numa_64.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860
  1. /*
  2. * Generic VM initialization for x86-64 NUMA setups.
  3. * Copyright 2002,2003 Andi Kleen, SuSE Labs.
  4. */
  5. #include <linux/kernel.h>
  6. #include <linux/mm.h>
  7. #include <linux/string.h>
  8. #include <linux/init.h>
  9. #include <linux/bootmem.h>
  10. #include <linux/memblock.h>
  11. #include <linux/mmzone.h>
  12. #include <linux/ctype.h>
  13. #include <linux/module.h>
  14. #include <linux/nodemask.h>
  15. #include <linux/sched.h>
  16. #include <asm/e820.h>
  17. #include <asm/proto.h>
  18. #include <asm/dma.h>
  19. #include <asm/numa.h>
  20. #include <asm/acpi.h>
  21. #include <asm/amd_nb.h>
  22. struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
  23. EXPORT_SYMBOL(node_data);
  24. struct memnode memnode;
  25. static unsigned long __initdata nodemap_addr;
  26. static unsigned long __initdata nodemap_size;
  27. /*
  28. * Given a shift value, try to populate memnodemap[]
  29. * Returns :
  30. * 1 if OK
  31. * 0 if memnodmap[] too small (of shift too small)
  32. * -1 if node overlap or lost ram (shift too big)
  33. */
  34. static int __init populate_memnodemap(const struct bootnode *nodes,
  35. int numnodes, int shift, int *nodeids)
  36. {
  37. unsigned long addr, end;
  38. int i, res = -1;
  39. memset(memnodemap, 0xff, sizeof(s16)*memnodemapsize);
  40. for (i = 0; i < numnodes; i++) {
  41. addr = nodes[i].start;
  42. end = nodes[i].end;
  43. if (addr >= end)
  44. continue;
  45. if ((end >> shift) >= memnodemapsize)
  46. return 0;
  47. do {
  48. if (memnodemap[addr >> shift] != NUMA_NO_NODE)
  49. return -1;
  50. if (!nodeids)
  51. memnodemap[addr >> shift] = i;
  52. else
  53. memnodemap[addr >> shift] = nodeids[i];
  54. addr += (1UL << shift);
  55. } while (addr < end);
  56. res = 1;
  57. }
  58. return res;
  59. }
  60. static int __init allocate_cachealigned_memnodemap(void)
  61. {
  62. unsigned long addr;
  63. memnodemap = memnode.embedded_map;
  64. if (memnodemapsize <= ARRAY_SIZE(memnode.embedded_map))
  65. return 0;
  66. addr = 0x8000;
  67. nodemap_size = roundup(sizeof(s16) * memnodemapsize, L1_CACHE_BYTES);
  68. nodemap_addr = memblock_find_in_range(addr, max_pfn<<PAGE_SHIFT,
  69. nodemap_size, L1_CACHE_BYTES);
  70. if (nodemap_addr == MEMBLOCK_ERROR) {
  71. printk(KERN_ERR
  72. "NUMA: Unable to allocate Memory to Node hash map\n");
  73. nodemap_addr = nodemap_size = 0;
  74. return -1;
  75. }
  76. memnodemap = phys_to_virt(nodemap_addr);
  77. memblock_x86_reserve_range(nodemap_addr, nodemap_addr + nodemap_size, "MEMNODEMAP");
  78. printk(KERN_DEBUG "NUMA: Allocated memnodemap from %lx - %lx\n",
  79. nodemap_addr, nodemap_addr + nodemap_size);
  80. return 0;
  81. }
  82. /*
  83. * The LSB of all start and end addresses in the node map is the value of the
  84. * maximum possible shift.
