bnx2.c 156 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602
  1. /* bnx2.c: Broadcom NX2 network driver.
  2. *
  3. * Copyright (c) 2004-2007 Broadcom Corporation
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation.
  8. *
  9. * Written by: Michael Chan (mchan@broadcom.com)
  10. */
  11. #include <linux/module.h>
  12. #include <linux/moduleparam.h>
  13. #include <linux/kernel.h>
  14. #include <linux/timer.h>
  15. #include <linux/errno.h>
  16. #include <linux/ioport.h>
  17. #include <linux/slab.h>
  18. #include <linux/vmalloc.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pci.h>
  21. #include <linux/init.h>
  22. #include <linux/netdevice.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/skbuff.h>
  25. #include <linux/dma-mapping.h>
  26. #include <asm/bitops.h>
  27. #include <asm/io.h>
  28. #include <asm/irq.h>
  29. #include <linux/delay.h>
  30. #include <asm/byteorder.h>
  31. #include <asm/page.h>
  32. #include <linux/time.h>
  33. #include <linux/ethtool.h>
  34. #include <linux/mii.h>
  35. #ifdef NETIF_F_HW_VLAN_TX
  36. #include <linux/if_vlan.h>
  37. #define BCM_VLAN 1
  38. #endif
  39. #include <net/ip.h>
  40. #include <net/tcp.h>
  41. #include <net/checksum.h>
  42. #include <linux/workqueue.h>
  43. #include <linux/crc32.h>
  44. #include <linux/prefetch.h>
  45. #include <linux/cache.h>
  46. #include <linux/zlib.h>
  47. #include "bnx2.h"
  48. #include "bnx2_fw.h"
  49. #include "bnx2_fw2.h"
  50. #define DRV_MODULE_NAME "bnx2"
  51. #define PFX DRV_MODULE_NAME ": "
  52. #define DRV_MODULE_VERSION "1.5.10"
  53. #define DRV_MODULE_RELDATE "May 1, 2007"
  54. #define RUN_AT(x) (jiffies + (x))
  55. /* Time in jiffies before concluding the transmitter is hung. */
  56. #define TX_TIMEOUT (5*HZ)
  57. static const char version[] __devinitdata =
  58. "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  59. MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
  60. MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708 Driver");
  61. MODULE_LICENSE("GPL");
  62. MODULE_VERSION(DRV_MODULE_VERSION);
  63. static int disable_msi = 0;
  64. module_param(disable_msi, int, 0);
  65. MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
  66. typedef enum {
  67. BCM5706 = 0,
  68. NC370T,
  69. NC370I,
  70. BCM5706S,
  71. NC370F,
  72. BCM5708,
  73. BCM5708S,
  74. BCM5709,
  75. BCM5709S,
  76. } board_t;
  77. /* indexed by board_t, above */
  78. static const struct {
  79. char *name;
  80. } board_info[] __devinitdata = {
  81. { "Broadcom NetXtreme II BCM5706 1000Base-T" },
  82. { "HP NC370T Multifunction Gigabit Server Adapter" },
  83. { "HP NC370i Multifunction Gigabit Server Adapter" },
  84. { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
  85. { "HP NC370F Multifunction Gigabit Server Adapter" },
  86. { "Broadcom NetXtreme II BCM5708 1000Base-T" },
  87. { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
  88. { "Broadcom NetXtreme II BCM5709 1000Base-T" },
  89. { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
  90. };
  91. static struct pci_device_id bnx2_pci_tbl[] = {
  92. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  93. PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
  94. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  95. PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
  96. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  97. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
  98. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
  99. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
  100. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  101. PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
  102. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  103. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
  104. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
  105. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
  106. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
  107. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
  108. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
  109. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
  110. { 0, }
  111. };
  112. static struct flash_spec flash_table[] =
  113. {
  114. /* Slow EEPROM */
  115. {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
  116. 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  117. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  118. "EEPROM - slow"},
  119. /* Expansion entry 0001 */
  120. {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
  121. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  122. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  123. "Entry 0001"},
  124. /* Saifun SA25F010 (non-buffered flash) */
  125. /* strap, cfg1, & write1 need updates */
  126. {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
  127. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  128. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
  129. "Non-buffered flash (128kB)"},
  130. /* Saifun SA25F020 (non-buffered flash) */
  131. /* strap, cfg1, & write1 need updates */
  132. {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
  133. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  134. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
  135. "Non-buffered flash (256kB)"},
  136. /* Expansion entry 0100 */
  137. {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
  138. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  139. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  140. "Entry 0100"},
  141. /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
  142. {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
  143. 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  144. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
  145. "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
  146. /* Entry 0110: ST M45PE20 (non-buffered flash)*/
  147. {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
  148. 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  149. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
  150. "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
  151. /* Saifun SA25F005 (non-buffered flash) */
  152. /* strap, cfg1, & write1 need updates */
  153. {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
  154. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  155. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
  156. "Non-buffered flash (64kB)"},
  157. /* Fast EEPROM */
  158. {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
  159. 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  160. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  161. "EEPROM - fast"},
  162. /* Expansion entry 1001 */
  163. {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
  164. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  165. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  166. "Entry 1001"},
  167. /* Expansion entry 1010 */
  168. {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
  169. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  170. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  171. "Entry 1010"},
  172. /* ATMEL AT45DB011B (buffered flash) */
  173. {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
  174. 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  175. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
  176. "Buffered flash (128kB)"},
  177. /* Expansion entry 1100 */
  178. {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
  179. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  180. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  181. "Entry 1100"},
  182. /* Expansion entry 1101 */
  183. {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
  184. 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  185. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  186. "Entry 1101"},
  187. /* Ateml Expansion entry 1110 */
  188. {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
  189. 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  190. BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
  191. "Entry 1110 (Atmel)"},
  192. /* ATMEL AT45DB021B (buffered flash) */
  193. {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
  194. 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  195. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
  196. "Buffered flash (256kB)"},
  197. };
  198. MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
  199. static inline u32 bnx2_tx_avail(struct bnx2 *bp)
  200. {
  201. u32 diff;
  202. smp_mb();
  203. /* The ring uses 256 indices for 255 entries, one of them
  204. * needs to be skipped.
  205. */
  206. diff = bp->tx_prod - bp->tx_cons;
  207. if (unlikely(diff >= TX_DESC_CNT)) {
  208. diff &= 0xffff;
  209. if (diff == TX_DESC_CNT)
  210. diff = MAX_TX_DESC_CNT;
  211. }
  212. return (bp->tx_ring_size - diff);
  213. }
  214. static u32
  215. bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
  216. {
  217. u32 val;
  218. spin_lock_bh(&bp->indirect_lock);
  219. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  220. val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW);
  221. spin_unlock_bh(&bp->indirect_lock);
  222. return val;
  223. }
  224. static void
  225. bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
  226. {
  227. spin_lock_bh(&bp->indirect_lock);
  228. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  229. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
  230. spin_unlock_bh(&bp->indirect_lock);
  231. }
  232. static void
  233. bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
  234. {
  235. offset += cid_addr;
  236. spin_lock_bh(&bp->indirect_lock);
  237. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  238. int i;
  239. REG_WR(bp, BNX2_CTX_CTX_DATA, val);
  240. REG_WR(bp, BNX2_CTX_CTX_CTRL,
  241. offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
  242. for (i = 0; i < 5; i++) {
  243. u32 val;
  244. val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
  245. if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
  246. break;
  247. udelay(5);
  248. }
  249. } else {
  250. REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
  251. REG_WR(bp, BNX2_CTX_DATA, val);
  252. }
  253. spin_unlock_bh(&bp->indirect_lock);
  254. }
  255. static int
  256. bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
  257. {
  258. u32 val1;
  259. int i, ret;
  260. if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
  261. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  262. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  263. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  264. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  265. udelay(40);
  266. }
  267. val1 = (bp->phy_addr << 21) | (reg << 16) |
  268. BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
  269. BNX2_EMAC_MDIO_COMM_START_BUSY;
  270. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  271. for (i = 0; i < 50; i++) {
  272. udelay(10);
  273. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  274. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  275. udelay(5);
  276. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  277. val1 &= BNX2_EMAC_MDIO_COMM_DATA;
  278. break;
  279. }
  280. }
  281. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
  282. *val = 0x0;
  283. ret = -EBUSY;
  284. }
  285. else {
  286. *val = val1;
  287. ret = 0;
  288. }
  289. if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
  290. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  291. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  292. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  293. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  294. udelay(40);
  295. }
  296. return ret;
  297. }
  298. static int
  299. bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
  300. {
  301. u32 val1;
  302. int i, ret;
  303. if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
  304. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  305. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  306. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  307. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  308. udelay(40);
  309. }
  310. val1 = (bp->phy_addr << 21) | (reg << 16) | val |
  311. BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
  312. BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
  313. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  314. for (i = 0; i < 50; i++) {
  315. udelay(10);
  316. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  317. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  318. udelay(5);
  319. break;
  320. }
  321. }
  322. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
  323. ret = -EBUSY;
  324. else
  325. ret = 0;
  326. if (bp->phy_flags & PHY_INT_MODE_AUTO_POLLING_FLAG) {
  327. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  328. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  329. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  330. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  331. udelay(40);
  332. }
  333. return ret;
  334. }
  335. static void
  336. bnx2_disable_int(struct bnx2 *bp)
  337. {
  338. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  339. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  340. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  341. }
  342. static void
  343. bnx2_enable_int(struct bnx2 *bp)
  344. {
  345. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  346. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  347. BNX2_PCICFG_INT_ACK_CMD_MASK_INT | bp->last_status_idx);
  348. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  349. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID | bp->last_status_idx);
  350. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  351. }
  352. static void
  353. bnx2_disable_int_sync(struct bnx2 *bp)
  354. {
  355. atomic_inc(&bp->intr_sem);
  356. bnx2_disable_int(bp);
  357. synchronize_irq(bp->pdev->irq);
  358. }
  359. static void
  360. bnx2_netif_stop(struct bnx2 *bp)
  361. {
  362. bnx2_disable_int_sync(bp);
  363. if (netif_running(bp->dev)) {
  364. netif_poll_disable(bp->dev);
  365. netif_tx_disable(bp->dev);
  366. bp->dev->trans_start = jiffies; /* prevent tx timeout */
  367. }
  368. }
  369. static void
  370. bnx2_netif_start(struct bnx2 *bp)
  371. {
  372. if (atomic_dec_and_test(&bp->intr_sem)) {
  373. if (netif_running(bp->dev)) {
  374. netif_wake_queue(bp->dev);
  375. netif_poll_enable(bp->dev);
  376. bnx2_enable_int(bp);
  377. }
  378. }
  379. }
  380. static void
  381. bnx2_free_mem(struct bnx2 *bp)
  382. {
  383. int i;
  384. for (i = 0; i < bp->ctx_pages; i++) {
  385. if (bp->ctx_blk[i]) {
  386. pci_free_consistent(bp->pdev, BCM_PAGE_SIZE,
  387. bp->ctx_blk[i],
  388. bp->ctx_blk_mapping[i]);
  389. bp->ctx_blk[i] = NULL;
  390. }
  391. }
  392. if (bp->status_blk) {
  393. pci_free_consistent(bp->pdev, bp->status_stats_size,
  394. bp->status_blk, bp->status_blk_mapping);
  395. bp->status_blk = NULL;
  396. bp->stats_blk = NULL;
  397. }
  398. if (bp->tx_desc_ring) {
  399. pci_free_consistent(bp->pdev,
  400. sizeof(struct tx_bd) * TX_DESC_CNT,
  401. bp->tx_desc_ring, bp->tx_desc_mapping);
  402. bp->tx_desc_ring = NULL;
  403. }
  404. kfree(bp->tx_buf_ring);
  405. bp->tx_buf_ring = NULL;
  406. for (i = 0; i < bp->rx_max_ring; i++) {
  407. if (bp->rx_desc_ring[i])
  408. pci_free_consistent(bp->pdev,
  409. sizeof(struct rx_bd) * RX_DESC_CNT,
  410. bp->rx_desc_ring[i],
  411. bp->rx_desc_mapping[i]);
  412. bp->rx_desc_ring[i] = NULL;
  413. }
  414. vfree(bp->rx_buf_ring);
  415. bp->rx_buf_ring = NULL;
  416. }
  417. static int
  418. bnx2_alloc_mem(struct bnx2 *bp)
  419. {
  420. int i, status_blk_size;
  421. bp->tx_buf_ring = kzalloc(sizeof(struct sw_bd) * TX_DESC_CNT,
  422. GFP_KERNEL);
  423. if (bp->tx_buf_ring == NULL)
  424. return -ENOMEM;
  425. bp->tx_desc_ring = pci_alloc_consistent(bp->pdev,
  426. sizeof(struct tx_bd) *
  427. TX_DESC_CNT,
  428. &bp->tx_desc_mapping);
  429. if (bp->tx_desc_ring == NULL)
  430. goto alloc_mem_err;
  431. bp->rx_buf_ring = vmalloc(sizeof(struct sw_bd) * RX_DESC_CNT *
  432. bp->rx_max_ring);
  433. if (bp->rx_buf_ring == NULL)
  434. goto alloc_mem_err;
  435. memset(bp->rx_buf_ring, 0, sizeof(struct sw_bd) * RX_DESC_CNT *
  436. bp->rx_max_ring);
  437. for (i = 0; i < bp->rx_max_ring; i++) {
  438. bp->rx_desc_ring[i] =
  439. pci_alloc_consistent(bp->pdev,
  440. sizeof(struct rx_bd) * RX_DESC_CNT,
  441. &bp->rx_desc_mapping[i]);
  442. if (bp->rx_desc_ring[i] == NULL)
  443. goto alloc_mem_err;
  444. }
  445. /* Combine status and statistics blocks into one allocation. */
  446. status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
  447. bp->status_stats_size = status_blk_size +
  448. sizeof(struct statistics_block);
  449. bp->status_blk = pci_alloc_consistent(bp->pdev, bp->status_stats_size,
  450. &bp->status_blk_mapping);
  451. if (bp->status_blk == NULL)
  452. goto alloc_mem_err;
  453. memset(bp->status_blk, 0, bp->status_stats_size);
  454. bp->stats_blk = (void *) ((unsigned long) bp->status_blk +
  455. status_blk_size);
  456. bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
  457. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  458. bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
  459. if (bp->ctx_pages == 0)
  460. bp->ctx_pages = 1;
  461. for (i = 0; i < bp->ctx_pages; i++) {
  462. bp->ctx_blk[i] = pci_alloc_consistent(bp->pdev,
  463. BCM_PAGE_SIZE,
  464. &bp->ctx_blk_mapping[i]);
  465. if (bp->ctx_blk[i] == NULL)
  466. goto alloc_mem_err;
  467. }
  468. }
  469. return 0;
  470. alloc_mem_err:
  471. bnx2_free_mem(bp);
  472. return -ENOMEM;
  473. }
  474. static void
  475. bnx2_report_fw_link(struct bnx2 *bp)
  476. {
  477. u32 fw_link_status = 0;
  478. if (bp->link_up) {
  479. u32 bmsr;
  480. switch (bp->line_speed) {
  481. case SPEED_10:
  482. if (bp->duplex == DUPLEX_HALF)
  483. fw_link_status = BNX2_LINK_STATUS_10HALF;
  484. else
  485. fw_link_status = BNX2_LINK_STATUS_10FULL;
  486. break;
  487. case SPEED_100:
  488. if (bp->duplex == DUPLEX_HALF)
  489. fw_link_status = BNX2_LINK_STATUS_100HALF;
  490. else
  491. fw_link_status = BNX2_LINK_STATUS_100FULL;
  492. break;
  493. case SPEED_1000:
  494. if (bp->duplex == DUPLEX_HALF)
  495. fw_link_status = BNX2_LINK_STATUS_1000HALF;
  496. else
  497. fw_link_status = BNX2_LINK_STATUS_1000FULL;
  498. break;
  499. case SPEED_2500:
  500. if (bp->duplex == DUPLEX_HALF)
  501. fw_link_status = BNX2_LINK_STATUS_2500HALF;
  502. else
  503. fw_link_status = BNX2_LINK_STATUS_2500FULL;
  504. break;
  505. }
  506. fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
  507. if (bp->autoneg) {
  508. fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
  509. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  510. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  511. if (!(bmsr & BMSR_ANEGCOMPLETE) ||
  512. bp->phy_flags & PHY_PARALLEL_DETECT_FLAG)
  513. fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
  514. else
  515. fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
  516. }
  517. }
  518. else
  519. fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
  520. REG_WR_IND(bp, bp->shmem_base + BNX2_LINK_STATUS, fw_link_status);
  521. }
  522. static void
  523. bnx2_report_link(struct bnx2 *bp)
  524. {
  525. if (bp->link_up) {
  526. netif_carrier_on(bp->dev);
  527. printk(KERN_INFO PFX "%s NIC Link is Up, ", bp->dev->name);
  528. printk("%d Mbps ", bp->line_speed);
  529. if (bp->duplex == DUPLEX_FULL)
  530. printk("full duplex");
  531. else
  532. printk("half duplex");
  533. if (bp->flow_ctrl) {
  534. if (bp->flow_ctrl & FLOW_CTRL_RX) {
  535. printk(", receive ");
  536. if (bp->flow_ctrl & FLOW_CTRL_TX)
  537. printk("& transmit ");
  538. }
  539. else {
  540. printk(", transmit ");
  541. }
  542. printk("flow control ON");
  543. }
  544. printk("\n");
  545. }
  546. else {
  547. netif_carrier_off(bp->dev);
  548. printk(KERN_ERR PFX "%s NIC Link is Down\n", bp->dev->name);
  549. }
  550. bnx2_report_fw_link(bp);
  551. }
  552. static void
  553. bnx2_resolve_flow_ctrl(struct bnx2 *bp)
  554. {
  555. u32 local_adv, remote_adv;
  556. bp->flow_ctrl = 0;
  557. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  558. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  559. if (bp->duplex == DUPLEX_FULL) {
  560. bp->flow_ctrl = bp->req_flow_ctrl;
  561. }
  562. return;
  563. }
  564. if (bp->duplex != DUPLEX_FULL) {
  565. return;
  566. }
  567. if ((bp->phy_flags & PHY_SERDES_FLAG) &&
  568. (CHIP_NUM(bp) == CHIP_NUM_5708)) {
  569. u32 val;
  570. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  571. if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
  572. bp->flow_ctrl |= FLOW_CTRL_TX;
  573. if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
  574. bp->flow_ctrl |= FLOW_CTRL_RX;
  575. return;
  576. }
  577. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  578. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  579. if (bp->phy_flags & PHY_SERDES_FLAG) {
  580. u32 new_local_adv = 0;
  581. u32 new_remote_adv = 0;
  582. if (local_adv & ADVERTISE_1000XPAUSE)
