cpu(track->cpu,
  3588. to_cpumask(l->cpus));
  3589. }
  3590. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3591. return 1;
  3592. }
  3593. if (track->addr < caddr)
  3594. end = pos;
  3595. else
  3596. start = pos;
  3597. }
  3598. /*
  3599. * Not found. Insert new tracking element.
  3600. */
  3601. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3602. return 0;
  3603. l = t->loc + pos;
  3604. if (pos < t->count)
  3605. memmove(l + 1, l,
  3606. (t->count - pos) * sizeof(struct location));
  3607. t->count++;
  3608. l->count = 1;
  3609. l->addr = track->addr;
  3610. l->sum_time = age;
  3611. l->min_time = age;
  3612. l->max_time = age;
  3613. l->min_pid = track->pid;
  3614. l->max_pid = track->pid;
  3615. cpumask_clear(to_cpumask(l->cpus));
  3616. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3617. nodes_clear(l->nodes);
  3618. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3619. return 1;
  3620. }
  3621. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3622. struct page *page, enum track_item alloc,
  3623. unsigned long *map)
  3624. {
  3625. void *addr = page_address(page);
  3626. void *p;
  3627. bitmap_zero(map, page->objects);
  3628. get_map(s, page, map);
  3629. for_each_object(p, s, addr, page->objects)
  3630. if (!test_bit(slab_index(p, s, addr), map))
  3631. add_location(t, s, get_track(s, p, alloc));
  3632. }
  3633. static int list_locations(struct kmem_cache *s, char *buf,
  3634. enum track_item alloc)
  3635. {
  3636. int len = 0;
  3637. unsigned long i;
  3638. struct loc_track t = { 0, 0, NULL };
  3639. int node;
  3640. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3641. sizeof(unsigned long), GFP_KERNEL);
  3642. if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3643. GFP_TEMPORARY)) {
  3644. kfree(map);
  3645. return sprintf(buf, "Out of memory\n");
  3646. }
  3647. /* Push back cpu slabs */
  3648. flush_all(s);
  3649. for_each_node_state(node, N_NORMAL_MEMORY) {
  3650. struct kmem_cache_node *n = get_node(s, node);
  3651. unsigned long flags;
  3652. struct page *page;
  3653. if (!atomic_long_read(&n->nr_slabs))
  3654. continue;
  3655. spin_lock_irqsave(&n->list_lock, flags);
  3656. list_for_each_entry(page, &n->partial, lru)
  3657. process_slab(&t, s, page, alloc, map);
  3658. list_for_each_entry(page, &n->full, lru)
  3659. process_slab(&t, s, page, alloc, map);
  3660. spin_unlock_irqrestore(&n->list_lock, flags);
  3661. }
  3662. for (i = 0; i < t.count; i++) {
  3663. struct location *l = &t.loc[i];
  3664. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3665. break;
  3666. len += sprintf(buf + len, "%7ld ", l->count);
  3667. if (l->addr)
  3668. len += sprintf(buf + len, "%pS", (void *)l->addr);
  3669. else
  3670. len += sprintf(buf + len, "<not-available>");
  3671. if (l->sum_time != l->min_time) {
  3672. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3673. l->min_time,
  3674. (long)div_u64(l->sum_time, l->count),
  3675. l->max_time);
  3676. } else
  3677. len += sprintf(buf + len, " age=%ld",
  3678. l->min_time);
  3679. if (l->min_pid != l->max_pid)
  3680. len += sprintf(buf + len, " pid=%ld-%ld",
  3681. l->min_pid, l->max_pid);
  3682. else
  3683. len += sprintf(buf + len, " pid=%ld",
  3684. l->min_pid);
  3685. if (num_online_cpus() > 1 &&
  3686. !cpumask_empty(to_cpumask(l->cpus)) &&
  3687. len < PAGE_SIZE - 60) {
  3688. len += sprintf(buf + len, " cpus=");
  3689. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3690. to_cpumask(l->cpus));
  3691. }
  3692. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3693. len < PAGE_SIZE - 60) {
  3694. len += sprintf(buf + len, " nodes=");
  3695. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3696. l->nodes);
  3697. }
  3698. len += sprintf(buf + len, "\n");
  3699. }
  3700. free_loc_track(&t);
  3701. kfree(map);
  3702. if (!t.count)
  3703. len += sprintf(buf, "No data\n");
  3704. return len;
  3705. }
  3706. #endif
  3707. #ifdef SLUB_RESILIENCY_TEST
  3708. static void resiliency_test(void)
  3709. {
  3710. u8 *p;
  3711. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
  3712. printk(KERN_ERR "SLUB resiliency testing\n");
  3713. printk(KERN_ERR "-----------------------\n");
  3714. printk(KERN_ERR "A. Corruption after allocation\n");
  3715. p = kzalloc(16, GFP_KERNEL);