  85. */
  86. static int __init extract_lsb_from_nodes(const struct bootnode *nodes,
  87. int numnodes)
  88. {
  89. int i, nodes_used = 0;
  90. unsigned long start, end;
  91. unsigned long bitfield = 0, memtop = 0;
  92. for (i = 0; i < numnodes; i++) {
  93. start = nodes[i].start;
  94. end = nodes[i].end;
  95. if (start >= end)
  96. continue;
  97. bitfield |= start;
  98. nodes_used++;
  99. if (end > memtop)
  100. memtop = end;
  101. }
  102. if (nodes_used <= 1)
  103. i = 63;
  104. else
  105. i = find_first_bit(&bitfield, sizeof(unsigned long)*8);
  106. memnodemapsize = (memtop >> i)+1;
  107. return i;
  108. }
  109. int __init compute_hash_shift(struct bootnode *nodes, int numnodes,
  110. int *nodeids)
  111. {
  112. int shift;
  113. shift = extract_lsb_from_nodes(nodes, numnodes);
  114. if (allocate_cachealigned_memnodemap())
  115. return -1;
  116. printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n",
  117. shift);
  118. if (populate_memnodemap(nodes, numnodes, shift, nodeids) != 1) {
  119. printk(KERN_INFO "Your memory is not aligned you need to "
  120. "rebuild your kernel with a bigger NODEMAPSIZE "
  121. "shift=%d\n", shift);
  122. return -1;
  123. }
  124. return shift;
  125. }
  126. int __meminit __early_pfn_to_nid(unsigned long pfn)
  127. {
  128. return phys_to_nid(pfn << PAGE_SHIFT);
  129. }
  130. static void * __init early_node_mem(int nodeid, unsigned long start,
  131. unsigned long end, unsigned long size,
  132. unsigned long align)
  133. {
  134. unsigned long mem;
  135. /*
  136. * put it on high as possible
  137. * something will go with NODE_DATA
  138. */
  139. if (start < (MAX_DMA_PFN<<PAGE_SHIFT))
  140. start = MAX_DMA_PFN<<PAGE_SHIFT;
  141. if (start < (MAX_DMA32_PFN<<PAGE_SHIFT) &&
  142. end > (MAX_DMA32_PFN<<PAGE_SHIFT))
  143. start = MAX_DMA32_PFN<<PAGE_SHIFT;
  144. mem = memblock_x86_find_in_range_node(nodeid, start, end, size, align);
  145. if (mem != MEMBLOCK_ERROR)
  146. return __va(mem);
  147. /* extend the search scope */
  148. end = max_pfn_mapped << PAGE_SHIFT;
  149. start = MAX_DMA_PFN << PAGE_SHIFT;
  150. mem = memblock_find_in_range(start, end, size, align);
  151. if (mem != MEMBLOCK_ERROR)
  152. return __va(mem);
  153. printk(KERN_ERR "Cannot find %lu bytes in node %d\n",
  154. size, nodeid);
  155. return NULL;
  156. }
  157. /* Initialize bootmem allocator for a node */
  158. void __init
  159. setup_node_bootmem(int nodeid, unsigned long start, unsigned long end)
  160. {
  161. unsigned long start_pfn, last_pfn, nodedata_phys;
  162. const int pgdat_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
  163. int nid;
  164. if (!end)
  165. return;
  166. /*
  167. * Don't confuse VM with a node that doesn't have the
  168. * minimum amount of memory:
  169. */
  170. if (end && (end - start) < NODE_MIN_SIZE)
  171. return;
  172. start = roundup(start, ZONE_ALIGN);
  173. printk(KERN_INFO "Initmem setup node %d %016lx-%016lx\n", nodeid,
  174. start, end);
  175. start_pfn = start >> PAGE_SHIFT;
  176. last_pfn = end >> PAGE_SHIFT;
  177. node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size,
  178. SMP_CACHE_BYTES);
  179. if (node_data[nodeid] == NULL)
  180. return;
  181. nodedata_phys = __pa(node_data[nodeid]);
  182. memblock_x86_reserve_range(nodedata_phys, nodedata_phys + pgdat_size, "NODE_DATA");
  183. printk(KERN_INFO " NODE_DATA [%016lx - %016lx]\n", nodedata_phys,
  184. nodedata_phys + pgdat_size - 1);
  185. nid = phys_to_nid(nodedata_phys);
  186. if (nid != nodeid)
  187. printk(KERN_INFO " NODE_DATA(%d) on node %d\n", nodeid, nid);
  188. memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t));
  189. NODE_DATA(nodeid)->node_id = nodeid;
  190. NODE_DATA(nodeid)->node_start_pfn = start_pfn;
  191. NODE_DATA(nodeid)->node_spanned_pages = last_pfn - start_pfn;
  192. node_set_online(nodeid);
  193. }
  194. /*
  195. * There are unfortunately some poorly designed mainboards around that
  196. * only connect memory to a single CPU. This breaks the 1:1 cpu->node
  197. * mapping. To avoid this fill in the mapping for all possible CPUs,
  198. * as the number of CPUs is not known yet. We round robin the existing
  199. * nodes.