  583. new_local_adv |= ADVERTISE_PAUSE_CAP;
  584. if (local_adv & ADVERTISE_1000XPSE_ASYM)
  585. new_local_adv |= ADVERTISE_PAUSE_ASYM;
  586. if (remote_adv & ADVERTISE_1000XPAUSE)
  587. new_remote_adv |= ADVERTISE_PAUSE_CAP;
  588. if (remote_adv & ADVERTISE_1000XPSE_ASYM)
  589. new_remote_adv |= ADVERTISE_PAUSE_ASYM;
  590. local_adv = new_local_adv;
  591. remote_adv = new_remote_adv;
  592. }
  593. /* See Table 28B-3 of 802.3ab-1999 spec. */
  594. if (local_adv & ADVERTISE_PAUSE_CAP) {
  595. if(local_adv & ADVERTISE_PAUSE_ASYM) {
  596. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  597. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  598. }
  599. else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
  600. bp->flow_ctrl = FLOW_CTRL_RX;
  601. }
  602. }
  603. else {
  604. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  605. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  606. }
  607. }
  608. }
  609. else if (local_adv & ADVERTISE_PAUSE_ASYM) {
  610. if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
  611. (remote_adv & ADVERTISE_PAUSE_ASYM)) {
  612. bp->flow_ctrl = FLOW_CTRL_TX;
  613. }
  614. }
  615. }
  616. static int
  617. bnx2_5709s_linkup(struct bnx2 *bp)
  618. {
  619. u32 val, speed;
  620. bp->link_up = 1;
  621. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
  622. bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
  623. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  624. if ((bp->autoneg & AUTONEG_SPEED) == 0) {
  625. bp->line_speed = bp->req_line_speed;
  626. bp->duplex = bp->req_duplex;
  627. return 0;
  628. }
  629. speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
  630. switch (speed) {
  631. case MII_BNX2_GP_TOP_AN_SPEED_10:
  632. bp->line_speed = SPEED_10;
  633. break;
  634. case MII_BNX2_GP_TOP_AN_SPEED_100:
  635. bp->line_speed = SPEED_100;
  636. break;
  637. case MII_BNX2_GP_TOP_AN_SPEED_1G:
  638. case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
  639. bp->line_speed = SPEED_1000;
  640. break;
  641. case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
  642. bp->line_speed = SPEED_2500;
  643. break;
  644. }
  645. if (val & MII_BNX2_GP_TOP_AN_FD)
  646. bp->duplex = DUPLEX_FULL;
  647. else
  648. bp->duplex = DUPLEX_HALF;
  649. return 0;
  650. }
  651. static int
  652. bnx2_5708s_linkup(struct bnx2 *bp)
  653. {
  654. u32 val;
  655. bp->link_up = 1;
  656. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  657. switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
  658. case BCM5708S_1000X_STAT1_SPEED_10:
  659. bp->line_speed = SPEED_10;
  660. break;
  661. case BCM5708S_1000X_STAT1_SPEED_100:
  662. bp->line_speed = SPEED_100;
  663. break;
  664. case BCM5708S_1000X_STAT1_SPEED_1G:
  665. bp->line_speed = SPEED_1000;
  666. break;
  667. case BCM5708S_1000X_STAT1_SPEED_2G5:
  668. bp->line_speed = SPEED_2500;
  669. break;
  670. }
  671. if (val & BCM5708S_1000X_STAT1_FD)
  672. bp->duplex = DUPLEX_FULL;
  673. else
  674. bp->duplex = DUPLEX_HALF;
  675. return 0;
  676. }
  677. static int
  678. bnx2_5706s_linkup(struct bnx2 *bp)
  679. {
  680. u32 bmcr, local_adv, remote_adv, common;
  681. bp->link_up = 1;
  682. bp->line_speed = SPEED_1000;
  683. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  684. if (bmcr & BMCR_FULLDPLX) {
  685. bp->duplex = DUPLEX_FULL;
  686. }
  687. else {
  688. bp->duplex = DUPLEX_HALF;
  689. }
  690. if (!(bmcr & BMCR_ANENABLE)) {
  691. return 0;
  692. }
  693. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  694. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  695. common = local_adv & remote_adv;
  696. if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
  697. if (common & ADVERTISE_1000XFULL) {
  698. bp->duplex = DUPLEX_FULL;
  699. }
  700. else {
  701. bp->duplex = DUPLEX_HALF;
  702. }
  703. }
  704. return 0;
  705. }
  706. static int
  707. bnx2_copper_linkup(struct bnx2 *bp)
  708. {
  709. u32 bmcr;
  710. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  711. if (bmcr & BMCR_ANENABLE) {
  712. u32 local_adv, remote_adv, common;
  713. bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
  714. bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
  715. common = local_adv & (remote_adv >> 2);
  716. if (common & ADVERTISE_1000FULL) {
  717. bp->line_speed = SPEED_1000;
  718. bp->duplex = DUPLEX_FULL;
  719. }
  720. else if (common & ADVERTISE_1000HALF) {
  721. bp->line_speed = SPEED_1000;
  722. bp->duplex = DUPLEX_HALF;
  723. }
  724. else {
  725. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  726. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  727. common = local_adv & remote_adv;
  728. if (common & ADVERTISE_100FULL) {
  729. bp->line_speed = SPEED_100;
  730. bp->duplex = DUPLEX_FULL;
  731. }
  732. else if (common & ADVERTISE_100HALF) {
  733. bp->line_speed = SPEED_100;
  734. bp->duplex = DUPLEX_HALF;
  735. }
  736. else if (common & ADVERTISE_10FULL) {
  737. bp->line_speed = SPEED_10;
  738. bp->duplex = DUPLEX_FULL;
  739. }
  740. else if (common & ADVERTISE_10HALF) {
  741. bp->line_speed = SPEED_10;
  742. bp->duplex = DUPLEX_HALF;
  743. }
  744. else {
  745. bp->line_speed = 0;
  746. bp->link_up = 0;
  747. }
  748. }
  749. }
  750. else {
  751. if (bmcr & BMCR_SPEED100) {
  752. bp->line_speed = SPEED_100;
  753. }
  754. else {
  755. bp->line_speed = SPEED_10;
  756. }
  757. if (bmcr & BMCR_FULLDPLX) {
  758. bp->duplex = DUPLEX_FULL;
  759. }
  760. else {
  761. bp->duplex = DUPLEX_HALF;
  762. }
  763. }
  764. return 0;
  765. }
  766. static int
  767. bnx2_set_mac_link(struct bnx2 *bp)
  768. {
  769. u32 val;
  770. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
  771. if (bp->link_up && (bp->line_speed == SPEED_1000) &&
  772. (bp->duplex == DUPLEX_HALF)) {
  773. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
  774. }
  775. /* Configure the EMAC mode register. */
  776. val = REG_RD(bp, BNX2_EMAC_MODE);
  777. val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  778. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  779. BNX2_EMAC_MODE_25G_MODE);
  780. if (bp->link_up) {
  781. switch (bp->line_speed) {
  782. case SPEED_10:
  783. if (CHIP_NUM(bp) != CHIP_NUM_5706) {
  784. val |= BNX2_EMAC_MODE_PORT_MII_10M;
  785. break;
  786. }
  787. /* fall through */
  788. case SPEED_100:
  789. val |= BNX2_EMAC_MODE_PORT_MII;
  790. break;
  791. case SPEED_2500:
  792. val |= BNX2_EMAC_MODE_25G_MODE;
  793. /* fall through */
  794. case SPEED_1000:
  795. val |= BNX2_EMAC_MODE_PORT_GMII;
  796. break;
  797. }
  798. }
  799. else {
  800. val |= BNX2_EMAC_MODE_PORT_GMII;
  801. }
  802. /* Set the MAC to operate in the appropriate duplex mode. */
  803. if (bp->duplex == DUPLEX_HALF)
  804. val |= BNX2_EMAC_MODE_HALF_DUPLEX;
  805. REG_WR(bp, BNX2_EMAC_MODE, val);
  806. /* Enable/disable rx PAUSE. */
  807. bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
  808. if (bp->flow_ctrl & FLOW_CTRL_RX)
  809. bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
  810. REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
  811. /* Enable/disable tx PAUSE. */
  812. val = REG_RD(bp, BNX2_EMAC_TX_MODE);
  813. val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
  814. if (bp->flow_ctrl & FLOW_CTRL_TX)
  815. val |= BNX2_EMAC_TX_MODE_FLOW_EN;
  816. REG_WR(bp, BNX2_EMAC_TX_MODE, val);
  817. /* Acknowledge the interrupt. */
  818. REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
  819. return 0;
  820. }
  821. static void
  822. bnx2_enable_bmsr1(struct bnx2 *bp)
  823. {
  824. if ((bp->phy_flags & PHY_SERDES_FLAG) &&
  825. (CHIP_NUM(bp) == CHIP_NUM_5709))
  826. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  827. MII_BNX2_BLK_ADDR_GP_STATUS);
  828. }
  829. static void
  830. bnx2_disable_bmsr1(struct bnx2 *bp)
  831. {
  832. if ((bp->phy_flags & PHY_SERDES_FLAG) &&
  833. (CHIP_NUM(bp) == CHIP_NUM_5709))
  834. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  835. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  836. }
  837. static int
  838. bnx2_test_and_enable_2g5(struct bnx2 *bp)
  839. {
  840. u32 up1;
  841. int ret = 1;
  842. if (!(bp->phy_flags & PHY_2_5G_CAPABLE_FLAG))
  843. return 0;
  844. if (bp->autoneg & AUTONEG_SPEED)
  845. bp->advertising |= ADVERTISED_2500baseX_Full;
  846. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  847. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  848. bnx2_read_phy(bp, bp->mii_up1, &up1);
  849. if (!(up1 & BCM5708S_UP1_2G5)) {
  850. up1 |= BCM5708S_UP1_2G5;
  851. bnx2_write_phy(bp, bp->mii_up1, up1);
  852. ret = 0;
  853. }
  854. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  855. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  856. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  857. return ret;
  858. }
  859. static int
  860. bnx2_test_and_disable_2g5(struct bnx2 *bp)
  861. {
  862. u32 up1;
  863. int ret = 0;
  864. if (!(bp->phy_flags & PHY_2_5G_CAPABLE_FLAG))
  865. return 0;
  866. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  867. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  868. bnx2_read_phy(bp, bp->mii_up1, &up1);
  869. if (up1 & BCM5708S_UP1_2G5) {
  870. up1 &= ~BCM5708S_UP1_2G5;
  871. bnx2_write_phy(bp, bp->mii_up1, up1);
  872. ret = 1;
  873. }
  874. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  875. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  876. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  877. return ret;
  878. }
  879. static void
  880. bnx2_enable_forced_2g5(struct bnx2 *bp)
  881. {
  882. u32 bmcr;
  883. if (!(bp->phy_flags & PHY_2_5G_CAPABLE_FLAG))
  884. return;
  885. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  886. u32 val;
  887. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  888. MII_BNX2_BLK_ADDR_SERDES_DIG);
  889. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
  890. val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
  891. val |= MII_BNX2_SD_MISC1_FORCE | MII_BNX2_SD_MISC1_FORCE_2_5G;
  892. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  893. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  894. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  895. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  896. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  897. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  898. bmcr |= BCM5708S_BMCR_FORCE_2500;
  899. }
  900. if (bp->autoneg & AUTONEG_SPEED) {
  901. bmcr &= ~BMCR_ANENABLE;
  902. if (bp->req_duplex == DUPLEX_FULL)
  903. bmcr |= BMCR_FULLDPLX;
  904. }
  905. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  906. }
  907. static void
  908. bnx2_disable_forced_2g5(struct bnx2 *bp)
  909. {
  910. u32 bmcr;
  911. if (!(bp->phy_flags & PHY_2_5G_CAPABLE_FLAG))
  912. return;
  913. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  914. u32 val;
  915. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  916. MII_BNX2_BLK_ADDR_SERDES_DIG);
  917. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
  918. val &= ~MII_BNX2_SD_MISC1_FORCE;
  919. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  920. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  921. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  922. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  923. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  924. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  925. bmcr &= ~BCM5708S_BMCR_FORCE_2500;
  926. }
  927. if (bp->autoneg & AUTONEG_SPEED)
  928. bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
  929. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  930. }
  931. static int
  932. bnx2_set_link(struct bnx2 *bp)
  933. {
  934. u32 bmsr;
  935. u8 link_up;
  936. if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
  937. bp->link_up = 1;
  938. return 0;
  939. }
  940. link_up = bp->link_up;
  941. bnx2_enable_bmsr1(bp);
  942. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  943. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  944. bnx2_disable_bmsr1(bp);
  945. if ((bp->phy_flags & PHY_SERDES_FLAG) &&
  946. (CHIP_NUM(bp) == CHIP_NUM_5706)) {
  947. u32 val;
  948. val = REG_RD(bp, BNX2_EMAC_STATUS);
  949. if (val & BNX2_EMAC_STATUS_LINK)
  950. bmsr |= BMSR_LSTATUS;
  951. else
  952. bmsr &= ~BMSR_LSTATUS;
  953. }
  954. if (bmsr & BMSR_LSTATUS) {
  955. bp->link_up = 1;
  956. if (bp->phy_flags & PHY_SERDES_FLAG) {
  957. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  958. bnx2_5706s_linkup(bp);
  959. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  960. bnx2_5708s_linkup(bp);
  961. else if (CHIP_NUM(bp) == CHIP_NUM_5709)
  962. bnx2_5709s_linkup(bp);
  963. }
  964. else {
  965. bnx2_copper_linkup(bp);
  966. }
  967. bnx2_resolve_flow_ctrl(bp);
  968. }
  969. else {
  970. if ((bp->phy_flags & PHY_SERDES_FLAG) &&
  971. (bp->autoneg & AUTONEG_SPEED))
  972. bnx2_disable_forced_2g5(bp);
  973. bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG;
  974. bp->link_up = 0;
  975. }
  976. if (bp->link_up != link_up) {
  977. bnx2_report_link(bp);
  978. }
  979. bnx2_set_mac_link(bp);
  980. return 0;
  981. }
  982. static int
  983. bnx2_reset_phy(struct bnx2 *bp)
  984. {
  985. int i;
  986. u32 reg;
  987. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
  988. #define PHY_RESET_MAX_WAIT 100
  989. for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
  990. udelay(10);
  991. bnx2_read_phy(bp, bp->mii_bmcr, &reg);
  992. if (!(reg & BMCR_RESET)) {
  993. udelay(20);
  994. break;
  995. }
  996. }
  997. if (i == PHY_RESET_MAX_WAIT) {
  998. return -EBUSY;
  999. }
  1000. return 0;
  1001. }
  1002. static u32
  1003. bnx2_phy_get_pause_adv(struct bnx2 *bp)
  1004. {
  1005. u32 adv = 0;
  1006. if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
  1007. (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
  1008. if (bp->phy_flags & PHY_SERDES_FLAG) {
  1009. adv = ADVERTISE_1000XPAUSE;
  1010. }
  1011. else {
  1012. adv = ADVERTISE_PAUSE_CAP;
  1013. }
  1014. }
  1015. else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
  1016. if (bp->phy_flags & PHY_SERDES_FLAG) {
  1017. adv = ADVERTISE_1000XPSE_ASYM;
  1018. }
  1019. else {
  1020. adv = ADVERTISE_PAUSE_ASYM;
  1021. }
  1022. }
  1023. else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
  1024. if (bp->phy_flags & PHY_SERDES_FLAG) {
  1025. adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
  1026. }
  1027. else {
  1028. adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  1029. }
  1030. }
  1031. return adv;
  1032. }
  1033. static int
  1034. bnx2_setup_serdes_phy(struct bnx2 *bp)
  1035. {
  1036. u32 adv, bmcr;
  1037. u32 new_adv = 0;
  1038. if (!(bp->autoneg & AUTONEG_SPEED)) {
  1039. u32 new_bmcr;
  1040. int force_link_down = 0;
  1041. if (bp->req_line_speed == SPEED_2500) {
  1042. if (!bnx2_test_and_enable_2g5(bp))
  1043. force_link_down = 1;
  1044. } else if (bp->req_line_speed == SPEED_1000) {
  1045. if (bnx2_test_and_disable_2g5(bp))
  1046. force_link_down = 1;
  1047. }
  1048. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1049. adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
  1050. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1051. new_bmcr = bmcr & ~BMCR_ANENABLE;
  1052. new_bmcr |= BMCR_SPEED1000;
  1053. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1054. if (bp->req_line_speed == SPEED_2500)
  1055. bnx2_enable_forced_2g5(bp);
  1056. else if (bp->req_line_speed == SPEED_1000) {
  1057. bnx2_disable_forced_2g5(bp);
  1058. new_bmcr &= ~0x2000;
  1059. }
  1060. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1061. if (bp->req_line_speed == SPEED_2500)
  1062. new_bmcr |= BCM5708S_BMCR_FORCE_2500;
  1063. else
  1064. new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
  1065. }
  1066. if (bp->req_duplex == DUPLEX_FULL) {
  1067. adv |= ADVERTISE_1000XFULL;
  1068. new_bmcr |= BMCR_FULLDPLX;
  1069. }
  1070. else {
  1071. adv |= ADVERTISE_1000XHALF;
  1072. new_bmcr &= ~BMCR_FULLDPLX;
  1073. }
  1074. if ((new_bmcr != bmcr) || (force_link_down)) {
  1075. /* Force a link down visible on the other side */
  1076. if (bp->link_up) {
  1077. bnx2_write_phy(bp, bp->mii_adv, adv &
  1078. ~(ADVERTISE_1000XFULL |
  1079. ADVERTISE_1000XHALF));
  1080. bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
  1081. BMCR_ANRESTART | BMCR_ANENABLE);
  1082. bp->link_up = 0;
  1083. netif_carrier_off(bp->dev);
  1084. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1085. bnx2_report_link(bp);
  1086. }
  1087. bnx2_write_phy(bp, bp->mii_adv, adv);
  1088. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1089. } else {
  1090. bnx2_resolve_flow_ctrl(bp);
  1091. bnx2_set_mac_link(bp);
  1092. }
  1093. return 0;
  1094. }
  1095. bnx2_test_and_enable_2g5(bp);
  1096. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1097. new_adv |= ADVERTISE_1000XFULL;
  1098. new_adv |= bnx2_phy_get_pause_adv(bp);
  1099. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1100. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1101. bp->serdes_an_pending = 0;
  1102. if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
  1103. /* Force a link down visible on the other side */
  1104. if (bp->link_up) {
  1105. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1106. spin_unlock_bh(&bp->phy_lock);
  1107. msleep(20);
  1108. spin_lock_bh(&bp->phy_lock);
  1109. }
  1110. bnx2_write_phy(bp, bp->mii_adv, new_adv);
  1111. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
  1112. BMCR_ANENABLE);
  1113. /* Speed up link-up time when the link partner
  1114. * does not autonegotiate which is very common
  1115. * in blade servers. Some blade servers use
  1116. * IPMI for kerboard input and it's important
  1117. * to minimize link disruptions. Autoneg. involves
  1118. * exchanging base pages plus 3 next pages and
  1119. * normally completes in about 120 msec.
  1120. */
  1121. bp->current_interval = SERDES_AN_TIMEOUT;
  1122. bp->serdes_an_pending = 1;
  1123. mod_timer(&bp->timer, jiffies + bp->current_interval);
  1124. } else {
  1125. bnx2_resolve_flow_ctrl(bp);
  1126. bnx2_set_mac_link(bp);
  1127. }
  1128. return 0;
  1129. }
  1130. #define ETHTOOL_ALL_FIBRE_SPEED \
  1131. (ADVERTISED_1000baseT_Full)
  1132. #define ETHTOOL_ALL_COPPER_SPEED \
  1133. (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
  1134. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
  1135. ADVERTISED_1000baseT_Full)
  1136. #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
  1137. ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
  1138. #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
  1139. static int
  1140. bnx2_setup_copper_phy(struct bnx2 *bp)
  1141. {
  1142. u32 bmcr;
  1143. u32 new_bmcr;
  1144. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1145. if (bp->autoneg & AUTONEG_SPEED) {
  1146. u32 adv_reg, adv1000_reg;
  1147. u32 new_adv_reg = 0;
  1148. u32 new_adv1000_reg = 0;
  1149. bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
  1150. adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
  1151. ADVERTISE_PAUSE_ASYM);
  1152. bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
  1153. adv1000_reg &= PHY_ALL_1000_SPEED;
  1154. if (bp->advertising & ADVERTISED_10baseT_Half)
  1155. new_adv_reg |= ADVERTISE_10HALF;
  1156. if (bp->advertising & ADVERTISED_10baseT_Full)
  1157. new_adv_reg |= ADVERTISE_10FULL;
  1158. if (bp->advertising & ADVERTISED_100baseT_Half)
  1159. new_adv_reg |= ADVERTISE_100HALF;
  1160. if (bp->advertising & ADVERTISED_100baseT_Full)
  1161. new_adv_reg |= ADVERTISE_100FULL;
  1162. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1163. new_adv1000_reg |= ADVERTISE_1000FULL;
  1164. new_adv_reg |= ADVERTISE_CSMA;
  1165. new_adv_reg |= bnx2_phy_get_pause_adv(bp);
  1166. if ((adv1000_reg != new_adv1000_reg) ||
  1167. (adv_reg != new_adv_reg) ||
  1168. ((bmcr & BMCR_ANENABLE) == 0)) {
  1169. bnx2_write_phy(bp, bp->mii_adv, new_adv_reg);
  1170. bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
  1171. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
  1172. BMCR_ANENABLE);
  1173. }
  1174. else if (bp->link_up) {
  1175. /* Flow ctrl may have changed from auto to forced */
  1176. /* or vice-versa. */
  1177. bnx2_resolve_flow_ctrl(bp);
  1178. bnx2_set_mac_link(bp);
  1179. }
  1180. return 0;
  1181. }
  1182. new_bmcr = 0;
  1183. if (bp->req_line_speed == SPEED_100) {
  1184. new_bmcr |= BMCR_SPEED100;
  1185. }
  1186. if (bp->req_duplex == DUPLEX_FULL) {
  1187. new_bmcr |= BMCR_FULLDPLX;
  1188. }
  1189. if (new_bmcr != bmcr) {
  1190. u32 bmsr;
  1191. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1192. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1193. if (bmsr & BMSR_LSTATUS) {
  1194. /* Force link down */
  1195. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1196. spin_unlock_bh(&bp->phy_lock);
  1197. msleep(50);
  1198. spin_lock_bh(&bp->phy_lock);
  1199. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1200. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1201. }
  1202. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1203. /* Normally, the new speed is setup after the link has
  1204. * gone down and up again. In some cases, link will not go
  1205. * down so we need to set up the new speed here.