  3716. p[16] = 0x12;
  3717. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  3718. " 0x12->0x%p\n\n", p + 16);
  3719. validate_slab_cache(kmalloc_caches[4]);
  3720. /* Hmmm... The next two are dangerous */
  3721. p = kzalloc(32, GFP_KERNEL);
  3722. p[32 + sizeof(void *)] = 0x34;
  3723. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  3724. " 0x34 -> -0x%p\n", p);
  3725. printk(KERN_ERR
  3726. "If allocated object is overwritten then not detectable\n\n");
  3727. validate_slab_cache(kmalloc_caches[5]);
  3728. p = kzalloc(64, GFP_KERNEL);
  3729. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  3730. *p = 0x56;
  3731. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  3732. p);
  3733. printk(KERN_ERR
  3734. "If allocated object is overwritten then not detectable\n\n");
  3735. validate_slab_cache(kmalloc_caches[6]);
  3736. printk(KERN_ERR "\nB. Corruption after free\n");
  3737. p = kzalloc(128, GFP_KERNEL);
  3738. kfree(p);
  3739. *p = 0x78;
  3740. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  3741. validate_slab_cache(kmalloc_caches[7]);
  3742. p = kzalloc(256, GFP_KERNEL);
  3743. kfree(p);
  3744. p[50] = 0x9a;
  3745. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  3746. p);
  3747. validate_slab_cache(kmalloc_caches[8]);
  3748. p = kzalloc(512, GFP_KERNEL);
  3749. kfree(p);
  3750. p[512] = 0xab;
  3751. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  3752. validate_slab_cache(kmalloc_caches[9]);
  3753. }
  3754. #else
  3755. #ifdef CONFIG_SYSFS
  3756. static void resiliency_test(void) {};
  3757. #endif
  3758. #endif
  3759. #ifdef CONFIG_SYSFS
  3760. enum slab_stat_type {
  3761. SL_ALL, /* All slabs */
  3762. SL_PARTIAL, /* Only partially allocated slabs */
  3763. SL_CPU, /* Only slabs used for cpu caches */
  3764. SL_OBJECTS, /* Determine allocated objects not slabs */
  3765. SL_TOTAL /* Determine object capacity not slabs */
  3766. };
  3767. #define SO_ALL (1 << SL_ALL)
  3768. #define SO_PARTIAL (1 << SL_PARTIAL)
  3769. #define SO_CPU (1 << SL_CPU)
  3770. #define SO_OBJECTS (1 << SL_OBJECTS)
  3771. #define SO_TOTAL (1 << SL_TOTAL)
  3772. static ssize_t show_slab_objects(struct kmem_cache *s,
  3773. char *buf, unsigned long flags)
  3774. {
  3775. unsigned long total = 0;
  3776. int node;
  3777. int x;
  3778. unsigned long *nodes;
  3779. unsigned long *per_cpu;
  3780. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3781. if (!nodes)
  3782. return -ENOMEM;
  3783. per_cpu = nodes + nr_node_ids;
  3784. if (flags & SO_CPU) {
  3785. int cpu;
  3786. for_each_possible_cpu(cpu) {
  3787. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  3788. int node;
  3789. struct page *page;
  3790. page = ACCESS_ONCE(c->page);
  3791. if (!page)
  3792. continue;
  3793. node = page_to_nid(page);
  3794. if (flags & SO_TOTAL)
  3795. x = page->objects;
  3796. else if (flags & SO_OBJECTS)
  3797. x = page->inuse;
  3798. else
  3799. x = 1;
  3800. total += x;
  3801. nodes[node] += x;
  3802. page = ACCESS_ONCE(c->partial);
  3803. if (page) {
  3804. x = page->pobjects;
  3805. total += x;
  3806. nodes[node] += x;
  3807. }
  3808. per_cpu[node]++;
  3809. }
  3810. }
  3811. lock_memory_hotplug();
  3812. #ifdef CONFIG_SLUB_DEBUG
  3813. if (flags & SO_ALL) {
  3814. for_each_node_state(node, N_NORMAL_MEMORY) {
  3815. struct kmem_cache_node *n = get_node(s, node);
  3816. if (flags & SO_TOTAL)
  3817. x = atomic_long_read(&n->total_objects);
  3818. else if (flags & SO_OBJECTS)
  3819. x = atomic_long_read(&n->total_objects) -
  3820. count_partial(n, count_free);
  3821. else
  3822. x = atomic_long_read(&n->nr_slabs);
  3823. total += x;
  3824. nodes[node] += x;
  3825. }
  3826. } else
  3827. #endif
  3828. if (flags & SO_PARTIAL) {
  3829. for_each_node_state(node, N_NORMAL_MEMORY) {
  3830. struct kmem_cache_node *n = get_node(s, node);
  3831. if (flags & SO_TOTAL)
  3832. x = count_partial(n, count_total);
  3833. else if (flags & SO_OBJECTS)
  3834. x = count_partial(n, count_inuse);
  3835. else
  3836. x = n->nr_partial;
  3837. total += x;
  3838. nodes[node] += x;
  3839. }
  3840. }
  3841. x = sprintf(buf, "%lu", total);
  3842. #ifdef CONFIG_NUMA
  3843. for_each_node_state(node, N_NORMAL_MEMORY)
  3844. if (nodes[node])
  3845. x += sprintf(buf + x, " N%d=%lu",