  200. */
  201. void __init numa_init_array(void)
  202. {
  203. int rr, i;
  204. rr = first_node(node_online_map);
  205. for (i = 0; i < nr_cpu_ids; i++) {
  206. if (early_cpu_to_node(i) != NUMA_NO_NODE)
  207. continue;
  208. numa_set_node(i, rr);
  209. rr = next_node(rr, node_online_map);
  210. if (rr == MAX_NUMNODES)
  211. rr = first_node(node_online_map);
  212. }
  213. }
  214. #ifdef CONFIG_NUMA_EMU
  215. /* Numa emulation */
  216. static struct bootnode nodes[MAX_NUMNODES] __initdata;
  217. static struct bootnode physnodes[MAX_NUMNODES] __cpuinitdata;
  218. static char *cmdline __initdata;
  219. void __init numa_emu_cmdline(char *str)
  220. {
  221. cmdline = str;
  222. }
  223. static int __init setup_physnodes(unsigned long start, unsigned long end,
  224. int acpi, int amd)
  225. {
  226. int ret = 0;
  227. int i;
  228. memset(physnodes, 0, sizeof(physnodes));
  229. #ifdef CONFIG_ACPI_NUMA
  230. if (acpi)
  231. acpi_get_nodes(physnodes, start, end);
  232. #endif
  233. #ifdef CONFIG_AMD_NUMA
  234. if (amd)
  235. amd_get_nodes(physnodes);
  236. #endif
  237. /*
  238. * Basic sanity checking on the physical node map: there may be errors
  239. * if the SRAT or AMD code incorrectly reported the topology or the mem=
  240. * kernel parameter is used.
  241. */
  242. for (i = 0; i < MAX_NUMNODES; i++) {
  243. if (physnodes[i].start == physnodes[i].end)
  244. continue;
  245. if (physnodes[i].start > end) {
  246. physnodes[i].end = physnodes[i].start;
  247. continue;
  248. }
  249. if (physnodes[i].end < start) {
  250. physnodes[i].start = physnodes[i].end;
  251. continue;
  252. }
  253. if (physnodes[i].start < start)
  254. physnodes[i].start = start;
  255. if (physnodes[i].end > end)
  256. physnodes[i].end = end;
  257. ret++;
  258. }
  259. /*
  260. * If no physical topology was detected, a single node is faked to cover
  261. * the entire address space.
  262. */
  263. if (!ret) {
  264. physnodes[ret].start = start;
  265. physnodes[ret].end = end;
  266. ret = 1;
  267. }
  268. return ret;
  269. }
  270. static void __init fake_physnodes(int acpi, int amd, int nr_nodes)
  271. {
  272. int i;
  273. BUG_ON(acpi && amd);
  274. #ifdef CONFIG_ACPI_NUMA
  275. if (acpi)
  276. acpi_fake_nodes(nodes, nr_nodes);
  277. #endif
  278. #ifdef CONFIG_AMD_NUMA
  279. if (amd)
  280. amd_fake_nodes(nodes, nr_nodes);
  281. #endif
  282. if (!acpi && !amd)
  283. for (i = 0; i < nr_cpu_ids; i++)
  284. numa_set_node(i, 0);
  285. }
  286. /*
  287. * Setups up nid to range from addr to addr + size. If the end
  288. * boundary is greater than max_addr, then max_addr is used instead.