  1206. */
  1207. if (bmsr & BMSR_LSTATUS) {
  1208. bp->line_speed = bp->req_line_speed;
  1209. bp->duplex = bp->req_duplex;
  1210. bnx2_resolve_flow_ctrl(bp);
  1211. bnx2_set_mac_link(bp);
  1212. }
  1213. } else {
  1214. bnx2_resolve_flow_ctrl(bp);
  1215. bnx2_set_mac_link(bp);
  1216. }
  1217. return 0;
  1218. }
  1219. static int
  1220. bnx2_setup_phy(struct bnx2 *bp)
  1221. {
  1222. if (bp->loopback == MAC_LOOPBACK)
  1223. return 0;
  1224. if (bp->phy_flags & PHY_SERDES_FLAG) {
  1225. return (bnx2_setup_serdes_phy(bp));
  1226. }
  1227. else {
  1228. return (bnx2_setup_copper_phy(bp));
  1229. }
  1230. }
  1231. static int
  1232. bnx2_init_5709s_phy(struct bnx2 *bp)
  1233. {
  1234. u32 val;
  1235. bp->mii_bmcr = MII_BMCR + 0x10;
  1236. bp->mii_bmsr = MII_BMSR + 0x10;
  1237. bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
  1238. bp->mii_adv = MII_ADVERTISE + 0x10;
  1239. bp->mii_lpa = MII_LPA + 0x10;
  1240. bp->mii_up1 = MII_BNX2_OVER1G_UP1;
  1241. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
  1242. bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
  1243. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1244. bnx2_reset_phy(bp);
  1245. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
  1246. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
  1247. val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
  1248. val |= MII_BNX2_SD_1000XCTL1_FIBER;
  1249. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
  1250. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1251. bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
  1252. if (bp->phy_flags & PHY_2_5G_CAPABLE_FLAG)
  1253. val |= BCM5708S_UP1_2G5;
  1254. else
  1255. val &= ~BCM5708S_UP1_2G5;
  1256. bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
  1257. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
  1258. bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
  1259. val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
  1260. bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
  1261. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
  1262. val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
  1263. MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
  1264. bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
  1265. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1266. return 0;
  1267. }
  1268. static int
  1269. bnx2_init_5708s_phy(struct bnx2 *bp)
  1270. {
  1271. u32 val;
  1272. bnx2_reset_phy(bp);
  1273. bp->mii_up1 = BCM5708S_UP1;
  1274. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
  1275. bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
  1276. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1277. bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
  1278. val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
  1279. bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
  1280. bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
  1281. val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
  1282. bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
  1283. if (bp->phy_flags & PHY_2_5G_CAPABLE_FLAG) {
  1284. bnx2_read_phy(bp, BCM5708S_UP1, &val);
  1285. val |= BCM5708S_UP1_2G5;
  1286. bnx2_write_phy(bp, BCM5708S_UP1, val);
  1287. }
  1288. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  1289. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  1290. (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
  1291. /* increase tx signal amplitude */
  1292. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1293. BCM5708S_BLK_ADDR_TX_MISC);
  1294. bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
  1295. val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
  1296. bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
  1297. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1298. }
  1299. val = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_CONFIG) &
  1300. BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
  1301. if (val) {
  1302. u32 is_backplane;
  1303. is_backplane = REG_RD_IND(bp, bp->shmem_base +
  1304. BNX2_SHARED_HW_CFG_CONFIG);
  1305. if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
  1306. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1307. BCM5708S_BLK_ADDR_TX_MISC);
  1308. bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
  1309. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1310. BCM5708S_BLK_ADDR_DIG);
  1311. }
  1312. }
  1313. return 0;
  1314. }
  1315. static int
  1316. bnx2_init_5706s_phy(struct bnx2 *bp)
  1317. {
  1318. bnx2_reset_phy(bp);
  1319. bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG;
  1320. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1321. REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
  1322. if (bp->dev->mtu > 1500) {
  1323. u32 val;
  1324. /* Set extended packet length bit */
  1325. bnx2_write_phy(bp, 0x18, 0x7);
  1326. bnx2_read_phy(bp, 0x18, &val);
  1327. bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
  1328. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1329. bnx2_read_phy(bp, 0x1c, &val);
  1330. bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
  1331. }
  1332. else {
  1333. u32 val;
  1334. bnx2_write_phy(bp, 0x18, 0x7);
  1335. bnx2_read_phy(bp, 0x18, &val);
  1336. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1337. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1338. bnx2_read_phy(bp, 0x1c, &val);
  1339. bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
  1340. }
  1341. return 0;
  1342. }
  1343. static int
  1344. bnx2_init_copper_phy(struct bnx2 *bp)
  1345. {
  1346. u32 val;
  1347. bnx2_reset_phy(bp);
  1348. if (bp->phy_flags & PHY_CRC_FIX_FLAG) {
  1349. bnx2_write_phy(bp, 0x18, 0x0c00);
  1350. bnx2_write_phy(bp, 0x17, 0x000a);
  1351. bnx2_write_phy(bp, 0x15, 0x310b);
  1352. bnx2_write_phy(bp, 0x17, 0x201f);
  1353. bnx2_write_phy(bp, 0x15, 0x9506);
  1354. bnx2_write_phy(bp, 0x17, 0x401f);
  1355. bnx2_write_phy(bp, 0x15, 0x14e2);
  1356. bnx2_write_phy(bp, 0x18, 0x0400);
  1357. }
  1358. if (bp->phy_flags & PHY_DIS_EARLY_DAC_FLAG) {
  1359. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
  1360. MII_BNX2_DSP_EXPAND_REG | 0x8);
  1361. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1362. val &= ~(1 << 8);
  1363. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
  1364. }
  1365. if (bp->dev->mtu > 1500) {
  1366. /* Set extended packet length bit */
  1367. bnx2_write_phy(bp, 0x18, 0x7);
  1368. bnx2_read_phy(bp, 0x18, &val);
  1369. bnx2_write_phy(bp, 0x18, val | 0x4000);
  1370. bnx2_read_phy(bp, 0x10, &val);
  1371. bnx2_write_phy(bp, 0x10, val | 0x1);
  1372. }
  1373. else {
  1374. bnx2_write_phy(bp, 0x18, 0x7);
  1375. bnx2_read_phy(bp, 0x18, &val);
  1376. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1377. bnx2_read_phy(bp, 0x10, &val);
  1378. bnx2_write_phy(bp, 0x10, val & ~0x1);
  1379. }
  1380. /* ethernet@wirespeed */
  1381. bnx2_write_phy(bp, 0x18, 0x7007);
  1382. bnx2_read_phy(bp, 0x18, &val);
  1383. bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
  1384. return 0;
  1385. }
  1386. static int
  1387. bnx2_init_phy(struct bnx2 *bp)
  1388. {
  1389. u32 val;
  1390. int rc = 0;
  1391. bp->phy_flags &= ~PHY_INT_MODE_MASK_FLAG;
  1392. bp->phy_flags |= PHY_INT_MODE_LINK_READY_FLAG;
  1393. bp->mii_bmcr = MII_BMCR;
  1394. bp->mii_bmsr = MII_BMSR;
  1395. bp->mii_bmsr1 = MII_BMSR;
  1396. bp->mii_adv = MII_ADVERTISE;
  1397. bp->mii_lpa = MII_LPA;
  1398. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  1399. bnx2_read_phy(bp, MII_PHYSID1, &val);
  1400. bp->phy_id = val << 16;
  1401. bnx2_read_phy(bp, MII_PHYSID2, &val);
  1402. bp->phy_id |= val & 0xffff;
  1403. if (bp->phy_flags & PHY_SERDES_FLAG) {
  1404. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1405. rc = bnx2_init_5706s_phy(bp);
  1406. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  1407. rc = bnx2_init_5708s_phy(bp);
  1408. else if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1409. rc = bnx2_init_5709s_phy(bp);
  1410. }
  1411. else {
  1412. rc = bnx2_init_copper_phy(bp);
  1413. }
  1414. bnx2_setup_phy(bp);
  1415. return rc;
  1416. }
  1417. static int
  1418. bnx2_set_mac_loopback(struct bnx2 *bp)
  1419. {
  1420. u32 mac_mode;
  1421. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  1422. mac_mode &= ~BNX2_EMAC_MODE_PORT;
  1423. mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
  1424. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  1425. bp->link_up = 1;
  1426. return 0;
  1427. }
  1428. static int bnx2_test_link(struct bnx2 *);
  1429. static int
  1430. bnx2_set_phy_loopback(struct bnx2 *bp)
  1431. {
  1432. u32 mac_mode;
  1433. int rc, i;
  1434. spin_lock_bh(&bp->phy_lock);
  1435. rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
  1436. BMCR_SPEED1000);
  1437. spin_unlock_bh(&bp->phy_lock);
  1438. if (rc)
  1439. return rc;
  1440. for (i = 0; i < 10; i++) {
  1441. if (bnx2_test_link(bp) == 0)
  1442. break;
  1443. msleep(100);
  1444. }
  1445. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  1446. mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  1447. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  1448. BNX2_EMAC_MODE_25G_MODE);
  1449. mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
  1450. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  1451. bp->link_up = 1;
  1452. return 0;
  1453. }
  1454. static int
  1455. bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int silent)
  1456. {
  1457. int i;
  1458. u32 val;
  1459. bp->fw_wr_seq++;
  1460. msg_data |= bp->fw_wr_seq;
  1461. REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_MB, msg_data);
  1462. /* wait for an acknowledgement. */
  1463. for (i = 0; i < (FW_ACK_TIME_OUT_MS / 10); i++) {
  1464. msleep(10);
  1465. val = REG_RD_IND(bp, bp->shmem_base + BNX2_FW_MB);
  1466. if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
  1467. break;
  1468. }
  1469. if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
  1470. return 0;
  1471. /* If we timed out, inform the firmware that this is the case. */
  1472. if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
  1473. if (!silent)
  1474. printk(KERN_ERR PFX "fw sync timeout, reset code = "
  1475. "%x\n", msg_data);
  1476. msg_data &= ~BNX2_DRV_MSG_CODE;
  1477. msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
  1478. REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_MB, msg_data);
  1479. return -EBUSY;
  1480. }
  1481. if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
  1482. return -EIO;
  1483. return 0;
  1484. }
  1485. static int
  1486. bnx2_init_5709_context(struct bnx2 *bp)
  1487. {
  1488. int i, ret = 0;
  1489. u32 val;
  1490. val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
  1491. val |= (BCM_PAGE_BITS - 8) << 16;
  1492. REG_WR(bp, BNX2_CTX_COMMAND, val);
  1493. for (i = 0; i < 10; i++) {
  1494. val = REG_RD(bp, BNX2_CTX_COMMAND);
  1495. if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
  1496. break;
  1497. udelay(2);
  1498. }
  1499. if (val & BNX2_CTX_COMMAND_MEM_INIT)
  1500. return -EBUSY;
  1501. for (i = 0; i < bp->ctx_pages; i++) {
  1502. int j;
  1503. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
  1504. (bp->ctx_blk_mapping[i] & 0xffffffff) |
  1505. BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
  1506. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
  1507. (u64) bp->ctx_blk_mapping[i] >> 32);
  1508. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
  1509. BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
  1510. for (j = 0; j < 10; j++) {
  1511. val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
  1512. if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
  1513. break;
  1514. udelay(5);
  1515. }
  1516. if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
  1517. ret = -EBUSY;
  1518. break;
  1519. }
  1520. }
  1521. return ret;
  1522. }
  1523. static void
  1524. bnx2_init_context(struct bnx2 *bp)
  1525. {
  1526. u32 vcid;
  1527. vcid = 96;
  1528. while (vcid) {
  1529. u32 vcid_addr, pcid_addr, offset;
  1530. int i;
  1531. vcid--;
  1532. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  1533. u32 new_vcid;
  1534. vcid_addr = GET_PCID_ADDR(vcid);
  1535. if (vcid & 0x8) {
  1536. new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
  1537. }
  1538. else {
  1539. new_vcid = vcid;
  1540. }
  1541. pcid_addr = GET_PCID_ADDR(new_vcid);
  1542. }
  1543. else {
  1544. vcid_addr = GET_CID_ADDR(vcid);
  1545. pcid_addr = vcid_addr;
  1546. }
  1547. for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
  1548. vcid_addr += (i << PHY_CTX_SHIFT);
  1549. pcid_addr += (i << PHY_CTX_SHIFT);
  1550. REG_WR(bp, BNX2_CTX_VIRT_ADDR, 0x00);
  1551. REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
  1552. /* Zero out the context. */
  1553. for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
  1554. CTX_WR(bp, 0x00, offset, 0);
  1555. REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
  1556. REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
  1557. }
  1558. }
  1559. }
  1560. static int
  1561. bnx2_alloc_bad_rbuf(struct bnx2 *bp)
  1562. {
  1563. u16 *good_mbuf;
  1564. u32 good_mbuf_cnt;
  1565. u32 val;
  1566. good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
  1567. if (good_mbuf == NULL) {
  1568. printk(KERN_ERR PFX "Failed to allocate memory in "
  1569. "bnx2_alloc_bad_rbuf\n");
  1570. return -ENOMEM;
  1571. }
  1572. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  1573. BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
  1574. good_mbuf_cnt = 0;
  1575. /* Allocate a bunch of mbufs and save the good ones in an array. */
  1576. val = REG_RD_IND(bp, BNX2_RBUF_STATUS1);
  1577. while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
  1578. REG_WR_IND(bp, BNX2_RBUF_COMMAND, BNX2_RBUF_COMMAND_ALLOC_REQ);
  1579. val = REG_RD_IND(bp, BNX2_RBUF_FW_BUF_ALLOC);
  1580. val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
  1581. /* The addresses with Bit 9 set are bad memory blocks. */
  1582. if (!(val & (1 << 9))) {
  1583. good_mbuf[good_mbuf_cnt] = (u16) val;
  1584. good_mbuf_cnt++;
  1585. }
  1586. val = REG_RD_IND(bp, BNX2_RBUF_STATUS1);
  1587. }
  1588. /* Free the good ones back to the mbuf pool thus discarding
  1589. * all the bad ones. */
  1590. while (good_mbuf_cnt) {
  1591. good_mbuf_cnt--;
  1592. val = good_mbuf[good_mbuf_cnt];
  1593. val = (val << 9) | val | 1;
  1594. REG_WR_IND(bp, BNX2_RBUF_FW_BUF_FREE, val);
  1595. }
  1596. kfree(good_mbuf);
  1597. return 0;
  1598. }
  1599. static void
  1600. bnx2_set_mac_addr(struct bnx2 *bp)
  1601. {
  1602. u32 val;
  1603. u8 *mac_addr = bp->dev->dev_addr;
  1604. val = (mac_addr[0] << 8) | mac_addr[1];
  1605. REG_WR(bp, BNX2_EMAC_MAC_MATCH0, val);
  1606. val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
  1607. (mac_addr[4] << 8) | mac_addr[5];
  1608. REG_WR(bp, BNX2_EMAC_MAC_MATCH1, val);
  1609. }
  1610. static inline int
  1611. bnx2_alloc_rx_skb(struct bnx2 *bp, u16 index)
  1612. {
  1613. struct sk_buff *skb;
  1614. struct sw_bd *rx_buf = &bp->rx_buf_ring[index];
  1615. dma_addr_t mapping;
  1616. struct rx_bd *rxbd = &bp->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
  1617. unsigned long align;
  1618. skb = netdev_alloc_skb(bp->dev, bp->rx_buf_size);
  1619. if (skb == NULL) {
  1620. return -ENOMEM;
  1621. }
  1622. if (unlikely((align = (unsigned long) skb->data & (BNX2_RX_ALIGN - 1))))
  1623. skb_reserve(skb, BNX2_RX_ALIGN - align);
  1624. mapping = pci_map_single(bp->pdev, skb->data, bp->rx_buf_use_size,
  1625. PCI_DMA_FROMDEVICE);
  1626. rx_buf->skb = skb;
  1627. pci_unmap_addr_set(rx_buf, mapping, mapping);
  1628. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  1629. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  1630. bp->rx_prod_bseq += bp->rx_buf_use_size;
  1631. return 0;
  1632. }
  1633. static int
  1634. bnx2_phy_event_is_set(struct bnx2 *bp, u32 event)
  1635. {
  1636. struct status_block *sblk = bp->status_blk;
  1637. u32 new_link_state, old_link_state;
  1638. int is_set = 1;
  1639. new_link_state = sblk->status_attn_bits & event;
  1640. old_link_state = sblk->status_attn_bits_ack & event;
  1641. if (new_link_state != old_link_state) {
  1642. if (new_link_state)
  1643. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
  1644. else
  1645. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
  1646. } else
  1647. is_set = 0;
  1648. return is_set;
  1649. }
  1650. static void
  1651. bnx2_phy_int(struct bnx2 *bp)
  1652. {
  1653. if (bnx2_phy_event_is_set(bp, STATUS_ATTN_BITS_LINK_STATE)) {
  1654. spin_lock(&bp->phy_lock);
  1655. bnx2_set_link(bp);
  1656. spin_unlock(&bp->phy_lock);
  1657. }
  1658. }
  1659. static void
  1660. bnx2_tx_int(struct bnx2 *bp)
  1661. {
  1662. struct status_block *sblk = bp->status_blk;
  1663. u16 hw_cons, sw_cons, sw_ring_cons;
  1664. int tx_free_bd = 0;
  1665. hw_cons = bp->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
  1666. if ((hw_cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT) {
  1667. hw_cons++;
  1668. }
  1669. sw_cons = bp->tx_cons;
  1670. while (sw_cons != hw_cons) {
  1671. struct sw_bd *tx_buf;
  1672. struct sk_buff *skb;
  1673. int i, last;
  1674. sw_ring_cons = TX_RING_IDX(sw_cons);
  1675. tx_buf = &bp->tx_buf_ring[sw_ring_cons];
  1676. skb = tx_buf->skb;
  1677. /* partial BD completions possible with TSO packets */
  1678. if (skb_is_gso(skb)) {
  1679. u16 last_idx, last_ring_idx;
  1680. last_idx = sw_cons +
  1681. skb_shinfo(skb)->nr_frags + 1;
  1682. last_ring_idx = sw_ring_cons +
  1683. skb_shinfo(skb)->nr_frags + 1;
  1684. if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
  1685. last_idx++;
  1686. }
  1687. if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
  1688. break;
  1689. }
  1690. }
  1691. pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping),
  1692. skb_headlen(skb), PCI_DMA_TODEVICE);
  1693. tx_buf->skb = NULL;
  1694. last = skb_shinfo(skb)->nr_frags;
  1695. for (i = 0; i < last; i++) {
  1696. sw_cons = NEXT_TX_BD(sw_cons);
  1697. pci_unmap_page(bp->pdev,
  1698. pci_unmap_addr(
  1699. &bp->tx_buf_ring[TX_RING_IDX(sw_cons)],
  1700. mapping),
  1701. skb_shinfo(skb)->frags[i].size,
  1702. PCI_DMA_TODEVICE);
  1703. }
  1704. sw_cons = NEXT_TX_BD(sw_cons);
  1705. tx_free_bd += last + 1;
  1706. dev_kfree_skb(skb);
  1707. hw_cons = bp->hw_tx_cons =
  1708. sblk->status_tx_quick_consumer_index0;
  1709. if ((hw_cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT) {
  1710. hw_cons++;
  1711. }
  1712. }
  1713. bp->tx_cons = sw_cons;
  1714. /* Need to make the tx_cons update visible to bnx2_start_xmit()
  1715. * before checking for netif_queue_stopped(). Without the
  1716. * memory barrier, there is a small possibility that bnx2_start_xmit()
  1717. * will miss it and cause the queue to be stopped forever.
  1718. */
  1719. smp_mb();
  1720. if (unlikely(netif_queue_stopped(bp->dev)) &&
  1721. (bnx2_tx_avail(bp) > bp->tx_wake_thresh)) {
  1722. netif_tx_lock(bp->dev);
  1723. if ((netif_queue_stopped(bp->dev)) &&
  1724. (bnx2_tx_avail(bp) > bp->tx_wake_thresh))
  1725. netif_wake_queue(bp->dev);
  1726. netif_tx_unlock(bp->dev);
  1727. }
  1728. }
  1729. static inline void
  1730. bnx2_reuse_rx_skb(struct bnx2 *bp, struct sk_buff *skb,
  1731. u16 cons, u16 prod)
  1732. {
  1733. struct sw_bd *cons_rx_buf, *prod_rx_buf;
  1734. struct rx_bd *cons_bd, *prod_bd;
  1735. cons_rx_buf = &bp->rx_buf_ring[cons];
  1736. prod_rx_buf = &bp->rx_buf_ring[prod];
  1737. pci_dma_sync_single_for_device(bp->pdev,
  1738. pci_unmap_addr(cons_rx_buf, mapping),
  1739. bp->rx_offset + RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
  1740. bp->rx_prod_bseq += bp->rx_buf_use_size;
  1741. prod_rx_buf->skb = skb;
  1742. if (cons == prod)
  1743. return;
  1744. pci_unmap_addr_set(prod_rx_buf, mapping,
  1745. pci_unmap_addr(cons_rx_buf, mapping));
  1746. cons_bd = &bp->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
  1747. prod_bd = &bp->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  1748. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  1749. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  1750. }
  1751. static int
  1752. bnx2_rx_int(struct bnx2 *bp, int budget)
  1753. {
  1754. struct status_block *sblk = bp->status_blk;
  1755. u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
  1756. struct l2_fhdr *rx_hdr;
  1757. int rx_pkt = 0;
  1758. hw_cons = bp->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
  1759. if ((hw_cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT) {
  1760. hw_cons++;
  1761. }
  1762. sw_cons = bp->rx_cons;
  1763. sw_prod = bp->rx_prod;
  1764. /* Memory barrier necessary as speculative reads of the rx
  1765. * buffer can be ahead of the index in the status block
  1766. */
  1767. rmb();
  1768. while (sw_cons != hw_cons) {
  1769. unsigned int len;
  1770. u32 status;
  1771. struct sw_bd *rx_buf;
  1772. struct sk_buff *skb;
  1773. dma_addr_t dma_addr;
  1774. sw_ring_cons = RX_RING_IDX(sw_cons);
  1775. sw_ring_prod = RX_RING_IDX(sw_prod);
  1776. rx_buf = &bp->rx_buf_ring[sw_ring_cons];
  1777. skb = rx_buf->skb;
  1778. rx_buf->skb = NULL;
  1779. dma_addr = pci_unmap_addr(rx_buf, mapping);
  1780. pci_dma_sync_single_for_cpu(bp->pdev, dma_addr,
  1781. bp->rx_offset + RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
  1782. rx_hdr = (struct l2_fhdr *) skb->data;
  1783. len = rx_hdr->l2_fhdr_pkt_len - 4;
  1784. if ((status = rx_hdr->l2_fhdr_status) &
  1785. (L2_FHDR_ERRORS_BAD_CRC |
  1786. L2_FHDR_ERRORS_PHY_DECODE |
  1787. L2_FHDR_ERRORS_ALIGNMENT |
  1788. L2_FHDR_ERRORS_TOO_SHORT |
  1789. L2_FHDR_ERRORS_GIANT_FRAME)) {
  1790. goto reuse_rx;
  1791. }
  1792. /* Since we don't have a jumbo ring, copy small packets
  1793. * if mtu > 1500
  1794. */
  1795. if ((bp->dev->mtu > 1500) && (len <= RX_COPY_THRESH)) {
  1796. struct sk_buff *new_skb;
  1797. new_skb = netdev_alloc_skb(bp->dev, len + 2);
  1798. if (new_skb == NULL)
  1799. goto reuse_rx;
  1800. /* aligned copy */
  1801. skb_copy_from_linear_data_offset(skb, bp->rx_offset - 2,
  1802. new_skb->data, len + 2);
  1803. skb_reserve(new_skb, 2);
  1804. skb_put(new_skb, len);
  1805. bnx2_reuse_rx_skb(bp, skb,
  1806. sw_ring_cons, sw_ring_prod);
  1807. skb = new_skb;
  1808. }
  1809. else if (bnx2_alloc_rx_skb(bp, sw_ring_prod) == 0) {
  1810. pci_unmap_single(bp->pdev, dma_addr,
  1811. bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
  1812. skb_reserve(skb, bp->rx_offset);
  1813. skb_put(skb, len);
  1814. }
  1815. else {
  1816. reuse_rx:
  1817. bnx2_reuse_rx_skb(bp, skb,
  1818. sw_ring_cons, sw_ring_prod);
  1819. goto next_rx;
  1820. }
  1821. skb->protocol = eth_type_trans(skb, bp->dev);
  1822. if ((len > (bp->dev->mtu + ETH_HLEN)) &&
  1823. (ntohs(skb->protocol) != 0x8100)) {
  1824. dev_kfree_skb(skb);
  1825. goto next_rx;
  1826. }
  1827. skb->ip_summed = CHECKSUM_NONE;
  1828. if (bp->rx_csum &&
  1829. (status & (L2_FHDR_STATUS_TCP_SEGMENT |
  1830. L2_FHDR_STATUS_UDP_DATAGRAM))) {
  1831. if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
  1832. L2_FHDR_ERRORS_UDP_XSUM)) == 0))
  1833. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1834. }
  1835. #ifdef BCM_VLAN
  1836. if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) && (bp->vlgrp != 0)) {
  1837. vlan_hwaccel_receive_skb(skb, bp->vlgrp,
  1838. rx_hdr->l2_fhdr_vlan_tag);
  1839. }
  1840. else
  1841. #endif
  1842. netif_receive_skb(skb);
  1843. bp->dev->last_rx = jiffies;
  1844. rx_pkt++;
  1845. next_rx:
  1846. sw_cons = NEXT_RX_BD(sw_cons);
  1847. sw_prod = NEXT_RX_BD(sw_prod);
  1848. if ((rx_pkt == budget))
  1849. break;
  1850. /* Refresh hw_cons to see if there is new work */
  1851. if (sw_cons == hw_cons) {
  1852. hw_cons = bp->hw_rx_cons =
  1853. sblk->status_rx_quick_consumer_index0;
  1854. if ((hw_cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT)
  1855. hw_cons++;
  1856. rmb();
  1857. }
  1858. }
  1859. bp->rx_cons = sw_cons;
  1860. bp->rx_prod = sw_prod;
  1861. REG_WR16(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BDIDX, sw_prod);
  1862. REG_WR(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BSEQ, bp->rx_prod_bseq);
  1863. mmiowb();
  1864. return rx_pkt;
  1865. }
  1866. /* MSI ISR - The only difference between this and the INTx ISR
  1867. * is that the MSI interrupt is always serviced.
  1868. */
  1869. static irqreturn_t
  1870. bnx2_msi(int irq, void *dev_instance)
  1871. {
  1872. struct net_device *dev = dev_instance;
  1873. struct bnx2 *bp = netdev_priv(dev);
  1874. prefetch(bp->status_blk);
  1875. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  1876. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  1877. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  1878. /* Return here if interrupt is disabled. */
  1879. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  1880. return IRQ_HANDLED;
  1881. netif_rx_schedule(dev);
  1882. return IRQ_HANDLED;
  1883. }
  1884. static irqreturn_t
  1885. bnx2_msi_1shot(int irq, void *dev_instance)
  1886. {
  1887. struct net_device *dev = dev_instance;
  1888. struct bnx2 *bp = netdev_priv(dev);
  1889. prefetch(bp->status_blk);
  1890. /* Return here if interrupt is disabled. */
  1891. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  1892. return IRQ_HANDLED;
  1893. netif_rx_schedule(dev);
  1894. return IRQ_HANDLED;
  1895. }
  1896. static irqreturn_t
  1897. bnx2_interrupt(int irq, void *dev_instance)
  1898. {
  1899. struct net_device *dev = dev_instance;
  1900. struct bnx2 *bp = netdev_priv(dev);
  1901. /* When using INTx, it is possible for the interrupt to arrive
  1902. * at the CPU before the status block posted prior to the
  1903. * interrupt. Reading a register will flush the status block.
  1904. * When using MSI, the MSI message will always complete after
  1905. * the status block write.
  1906. */
  1907. if ((bp->status_blk->status_idx == bp->last_status_idx) &&
  1908. (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
  1909. BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
  1910. return IRQ_NONE;
  1911. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  1912. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  1913. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  1914. /* Return here if interrupt is shared and is disabled. */
  1915. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  1916. return IRQ_HANDLED;
  1917. netif_rx_schedule(dev);
  1918. return IRQ_HANDLED;
  1919. }
  1920. #define STATUS_ATTN_EVENTS STATUS_ATTN_BITS_LINK_STATE
  1921. static inline int
  1922. bnx2_has_work(struct bnx2 *bp)
  1923. {
  1924. struct status_block *sblk = bp->status_blk;
  1925. if ((sblk->status_rx_quick_consumer_index0 != bp->hw_rx_cons) ||
  1926. (sblk->status_tx_quick_consumer_index0 != bp->hw_tx_cons))
  1927. return 1;
  1928. if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
  1929. (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
  1930. return 1;
  1931. return 0;
  1932. }
  1933. static int
  1934. bnx2_poll(struct net_device *dev, int *budget)
  1935. {
  1936. struct bnx2 *bp = netdev_priv(dev);
  1937. struct status_block *sblk = bp->status_blk;
  1938. u32 status_attn_bits = sblk->status_attn_bits;
  1939. u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
  1940. if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
  1941. (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
  1942. bnx2_phy_int(bp);
  1943. /* This is needed to take care of transient status
  1944. * during link changes.
  1945. */
  1946. REG_WR(bp, BNX2_HC_COMMAND,
  1947. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  1948. REG_RD(bp, BNX2_HC_COMMAND);
  1949. }
  1950. if (bp->status_blk->status_tx_quick_consumer_index0 != bp->hw_tx_cons)
  1951. bnx2_tx_int(bp);
  1952. if (bp->status_blk->status_rx_quick_consumer_index0 != bp->hw_rx_cons) {
  1953. int orig_budget = *budget;
  1954. int work_done;
  1955. if (orig_budget > dev->quota)
  1956. orig_budget = dev->quota;
  1957. work_done = bnx2_rx_int(bp, orig_budget);
  1958. *budget -= work_done;
  1959. dev->quota -= work_done;
  1960. }
  1961. bp->last_status_idx = bp->status_blk->status_idx;
  1962. rmb();
  1963. if (!bnx2_has_work(bp)) {
  1964. netif_rx_complete(dev);
  1965. if (likely(bp->flags & USING_MSI_FLAG)) {
  1966. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  1967. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  1968. bp->last_status_idx);
  1969. return 0;
  1970. }
  1971. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  1972. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  1973. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  1974. bp->last_status_idx);
  1975. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  1976. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  1977. bp->last_status_idx);
  1978. return 0;
  1979. }
  1980. return 1;
  1981. }
  1982. /* Called with rtnl_lock from vlan functions and also netif_tx_lock
  1983. * from set_multicast.