  3846. node, nodes[node]);
  3847. #endif
  3848. unlock_memory_hotplug();
  3849. kfree(nodes);
  3850. return x + sprintf(buf + x, "\n");
  3851. }
  3852. #ifdef CONFIG_SLUB_DEBUG
  3853. static int any_slab_objects(struct kmem_cache *s)
  3854. {
  3855. int node;
  3856. for_each_online_node(node) {
  3857. struct kmem_cache_node *n = get_node(s, node);
  3858. if (!n)
  3859. continue;
  3860. if (atomic_long_read(&n->total_objects))
  3861. return 1;
  3862. }
  3863. return 0;
  3864. }
  3865. #endif
  3866. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3867. #define to_slab(n) container_of(n, struct kmem_cache, kobj)
  3868. struct slab_attribute {
  3869. struct attribute attr;
  3870. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3871. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3872. };
  3873. #define SLAB_ATTR_RO(_name) \
  3874. static struct slab_attribute _name##_attr = \
  3875. __ATTR(_name, 0400, _name##_show, NULL)
  3876. #define SLAB_ATTR(_name) \
  3877. static struct slab_attribute _name##_attr = \
  3878. __ATTR(_name, 0600, _name##_show, _name##_store)
  3879. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3880. {
  3881. return sprintf(buf, "%d\n", s->size);
  3882. }
  3883. SLAB_ATTR_RO(slab_size);
  3884. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3885. {
  3886. return sprintf(buf, "%d\n", s->align);
  3887. }
  3888. SLAB_ATTR_RO(align);
  3889. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3890. {
  3891. return sprintf(buf, "%d\n", s->object_size);
  3892. }
  3893. SLAB_ATTR_RO(object_size);
  3894. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3895. {
  3896. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3897. }
  3898. SLAB_ATTR_RO(objs_per_slab);
  3899. static ssize_t order_store(struct kmem_cache *s,
  3900. const char *buf, size_t length)
  3901. {
  3902. unsigned long order;
  3903. int err;
  3904. err = strict_strtoul(buf, 10, &order);
  3905. if (err)
  3906. return err;
  3907. if (order > slub_max_order || order < slub_min_order)
  3908. return -EINVAL;
  3909. calculate_sizes(s, order);
  3910. return length;
  3911. }
  3912. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3913. {
  3914. return sprintf(buf, "%d\n", oo_order(s->oo));
  3915. }
  3916. SLAB_ATTR(order);
  3917. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3918. {
  3919. return sprintf(buf, "%lu\n", s->min_partial);
  3920. }
  3921. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3922. size_t length)
  3923. {
  3924. unsigned long min;
  3925. int err;
  3926. err = strict_strtoul(buf, 10, &min);
  3927. if (err)
  3928. return err;
  3929. set_min_partial(s, min);
  3930. return length;
  3931. }
  3932. SLAB_ATTR(min_partial);
  3933. static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
  3934. {
  3935. return sprintf(buf, "%u\n", s->cpu_partial);
  3936. }
  3937. static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
  3938. size_t length)
  3939. {
  3940. unsigned long objects;
  3941. int err;
  3942. err = strict_strtoul(buf, 10, &objects);
  3943. if (err)
  3944. return err;
  3945. if (objects && kmem_cache_debug(s))
  3946. return -EINVAL;
  3947. s->cpu_partial = objects;
  3948. flush_all(s);
  3949. return length;
  3950. }
  3951. SLAB_ATTR(cpu_partial);
  3952. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3953. {
  3954. if (!s->ctor)
  3955. return 0;
  3956. return sprintf(buf, "%pS\n", s->ctor);
  3957. }
  3958. SLAB_ATTR_RO(ctor);
  3959. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3960. {
  3961. return sprintf(buf, "%d\n", s->refcount - 1);
  3962. }
  3963. SLAB_ATTR_RO(aliases);
  3964. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3965. {
  3966. return show_slab_objects(s, buf, SO_PARTIAL);
  3967. }
  3968. SLAB_ATTR_RO(partial);
  3969. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3970. {
  3971. return show_slab_objects(s, buf, SO_CPU);
  3972. }
  3973. SLAB_ATTR_RO(cpu_slabs);
  3974. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3975. {
  3976. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3977. }
  3978. SLAB_ATTR_RO(objects);
  3979. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3980. {
  3981. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3982. }
  3983. SLAB_ATTR_RO(objects_partial);