  289. * The return value is 0 if there is additional memory left for
  290. * allocation past addr and -1 otherwise. addr is adjusted to be at
  291. * the end of the node.
  292. */
  293. static int __init setup_node_range(int nid, u64 *addr, u64 size, u64 max_addr)
  294. {
  295. int ret = 0;
  296. nodes[nid].start = *addr;
  297. *addr += size;
  298. if (*addr >= max_addr) {
  299. *addr = max_addr;
  300. ret = -1;
  301. }
  302. nodes[nid].end = *addr;
  303. node_set(nid, node_possible_map);
  304. printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n", nid,
  305. nodes[nid].start, nodes[nid].end,
  306. (nodes[nid].end - nodes[nid].start) >> 20);
  307. return ret;
  308. }
  309. /*
  310. * Sets up nr_nodes fake nodes interleaved over physical nodes ranging from addr
  311. * to max_addr. The return value is the number of nodes allocated.
  312. */
  313. static int __init split_nodes_interleave(u64 addr, u64 max_addr, int nr_nodes)
  314. {
  315. nodemask_t physnode_mask = NODE_MASK_NONE;
  316. u64 size;
  317. int big;
  318. int ret = 0;
  319. int i;
  320. if (nr_nodes <= 0)
  321. return -1;
  322. if (nr_nodes > MAX_NUMNODES) {
  323. pr_info("numa=fake=%d too large, reducing to %d\n",
  324. nr_nodes, MAX_NUMNODES);
  325. nr_nodes = MAX_NUMNODES;
  326. }
  327. size = (max_addr - addr - memblock_x86_hole_size(addr, max_addr)) / nr_nodes;
  328. /*
  329. * Calculate the number of big nodes that can be allocated as a result
  330. * of consolidating the remainder.
  331. */
  332. big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * nr_nodes) /
  333. FAKE_NODE_MIN_SIZE;
  334. size &= FAKE_NODE_MIN_HASH_MASK;
  335. if (!size) {
  336. pr_err("Not enough memory for each node. "
  337. "NUMA emulation disabled.\n");
  338. return -1;
  339. }
  340. for (i = 0; i < MAX_NUMNODES; i++)
  341. if (physnodes[i].start != physnodes[i].end)
  342. node_set(i, physnode_mask);
  343. /*
  344. * Continue to fill physical nodes with fake nodes until there is no
  345. * memory left on any of them.
  346. */
  347. while (nodes_weight(physnode_mask)) {
  348. for_each_node_mask(i, physnode_mask) {
  349. u64 end = physnodes[i].start + size;
  350. u64 dma32_end = PFN_PHYS(MAX_DMA32_PFN);
  351. if (ret < big)
  352. end += FAKE_NODE_MIN_SIZE;
  353. /*
  354. * Continue to add memory to this fake node if its
  355. * non-reserved memory is less than the per-node size.
  356. */
  357. while (end - physnodes[i].start -
  358. memblock_x86_hole_size(physnodes[i].start, end) < size) {
  359. end += FAKE_NODE_MIN_SIZE;
  360. if (end > physnodes[i].end) {
  361. end = physnodes[i].end;
  362. break;
  363. }
  364. }
  365. /*
  366. * If there won't be at least FAKE_NODE_MIN_SIZE of
  367. * non-reserved memory in ZONE_DMA32 for the next node,
  368. * this one must extend to the boundary.
  369. */
  370. if (end < dma32_end && dma32_end - end -
  371. memblock_x86_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
  372. end = dma32_end;
  373. /*
  374. * If there won't be enough non-reserved memory for the
  375. * next node, this one must extend to the end of the
  376. * physical node.