  1984. */
  1985. static void
  1986. bnx2_set_rx_mode(struct net_device *dev)
  1987. {
  1988. struct bnx2 *bp = netdev_priv(dev);
  1989. u32 rx_mode, sort_mode;
  1990. int i;
  1991. spin_lock_bh(&bp->phy_lock);
  1992. rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
  1993. BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
  1994. sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
  1995. #ifdef BCM_VLAN
  1996. if (!bp->vlgrp && !(bp->flags & ASF_ENABLE_FLAG))
  1997. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  1998. #else
  1999. if (!(bp->flags & ASF_ENABLE_FLAG))
  2000. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  2001. #endif
  2002. if (dev->flags & IFF_PROMISC) {
  2003. /* Promiscuous mode. */
  2004. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2005. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  2006. BNX2_RPM_SORT_USER0_PROM_VLAN;
  2007. }
  2008. else if (dev->flags & IFF_ALLMULTI) {
  2009. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2010. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2011. 0xffffffff);
  2012. }
  2013. sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
  2014. }
  2015. else {
  2016. /* Accept one or more multicast(s). */
  2017. struct dev_mc_list *mclist;
  2018. u32 mc_filter[NUM_MC_HASH_REGISTERS];
  2019. u32 regidx;
  2020. u32 bit;
  2021. u32 crc;
  2022. memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
  2023. for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
  2024. i++, mclist = mclist->next) {
  2025. crc = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
  2026. bit = crc & 0xff;
  2027. regidx = (bit & 0xe0) >> 5;
  2028. bit &= 0x1f;
  2029. mc_filter[regidx] |= (1 << bit);
  2030. }
  2031. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2032. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2033. mc_filter[i]);
  2034. }
  2035. sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
  2036. }
  2037. if (rx_mode != bp->rx_mode) {
  2038. bp->rx_mode = rx_mode;
  2039. REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
  2040. }
  2041. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  2042. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
  2043. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
  2044. spin_unlock_bh(&bp->phy_lock);
  2045. }
  2046. #define FW_BUF_SIZE 0x8000
  2047. static int
  2048. bnx2_gunzip_init(struct bnx2 *bp)
  2049. {
  2050. if ((bp->gunzip_buf = vmalloc(FW_BUF_SIZE)) == NULL)
  2051. goto gunzip_nomem1;
  2052. if ((bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL)) == NULL)
  2053. goto gunzip_nomem2;
  2054. bp->strm->workspace = kmalloc(zlib_inflate_workspacesize(), GFP_KERNEL);
  2055. if (bp->strm->workspace == NULL)
  2056. goto gunzip_nomem3;
  2057. return 0;
  2058. gunzip_nomem3:
  2059. kfree(bp->strm);
  2060. bp->strm = NULL;
  2061. gunzip_nomem2:
  2062. vfree(bp->gunzip_buf);
  2063. bp->gunzip_buf = NULL;
  2064. gunzip_nomem1:
  2065. printk(KERN_ERR PFX "%s: Cannot allocate firmware buffer for "
  2066. "uncompression.\n", bp->dev->name);
  2067. return -ENOMEM;
  2068. }
  2069. static void
  2070. bnx2_gunzip_end(struct bnx2 *bp)
  2071. {
  2072. kfree(bp->strm->workspace);
  2073. kfree(bp->strm);
  2074. bp->strm = NULL;
  2075. if (bp->gunzip_buf) {
  2076. vfree(bp->gunzip_buf);
  2077. bp->gunzip_buf = NULL;
  2078. }
  2079. }
  2080. static int
  2081. bnx2_gunzip(struct bnx2 *bp, u8 *zbuf, int len, void **outbuf, int *outlen)
  2082. {
  2083. int n, rc;
  2084. /* check gzip header */
  2085. if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED))
  2086. return -EINVAL;
  2087. n = 10;
  2088. #define FNAME 0x8
  2089. if (zbuf[3] & FNAME)
  2090. while ((zbuf[n++] != 0) && (n < len));
  2091. bp->strm->next_in = zbuf + n;
  2092. bp->strm->avail_in = len - n;
  2093. bp->strm->next_out = bp->gunzip_buf;
  2094. bp->strm->avail_out = FW_BUF_SIZE;
  2095. rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
  2096. if (rc != Z_OK)
  2097. return rc;
  2098. rc = zlib_inflate(bp->strm, Z_FINISH);
  2099. *outlen = FW_BUF_SIZE - bp->strm->avail_out;
  2100. *outbuf = bp->gunzip_buf;
  2101. if ((rc != Z_OK) && (rc != Z_STREAM_END))
  2102. printk(KERN_ERR PFX "%s: Firmware decompression error: %s\n",
  2103. bp->dev->name, bp->strm->msg);
  2104. zlib_inflateEnd(bp->strm);
  2105. if (rc == Z_STREAM_END)
  2106. return 0;
  2107. return rc;
  2108. }
  2109. static void
  2110. load_rv2p_fw(struct bnx2 *bp, u32 *rv2p_code, u32 rv2p_code_len,
  2111. u32 rv2p_proc)
  2112. {
  2113. int i;
  2114. u32 val;
  2115. for (i = 0; i < rv2p_code_len; i += 8) {
  2116. REG_WR(bp, BNX2_RV2P_INSTR_HIGH, cpu_to_le32(*rv2p_code));
  2117. rv2p_code++;
  2118. REG_WR(bp, BNX2_RV2P_INSTR_LOW, cpu_to_le32(*rv2p_code));
  2119. rv2p_code++;
  2120. if (rv2p_proc == RV2P_PROC1) {
  2121. val = (i / 8) | BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
  2122. REG_WR(bp, BNX2_RV2P_PROC1_ADDR_CMD, val);
  2123. }
  2124. else {
  2125. val = (i / 8) | BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
  2126. REG_WR(bp, BNX2_RV2P_PROC2_ADDR_CMD, val);
  2127. }
  2128. }
  2129. /* Reset the processor, un-stall is done later. */
  2130. if (rv2p_proc == RV2P_PROC1) {
  2131. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
  2132. }
  2133. else {
  2134. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
  2135. }
  2136. }
  2137. static int
  2138. load_cpu_fw(struct bnx2 *bp, struct cpu_reg *cpu_reg, struct fw_info *fw)
  2139. {
  2140. u32 offset;
  2141. u32 val;
  2142. int rc;
  2143. /* Halt the CPU. */
  2144. val = REG_RD_IND(bp, cpu_reg->mode);
  2145. val |= cpu_reg->mode_value_halt;
  2146. REG_WR_IND(bp, cpu_reg->mode, val);
  2147. REG_WR_IND(bp, cpu_reg->state, cpu_reg->state_value_clear);
  2148. /* Load the Text area. */
  2149. offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
  2150. if (fw->gz_text) {
  2151. u32 text_len;
  2152. void *text;
  2153. rc = bnx2_gunzip(bp, fw->gz_text, fw->gz_text_len, &text,
  2154. &text_len);
  2155. if (rc)
  2156. return rc;
  2157. fw->text = text;
  2158. }
  2159. if (fw->gz_text) {
  2160. int j;
  2161. for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
  2162. REG_WR_IND(bp, offset, cpu_to_le32(fw->text[j]));
  2163. }
  2164. }
  2165. /* Load the Data area. */
  2166. offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
  2167. if (fw->data) {
  2168. int j;
  2169. for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
  2170. REG_WR_IND(bp, offset, fw->data[j]);
  2171. }
  2172. }
  2173. /* Load the SBSS area. */
  2174. offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
  2175. if (fw->sbss) {
  2176. int j;
  2177. for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
  2178. REG_WR_IND(bp, offset, fw->sbss[j]);
  2179. }
  2180. }
  2181. /* Load the BSS area. */
  2182. offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
  2183. if (fw->bss) {
  2184. int j;
  2185. for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
  2186. REG_WR_IND(bp, offset, fw->bss[j]);
  2187. }
  2188. }
  2189. /* Load the Read-Only area. */
  2190. offset = cpu_reg->spad_base +
  2191. (fw->rodata_addr - cpu_reg->mips_view_base);
  2192. if (fw->rodata) {
  2193. int j;
  2194. for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
  2195. REG_WR_IND(bp, offset, fw->rodata[j]);
  2196. }
  2197. }
  2198. /* Clear the pre-fetch instruction. */
  2199. REG_WR_IND(bp, cpu_reg->inst, 0);
  2200. REG_WR_IND(bp, cpu_reg->pc, fw->start_addr);
  2201. /* Start the CPU. */
  2202. val = REG_RD_IND(bp, cpu_reg->mode);
  2203. val &= ~cpu_reg->mode_value_halt;
  2204. REG_WR_IND(bp, cpu_reg->state, cpu_reg->state_value_clear);
  2205. REG_WR_IND(bp, cpu_reg->mode, val);
  2206. return 0;
  2207. }
  2208. static int
  2209. bnx2_init_cpus(struct bnx2 *bp)
  2210. {
  2211. struct cpu_reg cpu_reg;
  2212. struct fw_info *fw;
  2213. int rc = 0;
  2214. void *text;
  2215. u32 text_len;
  2216. if ((rc = bnx2_gunzip_init(bp)) != 0)
  2217. return rc;
  2218. /* Initialize the RV2P processor. */
  2219. rc = bnx2_gunzip(bp, bnx2_rv2p_proc1, sizeof(bnx2_rv2p_proc1), &text,
  2220. &text_len);
  2221. if (rc)
  2222. goto init_cpu_err;
  2223. load_rv2p_fw(bp, text, text_len, RV2P_PROC1);
  2224. rc = bnx2_gunzip(bp, bnx2_rv2p_proc2, sizeof(bnx2_rv2p_proc2), &text,
  2225. &text_len);
  2226. if (rc)
  2227. goto init_cpu_err;
  2228. load_rv2p_fw(bp, text, text_len, RV2P_PROC2);
  2229. /* Initialize the RX Processor. */
  2230. cpu_reg.mode = BNX2_RXP_CPU_MODE;
  2231. cpu_reg.mode_value_halt = BNX2_RXP_CPU_MODE_SOFT_HALT;
  2232. cpu_reg.mode_value_sstep = BNX2_RXP_CPU_MODE_STEP_ENA;
  2233. cpu_reg.state = BNX2_RXP_CPU_STATE;
  2234. cpu_reg.state_value_clear = 0xffffff;
  2235. cpu_reg.gpr0 = BNX2_RXP_CPU_REG_FILE;
  2236. cpu_reg.evmask = BNX2_RXP_CPU_EVENT_MASK;
  2237. cpu_reg.pc = BNX2_RXP_CPU_PROGRAM_COUNTER;
  2238. cpu_reg.inst = BNX2_RXP_CPU_INSTRUCTION;
  2239. cpu_reg.bp = BNX2_RXP_CPU_HW_BREAKPOINT;
  2240. cpu_reg.spad_base = BNX2_RXP_SCRATCH;
  2241. cpu_reg.mips_view_base = 0x8000000;
  2242. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  2243. fw = &bnx2_rxp_fw_09;
  2244. else
  2245. fw = &bnx2_rxp_fw_06;
  2246. rc = load_cpu_fw(bp, &cpu_reg, fw);
  2247. if (rc)
  2248. goto init_cpu_err;
  2249. /* Initialize the TX Processor. */
  2250. cpu_reg.mode = BNX2_TXP_CPU_MODE;
  2251. cpu_reg.mode_value_halt = BNX2_TXP_CPU_MODE_SOFT_HALT;
  2252. cpu_reg.mode_value_sstep = BNX2_TXP_CPU_MODE_STEP_ENA;
  2253. cpu_reg.state = BNX2_TXP_CPU_STATE;
  2254. cpu_reg.state_value_clear = 0xffffff;
  2255. cpu_reg.gpr0 = BNX2_TXP_CPU_REG_FILE;
  2256. cpu_reg.evmask = BNX2_TXP_CPU_EVENT_MASK;
  2257. cpu_reg.pc = BNX2_TXP_CPU_PROGRAM_COUNTER;
  2258. cpu_reg.inst = BNX2_TXP_CPU_INSTRUCTION;
  2259. cpu_reg.bp = BNX2_TXP_CPU_HW_BREAKPOINT;
  2260. cpu_reg.spad_base = BNX2_TXP_SCRATCH;
  2261. cpu_reg.mips_view_base = 0x8000000;
  2262. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  2263. fw = &bnx2_txp_fw_09;
  2264. else
  2265. fw = &bnx2_txp_fw_06;
  2266. rc = load_cpu_fw(bp, &cpu_reg, fw);
  2267. if (rc)
  2268. goto init_cpu_err;
  2269. /* Initialize the TX Patch-up Processor. */
  2270. cpu_reg.mode = BNX2_TPAT_CPU_MODE;
  2271. cpu_reg.mode_value_halt = BNX2_TPAT_CPU_MODE_SOFT_HALT;
  2272. cpu_reg.mode_value_sstep = BNX2_TPAT_CPU_MODE_STEP_ENA;
  2273. cpu_reg.state = BNX2_TPAT_CPU_STATE;
  2274. cpu_reg.state_value_clear = 0xffffff;
  2275. cpu_reg.gpr0 = BNX2_TPAT_CPU_REG_FILE;
  2276. cpu_reg.evmask = BNX2_TPAT_CPU_EVENT_MASK;
  2277. cpu_reg.pc = BNX2_TPAT_CPU_PROGRAM_COUNTER;
  2278. cpu_reg.inst = BNX2_TPAT_CPU_INSTRUCTION;
  2279. cpu_reg.bp = BNX2_TPAT_CPU_HW_BREAKPOINT;
  2280. cpu_reg.spad_base = BNX2_TPAT_SCRATCH;
  2281. cpu_reg.mips_view_base = 0x8000000;
  2282. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  2283. fw = &bnx2_tpat_fw_09;
  2284. else
  2285. fw = &bnx2_tpat_fw_06;
  2286. rc = load_cpu_fw(bp, &cpu_reg, fw);
  2287. if (rc)
  2288. goto init_cpu_err;
  2289. /* Initialize the Completion Processor. */
  2290. cpu_reg.mode = BNX2_COM_CPU_MODE;
  2291. cpu_reg.mode_value_halt = BNX2_COM_CPU_MODE_SOFT_HALT;
  2292. cpu_reg.mode_value_sstep = BNX2_COM_CPU_MODE_STEP_ENA;
  2293. cpu_reg.state = BNX2_COM_CPU_STATE;
  2294. cpu_reg.state_value_clear = 0xffffff;
  2295. cpu_reg.gpr0 = BNX2_COM_CPU_REG_FILE;
  2296. cpu_reg.evmask = BNX2_COM_CPU_EVENT_MASK;
  2297. cpu_reg.pc = BNX2_COM_CPU_PROGRAM_COUNTER;
  2298. cpu_reg.inst = BNX2_COM_CPU_INSTRUCTION;
  2299. cpu_reg.bp = BNX2_COM_CPU_HW_BREAKPOINT;
  2300. cpu_reg.spad_base = BNX2_COM_SCRATCH;
  2301. cpu_reg.mips_view_base = 0x8000000;
  2302. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  2303. fw = &bnx2_com_fw_09;
  2304. else
  2305. fw = &bnx2_com_fw_06;
  2306. rc = load_cpu_fw(bp, &cpu_reg, fw);
  2307. if (rc)
  2308. goto init_cpu_err;
  2309. /* Initialize the Command Processor. */
  2310. cpu_reg.mode = BNX2_CP_CPU_MODE;
  2311. cpu_reg.mode_value_halt = BNX2_CP_CPU_MODE_SOFT_HALT;
  2312. cpu_reg.mode_value_sstep = BNX2_CP_CPU_MODE_STEP_ENA;
  2313. cpu_reg.state = BNX2_CP_CPU_STATE;
  2314. cpu_reg.state_value_clear = 0xffffff;
  2315. cpu_reg.gpr0 = BNX2_CP_CPU_REG_FILE;
  2316. cpu_reg.evmask = BNX2_CP_CPU_EVENT_MASK;
  2317. cpu_reg.pc = BNX2_CP_CPU_PROGRAM_COUNTER;
  2318. cpu_reg.inst = BNX2_CP_CPU_INSTRUCTION;
  2319. cpu_reg.bp = BNX2_CP_CPU_HW_BREAKPOINT;
  2320. cpu_reg.spad_base = BNX2_CP_SCRATCH;
  2321. cpu_reg.mips_view_base = 0x8000000;
  2322. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  2323. fw = &bnx2_cp_fw_09;
  2324. rc = load_cpu_fw(bp, &cpu_reg, fw);
  2325. if (rc)
  2326. goto init_cpu_err;
  2327. }
  2328. init_cpu_err:
  2329. bnx2_gunzip_end(bp);
  2330. return rc;
  2331. }
  2332. static int
  2333. bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
  2334. {
  2335. u16 pmcsr;
  2336. pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
  2337. switch (state) {
  2338. case PCI_D0: {
  2339. u32 val;
  2340. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  2341. (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
  2342. PCI_PM_CTRL_PME_STATUS);
  2343. if (pmcsr & PCI_PM_CTRL_STATE_MASK)
  2344. /* delay required during transition out of D3hot */
  2345. msleep(20);
  2346. val = REG_RD(bp, BNX2_EMAC_MODE);
  2347. val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
  2348. val &= ~BNX2_EMAC_MODE_MPKT;
  2349. REG_WR(bp, BNX2_EMAC_MODE, val);
  2350. val = REG_RD(bp, BNX2_RPM_CONFIG);
  2351. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  2352. REG_WR(bp, BNX2_RPM_CONFIG, val);
  2353. break;
  2354. }
  2355. case PCI_D3hot: {
  2356. int i;
  2357. u32 val, wol_msg;
  2358. if (bp->wol) {
  2359. u32 advertising;
  2360. u8 autoneg;
  2361. autoneg = bp->autoneg;
  2362. advertising = bp->advertising;
  2363. bp->autoneg = AUTONEG_SPEED;
  2364. bp->advertising = ADVERTISED_10baseT_Half |
  2365. ADVERTISED_10baseT_Full |
  2366. ADVERTISED_100baseT_Half |
  2367. ADVERTISED_100baseT_Full |
  2368. ADVERTISED_Autoneg;
  2369. bnx2_setup_copper_phy(bp);
  2370. bp->autoneg = autoneg;
  2371. bp->advertising = advertising;
  2372. bnx2_set_mac_addr(bp);
  2373. val = REG_RD(bp, BNX2_EMAC_MODE);
  2374. /* Enable port mode. */
  2375. val &= ~BNX2_EMAC_MODE_PORT;
  2376. val |= BNX2_EMAC_MODE_PORT_MII |
  2377. BNX2_EMAC_MODE_MPKT_RCVD |
  2378. BNX2_EMAC_MODE_ACPI_RCVD |
  2379. BNX2_EMAC_MODE_MPKT;
  2380. REG_WR(bp, BNX2_EMAC_MODE, val);
  2381. /* receive all multicast */
  2382. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2383. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2384. 0xffffffff);
  2385. }
  2386. REG_WR(bp, BNX2_EMAC_RX_MODE,
  2387. BNX2_EMAC_RX_MODE_SORT_MODE);
  2388. val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
  2389. BNX2_RPM_SORT_USER0_MC_EN;
  2390. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  2391. REG_WR(bp, BNX2_RPM_SORT_USER0, val);
  2392. REG_WR(bp, BNX2_RPM_SORT_USER0, val |
  2393. BNX2_RPM_SORT_USER0_ENA);
  2394. /* Need to enable EMAC and RPM for WOL. */
  2395. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  2396. BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
  2397. BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
  2398. BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
  2399. val = REG_RD(bp, BNX2_RPM_CONFIG);
  2400. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  2401. REG_WR(bp, BNX2_RPM_CONFIG, val);
  2402. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  2403. }
  2404. else {
  2405. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  2406. }
  2407. if (!(bp->flags & NO_WOL_FLAG))
  2408. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg, 0);
  2409. pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
  2410. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  2411. (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
  2412. if (bp->wol)
  2413. pmcsr |= 3;
  2414. }
  2415. else {
  2416. pmcsr |= 3;
  2417. }
  2418. if (bp->wol) {
  2419. pmcsr |= PCI_PM_CTRL_PME_ENABLE;
  2420. }
  2421. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  2422. pmcsr);
  2423. /* No more memory access after this point until
  2424. * device is brought back to D0.