  3984. static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
  3985. {
  3986. int objects = 0;
  3987. int pages = 0;
  3988. int cpu;
  3989. int len;
  3990. for_each_online_cpu(cpu) {
  3991. struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
  3992. if (page) {
  3993. pages += page->pages;
  3994. objects += page->pobjects;
  3995. }
  3996. }
  3997. len = sprintf(buf, "%d(%d)", objects, pages);
  3998. #ifdef CONFIG_SMP
  3999. for_each_online_cpu(cpu) {
  4000. struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
  4001. if (page && len < PAGE_SIZE - 20)
  4002. len += sprintf(buf + len, " C%d=%d(%d)", cpu,
  4003. page->pobjects, page->pages);
  4004. }
  4005. #endif
  4006. return len + sprintf(buf + len, "\n");
  4007. }
  4008. SLAB_ATTR_RO(slabs_cpu_partial);
  4009. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  4010. {
  4011. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  4012. }
  4013. static ssize_t reclaim_account_store(struct kmem_cache *s,
  4014. const char *buf, size_t length)
  4015. {
  4016. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  4017. if (buf[0] == '1')
  4018. s->flags |= SLAB_RECLAIM_ACCOUNT;
  4019. return length;
  4020. }
  4021. SLAB_ATTR(reclaim_account);
  4022. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  4023. {
  4024. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  4025. }
  4026. SLAB_ATTR_RO(hwcache_align);
  4027. #ifdef CONFIG_ZONE_DMA
  4028. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  4029. {
  4030. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  4031. }
  4032. SLAB_ATTR_RO(cache_dma);
  4033. #endif
  4034. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  4035. {
  4036. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  4037. }
  4038. SLAB_ATTR_RO(destroy_by_rcu);
  4039. static ssize_t reserved_show(struct kmem_cache *s, char *buf)
  4040. {
  4041. return sprintf(buf, "%d\n", s->reserved);
  4042. }
  4043. SLAB_ATTR_RO(reserved);
  4044. #ifdef CONFIG_SLUB_DEBUG
  4045. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  4046. {
  4047. return show_slab_objects(s, buf, SO_ALL);
  4048. }
  4049. SLAB_ATTR_RO(slabs);
  4050. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  4051. {
  4052. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  4053. }
  4054. SLAB_ATTR_RO(total_objects);
  4055. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  4056. {
  4057. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  4058. }
  4059. static ssize_t sanity_checks_store(struct kmem_cache *s,
  4060. const char *buf, size_t length)
  4061. {
  4062. s->flags &= ~SLAB_DEBUG_FREE;
  4063. if (buf[0] == '1') {
  4064. s->flags &= ~__CMPXCHG_DOUBLE;
  4065. s->flags |= SLAB_DEBUG_FREE;
  4066. }
  4067. return length;
  4068. }
  4069. SLAB_ATTR(sanity_checks);
  4070. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  4071. {
  4072. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  4073. }
  4074. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  4075. size_t length)
  4076. {
  4077. s->flags &= ~SLAB_TRACE;
  4078. if (buf[0] == '1') {
  4079. s->flags &= ~__CMPXCHG_DOUBLE;
  4080. s->flags |= SLAB_TRACE;
  4081. }
  4082. return length;
  4083. }
  4084. SLAB_ATTR(trace);
  4085. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  4086. {
  4087. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  4088. }
  4089. static ssize_t red_zone_store(struct kmem_cache *s,
  4090. const char *buf, size_t length)
  4091. {
  4092. if (any_slab_objects(s))
  4093. return -EBUSY;
  4094. s->flags &= ~SLAB_RED_ZONE;
  4095. if (buf[0] == '1') {
  4096. s->flags &= ~__CMPXCHG_DOUBLE;
  4097. s->flags |= SLAB_RED_ZONE;
  4098. }
  4099. calculate_sizes(s, -1);
  4100. return length;
  4101. }
  4102. SLAB_ATTR(red_zone);
  4103. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  4104. {
  4105. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  4106. }
  4107. static ssize_t poison_store(struct kmem_cache *s,
  4108. const char *buf, size_t length)
  4109. {
  4110. if (any_slab_objects(s))
  4111. return -EBUSY;
  4112. s->flags &= ~SLAB_POISON;
  4113. if (buf[0] == '1') {
  4114. s->flags &= ~__CMPXCHG_DOUBLE;
  4115. s->flags |= SLAB_POISON;
  4116. }
  4117. calculate_sizes(s, -1);
  4118. return length;
  4119. }
  4120. SLAB_ATTR(poison);