  377. */
  378. if (physnodes[i].end - end -
  379. memblock_x86_hole_size(end, physnodes[i].end) < size)
  380. end = physnodes[i].end;
  381. /*
  382. * Avoid allocating more nodes than requested, which can
  383. * happen as a result of rounding down each node's size
  384. * to FAKE_NODE_MIN_SIZE.
  385. */
  386. if (nodes_weight(physnode_mask) + ret >= nr_nodes)
  387. end = physnodes[i].end;
  388. if (setup_node_range(ret++, &physnodes[i].start,
  389. end - physnodes[i].start,
  390. physnodes[i].end) < 0)
  391. node_clear(i, physnode_mask);
  392. }
  393. }
  394. return ret;
  395. }
  396. /*
  397. * Returns the end address of a node so that there is at least `size' amount of
  398. * non-reserved memory or `max_addr' is reached.
  399. */
  400. static u64 __init find_end_of_node(u64 start, u64 max_addr, u64 size)
  401. {
  402. u64 end = start + size;
  403. while (end - start - memblock_x86_hole_size(start, end) < size) {
  404. end += FAKE_NODE_MIN_SIZE;
  405. if (end > max_addr) {
  406. end = max_addr;
  407. break;
  408. }
  409. }
  410. return end;
  411. }
  412. /*
  413. * Sets up fake nodes of `size' interleaved over physical nodes ranging from
  414. * `addr' to `max_addr'. The return value is the number of nodes allocated.
  415. */
  416. static int __init split_nodes_size_interleave(u64 addr, u64 max_addr, u64 size)
  417. {
  418. nodemask_t physnode_mask = NODE_MASK_NONE;
  419. u64 min_size;
  420. int ret = 0;
  421. int i;
  422. if (!size)
  423. return -1;
  424. /*
  425. * The limit on emulated nodes is MAX_NUMNODES, so the size per node is
  426. * increased accordingly if the requested size is too small. This
  427. * creates a uniform distribution of node sizes across the entire
  428. * machine (but not necessarily over physical nodes).
  429. */
  430. min_size = (max_addr - addr - memblock_x86_hole_size(addr, max_addr)) /
  431. MAX_NUMNODES;
  432. min_size = max(min_size, FAKE_NODE_MIN_SIZE);
  433. if ((min_size & FAKE_NODE_MIN_HASH_MASK) < min_size)
  434. min_size = (min_size + FAKE_NODE_MIN_SIZE) &
  435. FAKE_NODE_MIN_HASH_MASK;
  436. if (size < min_size) {
  437. pr_err("Fake node size %LuMB too small, increasing to %LuMB\n",
  438. size >> 20, min_size >> 20);
  439. size = min_size;
  440. }
  441. size &= FAKE_NODE_MIN_HASH_MASK;
  442. for (i = 0; i < MAX_NUMNODES; i++)
  443. if (physnodes[i].start != physnodes[i].end)
  444. node_set(i, physnode_mask);
  445. /*
  446. * Fill physical nodes with fake nodes of size until there is no memory
  447. * left on any of them.
  448. */
  449. while (nodes_weight(physnode_mask)) {
  450. for_each_node_mask(i, physnode_mask) {
  451. u64 dma32_end = MAX_DMA32_PFN << PAGE_SHIFT;
  452. u64 end;
  453. end = find_end_of_node(physnodes[i].start,
  454. physnodes[i].end, size);
  455. /*
  456. * If there won't be at least FAKE_NODE_MIN_SIZE of
  457. * non-reserved memory in ZONE_DMA32 for the next node,
  458. * this one must extend to the boundary.
  459. */
  460. if (end < dma32_end && dma32_end - end -
  461. memblock_x86_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
  462. end = dma32_end;
  463. /*
  464. * If there won't be enough non-reserved memory for the
  465. * next node, this one must extend to the end of the
  466. * physical node.