  2425. */
  2426. udelay(50);
  2427. break;
  2428. }
  2429. default:
  2430. return -EINVAL;
  2431. }
  2432. return 0;
  2433. }
  2434. static int
  2435. bnx2_acquire_nvram_lock(struct bnx2 *bp)
  2436. {
  2437. u32 val;
  2438. int j;
  2439. /* Request access to the flash interface. */
  2440. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
  2441. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  2442. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  2443. if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
  2444. break;
  2445. udelay(5);
  2446. }
  2447. if (j >= NVRAM_TIMEOUT_COUNT)
  2448. return -EBUSY;
  2449. return 0;
  2450. }
  2451. static int
  2452. bnx2_release_nvram_lock(struct bnx2 *bp)
  2453. {
  2454. int j;
  2455. u32 val;
  2456. /* Relinquish nvram interface. */
  2457. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
  2458. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  2459. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  2460. if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
  2461. break;
  2462. udelay(5);
  2463. }
  2464. if (j >= NVRAM_TIMEOUT_COUNT)
  2465. return -EBUSY;
  2466. return 0;
  2467. }
  2468. static int
  2469. bnx2_enable_nvram_write(struct bnx2 *bp)
  2470. {
  2471. u32 val;
  2472. val = REG_RD(bp, BNX2_MISC_CFG);
  2473. REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
  2474. if (!bp->flash_info->buffered) {
  2475. int j;
  2476. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  2477. REG_WR(bp, BNX2_NVM_COMMAND,
  2478. BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
  2479. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  2480. udelay(5);
  2481. val = REG_RD(bp, BNX2_NVM_COMMAND);
  2482. if (val & BNX2_NVM_COMMAND_DONE)
  2483. break;
  2484. }
  2485. if (j >= NVRAM_TIMEOUT_COUNT)
  2486. return -EBUSY;
  2487. }
  2488. return 0;
  2489. }
  2490. static void
  2491. bnx2_disable_nvram_write(struct bnx2 *bp)
  2492. {
  2493. u32 val;
  2494. val = REG_RD(bp, BNX2_MISC_CFG);
  2495. REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
  2496. }
  2497. static void
  2498. bnx2_enable_nvram_access(struct bnx2 *bp)
  2499. {
  2500. u32 val;
  2501. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  2502. /* Enable both bits, even on read. */
  2503. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  2504. val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
  2505. }
  2506. static void
  2507. bnx2_disable_nvram_access(struct bnx2 *bp)
  2508. {
  2509. u32 val;
  2510. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  2511. /* Disable both bits, even after read. */
  2512. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  2513. val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
  2514. BNX2_NVM_ACCESS_ENABLE_WR_EN));
  2515. }
  2516. static int
  2517. bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
  2518. {
  2519. u32 cmd;
  2520. int j;
  2521. if (bp->flash_info->buffered)
  2522. /* Buffered flash, no erase needed */
  2523. return 0;
  2524. /* Build an erase command */
  2525. cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
  2526. BNX2_NVM_COMMAND_DOIT;
  2527. /* Need to clear DONE bit separately. */
  2528. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  2529. /* Address of the NVRAM to read from. */
  2530. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  2531. /* Issue an erase command. */
  2532. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  2533. /* Wait for completion. */
  2534. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  2535. u32 val;
  2536. udelay(5);
  2537. val = REG_RD(bp, BNX2_NVM_COMMAND);
  2538. if (val & BNX2_NVM_COMMAND_DONE)
  2539. break;
  2540. }
  2541. if (j >= NVRAM_TIMEOUT_COUNT)
  2542. return -EBUSY;
  2543. return 0;
  2544. }
  2545. static int
  2546. bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
  2547. {
  2548. u32 cmd;
  2549. int j;
  2550. /* Build the command word. */
  2551. cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
  2552. /* Calculate an offset of a buffered flash. */
  2553. if (bp->flash_info->buffered) {
  2554. offset = ((offset / bp->flash_info->page_size) <<
  2555. bp->flash_info->page_bits) +
  2556. (offset % bp->flash_info->page_size);
  2557. }
  2558. /* Need to clear DONE bit separately. */
  2559. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  2560. /* Address of the NVRAM to read from. */
  2561. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  2562. /* Issue a read command. */
  2563. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  2564. /* Wait for completion. */
  2565. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  2566. u32 val;
  2567. udelay(5);
  2568. val = REG_RD(bp, BNX2_NVM_COMMAND);
  2569. if (val & BNX2_NVM_COMMAND_DONE) {
  2570. val = REG_RD(bp, BNX2_NVM_READ);
  2571. val = be32_to_cpu(val);
  2572. memcpy(ret_val, &val, 4);
  2573. break;
  2574. }
  2575. }
  2576. if (j >= NVRAM_TIMEOUT_COUNT)
  2577. return -EBUSY;
  2578. return 0;
  2579. }
  2580. static int
  2581. bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
  2582. {
  2583. u32 cmd, val32;
  2584. int j;
  2585. /* Build the command word. */
  2586. cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
  2587. /* Calculate an offset of a buffered flash. */
  2588. if (bp->flash_info->buffered) {
  2589. offset = ((offset / bp->flash_info->page_size) <<
  2590. bp->flash_info->page_bits) +
  2591. (offset % bp->flash_info->page_size);
  2592. }
  2593. /* Need to clear DONE bit separately. */
  2594. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  2595. memcpy(&val32, val, 4);
  2596. val32 = cpu_to_be32(val32);
  2597. /* Write the data. */
  2598. REG_WR(bp, BNX2_NVM_WRITE, val32);
  2599. /* Address of the NVRAM to write to. */
  2600. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  2601. /* Issue the write command. */
  2602. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  2603. /* Wait for completion. */
  2604. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  2605. udelay(5);
  2606. if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
  2607. break;
  2608. }
  2609. if (j >= NVRAM_TIMEOUT_COUNT)
  2610. return -EBUSY;
  2611. return 0;
  2612. }
  2613. static int
  2614. bnx2_init_nvram(struct bnx2 *bp)
  2615. {
  2616. u32 val;
  2617. int j, entry_count, rc;
  2618. struct flash_spec *flash;
  2619. /* Determine the selected interface. */
  2620. val = REG_RD(bp, BNX2_NVM_CFG1);
  2621. entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
  2622. rc = 0;
  2623. if (val & 0x40000000) {
  2624. /* Flash interface has been reconfigured */
  2625. for (j = 0, flash = &flash_table[0]; j < entry_count;
  2626. j++, flash++) {
  2627. if ((val & FLASH_BACKUP_STRAP_MASK) ==
  2628. (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
  2629. bp->flash_info = flash;
  2630. break;
  2631. }
  2632. }
  2633. }
  2634. else {
  2635. u32 mask;
  2636. /* Not yet been reconfigured */
  2637. if (val & (1 << 23))
  2638. mask = FLASH_BACKUP_STRAP_MASK;
  2639. else
  2640. mask = FLASH_STRAP_MASK;
  2641. for (j = 0, flash = &flash_table[0]; j < entry_count;
  2642. j++, flash++) {
  2643. if ((val & mask) == (flash->strapping & mask)) {
  2644. bp->flash_info = flash;
  2645. /* Request access to the flash interface. */
  2646. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  2647. return rc;
  2648. /* Enable access to flash interface */
  2649. bnx2_enable_nvram_access(bp);
  2650. /* Reconfigure the flash interface */
  2651. REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
  2652. REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
  2653. REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
  2654. REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
  2655. /* Disable access to flash interface */
  2656. bnx2_disable_nvram_access(bp);
  2657. bnx2_release_nvram_lock(bp);
  2658. break;
  2659. }
  2660. }
  2661. } /* if (val & 0x40000000) */
  2662. if (j == entry_count) {
  2663. bp->flash_info = NULL;
  2664. printk(KERN_ALERT PFX "Unknown flash/EEPROM type.\n");
  2665. return -ENODEV;
  2666. }
  2667. val = REG_RD_IND(bp, bp->shmem_base + BNX2_SHARED_HW_CFG_CONFIG2);
  2668. val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
  2669. if (val)
  2670. bp->flash_size = val;
  2671. else
  2672. bp->flash_size = bp->flash_info->total_size;
  2673. return rc;
  2674. }
  2675. static int
  2676. bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
  2677. int buf_size)
  2678. {
  2679. int rc = 0;
  2680. u32 cmd_flags, offset32, len32, extra;
  2681. if (buf_size == 0)
  2682. return 0;
  2683. /* Request access to the flash interface. */
  2684. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  2685. return rc;
  2686. /* Enable access to flash interface */
  2687. bnx2_enable_nvram_access(bp);
  2688. len32 = buf_size;
  2689. offset32 = offset;
  2690. extra = 0;
  2691. cmd_flags = 0;
  2692. if (offset32 & 3) {
  2693. u8 buf[4];
  2694. u32 pre_len;
  2695. offset32 &= ~3;
  2696. pre_len = 4 - (offset & 3);
  2697. if (pre_len >= len32) {
  2698. pre_len = len32;
  2699. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  2700. BNX2_NVM_COMMAND_LAST;
  2701. }
  2702. else {
  2703. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  2704. }
  2705. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  2706. if (rc)
  2707. return rc;
  2708. memcpy(ret_buf, buf + (offset & 3), pre_len);
  2709. offset32 += 4;
  2710. ret_buf += pre_len;
  2711. len32 -= pre_len;
  2712. }
  2713. if (len32 & 3) {
  2714. extra = 4 - (len32 & 3);
  2715. len32 = (len32 + 4) & ~3;
  2716. }
  2717. if (len32 == 4) {
  2718. u8 buf[4];
  2719. if (cmd_flags)
  2720. cmd_flags = BNX2_NVM_COMMAND_LAST;
  2721. else
  2722. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  2723. BNX2_NVM_COMMAND_LAST;
  2724. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  2725. memcpy(ret_buf, buf, 4 - extra);
  2726. }
  2727. else if (len32 > 0) {
  2728. u8 buf[4];
  2729. /* Read the first word. */
  2730. if (cmd_flags)
  2731. cmd_flags = 0;
  2732. else
  2733. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  2734. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
  2735. /* Advance to the next dword. */
  2736. offset32 += 4;
  2737. ret_buf += 4;
  2738. len32 -= 4;
  2739. while (len32 > 4 && rc == 0) {
  2740. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
  2741. /* Advance to the next dword. */
  2742. offset32 += 4;
  2743. ret_buf += 4;
  2744. len32 -= 4;
  2745. }
  2746. if (rc)
  2747. return rc;
  2748. cmd_flags = BNX2_NVM_COMMAND_LAST;
  2749. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  2750. memcpy(ret_buf, buf, 4 - extra);
  2751. }
  2752. /* Disable access to flash interface */
  2753. bnx2_disable_nvram_access(bp);
  2754. bnx2_release_nvram_lock(bp);
  2755. return rc;
  2756. }
  2757. static int
  2758. bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
  2759. int buf_size)
  2760. {
  2761. u32 written, offset32, len32;
  2762. u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
  2763. int rc = 0;
  2764. int align_start, align_end;
  2765. buf = data_buf;
  2766. offset32 = offset;
  2767. len32 = buf_size;
  2768. align_start = align_end = 0;
  2769. if ((align_start = (offset32 & 3))) {
  2770. offset32 &= ~3;
  2771. len32 += align_start;
  2772. if (len32 < 4)
  2773. len32 = 4;
  2774. if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
  2775. return rc;
  2776. }
  2777. if (len32 & 3) {
  2778. align_end = 4 - (len32 & 3);
  2779. len32 += align_end;
  2780. if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
  2781. return rc;
  2782. }
  2783. if (align_start || align_end) {
  2784. align_buf = kmalloc(len32, GFP_KERNEL);
  2785. if (align_buf == NULL)
  2786. return -ENOMEM;
  2787. if (align_start) {
  2788. memcpy(align_buf, start, 4);
  2789. }
  2790. if (align_end) {
  2791. memcpy(align_buf + len32 - 4, end, 4);
  2792. }
  2793. memcpy(align_buf + align_start, data_buf, buf_size);
  2794. buf = align_buf;
  2795. }
  2796. if (bp->flash_info->buffered == 0) {
  2797. flash_buffer = kmalloc(264, GFP_KERNEL);
  2798. if (flash_buffer == NULL) {
  2799. rc = -ENOMEM;
  2800. goto nvram_write_end;
  2801. }
  2802. }
  2803. written = 0;
  2804. while ((written < len32) && (rc == 0)) {
  2805. u32 page_start, page_end, data_start, data_end;
  2806. u32 addr, cmd_flags;
  2807. int i;
  2808. /* Find the page_start addr */
  2809. page_start = offset32 + written;
  2810. page_start -= (page_start % bp->flash_info->page_size);
  2811. /* Find the page_end addr */
  2812. page_end = page_start + bp->flash_info->page_size;
  2813. /* Find the data_start addr */
  2814. data_start = (written == 0) ? offset32 : page_start;
  2815. /* Find the data_end addr */
  2816. data_end = (page_end > offset32 + len32) ?
  2817. (offset32 + len32) : page_end;
  2818. /* Request access to the flash interface. */
  2819. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  2820. goto nvram_write_end;
  2821. /* Enable access to flash interface */
  2822. bnx2_enable_nvram_access(bp);
  2823. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  2824. if (bp->flash_info->buffered == 0) {
  2825. int j;
  2826. /* Read the whole page into the buffer
  2827. * (non-buffer flash only) */
  2828. for (j = 0; j < bp->flash_info->page_size; j += 4) {
  2829. if (j == (bp->flash_info->page_size - 4)) {
  2830. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  2831. }
  2832. rc = bnx2_nvram_read_dword(bp,
  2833. page_start + j,
  2834. &flash_buffer[j],
  2835. cmd_flags);
  2836. if (rc)
  2837. goto nvram_write_end;
  2838. cmd_flags = 0;
  2839. }
  2840. }
  2841. /* Enable writes to flash interface (unlock write-protect) */
  2842. if ((rc = bnx2_enable_nvram_write(bp)) != 0)
  2843. goto nvram_write_end;
  2844. /* Loop to write back the buffer data from page_start to
  2845. * data_start */
  2846. i = 0;
  2847. if (bp->flash_info->buffered == 0) {
  2848. /* Erase the page */
  2849. if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
  2850. goto nvram_write_end;
  2851. /* Re-enable the write again for the actual write */
  2852. bnx2_enable_nvram_write(bp);
  2853. for (addr = page_start; addr < data_start;
  2854. addr += 4, i += 4) {
  2855. rc = bnx2_nvram_write_dword(bp, addr,
  2856. &flash_buffer[i], cmd_flags);
  2857. if (rc != 0)
  2858. goto nvram_write_end;
  2859. cmd_flags = 0;
  2860. }
  2861. }
  2862. /* Loop to write the new data from data_start to data_end */
  2863. for (addr = data_start; addr < data_end; addr += 4, i += 4) {
  2864. if ((addr == page_end - 4) ||
  2865. ((bp->flash_info->buffered) &&
  2866. (addr == data_end - 4))) {
  2867. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  2868. }
  2869. rc = bnx2_nvram_write_dword(bp, addr, buf,
  2870. cmd_flags);
  2871. if (rc != 0)
  2872. goto nvram_write_end;
  2873. cmd_flags = 0;
  2874. buf += 4;
  2875. }
  2876. /* Loop to write back the buffer data from data_end
  2877. * to page_end */
  2878. if (bp->flash_info->buffered == 0) {
  2879. for (addr = data_end; addr < page_end;
  2880. addr += 4, i += 4) {
  2881. if (addr == page_end-4) {
  2882. cmd_flags = BNX2_NVM_COMMAND_LAST;
  2883. }
  2884. rc = bnx2_nvram_write_dword(bp, addr,
  2885. &flash_buffer[i], cmd_flags);
  2886. if (rc != 0)
  2887. goto nvram_write_end;
  2888. cmd_flags = 0;
  2889. }
  2890. }
  2891. /* Disable writes to flash interface (lock write-protect) */
  2892. bnx2_disable_nvram_write(bp);
  2893. /* Disable access to flash interface */
  2894. bnx2_disable_nvram_access(bp);
  2895. bnx2_release_nvram_lock(bp);
  2896. /* Increment written */
  2897. written += data_end - data_start;
  2898. }
  2899. nvram_write_end:
  2900. kfree(flash_buffer);
  2901. kfree(align_buf);
  2902. return rc;
  2903. }
  2904. static int
  2905. bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
  2906. {
  2907. u32 val;
  2908. int i, rc = 0;
  2909. /* Wait for the current PCI transaction to complete before
  2910. * issuing a reset. */
  2911. REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
  2912. BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
  2913. BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
  2914. BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
  2915. BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
  2916. val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
  2917. udelay(5);
  2918. /* Wait for the firmware to tell us it is ok to issue a reset. */
  2919. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1);
  2920. /* Deposit a driver reset signature so the firmware knows that
  2921. * this is a soft reset. */
  2922. REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_RESET_SIGNATURE,
  2923. BNX2_DRV_RESET_SIGNATURE_MAGIC);
  2924. /* Do a dummy read to force the chip to complete all current transaction
  2925. * before we issue a reset. */
  2926. val = REG_RD(bp, BNX2_MISC_ID);
  2927. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  2928. REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
  2929. REG_RD(bp, BNX2_MISC_COMMAND);
  2930. udelay(5);
  2931. val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  2932. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  2933. pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, val);
  2934. } else {
  2935. val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  2936. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  2937. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  2938. /* Chip reset. */
  2939. REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
  2940. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  2941. (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
  2942. current->state = TASK_UNINTERRUPTIBLE;
  2943. schedule_timeout(HZ / 50);
  2944. }
  2945. /* Reset takes approximate 30 usec */
  2946. for (i = 0; i < 10; i++) {
  2947. val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
  2948. if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  2949. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
  2950. break;
  2951. udelay(10);
  2952. }
  2953. if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  2954. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
  2955. printk(KERN_ERR PFX "Chip reset did not complete\n");
  2956. return -EBUSY;
  2957. }
  2958. }
  2959. /* Make sure byte swapping is properly configured. */
  2960. val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
  2961. if (val != 0x01020304) {
  2962. printk(KERN_ERR PFX "Chip not in correct endian mode\n");
  2963. return -ENODEV;
  2964. }
  2965. /* Wait for the firmware to finish its initialization. */
  2966. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 0);
  2967. if (rc)
  2968. return rc;
  2969. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  2970. /* Adjust the voltage regular to two steps lower. The default
  2971. * of this register is 0x0000000e. */
  2972. REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
  2973. /* Remove bad rbuf memory from the free pool. */
  2974. rc = bnx2_alloc_bad_rbuf(bp);
  2975. }
  2976. return rc;
  2977. }
  2978. static int
  2979. bnx2_init_chip(struct bnx2 *bp)
  2980. {
  2981. u32 val;
  2982. int rc;
  2983. /* Make sure the interrupt is not active. */
  2984. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2985. val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
  2986. BNX2_DMA_CONFIG_DATA_WORD_SWAP |
  2987. #ifdef __BIG_ENDIAN
  2988. BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
  2989. #endif
  2990. BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
  2991. DMA_READ_CHANS << 12 |
  2992. DMA_WRITE_CHANS << 16;
  2993. val |= (0x2 << 20) | (1 << 11);
  2994. if ((bp->flags & PCIX_FLAG) && (bp->bus_speed_mhz == 133))
  2995. val |= (1 << 23);
  2996. if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
  2997. (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & PCIX_FLAG))
  2998. val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
  2999. REG_WR(bp, BNX2_DMA_CONFIG, val);
  3000. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  3001. val = REG_RD(bp, BNX2_TDMA_CONFIG);
  3002. val |= BNX2_TDMA_CONFIG_ONE_DMA;
  3003. REG_WR(bp, BNX2_TDMA_CONFIG, val);
  3004. }
  3005. if (bp->flags & PCIX_FLAG) {
  3006. u16 val16;
  3007. pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  3008. &val16);
  3009. pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  3010. val16 & ~PCI_X_CMD_ERO);
  3011. }
  3012. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  3013. BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
  3014. BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
  3015. BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
  3016. /* Initialize context mapping and zero out the quick contexts. The
  3017. * context block must have already been enabled. */
  3018. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3019. rc = bnx2_init_5709_context(bp);
  3020. if (rc)
  3021. return rc;
  3022. } else
  3023. bnx2_init_context(bp);
  3024. if ((rc = bnx2_init_cpus(bp)) != 0)
  3025. return rc;
  3026. bnx2_init_nvram(bp);
  3027. bnx2_set_mac_addr(bp);
  3028. val = REG_RD(bp, BNX2_MQ_CONFIG);
  3029. val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
  3030. val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
  3031. if (CHIP_ID(bp) == CHIP_ID_5709_A0 || CHIP_ID(bp) == CHIP_ID_5709_A1)
  3032. val |= BNX2_MQ_CONFIG_HALT_DIS;
  3033. REG_WR(bp, BNX2_MQ_CONFIG, val);
  3034. val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
  3035. REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
  3036. REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
  3037. val = (BCM_PAGE_BITS - 8) << 24;
  3038. REG_WR(bp, BNX2_RV2P_CONFIG, val);
  3039. /* Configure page size. */
  3040. val = REG_RD(bp, BNX2_TBDR_CONFIG);
  3041. val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
  3042. val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
  3043. REG_WR(bp, BNX2_TBDR_CONFIG, val);
  3044. val = bp->mac_addr[0] +
  3045. (bp->mac_addr[1] << 8) +
  3046. (bp->mac_addr[2] << 16) +
  3047. bp->mac_addr[3] +
  3048. (bp->mac_addr[4] << 8) +
  3049. (bp->mac_addr[5] << 16);
  3050. REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
  3051. /* Program the MTU. Also include 4 bytes for CRC32. */
  3052. val = bp->dev->mtu + ETH_HLEN + 4;
  3053. if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
  3054. val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
  3055. REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
  3056. bp->last_status_idx = 0;
  3057. bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
  3058. /* Set up how to generate a link change interrupt. */
  3059. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  3060. REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
  3061. (u64) bp->status_blk_mapping & 0xffffffff);
  3062. REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
  3063. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
  3064. (u64) bp->stats_blk_mapping & 0xffffffff);
  3065. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
  3066. (u64) bp->stats_blk_mapping >> 32);
  3067. REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
  3068. (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
  3069. REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
  3070. (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
  3071. REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
  3072. (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
  3073. REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
  3074. REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
  3075. REG_WR(bp, BNX2_HC_COM_TICKS,
  3076. (bp->com_ticks_int << 16) | bp->com_ticks);
  3077. REG_WR(bp, BNX2_HC_CMD_TICKS,
  3078. (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
  3079. REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks & 0xffff00);
  3080. REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
  3081. if (CHIP_ID(bp) == CHIP_ID_5706_A1)
  3082. val = BNX2_HC_CONFIG_COLLECT_STATS;
  3083. else {
  3084. val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
  3085. BNX2_HC_CONFIG_COLLECT_STATS;
  3086. }
  3087. if (bp->flags & ONE_SHOT_MSI_FLAG)
  3088. val |= BNX2_HC_CONFIG_ONE_SHOT;
  3089. REG_WR(bp, BNX2_HC_CONFIG, val);
  3090. /* Clear internal stats counters. */
  3091. REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
  3092. REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
  3093. if (REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_FEATURE) &
  3094. BNX2_PORT_FEATURE_ASF_ENABLED)
  3095. bp->flags |= ASF_ENABLE_FLAG;
  3096. /* Initialize the receive filter. */
  3097. bnx2_set_rx_mode(bp->dev);
  3098. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
  3099. 0);
  3100. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, 0x5ffffff);
  3101. REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
  3102. udelay(20);
  3103. bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
  3104. return rc;
  3105. }
  3106. static void
  3107. bnx2_init_tx_context(struct bnx2 *bp, u32 cid)
  3108. {
  3109. u32 val, offset0, offset1, offset2, offset3;
  3110. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3111. offset0 = BNX2_L2CTX_TYPE_XI;
  3112. offset1 = BNX2_L2CTX_CMD_TYPE_XI;
  3113. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
  3114. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
  3115. } else {
  3116. offset0 = BNX2_L2CTX_TYPE;
  3117. offset1 = BNX2_L2CTX_CMD_TYPE;
  3118. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
  3119. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
  3120. }
  3121. val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
  3122. CTX_WR(bp, GET_CID_ADDR(cid), offset0, val);
  3123. val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
  3124. CTX_WR(bp, GET_CID_ADDR(cid), offset1, val);
  3125. val = (u64) bp->tx_desc_mapping >> 32;
  3126. CTX_WR(bp, GET_CID_ADDR(cid), offset2, val);
  3127. val = (u64) bp->tx_desc_mapping & 0xffffffff;
  3128. CTX_WR(bp, GET_CID_ADDR(cid), offset3, val);