  4121. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  4122. {
  4123. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  4124. }
  4125. static ssize_t store_user_store(struct kmem_cache *s,
  4126. const char *buf, size_t length)
  4127. {
  4128. if (any_slab_objects(s))
  4129. return -EBUSY;
  4130. s->flags &= ~SLAB_STORE_USER;
  4131. if (buf[0] == '1') {
  4132. s->flags &= ~__CMPXCHG_DOUBLE;
  4133. s->flags |= SLAB_STORE_USER;
  4134. }
  4135. calculate_sizes(s, -1);
  4136. return length;
  4137. }
  4138. SLAB_ATTR(store_user);
  4139. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  4140. {
  4141. return 0;
  4142. }
  4143. static ssize_t validate_store(struct kmem_cache *s,
  4144. const char *buf, size_t length)
  4145. {
  4146. int ret = -EINVAL;
  4147. if (buf[0] == '1') {
  4148. ret = validate_slab_cache(s);
  4149. if (ret >= 0)
  4150. ret = length;
  4151. }
  4152. return ret;
  4153. }
  4154. SLAB_ATTR(validate);
  4155. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  4156. {
  4157. if (!(s->flags & SLAB_STORE_USER))
  4158. return -ENOSYS;
  4159. return list_locations(s, buf, TRACK_ALLOC);
  4160. }
  4161. SLAB_ATTR_RO(alloc_calls);
  4162. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  4163. {
  4164. if (!(s->flags & SLAB_STORE_USER))
  4165. return -ENOSYS;
  4166. return list_locations(s, buf, TRACK_FREE);
  4167. }
  4168. SLAB_ATTR_RO(free_calls);
  4169. #endif /* CONFIG_SLUB_DEBUG */
  4170. #ifdef CONFIG_FAILSLAB
  4171. static ssize_t failslab_show(struct kmem_cache *s, char *buf)
  4172. {
  4173. return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
  4174. }
  4175. static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
  4176. size_t length)
  4177. {
  4178. s->flags &= ~SLAB_FAILSLAB;
  4179. if (buf[0] == '1')
  4180. s->flags |= SLAB_FAILSLAB;
  4181. return length;
  4182. }
  4183. SLAB_ATTR(failslab);
  4184. #endif
  4185. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  4186. {
  4187. return 0;
  4188. }
  4189. static ssize_t shrink_store(struct kmem_cache *s,
  4190. const char *buf, size_t length)
  4191. {
  4192. if (buf[0] == '1') {
  4193. int rc = kmem_cache_shrink(s);
  4194. if (rc)
  4195. return rc;
  4196. } else
  4197. return -EINVAL;
  4198. return length;
  4199. }
  4200. SLAB_ATTR(shrink);
  4201. #ifdef CONFIG_NUMA
  4202. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  4203. {
  4204. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  4205. }
  4206. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  4207. const char *buf, size_t length)
  4208. {
  4209. unsigned long ratio;
  4210. int err;
  4211. err = strict_strtoul(buf, 10, &ratio);
  4212. if (err)
  4213. return err;
  4214. if (ratio <= 100)
  4215. s->remote_node_defrag_ratio = ratio * 10;
  4216. return length;
  4217. }
  4218. SLAB_ATTR(remote_node_defrag_ratio);
  4219. #endif
  4220. #ifdef CONFIG_SLUB_STATS
  4221. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  4222. {
  4223. unsigned long sum = 0;
  4224. int cpu;
  4225. int len;
  4226. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  4227. if (!data)
  4228. return -ENOMEM;
  4229. for_each_online_cpu(cpu) {
  4230. unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
  4231. data[cpu] = x;
  4232. sum += x;
  4233. }
  4234. len = sprintf(buf, "%lu", sum);
  4235. #ifdef CONFIG_SMP
  4236. for_each_online_cpu(cpu) {
  4237. if (data[cpu] && len < PAGE_SIZE - 20)
  4238. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  4239. }
  4240. #endif
  4241. kfree(data);
  4242. return len + sprintf(buf + len, "\n");
  4243. }
  4244. static void clear_stat(struct kmem_cache *s, enum stat_item si)
  4245. {
  4246. int cpu;
  4247. for_each_online_cpu(cpu)
  4248. per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
  4249. }
  4250. #define STAT_ATTR(si, text) \
  4251. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  4252. { \
  4253. return show_stat(s, buf, si); \
  4254. } \
  4255. static ssize_t text##_store(struct kmem_cache *s, \
  4256. const char *buf, size_t length) \
  4257. { \
  4258. if (buf[0] != '0') \
  4259. return -EINVAL; \
  4260. clear_stat(s, si); \
  4261. return length; \
  4262. } \
  4263. SLAB_ATTR(text); \