  467. */
  468. if (physnodes[i].end - end -
  469. memblock_x86_hole_size(end, physnodes[i].end) < size)
  470. end = physnodes[i].end;
  471. /*
  472. * Setup the fake node that will be allocated as bootmem
  473. * later. If setup_node_range() returns non-zero, there
  474. * is no more memory available on this physical node.
  475. */
  476. if (setup_node_range(ret++, &physnodes[i].start,
  477. end - physnodes[i].start,
  478. physnodes[i].end) < 0)
  479. node_clear(i, physnode_mask);
  480. }
  481. }
  482. return ret;
  483. }
  484. /*
  485. * Sets up the system RAM area from start_pfn to last_pfn according to the
  486. * numa=fake command-line option.
  487. */
  488. static int __init numa_emulation(unsigned long start_pfn,
  489. unsigned long last_pfn, int acpi, int amd)
  490. {
  491. u64 addr = start_pfn << PAGE_SHIFT;
  492. u64 max_addr = last_pfn << PAGE_SHIFT;
  493. int num_nodes;
  494. int i;
  495. /*
  496. * If the numa=fake command-line contains a 'M' or 'G', it represents
  497. * the fixed node size. Otherwise, if it is just a single number N,
  498. * split the system RAM into N fake nodes.
  499. */
  500. if (strchr(cmdline, 'M') || strchr(cmdline, 'G')) {
  501. u64 size;
  502. size = memparse(cmdline, &cmdline);
  503. num_nodes = split_nodes_size_interleave(addr, max_addr, size);
  504. } else {
  505. unsigned long n;
  506. n = simple_strtoul(cmdline, NULL, 0);
  507. num_nodes = split_nodes_interleave(addr, max_addr, n);
  508. }
  509. if (num_nodes < 0)
  510. return num_nodes;
  511. memnode_shift = compute_hash_shift(nodes, num_nodes, NULL);
  512. if (memnode_shift < 0) {
  513. memnode_shift = 0;
  514. printk(KERN_ERR "No NUMA hash function found. NUMA emulation "
  515. "disabled.\n");
  516. return -1;
  517. }
  518. /*
  519. * We need to vacate all active ranges that may have been registered for
  520. * the e820 memory map.
  521. */
  522. remove_all_active_ranges();
  523. for_each_node_mask(i, node_possible_map) {
  524. memblock_x86_register_active_regions(i, nodes[i].start >> PAGE_SHIFT,
  525. nodes[i].end >> PAGE_SHIFT);
  526. setup_node_bootmem(i, nodes[i].start, nodes[i].end);
  527. }
  528. setup_physnodes(addr, max_addr, acpi, amd);
  529. fake_physnodes(acpi, amd, num_nodes);
  530. numa_init_array();
  531. return 0;
  532. }
  533. #endif /* CONFIG_NUMA_EMU */
  534. void __init initmem_init(unsigned long start_pfn, unsigned long last_pfn,
  535. int acpi, int amd)
  536. {
  537. int i;
  538. nodes_clear(node_possible_map);
  539. nodes_clear(node_online_map);
  540. #ifdef CONFIG_NUMA_EMU
  541. setup_physnodes(start_pfn << PAGE_SHIFT, last_pfn << PAGE_SHIFT,
  542. acpi, amd);
  543. if (cmdline && !numa_emulation(start_pfn, last_pfn, acpi, amd))
  544. return;
  545. setup_physnodes(start_pfn << PAGE_SHIFT, last_pfn << PAGE_SHIFT,
  546. acpi, amd);
  547. nodes_clear(node_possible_map);
  548. nodes_clear(node_online_map);
  549. #endif
  550. #ifdef CONFIG_ACPI_NUMA
  551. if (!numa_off && acpi && !acpi_scan_nodes(start_pfn << PAGE_SHIFT,
  552. last_pfn << PAGE_SHIFT))
  553. return;
  554. nodes_clear(node_possible_map);
  555. nodes_clear(node_online_map);
  556. #endif
  557. #ifdef CONFIG_AMD_NUMA
  558. if (!numa_off && amd && !amd_scan_nodes())
  559. return;
  560. nodes_clear(node_possible_map);