  3129. }
  3130. static void
  3131. bnx2_init_tx_ring(struct bnx2 *bp)
  3132. {
  3133. struct tx_bd *txbd;
  3134. u32 cid;
  3135. bp->tx_wake_thresh = bp->tx_ring_size / 2;
  3136. txbd = &bp->tx_desc_ring[MAX_TX_DESC_CNT];
  3137. txbd->tx_bd_haddr_hi = (u64) bp->tx_desc_mapping >> 32;
  3138. txbd->tx_bd_haddr_lo = (u64) bp->tx_desc_mapping & 0xffffffff;
  3139. bp->tx_prod = 0;
  3140. bp->tx_cons = 0;
  3141. bp->hw_tx_cons = 0;
  3142. bp->tx_prod_bseq = 0;
  3143. cid = TX_CID;
  3144. bp->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
  3145. bp->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
  3146. bnx2_init_tx_context(bp, cid);
  3147. }
  3148. static void
  3149. bnx2_init_rx_ring(struct bnx2 *bp)
  3150. {
  3151. struct rx_bd *rxbd;
  3152. int i;
  3153. u16 prod, ring_prod;
  3154. u32 val;
  3155. /* 8 for CRC and VLAN */
  3156. bp->rx_buf_use_size = bp->dev->mtu + ETH_HLEN + bp->rx_offset + 8;
  3157. /* hw alignment */
  3158. bp->rx_buf_size = bp->rx_buf_use_size + BNX2_RX_ALIGN;
  3159. ring_prod = prod = bp->rx_prod = 0;
  3160. bp->rx_cons = 0;
  3161. bp->hw_rx_cons = 0;
  3162. bp->rx_prod_bseq = 0;
  3163. for (i = 0; i < bp->rx_max_ring; i++) {
  3164. int j;
  3165. rxbd = &bp->rx_desc_ring[i][0];
  3166. for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
  3167. rxbd->rx_bd_len = bp->rx_buf_use_size;
  3168. rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
  3169. }
  3170. if (i == (bp->rx_max_ring - 1))
  3171. j = 0;
  3172. else
  3173. j = i + 1;
  3174. rxbd->rx_bd_haddr_hi = (u64) bp->rx_desc_mapping[j] >> 32;
  3175. rxbd->rx_bd_haddr_lo = (u64) bp->rx_desc_mapping[j] &
  3176. 0xffffffff;
  3177. }
  3178. val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
  3179. val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
  3180. val |= 0x02 << 8;
  3181. CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_CTX_TYPE, val);
  3182. val = (u64) bp->rx_desc_mapping[0] >> 32;
  3183. CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_NX_BDHADDR_HI, val);
  3184. val = (u64) bp->rx_desc_mapping[0] & 0xffffffff;
  3185. CTX_WR(bp, GET_CID_ADDR(RX_CID), BNX2_L2CTX_NX_BDHADDR_LO, val);
  3186. for (i = 0; i < bp->rx_ring_size; i++) {
  3187. if (bnx2_alloc_rx_skb(bp, ring_prod) < 0) {
  3188. break;
  3189. }
  3190. prod = NEXT_RX_BD(prod);
  3191. ring_prod = RX_RING_IDX(prod);
  3192. }
  3193. bp->rx_prod = prod;
  3194. REG_WR16(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BDIDX, prod);
  3195. REG_WR(bp, MB_RX_CID_ADDR + BNX2_L2CTX_HOST_BSEQ, bp->rx_prod_bseq);
  3196. }
  3197. static void
  3198. bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
  3199. {
  3200. u32 num_rings, max;
  3201. bp->rx_ring_size = size;
  3202. num_rings = 1;
  3203. while (size > MAX_RX_DESC_CNT) {
  3204. size -= MAX_RX_DESC_CNT;
  3205. num_rings++;
  3206. }
  3207. /* round to next power of 2 */
  3208. max = MAX_RX_RINGS;
  3209. while ((max & num_rings) == 0)
  3210. max >>= 1;
  3211. if (num_rings != max)
  3212. max <<= 1;
  3213. bp->rx_max_ring = max;
  3214. bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
  3215. }
  3216. static void
  3217. bnx2_free_tx_skbs(struct bnx2 *bp)
  3218. {
  3219. int i;
  3220. if (bp->tx_buf_ring == NULL)
  3221. return;
  3222. for (i = 0; i < TX_DESC_CNT; ) {
  3223. struct sw_bd *tx_buf = &bp->tx_buf_ring[i];
  3224. struct sk_buff *skb = tx_buf->skb;
  3225. int j, last;
  3226. if (skb == NULL) {
  3227. i++;
  3228. continue;
  3229. }
  3230. pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping),
  3231. skb_headlen(skb), PCI_DMA_TODEVICE);
  3232. tx_buf->skb = NULL;
  3233. last = skb_shinfo(skb)->nr_frags;
  3234. for (j = 0; j < last; j++) {
  3235. tx_buf = &bp->tx_buf_ring[i + j + 1];
  3236. pci_unmap_page(bp->pdev,
  3237. pci_unmap_addr(tx_buf, mapping),
  3238. skb_shinfo(skb)->frags[j].size,
  3239. PCI_DMA_TODEVICE);
  3240. }
  3241. dev_kfree_skb(skb);
  3242. i += j + 1;
  3243. }
  3244. }
  3245. static void
  3246. bnx2_free_rx_skbs(struct bnx2 *bp)
  3247. {
  3248. int i;
  3249. if (bp->rx_buf_ring == NULL)
  3250. return;
  3251. for (i = 0; i < bp->rx_max_ring_idx; i++) {
  3252. struct sw_bd *rx_buf = &bp->rx_buf_ring[i];
  3253. struct sk_buff *skb = rx_buf->skb;
  3254. if (skb == NULL)
  3255. continue;
  3256. pci_unmap_single(bp->pdev, pci_unmap_addr(rx_buf, mapping),
  3257. bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
  3258. rx_buf->skb = NULL;
  3259. dev_kfree_skb(skb);
  3260. }
  3261. }
  3262. static void
  3263. bnx2_free_skbs(struct bnx2 *bp)
  3264. {
  3265. bnx2_free_tx_skbs(bp);
  3266. bnx2_free_rx_skbs(bp);
  3267. }
  3268. static int
  3269. bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
  3270. {
  3271. int rc;
  3272. rc = bnx2_reset_chip(bp, reset_code);
  3273. bnx2_free_skbs(bp);
  3274. if (rc)
  3275. return rc;
  3276. if ((rc = bnx2_init_chip(bp)) != 0)
  3277. return rc;
  3278. bnx2_init_tx_ring(bp);
  3279. bnx2_init_rx_ring(bp);
  3280. return 0;
  3281. }
  3282. static int
  3283. bnx2_init_nic(struct bnx2 *bp)
  3284. {
  3285. int rc;
  3286. if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
  3287. return rc;
  3288. spin_lock_bh(&bp->phy_lock);
  3289. bnx2_init_phy(bp);
  3290. spin_unlock_bh(&bp->phy_lock);
  3291. bnx2_set_link(bp);
  3292. return 0;
  3293. }
  3294. static int
  3295. bnx2_test_registers(struct bnx2 *bp)
  3296. {
  3297. int ret;
  3298. int i, is_5709;
  3299. static const struct {
  3300. u16 offset;
  3301. u16 flags;
  3302. #define BNX2_FL_NOT_5709 1
  3303. u32 rw_mask;
  3304. u32 ro_mask;
  3305. } reg_tbl[] = {
  3306. { 0x006c, 0, 0x00000000, 0x0000003f },
  3307. { 0x0090, 0, 0xffffffff, 0x00000000 },
  3308. { 0x0094, 0, 0x00000000, 0x00000000 },
  3309. { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
  3310. { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  3311. { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  3312. { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
  3313. { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
  3314. { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  3315. { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
  3316. { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  3317. { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  3318. { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  3319. { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  3320. { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  3321. { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  3322. { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  3323. { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  3324. { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  3325. { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
  3326. { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
  3327. { 0x1000, 0, 0x00000000, 0x00000001 },
  3328. { 0x1004, 0, 0x00000000, 0x000f0001 },
  3329. { 0x1408, 0, 0x01c00800, 0x00000000 },
  3330. { 0x149c, 0, 0x8000ffff, 0x00000000 },
  3331. { 0x14a8, 0, 0x00000000, 0x000001ff },
  3332. { 0x14ac, 0, 0x0fffffff, 0x10000000 },
  3333. { 0x14b0, 0, 0x00000002, 0x00000001 },
  3334. { 0x14b8, 0, 0x00000000, 0x00000000 },
  3335. { 0x14c0, 0, 0x00000000, 0x00000009 },
  3336. { 0x14c4, 0, 0x00003fff, 0x00000000 },
  3337. { 0x14cc, 0, 0x00000000, 0x00000001 },
  3338. { 0x14d0, 0, 0xffffffff, 0x00000000 },
  3339. { 0x1800, 0, 0x00000000, 0x00000001 },
  3340. { 0x1804, 0, 0x00000000, 0x00000003 },
  3341. { 0x2800, 0, 0x00000000, 0x00000001 },
  3342. { 0x2804, 0, 0x00000000, 0x00003f01 },
  3343. { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
  3344. { 0x2810, 0, 0xffff0000, 0x00000000 },
  3345. { 0x2814, 0, 0xffff0000, 0x00000000 },
  3346. { 0x2818, 0, 0xffff0000, 0x00000000 },
  3347. { 0x281c, 0, 0xffff0000, 0x00000000 },
  3348. { 0x2834, 0, 0xffffffff, 0x00000000 },
  3349. { 0x2840, 0, 0x00000000, 0xffffffff },
  3350. { 0x2844, 0, 0x00000000, 0xffffffff },
  3351. { 0x2848, 0, 0xffffffff, 0x00000000 },
  3352. { 0x284c, 0, 0xf800f800, 0x07ff07ff },
  3353. { 0x2c00, 0, 0x00000000, 0x00000011 },
  3354. { 0x2c04, 0, 0x00000000, 0x00030007 },
  3355. { 0x3c00, 0, 0x00000000, 0x00000001 },
  3356. { 0x3c04, 0, 0x00000000, 0x00070000 },
  3357. { 0x3c08, 0, 0x00007f71, 0x07f00000 },
  3358. { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
  3359. { 0x3c10, 0, 0xffffffff, 0x00000000 },
  3360. { 0x3c14, 0, 0x00000000, 0xffffffff },
  3361. { 0x3c18, 0, 0x00000000, 0xffffffff },
  3362. { 0x3c1c, 0, 0xfffff000, 0x00000000 },
  3363. { 0x3c20, 0, 0xffffff00, 0x00000000 },
  3364. { 0x5004, 0, 0x00000000, 0x0000007f },
  3365. { 0x5008, 0, 0x0f0007ff, 0x00000000 },
  3366. { 0x5c00, 0, 0x00000000, 0x00000001 },
  3367. { 0x5c04, 0, 0x00000000, 0x0003000f },
  3368. { 0x5c08, 0, 0x00000003, 0x00000000 },
  3369. { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
  3370. { 0x5c10, 0, 0x00000000, 0xffffffff },
  3371. { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
  3372. { 0x5c84, 0, 0x00000000, 0x0000f333 },
  3373. { 0x5c88, 0, 0x00000000, 0x00077373 },
  3374. { 0x5c8c, 0, 0x00000000, 0x0007f737 },
  3375. { 0x6808, 0, 0x0000ff7f, 0x00000000 },
  3376. { 0x680c, 0, 0xffffffff, 0x00000000 },
  3377. { 0x6810, 0, 0xffffffff, 0x00000000 },
  3378. { 0x6814, 0, 0xffffffff, 0x00000000 },
  3379. { 0x6818, 0, 0xffffffff, 0x00000000 },
  3380. { 0x681c, 0, 0xffffffff, 0x00000000 },
  3381. { 0x6820, 0, 0x00ff00ff, 0x00000000 },
  3382. { 0x6824, 0, 0x00ff00ff, 0x00000000 },
  3383. { 0x6828, 0, 0x00ff00ff, 0x00000000 },
  3384. { 0x682c, 0, 0x03ff03ff, 0x00000000 },
  3385. { 0x6830, 0, 0x03ff03ff, 0x00000000 },
  3386. { 0x6834, 0, 0x03ff03ff, 0x00000000 },
  3387. { 0x6838, 0, 0x03ff03ff, 0x00000000 },
  3388. { 0x683c, 0, 0x0000ffff, 0x00000000 },
  3389. { 0x6840, 0, 0x00000ff0, 0x00000000 },
  3390. { 0x6844, 0, 0x00ffff00, 0x00000000 },
  3391. { 0x684c, 0, 0xffffffff, 0x00000000 },
  3392. { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
  3393. { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
  3394. { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
  3395. { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
  3396. { 0x6908, 0, 0x00000000, 0x0001ff0f },
  3397. { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
  3398. { 0xffff, 0, 0x00000000, 0x00000000 },
  3399. };
  3400. ret = 0;
  3401. is_5709 = 0;
  3402. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  3403. is_5709 = 1;
  3404. for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
  3405. u32 offset, rw_mask, ro_mask, save_val, val;
  3406. u16 flags = reg_tbl[i].flags;
  3407. if (is_5709 && (flags & BNX2_FL_NOT_5709))
  3408. continue;
  3409. offset = (u32) reg_tbl[i].offset;
  3410. rw_mask = reg_tbl[i].rw_mask;
  3411. ro_mask = reg_tbl[i].ro_mask;
  3412. save_val = readl(bp->regview + offset);
  3413. writel(0, bp->regview + offset);
  3414. val = readl(bp->regview + offset);
  3415. if ((val & rw_mask) != 0) {
  3416. goto reg_test_err;
  3417. }
  3418. if ((val & ro_mask) != (save_val & ro_mask)) {
  3419. goto reg_test_err;
  3420. }
  3421. writel(0xffffffff, bp->regview + offset);
  3422. val = readl(bp->regview + offset);
  3423. if ((val & rw_mask) != rw_mask) {
  3424. goto reg_test_err;
  3425. }
  3426. if ((val & ro_mask) != (save_val & ro_mask)) {
  3427. goto reg_test_err;
  3428. }
  3429. writel(save_val, bp->regview + offset);
  3430. continue;
  3431. reg_test_err:
  3432. writel(save_val, bp->regview + offset);
  3433. ret = -ENODEV;
  3434. break;
  3435. }
  3436. return ret;
  3437. }
  3438. static int
  3439. bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
  3440. {
  3441. static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
  3442. 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
  3443. int i;
  3444. for (i = 0; i < sizeof(test_pattern) / 4; i++) {
  3445. u32 offset;
  3446. for (offset = 0; offset < size; offset += 4) {
  3447. REG_WR_IND(bp, start + offset, test_pattern[i]);
  3448. if (REG_RD_IND(bp, start + offset) !=
  3449. test_pattern[i]) {
  3450. return -ENODEV;
  3451. }
  3452. }
  3453. }
  3454. return 0;
  3455. }
  3456. static int
  3457. bnx2_test_memory(struct bnx2 *bp)
  3458. {
  3459. int ret = 0;
  3460. int i;
  3461. static struct mem_entry {
  3462. u32 offset;
  3463. u32 len;
  3464. } mem_tbl_5706[] = {
  3465. { 0x60000, 0x4000 },
  3466. { 0xa0000, 0x3000 },
  3467. { 0xe0000, 0x4000 },
  3468. { 0x120000, 0x4000 },
  3469. { 0x1a0000, 0x4000 },
  3470. { 0x160000, 0x4000 },
  3471. { 0xffffffff, 0 },
  3472. },
  3473. mem_tbl_5709[] = {
  3474. { 0x60000, 0x4000 },
  3475. { 0xa0000, 0x3000 },
  3476. { 0xe0000, 0x4000 },
  3477. { 0x120000, 0x4000 },
  3478. { 0x1a0000, 0x4000 },
  3479. { 0xffffffff, 0 },
  3480. };
  3481. struct mem_entry *mem_tbl;
  3482. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  3483. mem_tbl = mem_tbl_5709;
  3484. else
  3485. mem_tbl = mem_tbl_5706;
  3486. for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
  3487. if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
  3488. mem_tbl[i].len)) != 0) {
  3489. return ret;
  3490. }
  3491. }
  3492. return ret;
  3493. }
  3494. #define BNX2_MAC_LOOPBACK 0
  3495. #define BNX2_PHY_LOOPBACK 1
  3496. static int
  3497. bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
  3498. {
  3499. unsigned int pkt_size, num_pkts, i;
  3500. struct sk_buff *skb, *rx_skb;
  3501. unsigned char *packet;
  3502. u16 rx_start_idx, rx_idx;
  3503. dma_addr_t map;
  3504. struct tx_bd *txbd;
  3505. struct sw_bd *rx_buf;
  3506. struct l2_fhdr *rx_hdr;
  3507. int ret = -ENODEV;
  3508. if (loopback_mode == BNX2_MAC_LOOPBACK) {
  3509. bp->loopback = MAC_LOOPBACK;
  3510. bnx2_set_mac_loopback(bp);
  3511. }
  3512. else if (loopback_mode == BNX2_PHY_LOOPBACK) {
  3513. bp->loopback = PHY_LOOPBACK;
  3514. bnx2_set_phy_loopback(bp);
  3515. }
  3516. else
  3517. return -EINVAL;
  3518. pkt_size = 1514;
  3519. skb = netdev_alloc_skb(bp->dev, pkt_size);
  3520. if (!skb)
  3521. return -ENOMEM;
  3522. packet = skb_put(skb, pkt_size);
  3523. memcpy(packet, bp->dev->dev_addr, 6);
  3524. memset(packet + 6, 0x0, 8);
  3525. for (i = 14; i < pkt_size; i++)
  3526. packet[i] = (unsigned char) (i & 0xff);
  3527. map = pci_map_single(bp->pdev, skb->data, pkt_size,
  3528. PCI_DMA_TODEVICE);
  3529. REG_WR(bp, BNX2_HC_COMMAND,
  3530. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  3531. REG_RD(bp, BNX2_HC_COMMAND);
  3532. udelay(5);
  3533. rx_start_idx = bp->status_blk->status_rx_quick_consumer_index0;
  3534. num_pkts = 0;
  3535. txbd = &bp->tx_desc_ring[TX_RING_IDX(bp->tx_prod)];
  3536. txbd->tx_bd_haddr_hi = (u64) map >> 32;
  3537. txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
  3538. txbd->tx_bd_mss_nbytes = pkt_size;
  3539. txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
  3540. num_pkts++;
  3541. bp->tx_prod = NEXT_TX_BD(bp->tx_prod);
  3542. bp->tx_prod_bseq += pkt_size;
  3543. REG_WR16(bp, bp->tx_bidx_addr, bp->tx_prod);
  3544. REG_WR(bp, bp->tx_bseq_addr, bp->tx_prod_bseq);
  3545. udelay(100);
  3546. REG_WR(bp, BNX2_HC_COMMAND,
  3547. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  3548. REG_RD(bp, BNX2_HC_COMMAND);
  3549. udelay(5);
  3550. pci_unmap_single(bp->pdev, map, pkt_size, PCI_DMA_TODEVICE);
  3551. dev_kfree_skb(skb);
  3552. if (bp->status_blk->status_tx_quick_consumer_index0 != bp->tx_prod) {
  3553. goto loopback_test_done;
  3554. }
  3555. rx_idx = bp->status_blk->status_rx_quick_consumer_index0;
  3556. if (rx_idx != rx_start_idx + num_pkts) {
  3557. goto loopback_test_done;
  3558. }
  3559. rx_buf = &bp->rx_buf_ring[rx_start_idx];
  3560. rx_skb = rx_buf->skb;
  3561. rx_hdr = (struct l2_fhdr *) rx_skb->data;
  3562. skb_reserve(rx_skb, bp->rx_offset);
  3563. pci_dma_sync_single_for_cpu(bp->pdev,
  3564. pci_unmap_addr(rx_buf, mapping),
  3565. bp->rx_buf_size, PCI_DMA_FROMDEVICE);
  3566. if (rx_hdr->l2_fhdr_status &
  3567. (L2_FHDR_ERRORS_BAD_CRC |
  3568. L2_FHDR_ERRORS_PHY_DECODE |
  3569. L2_FHDR_ERRORS_ALIGNMENT |
  3570. L2_FHDR_ERRORS_TOO_SHORT |
  3571. L2_FHDR_ERRORS_GIANT_FRAME)) {
  3572. goto loopback_test_done;
  3573. }
  3574. if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
  3575. goto loopback_test_done;
  3576. }
  3577. for (i = 14; i < pkt_size; i++) {
  3578. if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
  3579. goto loopback_test_done;
  3580. }
  3581. }
  3582. ret = 0;
  3583. loopback_test_done:
  3584. bp->loopback = 0;
  3585. return ret;
  3586. }
  3587. #define BNX2_MAC_LOOPBACK_FAILED 1
  3588. #define BNX2_PHY_LOOPBACK_FAILED 2
  3589. #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
  3590. BNX2_PHY_LOOPBACK_FAILED)
  3591. static int
  3592. bnx2_test_loopback(struct bnx2 *bp)
  3593. {
  3594. int rc = 0;
  3595. if (!netif_running(bp->dev))
  3596. return BNX2_LOOPBACK_FAILED;
  3597. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  3598. spin_lock_bh(&bp->phy_lock);
  3599. bnx2_init_phy(bp);
  3600. spin_unlock_bh(&bp->phy_lock);
  3601. if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
  3602. rc |= BNX2_MAC_LOOPBACK_FAILED;
  3603. if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
  3604. rc |= BNX2_PHY_LOOPBACK_FAILED;
  3605. return rc;
  3606. }
  3607. #define NVRAM_SIZE 0x200
  3608. #define CRC32_RESIDUAL 0xdebb20e3
  3609. static int
  3610. bnx2_test_nvram(struct bnx2 *bp)
  3611. {
  3612. u32 buf[NVRAM_SIZE / 4];
  3613. u8 *data = (u8 *) buf;
  3614. int rc = 0;
  3615. u32 magic, csum;
  3616. if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
  3617. goto test_nvram_done;
  3618. magic = be32_to_cpu(buf[0]);
  3619. if (magic != 0x669955aa) {
  3620. rc = -ENODEV;
  3621. goto test_nvram_done;
  3622. }
  3623. if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
  3624. goto test_nvram_done;
  3625. csum = ether_crc_le(0x100, data);
  3626. if (csum != CRC32_RESIDUAL) {
  3627. rc = -ENODEV;
  3628. goto test_nvram_done;
  3629. }
  3630. csum = ether_crc_le(0x100, data + 0x100);
  3631. if (csum != CRC32_RESIDUAL) {
  3632. rc = -ENODEV;
  3633. }
  3634. test_nvram_done:
  3635. return rc;
  3636. }
  3637. static int
  3638. bnx2_test_link(struct bnx2 *bp)
  3639. {
  3640. u32 bmsr;
  3641. spin_lock_bh(&bp->phy_lock);
  3642. bnx2_enable_bmsr1(bp);
  3643. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  3644. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  3645. bnx2_disable_bmsr1(bp);
  3646. spin_unlock_bh(&bp->phy_lock);
  3647. if (bmsr & BMSR_LSTATUS) {
  3648. return 0;
  3649. }
  3650. return -ENODEV;
  3651. }
  3652. static int
  3653. bnx2_test_intr(struct bnx2 *bp)
  3654. {
  3655. int i;
  3656. u16 status_idx;
  3657. if (!netif_running(bp->dev))
  3658. return -ENODEV;
  3659. status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
  3660. /* This register is not touched during run-time. */
  3661. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  3662. REG_RD(bp, BNX2_HC_COMMAND);
  3663. for (i = 0; i < 10; i++) {
  3664. if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
  3665. status_idx) {
  3666. break;
  3667. }
  3668. msleep_interruptible(10);
  3669. }
  3670. if (i < 10)
  3671. return 0;
  3672. return -ENODEV;
  3673. }
  3674. static void
  3675. bnx2_5706_serdes_timer(struct bnx2 *bp)
  3676. {
  3677. spin_lock(&bp->phy_lock);
  3678. if (bp->serdes_an_pending)
  3679. bp->serdes_an_pending--;
  3680. else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  3681. u32 bmcr;
  3682. bp->current_interval = bp->timer_interval;
  3683. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  3684. if (bmcr & BMCR_ANENABLE) {
  3685. u32 phy1, phy2;
  3686. bnx2_write_phy(bp, 0x1c, 0x7c00);
  3687. bnx2_read_phy(bp, 0x1c, &phy1);
  3688. bnx2_write_phy(bp, 0x17, 0x0f01);
  3689. bnx2_read_phy(bp, 0x15, &phy2);
  3690. bnx2_write_phy(bp, 0x17, 0x0f01);
  3691. bnx2_read_phy(bp, 0x15, &phy2);
  3692. if ((phy1 & 0x10) && /* SIGNAL DETECT */
  3693. !(phy2 & 0x20)) { /* no CONFIG */
  3694. bmcr &= ~BMCR_ANENABLE;
  3695. bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
  3696. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  3697. bp->phy_flags |= PHY_PARALLEL_DETECT_FLAG;
  3698. }
  3699. }
  3700. }
  3701. else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
  3702. (bp->phy_flags & PHY_PARALLEL_DETECT_FLAG)) {
  3703. u32 phy2;
  3704. bnx2_write_phy(bp, 0x17, 0x0f01);
  3705. bnx2_read_phy(bp, 0x15, &phy2);
  3706. if (phy2 & 0x20) {
  3707. u32 bmcr;
  3708. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  3709. bmcr |= BMCR_ANENABLE;
  3710. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  3711. bp->phy_flags &= ~PHY_PARALLEL_DETECT_FLAG;
  3712. }
  3713. } else
  3714. bp->current_interval = bp->timer_interval;
  3715. spin_unlock(&bp->phy_lock);
  3716. }
  3717. static void
  3718. bnx2_5708_serdes_timer(struct bnx2 *bp)
  3719. {
  3720. if ((bp->phy_flags & PHY_2_5G_CAPABLE_FLAG) == 0) {
  3721. bp->serdes_an_pending = 0;
  3722. return;
  3723. }
  3724. spin_lock(&bp->phy_lock);
  3725. if (bp->serdes_an_pending)
  3726. bp->serdes_an_pending--;
  3727. else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  3728. u32 bmcr;
  3729. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  3730. if (bmcr & BMCR_ANENABLE) {
  3731. bnx2_enable_forced_2g5(bp);
  3732. bp->current_interval = SERDES_FORCED_TIMEOUT;
  3733. } else {
  3734. bnx2_disable_forced_2g5(bp);
  3735. bp->serdes_an_pending = 2;
  3736. bp->current_interval = bp->timer_interval;
  3737. }
  3738. } else
  3739. bp->current_interval = bp->timer_interval;
  3740. spin_unlock(&bp->phy_lock);
  3741. }
  3742. static void
  3743. bnx2_timer(unsigned long data)
  3744. {
  3745. struct bnx2 *bp = (struct bnx2 *) data;
  3746. u32 msg;
  3747. if (!netif_running(bp->dev))
  3748. return;
  3749. if (atomic_read(&bp->intr_sem) != 0)
  3750. goto bnx2_restart_timer;
  3751. msg = (u32) ++bp->fw_drv_pulse_wr_seq;
  3752. REG_WR_IND(bp, bp->shmem_base + BNX2_DRV_PULSE_MB, msg);
  3753. bp->stats_blk->stat_FwRxDrop = REG_RD_IND(bp, BNX2_FW_RX_DROP_COUNT);
  3754. if (bp->phy_flags & PHY_SERDES_FLAG) {
  3755. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  3756. bnx2_5706_serdes_timer(bp);
  3757. else
  3758. bnx2_5708_serdes_timer(bp);
  3759. }
  3760. bnx2_restart_timer:
  3761. mod_timer(&bp->timer, jiffies + bp->current_interval);
  3762. }
  3763. static int
  3764. bnx2_request_irq(struct bnx2 *bp)
  3765. {
  3766. struct net_device *dev = bp->dev;
  3767. int rc = 0;
  3768. if (bp->flags & USING_MSI_FLAG) {
  3769. irq_handler_t fn = bnx2_msi;
  3770. if (bp->flags & ONE_SHOT_MSI_FLAG)
  3771. fn = bnx2_msi_1shot;
  3772. rc = request_irq(bp->pdev->irq, fn, 0, dev->name, dev);
  3773. } else
  3774. rc = request_irq(bp->pdev->irq, bnx2_interrupt,
  3775. IRQF_SHARED, dev->name, dev);
  3776. return rc;
  3777. }
  3778. static void
  3779. bnx2_free_irq(struct bnx2 *bp)
  3780. {
  3781. struct net_device *dev = bp->dev;
  3782. if (bp->flags & USING_MSI_FLAG) {
  3783. free_irq(bp->pdev->irq, dev);
  3784. pci_disable_msi(bp->pdev);
  3785. bp->flags &= ~(USING_MSI_FLAG | ONE_SHOT_MSI_FLAG);
  3786. } else
  3787. free_irq(bp->pdev->irq, dev);
  3788. }
  3789. /* Called with rtnl_lock */
  3790. static int
  3791. bnx2_open(struct net_device *dev)
  3792. {
  3793. struct bnx2 *bp = netdev_priv(dev);
  3794. int rc;
  3795. netif_carrier_off(dev);
  3796. bnx2_set_power_state(bp, PCI_D0);
  3797. bnx2_disable_int(bp);
  3798. rc = bnx2_alloc_mem(bp);
  3799. if (rc)
  3800. return rc;
  3801. if ((bp->flags & MSI_CAP_FLAG) && !disable_msi) {
  3802. if (pci_enable_msi(bp->pdev) == 0) {
  3803. bp->flags |= USING_MSI_FLAG;
  3804. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  3805. bp->flags |= ONE_SHOT_MSI_FLAG;
  3806. }
  3807. }
  3808. rc = bnx2_request_irq(bp);
  3809. if (rc) {
  3810. bnx2_free_mem(bp);
  3811. return rc;
  3812. }
  3813. rc = bnx2_init_nic(bp);
  3814. if (rc) {
  3815. bnx2_free_irq(bp);
  3816. bnx2_free_skbs(bp);
  3817. bnx2_free_mem(bp);
  3818. return rc;
  3819. }
  3820. mod_timer(&bp->timer, jiffies + bp->current_interval);
  3821. atomic_set(&bp->intr_sem, 0);
  3822. bnx2_enable_int(bp);
  3823. if (bp->flags & USING_MSI_FLAG) {
  3824. /* Test MSI to make sure it is working
  3825. * If MSI test fails, go back to INTx mode
  3826. */
  3827. if (bnx2_test_intr(bp) != 0) {
  3828. printk(KERN_WARNING PFX "%s: No interrupt was generated"
  3829. " using MSI, switching to INTx mode. Please"
  3830. " report this failure to the PCI maintainer"
  3831. " and include system chipset information.\n",
  3832. bp->dev->name);
  3833. bnx2_disable_int(bp);
  3834. bnx2_free_irq(bp);
  3835. rc = bnx2_init_nic(bp);
  3836. if (!rc)
  3837. rc = bnx2_request_irq(bp);
  3838. if (rc) {
  3839. bnx2_free_skbs(bp);
  3840. bnx2_free_mem(bp);
  3841. del_timer_sync(&bp->timer);
  3842. return rc;
  3843. }
  3844. bnx2_enable_int(bp);
  3845. }
  3846. }
  3847. if (bp->flags & USING_MSI_FLAG) {
  3848. printk(KERN_INFO PFX "%s: using MSI\n", dev->name);
  3849. }
  3850. netif_start_queue(dev);
  3851. return 0;
  3852. }
  3853. static void
  3854. bnx2_reset_task(struct work_struct *work)
  3855. {
  3856. struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
  3857. if (!netif_running(bp->dev))
  3858. return;
  3859. bp->in_reset_task = 1;
  3860. bnx2_netif_stop(bp);
  3861. bnx2_init_nic(bp);
  3862. atomic_set(&bp->intr_sem, 1);
  3863. bnx2_netif_start(bp);
  3864. bp->in_reset_task = 0;
  3865. }
  3866. static void
  3867. bnx2_tx_timeout(struct net_device *dev)
  3868. {
  3869. struct bnx2 *bp = netdev_priv(dev);
  3870. /* This allows the netif to be shutdown gracefully before resetting */
  3871. schedule_work(&bp->reset_task);
  3872. }
  3873. #ifdef BCM_VLAN
  3874. /* Called with rtnl_lock */
  3875. static void
  3876. bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp)
  3877. {
  3878. struct bnx2 *bp = netdev_priv(dev);
  3879. bnx2_netif_stop(bp);
  3880. bp->vlgrp = vlgrp;
  3881. bnx2_set_rx_mode(dev);
  3882. bnx2_netif_start(bp);
  3883. }
  3884. #endif
  3885. /* Called with netif_tx_lock.