  4264. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  4265. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  4266. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  4267. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  4268. STAT_ATTR(FREE_FROZEN, free_frozen);
  4269. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  4270. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  4271. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  4272. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  4273. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  4274. STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
  4275. STAT_ATTR(FREE_SLAB, free_slab);
  4276. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  4277. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  4278. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  4279. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  4280. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  4281. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  4282. STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
  4283. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  4284. STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
  4285. STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
  4286. STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
  4287. STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
  4288. STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
  4289. STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
  4290. #endif
  4291. static struct attribute *slab_attrs[] = {
  4292. &slab_size_attr.attr,
  4293. &object_size_attr.attr,
  4294. &objs_per_slab_attr.attr,
  4295. &order_attr.attr,
  4296. &min_partial_attr.attr,
  4297. &cpu_partial_attr.attr,
  4298. &objects_attr.attr,
  4299. &objects_partial_attr.attr,
  4300. &partial_attr.attr,
  4301. &cpu_slabs_attr.attr,
  4302. &ctor_attr.attr,
  4303. &aliases_attr.attr,
  4304. &align_attr.attr,
  4305. &hwcache_align_attr.attr,
  4306. &reclaim_account_attr.attr,
  4307. &destroy_by_rcu_attr.attr,
  4308. &shrink_attr.attr,
  4309. &reserved_attr.attr,
  4310. &slabs_cpu_partial_attr.attr,
  4311. #ifdef CONFIG_SLUB_DEBUG
  4312. &total_objects_attr.attr,
  4313. &slabs_attr.attr,
  4314. &sanity_checks_attr.attr,
  4315. &trace_attr.attr,
  4316. &red_zone_attr.attr,
  4317. &poison_attr.attr,
  4318. &store_user_attr.attr,
  4319. &validate_attr.attr,
  4320. &alloc_calls_attr.attr,
  4321. &free_calls_attr.attr,
  4322. #endif
  4323. #ifdef CONFIG_ZONE_DMA
  4324. &cache_dma_attr.attr,
  4325. #endif
  4326. #ifdef CONFIG_NUMA
  4327. &remote_node_defrag_ratio_attr.attr,
  4328. #endif
  4329. #ifdef CONFIG_SLUB_STATS
  4330. &alloc_fastpath_attr.attr,
  4331. &alloc_slowpath_attr.attr,
  4332. &free_fastpath_attr.attr,
  4333. &free_slowpath_attr.attr,
  4334. &free_frozen_attr.attr,
  4335. &free_add_partial_attr.attr,
  4336. &free_remove_partial_attr.attr,
  4337. &alloc_from_partial_attr.attr,
  4338. &alloc_slab_attr.attr,
  4339. &alloc_refill_attr.attr,
  4340. &alloc_node_mismatch_attr.attr,
  4341. &free_slab_attr.attr,
  4342. &cpuslab_flush_attr.attr,
  4343. &deactivate_full_attr.attr,
  4344. &deactivate_empty_attr.attr,
  4345. &deactivate_to_head_attr.attr,
  4346. &deactivate_to_tail_attr.attr,
  4347. &deactivate_remote_frees_attr.attr,
  4348. &deactivate_bypass_attr.attr,
  4349. &order_fallback_attr.attr,
  4350. &cmpxchg_double_fail_attr.attr,
  4351. &cmpxchg_double_cpu_fail_attr.attr,
  4352. &cpu_partial_alloc_attr.attr,
  4353. &cpu_partial_free_attr.attr,
  4354. &cpu_partial_node_attr.attr,
  4355. &cpu_partial_drain_attr.attr,
  4356. #endif
  4357. #ifdef CONFIG_FAILSLAB
  4358. &failslab_attr.attr,
  4359. #endif
  4360. NULL
  4361. };
  4362. static struct attribute_group slab_attr_group = {
  4363. .attrs = slab_attrs,
  4364. };
  4365. static ssize_t slab_attr_show(struct kobject *kobj,
  4366. struct attribute *attr,
  4367. char *buf)
  4368. {
  4369. struct slab_attribute *attribute;
  4370. struct kmem_cache *s;
  4371. int err;
  4372. attribute = to_slab_attr(attr);
  4373. s = to_slab(kobj);
  4374. if (!attribute->show)
  4375. return -EIO;
  4376. err = attribute->show(s, buf);
  4377. return err;
  4378. }
  4379. static ssize_t slab_attr_store(struct kobject *kobj,
  4380. struct attribute *attr,