  561. nodes_clear(node_online_map);
  562. #endif
  563. printk(KERN_INFO "%s\n",
  564. numa_off ? "NUMA turned off" : "No NUMA configuration found");
  565. printk(KERN_INFO "Faking a node at %016lx-%016lx\n",
  566. start_pfn << PAGE_SHIFT,
  567. last_pfn << PAGE_SHIFT);
  568. /* setup dummy node covering all memory */
  569. memnode_shift = 63;
  570. memnodemap = memnode.embedded_map;
  571. memnodemap[0] = 0;
  572. node_set_online(0);
  573. node_set(0, node_possible_map);
  574. for (i = 0; i < nr_cpu_ids; i++)
  575. numa_set_node(i, 0);
  576. memblock_x86_register_active_regions(0, start_pfn, last_pfn);
  577. setup_node_bootmem(0, start_pfn << PAGE_SHIFT, last_pfn << PAGE_SHIFT);
  578. }
  579. unsigned long __init numa_free_all_bootmem(void)
  580. {
  581. unsigned long pages = 0;
  582. int i;
  583. for_each_online_node(i)
  584. pages += free_all_bootmem_node(NODE_DATA(i));
  585. pages += free_all_memory_core_early(MAX_NUMNODES);
  586. return pages;
  587. }
  588. #ifdef CONFIG_NUMA
  589. static __init int find_near_online_node(int node)
  590. {
  591. int n, val;
  592. int min_val = INT_MAX;
  593. int best_node = -1;
  594. for_each_online_node(n) {
  595. val = node_distance(node, n);
  596. if (val < min_val) {
  597. min_val = val;
  598. best_node = n;
  599. }
  600. }
  601. return best_node;
  602. }
  603. /*
  604. * Setup early cpu_to_node.
  605. *
  606. * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
  607. * and apicid_to_node[] tables have valid entries for a CPU.
  608. * This means we skip cpu_to_node[] initialisation for NUMA
  609. * emulation and faking node case (when running a kernel compiled
  610. * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
  611. * is already initialized in a round robin manner at numa_init_array,
  612. * prior to this call, and this initialization is good enough
  613. * for the fake NUMA cases.
  614. *
  615. * Called before the per_cpu areas are setup.
  616. */
  617. void __init init_cpu_to_node(void)
  618. {
  619. int cpu;
  620. u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid);
  621. BUG_ON(cpu_to_apicid == NULL);
  622. for_each_possible_cpu(cpu) {
  623. int node = numa_cpu_node(cpu);
  624. if (node == NUMA_NO_NODE)
  625. continue;
  626. if (!node_online(node))
  627. node = find_near_online_node(node);
  628. numa_set_node(cpu, node);
  629. }
  630. }
  631. #endif
  632. int __cpuinit numa_cpu_node(int cpu)
  633. {
  634. int apicid = early_per_cpu(x86_cpu_to_apicid, cpu);
  635. if (apicid != BAD_APICID)
  636. return __apicid_to_node[apicid];
  637. return NUMA_NO_NODE;
  638. }
  639. #ifndef CONFIG_DEBUG_PER_CPU_MAPS
  640. #ifndef CONFIG_NUMA_EMU
  641. void __cpuinit numa_add_cpu(int cpu)
  642. {
  643. cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
  644. }
  645. void __cpuinit numa_remove_cpu(int cpu)
  646. {
  647. cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
  648. }
  649. #else
  650. void __cpuinit numa_add_cpu(int cpu)
  651. {
  652. unsigned long addr;
  653. int physnid, nid;
  654. nid = numa_cpu_node(cpu);
  655. if (nid == NUMA_NO_NODE)
  656. nid = early_cpu_to_node(cpu);
  657. BUG_ON(nid == NUMA_NO_NODE || !node_online(nid));
  658. /*
  659. * Use the starting address of the emulated node to find which physical
  660. * node it is allocated on.