  3886. * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
  3887. * netif_wake_queue().
  3888. */
  3889. static int
  3890. bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
  3891. {
  3892. struct bnx2 *bp = netdev_priv(dev);
  3893. dma_addr_t mapping;
  3894. struct tx_bd *txbd;
  3895. struct sw_bd *tx_buf;
  3896. u32 len, vlan_tag_flags, last_frag, mss;
  3897. u16 prod, ring_prod;
  3898. int i;
  3899. if (unlikely(bnx2_tx_avail(bp) < (skb_shinfo(skb)->nr_frags + 1))) {
  3900. netif_stop_queue(dev);
  3901. printk(KERN_ERR PFX "%s: BUG! Tx ring full when queue awake!\n",
  3902. dev->name);
  3903. return NETDEV_TX_BUSY;
  3904. }
  3905. len = skb_headlen(skb);
  3906. prod = bp->tx_prod;
  3907. ring_prod = TX_RING_IDX(prod);
  3908. vlan_tag_flags = 0;
  3909. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  3910. vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
  3911. }
  3912. if (bp->vlgrp != 0 && vlan_tx_tag_present(skb)) {
  3913. vlan_tag_flags |=
  3914. (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
  3915. }
  3916. if ((mss = skb_shinfo(skb)->gso_size)) {
  3917. u32 tcp_opt_len, ip_tcp_len;
  3918. struct iphdr *iph;
  3919. vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
  3920. tcp_opt_len = tcp_optlen(skb);
  3921. if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
  3922. u32 tcp_off = skb_transport_offset(skb) -
  3923. sizeof(struct ipv6hdr) - ETH_HLEN;
  3924. vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
  3925. TX_BD_FLAGS_SW_FLAGS;
  3926. if (likely(tcp_off == 0))
  3927. vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
  3928. else {
  3929. tcp_off >>= 3;
  3930. vlan_tag_flags |= ((tcp_off & 0x3) <<
  3931. TX_BD_FLAGS_TCP6_OFF0_SHL) |
  3932. ((tcp_off & 0x10) <<
  3933. TX_BD_FLAGS_TCP6_OFF4_SHL);
  3934. mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
  3935. }
  3936. } else {
  3937. if (skb_header_cloned(skb) &&
  3938. pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) {
  3939. dev_kfree_skb(skb);
  3940. return NETDEV_TX_OK;
  3941. }
  3942. ip_tcp_len = ip_hdrlen(skb) + sizeof(struct tcphdr);
  3943. iph = ip_hdr(skb);
  3944. iph->check = 0;
  3945. iph->tot_len = htons(mss + ip_tcp_len + tcp_opt_len);
  3946. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  3947. iph->daddr, 0,
  3948. IPPROTO_TCP,
  3949. 0);
  3950. if (tcp_opt_len || (iph->ihl > 5)) {
  3951. vlan_tag_flags |= ((iph->ihl - 5) +
  3952. (tcp_opt_len >> 2)) << 8;
  3953. }
  3954. }
  3955. } else
  3956. mss = 0;
  3957. mapping = pci_map_single(bp->pdev, skb->data, len, PCI_DMA_TODEVICE);
  3958. tx_buf = &bp->tx_buf_ring[ring_prod];
  3959. tx_buf->skb = skb;
  3960. pci_unmap_addr_set(tx_buf, mapping, mapping);
  3961. txbd = &bp->tx_desc_ring[ring_prod];
  3962. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  3963. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  3964. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  3965. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
  3966. last_frag = skb_shinfo(skb)->nr_frags;
  3967. for (i = 0; i < last_frag; i++) {
  3968. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  3969. prod = NEXT_TX_BD(prod);
  3970. ring_prod = TX_RING_IDX(prod);
  3971. txbd = &bp->tx_desc_ring[ring_prod];
  3972. len = frag->size;
  3973. mapping = pci_map_page(bp->pdev, frag->page, frag->page_offset,
  3974. len, PCI_DMA_TODEVICE);
  3975. pci_unmap_addr_set(&bp->tx_buf_ring[ring_prod],
  3976. mapping, mapping);
  3977. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  3978. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  3979. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  3980. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
  3981. }
  3982. txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
  3983. prod = NEXT_TX_BD(prod);
  3984. bp->tx_prod_bseq += skb->len;
  3985. REG_WR16(bp, bp->tx_bidx_addr, prod);
  3986. REG_WR(bp, bp->tx_bseq_addr, bp->tx_prod_bseq);
  3987. mmiowb();
  3988. bp->tx_prod = prod;
  3989. dev->trans_start = jiffies;
  3990. if (unlikely(bnx2_tx_avail(bp) <= MAX_SKB_FRAGS)) {
  3991. netif_stop_queue(dev);
  3992. if (bnx2_tx_avail(bp) > bp->tx_wake_thresh)
  3993. netif_wake_queue(dev);
  3994. }
  3995. return NETDEV_TX_OK;
  3996. }
  3997. /* Called with rtnl_lock */
  3998. static int
  3999. bnx2_close(struct net_device *dev)
  4000. {
  4001. struct bnx2 *bp = netdev_priv(dev);
  4002. u32 reset_code;
  4003. /* Calling flush_scheduled_work() may deadlock because
  4004. * linkwatch_event() may be on the workqueue and it will try to get
  4005. * the rtnl_lock which we are holding.
  4006. */
  4007. while (bp->in_reset_task)
  4008. msleep(1);
  4009. bnx2_netif_stop(bp);
  4010. del_timer_sync(&bp->timer);
  4011. if (bp->flags & NO_WOL_FLAG)
  4012. reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
  4013. else if (bp->wol)
  4014. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  4015. else
  4016. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  4017. bnx2_reset_chip(bp, reset_code);
  4018. bnx2_free_irq(bp);
  4019. bnx2_free_skbs(bp);
  4020. bnx2_free_mem(bp);
  4021. bp->link_up = 0;
  4022. netif_carrier_off(bp->dev);
  4023. bnx2_set_power_state(bp, PCI_D3hot);
  4024. return 0;
  4025. }
  4026. #define GET_NET_STATS64(ctr) \
  4027. (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
  4028. (unsigned long) (ctr##_lo)
  4029. #define GET_NET_STATS32(ctr) \
  4030. (ctr##_lo)
  4031. #if (BITS_PER_LONG == 64)
  4032. #define GET_NET_STATS GET_NET_STATS64
  4033. #else
  4034. #define GET_NET_STATS GET_NET_STATS32
  4035. #endif
  4036. static struct net_device_stats *
  4037. bnx2_get_stats(struct net_device *dev)
  4038. {
  4039. struct bnx2 *bp = netdev_priv(dev);
  4040. struct statistics_block *stats_blk = bp->stats_blk;
  4041. struct net_device_stats *net_stats = &bp->net_stats;
  4042. if (bp->stats_blk == NULL) {
  4043. return net_stats;
  4044. }
  4045. net_stats->rx_packets =
  4046. GET_NET_STATS(stats_blk->stat_IfHCInUcastPkts) +
  4047. GET_NET_STATS(stats_blk->stat_IfHCInMulticastPkts) +
  4048. GET_NET_STATS(stats_blk->stat_IfHCInBroadcastPkts);
  4049. net_stats->tx_packets =
  4050. GET_NET_STATS(stats_blk->stat_IfHCOutUcastPkts) +
  4051. GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts) +
  4052. GET_NET_STATS(stats_blk->stat_IfHCOutBroadcastPkts);
  4053. net_stats->rx_bytes =
  4054. GET_NET_STATS(stats_blk->stat_IfHCInOctets);
  4055. net_stats->tx_bytes =
  4056. GET_NET_STATS(stats_blk->stat_IfHCOutOctets);
  4057. net_stats->multicast =
  4058. GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts);
  4059. net_stats->collisions =
  4060. (unsigned long) stats_blk->stat_EtherStatsCollisions;
  4061. net_stats->rx_length_errors =
  4062. (unsigned long) (stats_blk->stat_EtherStatsUndersizePkts +
  4063. stats_blk->stat_EtherStatsOverrsizePkts);
  4064. net_stats->rx_over_errors =
  4065. (unsigned long) stats_blk->stat_IfInMBUFDiscards;
  4066. net_stats->rx_frame_errors =
  4067. (unsigned long) stats_blk->stat_Dot3StatsAlignmentErrors;
  4068. net_stats->rx_crc_errors =
  4069. (unsigned long) stats_blk->stat_Dot3StatsFCSErrors;
  4070. net_stats->rx_errors = net_stats->rx_length_errors +
  4071. net_stats->rx_over_errors + net_stats->rx_frame_errors +
  4072. net_stats->rx_crc_errors;
  4073. net_stats->tx_aborted_errors =
  4074. (unsigned long) (stats_blk->stat_Dot3StatsExcessiveCollisions +
  4075. stats_blk->stat_Dot3StatsLateCollisions);
  4076. if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
  4077. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  4078. net_stats->tx_carrier_errors = 0;
  4079. else {
  4080. net_stats->tx_carrier_errors =
  4081. (unsigned long)
  4082. stats_blk->stat_Dot3StatsCarrierSenseErrors;
  4083. }
  4084. net_stats->tx_errors =
  4085. (unsigned long)
  4086. stats_blk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors
  4087. +
  4088. net_stats->tx_aborted_errors +
  4089. net_stats->tx_carrier_errors;
  4090. net_stats->rx_missed_errors =
  4091. (unsigned long) (stats_blk->stat_IfInMBUFDiscards +
  4092. stats_blk->stat_FwRxDrop);
  4093. return net_stats;
  4094. }
  4095. /* All ethtool functions called with rtnl_lock */
  4096. static int
  4097. bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  4098. {
  4099. struct bnx2 *bp = netdev_priv(dev);
  4100. cmd->supported = SUPPORTED_Autoneg;
  4101. if (bp->phy_flags & PHY_SERDES_FLAG) {
  4102. cmd->supported |= SUPPORTED_1000baseT_Full |
  4103. SUPPORTED_FIBRE;
  4104. if (bp->phy_flags & PHY_2_5G_CAPABLE_FLAG)
  4105. cmd->supported |= SUPPORTED_2500baseX_Full;
  4106. cmd->port = PORT_FIBRE;
  4107. }
  4108. else {
  4109. cmd->supported |= SUPPORTED_10baseT_Half |
  4110. SUPPORTED_10baseT_Full |
  4111. SUPPORTED_100baseT_Half |
  4112. SUPPORTED_100baseT_Full |
  4113. SUPPORTED_1000baseT_Full |
  4114. SUPPORTED_TP;
  4115. cmd->port = PORT_TP;
  4116. }
  4117. cmd->advertising = bp->advertising;
  4118. if (bp->autoneg & AUTONEG_SPEED) {
  4119. cmd->autoneg = AUTONEG_ENABLE;
  4120. }
  4121. else {
  4122. cmd->autoneg = AUTONEG_DISABLE;
  4123. }
  4124. if (netif_carrier_ok(dev)) {
  4125. cmd->speed = bp->line_speed;
  4126. cmd->duplex = bp->duplex;
  4127. }
  4128. else {
  4129. cmd->speed = -1;
  4130. cmd->duplex = -1;
  4131. }
  4132. cmd->transceiver = XCVR_INTERNAL;
  4133. cmd->phy_address = bp->phy_addr;
  4134. return 0;
  4135. }
  4136. static int
  4137. bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  4138. {
  4139. struct bnx2 *bp = netdev_priv(dev);
  4140. u8 autoneg = bp->autoneg;
  4141. u8 req_duplex = bp->req_duplex;
  4142. u16 req_line_speed = bp->req_line_speed;
  4143. u32 advertising = bp->advertising;
  4144. if (cmd->autoneg == AUTONEG_ENABLE) {
  4145. autoneg |= AUTONEG_SPEED;
  4146. cmd->advertising &= ETHTOOL_ALL_COPPER_SPEED;
  4147. /* allow advertising 1 speed */
  4148. if ((cmd->advertising == ADVERTISED_10baseT_Half) ||
  4149. (cmd->advertising == ADVERTISED_10baseT_Full) ||
  4150. (cmd->advertising == ADVERTISED_100baseT_Half) ||
  4151. (cmd->advertising == ADVERTISED_100baseT_Full)) {
  4152. if (bp->phy_flags & PHY_SERDES_FLAG)
  4153. return -EINVAL;
  4154. advertising = cmd->advertising;
  4155. } else if (cmd->advertising == ADVERTISED_2500baseX_Full) {
  4156. if (!(bp->phy_flags & PHY_2_5G_CAPABLE_FLAG))
  4157. return -EINVAL;
  4158. } else if (cmd->advertising == ADVERTISED_1000baseT_Full) {
  4159. advertising = cmd->advertising;
  4160. }
  4161. else if (cmd->advertising == ADVERTISED_1000baseT_Half) {
  4162. return -EINVAL;
  4163. }
  4164. else {
  4165. if (bp->phy_flags & PHY_SERDES_FLAG) {
  4166. advertising = ETHTOOL_ALL_FIBRE_SPEED;
  4167. }
  4168. else {
  4169. advertising = ETHTOOL_ALL_COPPER_SPEED;
  4170. }
  4171. }
  4172. advertising |= ADVERTISED_Autoneg;
  4173. }
  4174. else {
  4175. if (bp->phy_flags & PHY_SERDES_FLAG) {
  4176. if ((cmd->speed != SPEED_1000 &&
  4177. cmd->speed != SPEED_2500) ||
  4178. (cmd->duplex != DUPLEX_FULL))
  4179. return -EINVAL;
  4180. if (cmd->speed == SPEED_2500 &&
  4181. !(bp->phy_flags & PHY_2_5G_CAPABLE_FLAG))
  4182. return -EINVAL;
  4183. }
  4184. else if (cmd->speed == SPEED_1000) {
  4185. return -EINVAL;
  4186. }
  4187. autoneg &= ~AUTONEG_SPEED;
  4188. req_line_speed = cmd->speed;
  4189. req_duplex = cmd->duplex;
  4190. advertising = 0;
  4191. }
  4192. bp->autoneg = autoneg;
  4193. bp->advertising = advertising;
  4194. bp->req_line_speed = req_line_speed;
  4195. bp->req_duplex = req_duplex;
  4196. spin_lock_bh(&bp->phy_lock);
  4197. bnx2_setup_phy(bp);
  4198. spin_unlock_bh(&bp->phy_lock);
  4199. return 0;
  4200. }
  4201. static void
  4202. bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  4203. {
  4204. struct bnx2 *bp = netdev_priv(dev);
  4205. strcpy(info->driver, DRV_MODULE_NAME);
  4206. strcpy(info->version, DRV_MODULE_VERSION);
  4207. strcpy(info->bus_info, pci_name(bp->pdev));
  4208. info->fw_version[0] = ((bp->fw_ver & 0xff000000) >> 24) + '0';
  4209. info->fw_version[2] = ((bp->fw_ver & 0xff0000) >> 16) + '0';
  4210. info->fw_version[4] = ((bp->fw_ver & 0xff00) >> 8) + '0';
  4211. info->fw_version[1] = info->fw_version[3] = '.';
  4212. info->fw_version[5] = 0;
  4213. }
  4214. #define BNX2_REGDUMP_LEN (32 * 1024)
  4215. static int
  4216. bnx2_get_regs_len(struct net_device *dev)
  4217. {
  4218. return BNX2_REGDUMP_LEN;
  4219. }
  4220. static void
  4221. bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
  4222. {
  4223. u32 *p = _p, i, offset;
  4224. u8 *orig_p = _p;
  4225. struct bnx2 *bp = netdev_priv(dev);
  4226. u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c,
  4227. 0x0800, 0x0880, 0x0c00, 0x0c10,
  4228. 0x0c30, 0x0d08, 0x1000, 0x101c,
  4229. 0x1040, 0x1048, 0x1080, 0x10a4,
  4230. 0x1400, 0x1490, 0x1498, 0x14f0,
  4231. 0x1500, 0x155c, 0x1580, 0x15dc,
  4232. 0x1600, 0x1658, 0x1680, 0x16d8,
  4233. 0x1800, 0x1820, 0x1840, 0x1854,
  4234. 0x1880, 0x1894, 0x1900, 0x1984,
  4235. 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
  4236. 0x1c80, 0x1c94, 0x1d00, 0x1d84,
  4237. 0x2000, 0x2030, 0x23c0, 0x2400,
  4238. 0x2800, 0x2820, 0x2830, 0x2850,
  4239. 0x2b40, 0x2c10, 0x2fc0, 0x3058,
  4240. 0x3c00, 0x3c94, 0x4000, 0x4010,
  4241. 0x4080, 0x4090, 0x43c0, 0x4458,
  4242. 0x4c00, 0x4c18, 0x4c40, 0x4c54,
  4243. 0x4fc0, 0x5010, 0x53c0, 0x5444,
  4244. 0x5c00, 0x5c18, 0x5c80, 0x5c90,
  4245. 0x5fc0, 0x6000, 0x6400, 0x6428,
  4246. 0x6800, 0x6848, 0x684c, 0x6860,
  4247. 0x6888, 0x6910, 0x8000 };
  4248. regs->version = 0;
  4249. memset(p, 0, BNX2_REGDUMP_LEN);
  4250. if (!netif_running(bp->dev))
  4251. return;
  4252. i = 0;
  4253. offset = reg_boundaries[0];
  4254. p += offset;
  4255. while (offset < BNX2_REGDUMP_LEN) {
  4256. *p++ = REG_RD(bp, offset);
  4257. offset += 4;
  4258. if (offset == reg_boundaries[i + 1]) {
  4259. offset = reg_boundaries[i + 2];
  4260. p = (u32 *) (orig_p + offset);
  4261. i += 2;
  4262. }
  4263. }
  4264. }
  4265. static void
  4266. bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  4267. {
  4268. struct bnx2 *bp = netdev_priv(dev);
  4269. if (bp->flags & NO_WOL_FLAG) {
  4270. wol->supported = 0;
  4271. wol->wolopts = 0;
  4272. }
  4273. else {
  4274. wol->supported = WAKE_MAGIC;
  4275. if (bp->wol)
  4276. wol->wolopts = WAKE_MAGIC;
  4277. else
  4278. wol->wolopts = 0;
  4279. }
  4280. memset(&wol->sopass, 0, sizeof(wol->sopass));
  4281. }
  4282. static int
  4283. bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  4284. {
  4285. struct bnx2 *bp = netdev_priv(dev);
  4286. if (wol->wolopts & ~WAKE_MAGIC)
  4287. return -EINVAL;
  4288. if (wol->wolopts & WAKE_MAGIC) {
  4289. if (bp->flags & NO_WOL_FLAG)
  4290. return -EINVAL;
  4291. bp->wol = 1;
  4292. }
  4293. else {
  4294. bp->wol = 0;
  4295. }
  4296. return 0;
  4297. }
  4298. static int
  4299. bnx2_nway_reset(struct net_device *dev)
  4300. {
  4301. struct bnx2 *bp = netdev_priv(dev);
  4302. u32 bmcr;
  4303. if (!(bp->autoneg & AUTONEG_SPEED)) {
  4304. return -EINVAL;
  4305. }
  4306. spin_lock_bh(&bp->phy_lock);
  4307. /* Force a link down visible on the other side */
  4308. if (bp->phy_flags & PHY_SERDES_FLAG) {
  4309. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  4310. spin_unlock_bh(&bp->phy_lock);
  4311. msleep(20);
  4312. spin_lock_bh(&bp->phy_lock);
  4313. bp->current_interval = SERDES_AN_TIMEOUT;
  4314. bp->serdes_an_pending = 1;
  4315. mod_timer(&bp->timer, jiffies + bp->current_interval);
  4316. }
  4317. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4318. bmcr &= ~BMCR_LOOPBACK;
  4319. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
  4320. spin_unlock_bh(&bp->phy_lock);
  4321. return 0;
  4322. }
  4323. static int
  4324. bnx2_get_eeprom_len(struct net_device *dev)
  4325. {
  4326. struct bnx2 *bp = netdev_priv(dev);
  4327. if (bp->flash_info == NULL)
  4328. return 0;
  4329. return (int) bp->flash_size;
  4330. }
  4331. static int
  4332. bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  4333. u8 *eebuf)
  4334. {
  4335. struct bnx2 *bp = netdev_priv(dev);
  4336. int rc;
  4337. /* parameters already validated in ethtool_get_eeprom */
  4338. rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
  4339. return rc;
  4340. }
  4341. static int
  4342. bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  4343. u8 *eebuf)
  4344. {
  4345. struct bnx2 *bp = netdev_priv(dev);
  4346. int rc;
  4347. /* parameters already validated in ethtool_set_eeprom */
  4348. rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
  4349. return rc;
  4350. }
  4351. static int
  4352. bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  4353. {
  4354. struct bnx2 *bp = netdev_priv(dev);
  4355. memset(coal, 0, sizeof(struct ethtool_coalesce));
  4356. coal->rx_coalesce_usecs = bp->rx_ticks;
  4357. coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
  4358. coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
  4359. coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
  4360. coal->tx_coalesce_usecs = bp->tx_ticks;
  4361. coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
  4362. coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
  4363. coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
  4364. coal->stats_block_coalesce_usecs = bp->stats_ticks;
  4365. return 0;
  4366. }
  4367. static int
  4368. bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  4369. {
  4370. struct bnx2 *bp = netdev_priv(dev);
  4371. bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
  4372. if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
  4373. bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
  4374. if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
  4375. bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
  4376. if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
  4377. bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
  4378. if (bp->rx_quick_cons_trip_int > 0xff)
  4379. bp->rx_quick_cons_trip_int = 0xff;
  4380. bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
  4381. if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
  4382. bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
  4383. if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
  4384. bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
  4385. if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
  4386. bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
  4387. if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
  4388. 0xff;
  4389. bp->stats_ticks = coal->stats_block_coalesce_usecs;
  4390. if (bp->stats_ticks > 0xffff00) bp->stats_ticks = 0xffff00;
  4391. bp->stats_ticks &= 0xffff00;
  4392. if (netif_running(bp->dev)) {
  4393. bnx2_netif_stop(bp);
  4394. bnx2_init_nic(bp);
  4395. bnx2_netif_start(bp);
  4396. }
  4397. return 0;
  4398. }
  4399. static void
  4400. bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  4401. {
  4402. struct bnx2 *bp = netdev_priv(dev);
  4403. ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