  4381. const char *buf, size_t len)
  4382. {
  4383. struct slab_attribute *attribute;
  4384. struct kmem_cache *s;
  4385. int err;
  4386. attribute = to_slab_attr(attr);
  4387. s = to_slab(kobj);
  4388. if (!attribute->store)
  4389. return -EIO;
  4390. err = attribute->store(s, buf, len);
  4391. return err;
  4392. }
  4393. static void kmem_cache_release(struct kobject *kobj)
  4394. {
  4395. struct kmem_cache *s = to_slab(kobj);
  4396. kfree(s->name);
  4397. kfree(s);
  4398. }
  4399. static const struct sysfs_ops slab_sysfs_ops = {
  4400. .show = slab_attr_show,
  4401. .store = slab_attr_store,
  4402. };
  4403. static struct kobj_type slab_ktype = {
  4404. .sysfs_ops = &slab_sysfs_ops,
  4405. .release = kmem_cache_release
  4406. };
  4407. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  4408. {
  4409. struct kobj_type *ktype = get_ktype(kobj);
  4410. if (ktype == &slab_ktype)
  4411. return 1;
  4412. return 0;
  4413. }
  4414. static const struct kset_uevent_ops slab_uevent_ops = {
  4415. .filter = uevent_filter,
  4416. };
  4417. static struct kset *slab_kset;
  4418. #define ID_STR_LENGTH 64
  4419. /* Create a unique string id for a slab cache:
  4420. *
  4421. * Format :[flags-]size
  4422. */
  4423. static char *create_unique_id(struct kmem_cache *s)
  4424. {
  4425. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  4426. char *p = name;
  4427. BUG_ON(!name);
  4428. *p++ = ':';
  4429. /*
  4430. * First flags affecting slabcache operations. We will only
  4431. * get here for aliasable slabs so we do not need to support
  4432. * too many flags. The flags here must cover all flags that
  4433. * are matched during merging to guarantee that the id is
  4434. * unique.
  4435. */
  4436. if (s->flags & SLAB_CACHE_DMA)
  4437. *p++ = 'd';
  4438. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  4439. *p++ = 'a';
  4440. if (s->flags & SLAB_DEBUG_FREE)
  4441. *p++ = 'F';
  4442. if (!(s->flags & SLAB_NOTRACK))
  4443. *p++ = 't';
  4444. if (p != name + 1)
  4445. *p++ = '-';
  4446. p += sprintf(p, "%07d", s->size);
  4447. BUG_ON(p > name + ID_STR_LENGTH - 1);
  4448. return name;
  4449. }
  4450. static int sysfs_slab_add(struct kmem_cache *s)
  4451. {
  4452. int err;
  4453. const char *name;
  4454. int unmergeable;
  4455. if (slab_state < FULL)
  4456. /* Defer until later */
  4457. return 0;
  4458. unmergeable = slab_unmergeable(s);
  4459. if (unmergeable) {
  4460. /*
  4461. * Slabcache can never be merged so we can use the name proper.
  4462. * This is typically the case for debug situations. In that
  4463. * case we can catch duplicate names easily.
  4464. */
  4465. sysfs_remove_link(&slab_kset->kobj, s->name);
  4466. name = s->name;
  4467. } else {
  4468. /*
  4469. * Create a unique name for the slab as a target
  4470. * for the symlinks.
  4471. */
  4472. name = create_unique_id(s);
  4473. }
  4474. s->kobj.kset = slab_kset;
  4475. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  4476. if (err) {
  4477. kobject_put(&s->kobj);
  4478. return err;
  4479. }
  4480. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  4481. if (err) {
  4482. kobject_del(&s->kobj);
  4483. kobject_put(&s->kobj);
  4484. return err;
  4485. }
  4486. kobject_uevent(&s->kobj, KOBJ_ADD);
  4487. if (!unmergeable) {
  4488. /* Setup first alias */
  4489. sysfs_slab_alias(s, s->name);
  4490. kfree(name);
  4491. }
  4492. return 0;
  4493. }
  4494. static void sysfs_slab_remove(struct kmem_cache *s)
  4495. {
  4496. if (slab_state < FULL)
  4497. /*
  4498. * Sysfs has not been setup yet so no need to remove the
  4499. * cache from sysfs.
  4500. */
  4501. return;
  4502. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  4503. kobject_del(&s->kobj);
  4504. kobject_put(&s->kobj);
  4505. }
  4506. /*
  4507. * Need to buffer aliases during bootup until sysfs becomes
  4508. * available lest we lose that information.
  4509. */
  4510. struct saved_alias {
  4511. struct kmem_cache *s;
  4512. const char *name;
  4513. struct saved_alias *next;
  4514. };
  4515. static struct saved_alias *alias_list;
  4516. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  4517. {
  4518. struct saved_alias *al;
  4519. if (slab_state == FULL) {
  4520. /*
  4521. * If we have a leftover link then remove it.