  661. */
  662. addr = node_start_pfn(nid) << PAGE_SHIFT;
  663. for (physnid = 0; physnid < MAX_NUMNODES; physnid++)
  664. if (addr >= physnodes[physnid].start &&
  665. addr < physnodes[physnid].end)
  666. break;
  667. /*
  668. * Map the cpu to each emulated node that is allocated on the physical
  669. * node of the cpu's apic id.
  670. */
  671. for_each_online_node(nid) {
  672. addr = node_start_pfn(nid) << PAGE_SHIFT;
  673. if (addr >= physnodes[physnid].start &&
  674. addr < physnodes[physnid].end)
  675. cpumask_set_cpu(cpu, node_to_cpumask_map[nid]);
  676. }
  677. }
  678. void __cpuinit numa_remove_cpu(int cpu)
  679. {
  680. int i;
  681. for_each_online_node(i)
  682. cpumask_clear_cpu(cpu, node_to_cpumask_map[i]);
  683. }
  684. #endif /* !CONFIG_NUMA_EMU */
  685. #else /* CONFIG_DEBUG_PER_CPU_MAPS */
  686. static struct cpumask __cpuinit *debug_cpumask_set_cpu(int cpu, int enable)
  687. {
  688. int node = early_cpu_to_node(cpu);
  689. struct cpumask *mask;
  690. char buf[64];
  691. mask = node_to_cpumask_map[node];
  692. if (!mask) {
  693. pr_err("node_to_cpumask_map[%i] NULL\n", node);
  694. dump_stack();
  695. return NULL;
  696. }
  697. cpulist_scnprintf(buf, sizeof(buf), mask);
  698. printk(KERN_DEBUG "%s cpu %d node %d: mask now %s\n",
  699. enable ? "numa_add_cpu" : "numa_remove_cpu",
  700. cpu, node, buf);
  701. return mask;
  702. }
  703. /*
  704. * --------- debug versions of the numa functions ---------
  705. */
  706. #ifndef CONFIG_NUMA_EMU
  707. static void __cpuinit numa_set_cpumask(int cpu, int enable)
  708. {
  709. struct cpumask *mask;
  710. mask = debug_cpumask_set_cpu(cpu, enable);
  711. if (!mask)
  712. return;
  713. if (enable)
  714. cpumask_set_cpu(cpu, mask);
  715. else
  716. cpumask_clear_cpu(cpu, mask);
  717. }
  718. #else
  719. static void __cpuinit numa_set_cpumask(int cpu, int enable)
  720. {
  721. int node = early_cpu_to_node(cpu);
  722. struct cpumask *mask;
  723. int i;
  724. for_each_online_node(i) {
  725. unsigned long addr;
  726. addr = node_start_pfn(i) << PAGE_SHIFT;
  727. if (addr < physnodes[node].start ||
  728. addr >= physnodes[node].end)
  729. continue;
  730. mask = debug_cpumask_set_cpu(cpu, enable);
  731. if (!mask)
  732. return;
  733. if (enable)
  734. cpumask_set_cpu(cpu, mask);
  735. else
  736. cpumask_clear_cpu(cpu, mask);
  737. }
  738. }
  739. #endif /* CONFIG_NUMA_EMU */
  740. void __cpuinit numa_add_cpu(int cpu)
  741. {
  742. numa_set_cpumask(cpu, 1);
  743. }
  744. void __cpuinit numa_remove_cpu(int cpu)
  745. {
  746. numa_set_cpumask(cpu, 0);
  747. }
  748. /*
  749. * --------- end of debug versions of the numa functions ---------
  750. */
  751. #endif /* CONFIG_DEBUG_PER_CPU_MAPS */