  4522. */
  4523. sysfs_remove_link(&slab_kset->kobj, name);
  4524. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  4525. }
  4526. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  4527. if (!al)
  4528. return -ENOMEM;
  4529. al->s = s;
  4530. al->name = name;
  4531. al->next = alias_list;
  4532. alias_list = al;
  4533. return 0;
  4534. }
  4535. static int __init slab_sysfs_init(void)
  4536. {
  4537. struct kmem_cache *s;
  4538. int err;
  4539. mutex_lock(&slab_mutex);
  4540. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  4541. if (!slab_kset) {
  4542. mutex_unlock(&slab_mutex);
  4543. printk(KERN_ERR "Cannot register slab subsystem.\n");
  4544. return -ENOSYS;
  4545. }
  4546. slab_state = FULL;
  4547. list_for_each_entry(s, &slab_caches, list) {
  4548. err = sysfs_slab_add(s);
  4549. if (err)
  4550. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  4551. " to sysfs\n", s->name);
  4552. }
  4553. while (alias_list) {
  4554. struct saved_alias *al = alias_list;
  4555. alias_list = alias_list->next;
  4556. err = sysfs_slab_alias(al->s, al->name);
  4557. if (err)
  4558. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  4559. " %s to sysfs\n", al->name);
  4560. kfree(al);
  4561. }
  4562. mutex_unlock(&slab_mutex);
  4563. resiliency_test();
  4564. return 0;
  4565. }
  4566. __initcall(slab_sysfs_init);
  4567. #endif /* CONFIG_SYSFS */
  4568. /*
  4569. * The /proc/slabinfo ABI
  4570. */
  4571. #ifdef CONFIG_SLABINFO
  4572. static void print_slabinfo_header(struct seq_file *m)
  4573. {
  4574. seq_puts(m, "slabinfo - version: 2.1\n");
  4575. seq_puts(m, "# name <active_objs> <num_objs> <object_size> "
  4576. "<objperslab> <pagesperslab>");
  4577. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  4578. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  4579. seq_putc(m, '\n');
  4580. }
  4581. static void *s_start(struct seq_file *m, loff_t *pos)
  4582. {
  4583. loff_t n = *pos;
  4584. mutex_lock(&slab_mutex);
  4585. if (!n)
  4586. print_slabinfo_header(m);
  4587. return seq_list_start(&slab_caches, *pos);
  4588. }
  4589. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  4590. {
  4591. return seq_list_next(p, &slab_caches, pos);
  4592. }
  4593. static void s_stop(struct seq_file *m, void *p)
  4594. {
  4595. mutex_unlock(&slab_mutex);
  4596. }
  4597. static int s_show(struct seq_file *m, void *p)
  4598. {
  4599. unsigned long nr_partials = 0;
  4600. unsigned long nr_slabs = 0;
  4601. unsigned long nr_inuse = 0;
  4602. unsigned long nr_objs = 0;
  4603. unsigned long nr_free = 0;
  4604. struct kmem_cache *s;
  4605. int node;
  4606. s = list_entry(p, struct kmem_cache, list);
  4607. for_each_online_node(node) {
  4608. struct kmem_cache_node *n = get_node(s, node);
  4609. if (!n)
  4610. continue;
  4611. nr_partials += n->nr_partial;
  4612. nr_slabs += atomic_long_read(&n->nr_slabs);
  4613. nr_objs += atomic_long_read(&n->total_objects);
  4614. nr_free += count_partial(n, count_free);
  4615. }
  4616. nr_inuse = nr_objs - nr_free;
  4617. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
  4618. nr_objs, s->size, oo_objects(s->oo),
  4619. (1 << oo_order(s->oo)));
  4620. seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
  4621. seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
  4622. 0UL);
  4623. seq_putc(m, '\n');
  4624. return 0;
  4625. }
  4626. static const struct seq_operations slabinfo_op = {
  4627. .start = s_start,
  4628. .next = s_next,
  4629. .stop = s_stop,
  4630. .show = s_show,
  4631. };
  4632. static int slabinfo_open(struct inode *inode, struct file *file)
  4633. {
  4634. return seq_open(file, &slabinfo_op);
  4635. }
  4636. static const struct file_operations proc_slabinfo_operations = {
  4637. .open = slabinfo_open,
  4638. .read = seq_read,
  4639. .llseek = seq_lseek,
  4640. .release = seq_release,
  4641. };
  4642. static int __init slab_proc_init(void)
  4643. {
  4644. proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
  4645. return 0;
  4646. }
  4647. module_init(slab_proc_init);
  4648. #endif /* CONFIG_SLABINFO */