  4404. ering->rx_mini_max_pending = 0;
  4405. ering->rx_jumbo_max_pending = 0;
  4406. ering->rx_pending = bp->rx_ring_size;
  4407. ering->rx_mini_pending = 0;
  4408. ering->rx_jumbo_pending = 0;
  4409. ering->tx_max_pending = MAX_TX_DESC_CNT;
  4410. ering->tx_pending = bp->tx_ring_size;
  4411. }
  4412. static int
  4413. bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  4414. {
  4415. struct bnx2 *bp = netdev_priv(dev);
  4416. if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
  4417. (ering->tx_pending > MAX_TX_DESC_CNT) ||
  4418. (ering->tx_pending <= MAX_SKB_FRAGS)) {
  4419. return -EINVAL;
  4420. }
  4421. if (netif_running(bp->dev)) {
  4422. bnx2_netif_stop(bp);
  4423. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
  4424. bnx2_free_skbs(bp);
  4425. bnx2_free_mem(bp);
  4426. }
  4427. bnx2_set_rx_ring_size(bp, ering->rx_pending);
  4428. bp->tx_ring_size = ering->tx_pending;
  4429. if (netif_running(bp->dev)) {
  4430. int rc;
  4431. rc = bnx2_alloc_mem(bp);
  4432. if (rc)
  4433. return rc;
  4434. bnx2_init_nic(bp);
  4435. bnx2_netif_start(bp);
  4436. }
  4437. return 0;
  4438. }
  4439. static void
  4440. bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  4441. {
  4442. struct bnx2 *bp = netdev_priv(dev);
  4443. epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
  4444. epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
  4445. epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
  4446. }
  4447. static int
  4448. bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  4449. {
  4450. struct bnx2 *bp = netdev_priv(dev);
  4451. bp->req_flow_ctrl = 0;
  4452. if (epause->rx_pause)
  4453. bp->req_flow_ctrl |= FLOW_CTRL_RX;
  4454. if (epause->tx_pause)
  4455. bp->req_flow_ctrl |= FLOW_CTRL_TX;
  4456. if (epause->autoneg) {
  4457. bp->autoneg |= AUTONEG_FLOW_CTRL;
  4458. }
  4459. else {
  4460. bp->autoneg &= ~AUTONEG_FLOW_CTRL;
  4461. }
  4462. spin_lock_bh(&bp->phy_lock);
  4463. bnx2_setup_phy(bp);
  4464. spin_unlock_bh(&bp->phy_lock);
  4465. return 0;
  4466. }
  4467. static u32
  4468. bnx2_get_rx_csum(struct net_device *dev)
  4469. {
  4470. struct bnx2 *bp = netdev_priv(dev);
  4471. return bp->rx_csum;
  4472. }
  4473. static int
  4474. bnx2_set_rx_csum(struct net_device *dev, u32 data)
  4475. {
  4476. struct bnx2 *bp = netdev_priv(dev);
  4477. bp->rx_csum = data;
  4478. return 0;
  4479. }
  4480. static int
  4481. bnx2_set_tso(struct net_device *dev, u32 data)
  4482. {
  4483. struct bnx2 *bp = netdev_priv(dev);
  4484. if (data) {
  4485. dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
  4486. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4487. dev->features |= NETIF_F_TSO6;
  4488. } else
  4489. dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
  4490. NETIF_F_TSO_ECN);
  4491. return 0;
  4492. }
  4493. #define BNX2_NUM_STATS 46
  4494. static struct {
  4495. char string[ETH_GSTRING_LEN];
  4496. } bnx2_stats_str_arr[BNX2_NUM_STATS] = {
  4497. { "rx_bytes" },
  4498. { "rx_error_bytes" },
  4499. { "tx_bytes" },
  4500. { "tx_error_bytes" },
  4501. { "rx_ucast_packets" },
  4502. { "rx_mcast_packets" },
  4503. { "rx_bcast_packets" },
  4504. { "tx_ucast_packets" },
  4505. { "tx_mcast_packets" },
  4506. { "tx_bcast_packets" },
  4507. { "tx_mac_errors" },
  4508. { "tx_carrier_errors" },
  4509. { "rx_crc_errors" },
  4510. { "rx_align_errors" },
  4511. { "tx_single_collisions" },
  4512. { "tx_multi_collisions" },
  4513. { "tx_deferred" },
  4514. { "tx_excess_collisions" },
  4515. { "tx_late_collisions" },
  4516. { "tx_total_collisions" },
  4517. { "rx_fragments" },
  4518. { "rx_jabbers" },
  4519. { "rx_undersize_packets" },
  4520. { "rx_oversize_packets" },
  4521. { "rx_64_byte_packets" },
  4522. { "rx_65_to_127_byte_packets" },
  4523. { "rx_128_to_255_byte_packets" },
  4524. { "rx_256_to_511_byte_packets" },
  4525. { "rx_512_to_1023_byte_packets" },
  4526. { "rx_1024_to_1522_byte_packets" },
  4527. { "rx_1523_to_9022_byte_packets" },
  4528. { "tx_64_byte_packets" },
  4529. { "tx_65_to_127_byte_packets" },
  4530. { "tx_128_to_255_byte_packets" },
  4531. { "tx_256_to_511_byte_packets" },
  4532. { "tx_512_to_1023_byte_packets" },
  4533. { "tx_1024_to_1522_byte_packets" },
  4534. { "tx_1523_to_9022_byte_packets" },
  4535. { "rx_xon_frames" },
  4536. { "rx_xoff_frames" },
  4537. { "tx_xon_frames" },
  4538. { "tx_xoff_frames" },
  4539. { "rx_mac_ctrl_frames" },
  4540. { "rx_filtered_packets" },
  4541. { "rx_discards" },
  4542. { "rx_fw_discards" },
  4543. };
  4544. #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
  4545. static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
  4546. STATS_OFFSET32(stat_IfHCInOctets_hi),
  4547. STATS_OFFSET32(stat_IfHCInBadOctets_hi),
  4548. STATS_OFFSET32(stat_IfHCOutOctets_hi),
  4549. STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
  4550. STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
  4551. STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
  4552. STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
  4553. STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
  4554. STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
  4555. STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
  4556. STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
  4557. STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
  4558. STATS_OFFSET32(stat_Dot3StatsFCSErrors),
  4559. STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
  4560. STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
  4561. STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
  4562. STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
  4563. STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
  4564. STATS_OFFSET32(stat_Dot3StatsLateCollisions),
  4565. STATS_OFFSET32(stat_EtherStatsCollisions),
  4566. STATS_OFFSET32(stat_EtherStatsFragments),
  4567. STATS_OFFSET32(stat_EtherStatsJabbers),
  4568. STATS_OFFSET32(stat_EtherStatsUndersizePkts),
  4569. STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
  4570. STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
  4571. STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
  4572. STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
  4573. STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
  4574. STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
  4575. STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
  4576. STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
  4577. STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
  4578. STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
  4579. STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
  4580. STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
  4581. STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
  4582. STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
  4583. STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
  4584. STATS_OFFSET32(stat_XonPauseFramesReceived),
  4585. STATS_OFFSET32(stat_XoffPauseFramesReceived),
  4586. STATS_OFFSET32(stat_OutXonSent),
  4587. STATS_OFFSET32(stat_OutXoffSent),
  4588. STATS_OFFSET32(stat_MacControlFramesReceived),
  4589. STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
  4590. STATS_OFFSET32(stat_IfInMBUFDiscards),
  4591. STATS_OFFSET32(stat_FwRxDrop),
  4592. };
  4593. /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
  4594. * skipped because of errata.
  4595. */
  4596. static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
  4597. 8,0,8,8,8,8,8,8,8,8,
  4598. 4,0,4,4,4,4,4,4,4,4,
  4599. 4,4,4,4,4,4,4,4,4,4,
  4600. 4,4,4,4,4,4,4,4,4,4,
  4601. 4,4,4,4,4,4,
  4602. };
  4603. static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
  4604. 8,0,8,8,8,8,8,8,8,8,
  4605. 4,4,4,4,4,4,4,4,4,4,
  4606. 4,4,4,4,4,4,4,4,4,4,
  4607. 4,4,4,4,4,4,4,4,4,4,
  4608. 4,4,4,4,4,4,
  4609. };
  4610. #define BNX2_NUM_TESTS 6
  4611. static struct {
  4612. char string[ETH_GSTRING_LEN];
  4613. } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
  4614. { "register_test (offline)" },
  4615. { "memory_test (offline)" },
  4616. { "loopback_test (offline)" },
  4617. { "nvram_test (online)" },
  4618. { "interrupt_test (online)" },
  4619. { "link_test (online)" },
  4620. };
  4621. static int
  4622. bnx2_self_test_count(struct net_device *dev)
  4623. {
  4624. return BNX2_NUM_TESTS;
  4625. }
  4626. static void
  4627. bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
  4628. {
  4629. struct bnx2 *bp = netdev_priv(dev);
  4630. memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
  4631. if (etest->flags & ETH_TEST_FL_OFFLINE) {
  4632. int i;
  4633. bnx2_netif_stop(bp);
  4634. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
  4635. bnx2_free_skbs(bp);
  4636. if (bnx2_test_registers(bp) != 0) {
  4637. buf[0] = 1;
  4638. etest->flags |= ETH_TEST_FL_FAILED;
  4639. }
  4640. if (bnx2_test_memory(bp) != 0) {
  4641. buf[1] = 1;
  4642. etest->flags |= ETH_TEST_FL_FAILED;
  4643. }
  4644. if ((buf[2] = bnx2_test_loopback(bp)) != 0)
  4645. etest->flags |= ETH_TEST_FL_FAILED;
  4646. if (!netif_running(bp->dev)) {
  4647. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
  4648. }
  4649. else {
  4650. bnx2_init_nic(bp);
  4651. bnx2_netif_start(bp);
  4652. }
  4653. /* wait for link up */
  4654. for (i = 0; i < 7; i++) {
  4655. if (bp->link_up)
  4656. break;
  4657. msleep_interruptible(1000);
  4658. }
  4659. }
  4660. if (bnx2_test_nvram(bp) != 0) {
  4661. buf[3] = 1;
  4662. etest->flags |= ETH_TEST_FL_FAILED;
  4663. }
  4664. if (bnx2_test_intr(bp) != 0) {
  4665. buf[4] = 1;
  4666. etest->flags |= ETH_TEST_FL_FAILED;
  4667. }
  4668. if (bnx2_test_link(bp) != 0) {
  4669. buf[5] = 1;
  4670. etest->flags |= ETH_TEST_FL_FAILED;
  4671. }
  4672. }
  4673. static void
  4674. bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
  4675. {
  4676. switch (stringset) {
  4677. case ETH_SS_STATS:
  4678. memcpy(buf, bnx2_stats_str_arr,
  4679. sizeof(bnx2_stats_str_arr));
  4680. break;
  4681. case ETH_SS_TEST:
  4682. memcpy(buf, bnx2_tests_str_arr,
  4683. sizeof(bnx2_tests_str_arr));
  4684. break;
  4685. }
  4686. }
  4687. static int
  4688. bnx2_get_stats_count(struct net_device *dev)
  4689. {
  4690. return BNX2_NUM_STATS;
  4691. }
  4692. static void
  4693. bnx2_get_ethtool_stats(struct net_device *dev,
  4694. struct ethtool_stats *stats, u64 *buf)
  4695. {
  4696. struct bnx2 *bp = netdev_priv(dev);
  4697. int i;
  4698. u32 *hw_stats = (u32 *) bp->stats_blk;
  4699. u8 *stats_len_arr = NULL;
  4700. if (hw_stats == NULL) {
  4701. memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
  4702. return;
  4703. }
  4704. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  4705. (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
  4706. (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
  4707. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  4708. stats_len_arr = bnx2_5706_stats_len_arr;
  4709. else
  4710. stats_len_arr = bnx2_5708_stats_len_arr;
  4711. for (i = 0; i < BNX2_NUM_STATS; i++) {
  4712. if (stats_len_arr[i] == 0) {
  4713. /* skip this counter */
  4714. buf[i] = 0;
  4715. continue;
  4716. }
  4717. if (stats_len_arr[i] == 4) {
  4718. /* 4-byte counter */
  4719. buf[i] = (u64)
  4720. *(hw_stats + bnx2_stats_offset_arr[i]);
  4721. continue;
  4722. }
  4723. /* 8-byte counter */
  4724. buf[i] = (((u64) *(hw_stats +
  4725. bnx2_stats_offset_arr[i])) << 32) +
  4726. *(hw_stats + bnx2_stats_offset_arr[i] + 1);
  4727. }
  4728. }
  4729. static int
  4730. bnx2_phys_id(struct net_device *dev, u32 data)
  4731. {
  4732. struct bnx2 *bp = netdev_priv(dev);
  4733. int i;
  4734. u32 save;
  4735. if (data == 0)
  4736. data = 2;
  4737. save = REG_RD(bp, BNX2_MISC_CFG);
  4738. REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
  4739. for (i = 0; i < (data * 2); i++) {
  4740. if ((i % 2) == 0) {
  4741. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
  4742. }
  4743. else {
  4744. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
  4745. BNX2_EMAC_LED_1000MB_OVERRIDE |
  4746. BNX2_EMAC_LED_100MB_OVERRIDE |
  4747. BNX2_EMAC_LED_10MB_OVERRIDE |
  4748. BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
  4749. BNX2_EMAC_LED_TRAFFIC);
  4750. }
  4751. msleep_interruptible(500);
  4752. if (signal_pending(current))
  4753. break;
  4754. }
  4755. REG_WR(bp, BNX2_EMAC_LED, 0);
  4756. REG_WR(bp, BNX2_MISC_CFG, save);
  4757. return 0;
  4758. }
  4759. static int
  4760. bnx2_set_tx_csum(struct net_device *dev, u32 data)
  4761. {
  4762. struct bnx2 *bp = netdev_priv(dev);
  4763. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4764. return (ethtool_op_set_tx_hw_csum(dev, data));
  4765. else
  4766. return (ethtool_op_set_tx_csum(dev, data));
  4767. }
  4768. static const struct ethtool_ops bnx2_ethtool_ops = {
  4769. .get_settings = bnx2_get_settings,
  4770. .set_settings = bnx2_set_settings,
  4771. .get_drvinfo = bnx2_get_drvinfo,
  4772. .get_regs_len = bnx2_get_regs_len,
  4773. .get_regs = bnx2_get_regs,
  4774. .get_wol = bnx2_get_wol,
  4775. .set_wol = bnx2_set_wol,
  4776. .nway_reset = bnx2_nway_reset,
  4777. .get_link = ethtool_op_get_link,
  4778. .get_eeprom_len = bnx2_get_eeprom_len,
  4779. .get_eeprom = bnx2_get_eeprom,
  4780. .set_eeprom = bnx2_set_eeprom,
  4781. .get_coalesce = bnx2_get_coalesce,
  4782. .set_coalesce = bnx2_set_coalesce,
  4783. .get_ringparam = bnx2_get_ringparam,
  4784. .set_ringparam = bnx2_set_ringparam,
  4785. .get_pauseparam = bnx2_get_pauseparam,
  4786. .set_pauseparam = bnx2_set_pauseparam,
  4787. .get_rx_csum = bnx2_get_rx_csum,
  4788. .set_rx_csum = bnx2_set_rx_csum,
  4789. .get_tx_csum = ethtool_op_get_tx_csum,
  4790. .set_tx_csum = bnx2_set_tx_csum,
  4791. .get_sg = ethtool_op_get_sg,
  4792. .set_sg = ethtool_op_set_sg,
  4793. .get_tso = ethtool_op_get_tso,
  4794. .set_tso = bnx2_set_tso,
  4795. .self_test_count = bnx2_self_test_count,
  4796. .self_test = bnx2_self_test,
  4797. .get_strings = bnx2_get_strings,
  4798. .phys_id = bnx2_phys_id,
  4799. .get_stats_count = bnx2_get_stats_count,
  4800. .get_ethtool_stats = bnx2_get_ethtool_stats,
  4801. .get_perm_addr = ethtool_op_get_perm_addr,
  4802. };
  4803. /* Called with rtnl_lock */
  4804. static int
  4805. bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  4806. {
  4807. struct mii_ioctl_data *data = if_mii(ifr);
  4808. struct bnx2 *bp = netdev_priv(dev);
  4809. int err;
  4810. switch(cmd) {
  4811. case SIOCGMIIPHY:
  4812. data->phy_id = bp->phy_addr;
  4813. /* fallthru */
  4814. case SIOCGMIIREG: {
  4815. u32 mii_regval;
  4816. if (!netif_running(dev))
  4817. return -EAGAIN;
  4818. spin_lock_bh(&bp->phy_lock);
  4819. err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
  4820. spin_unlock_bh(&bp->phy_lock);
  4821. data->val_out = mii_regval;
  4822. return err;
  4823. }
  4824. case SIOCSMIIREG:
  4825. if (!capable(CAP_NET_ADMIN))
  4826. return -EPERM;
  4827. if (!netif_running(dev))
  4828. return -EAGAIN;
  4829. spin_lock_bh(&bp->phy_lock);
  4830. err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
  4831. spin_unlock_bh(&bp->phy_lock);
  4832. return err;
  4833. default:
  4834. /* do nothing */
  4835. break;
  4836. }
  4837. return -EOPNOTSUPP;
  4838. }
  4839. /* Called with rtnl_lock */
  4840. static int
  4841. bnx2_change_mac_addr(struct net_device *dev, void *p)
  4842. {
  4843. struct sockaddr *addr = p;
  4844. struct bnx2 *bp = netdev_priv(dev);
  4845. if (!is_valid_ether_addr(addr->sa_data))
  4846. return -EINVAL;
  4847. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  4848. if (netif_running(dev))
  4849. bnx2_set_mac_addr(bp);
  4850. return 0;
  4851. }
  4852. /* Called with rtnl_lock */
  4853. static int
  4854. bnx2_change_mtu(struct net_device *dev, int new_mtu)
  4855. {
  4856. struct bnx2 *bp = netdev_priv(dev);
  4857. if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
  4858. ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
  4859. return -EINVAL;
  4860. dev->mtu = new_mtu;
  4861. if (netif_running(dev)) {
  4862. bnx2_netif_stop(bp);
  4863. bnx2_init_nic(bp);
  4864. bnx2_netif_start(bp);
  4865. }
  4866. return 0;
  4867. }
  4868. #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
  4869. static void
  4870. poll_bnx2(struct net_device *dev)
  4871. {
  4872. struct bnx2 *bp = netdev_priv(dev);
  4873. disable_irq(bp->pdev->irq);
  4874. bnx2_interrupt(bp->pdev->irq, dev);
  4875. enable_irq(bp->pdev->irq);
  4876. }
  4877. #endif
  4878. static void __devinit
  4879. bnx2_get_5709_media(struct bnx2 *bp)
  4880. {
  4881. u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
  4882. u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
  4883. u32 strap;
  4884. if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
  4885. return;
  4886. else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
  4887. bp->phy_flags |= PHY_SERDES_FLAG;
  4888. return;
  4889. }
  4890. if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
  4891. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
  4892. else
  4893. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
  4894. if (PCI_FUNC(bp->pdev->devfn) == 0) {
  4895. switch (strap) {
  4896. case 0x4:
  4897. case 0x5:
  4898. case 0x6:
  4899. bp->phy_flags |= PHY_SERDES_FLAG;
  4900. return;
  4901. }
  4902. } else {
  4903. switch (strap) {
  4904. case 0x1:
  4905. case 0x2:
  4906. case 0x4:
  4907. bp->phy_flags |= PHY_SERDES_FLAG;
  4908. return;
  4909. }
  4910. }
  4911. }
  4912. static void __devinit
  4913. bnx2_get_pci_speed(struct bnx2 *bp)
  4914. {
  4915. u32 reg;
  4916. reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
  4917. if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
  4918. u32 clkreg;
  4919. bp->flags |= PCIX_FLAG;
  4920. clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
  4921. clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
  4922. switch (clkreg) {
  4923. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
  4924. bp->bus_speed_mhz = 133;
  4925. break;
  4926. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
  4927. bp->bus_speed_mhz = 100;
  4928. break;
  4929. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
  4930. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
  4931. bp->bus_speed_mhz = 66;
  4932. break;
  4933. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
  4934. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
  4935. bp->bus_speed_mhz = 50;
  4936. break;
  4937. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
  4938. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
  4939. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
  4940. bp->bus_speed_mhz = 33;
  4941. break;
  4942. }
  4943. }
  4944. else {
  4945. if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
  4946. bp->bus_speed_mhz = 66;
  4947. else
  4948. bp->bus_speed_mhz = 33;
  4949. }
  4950. if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
  4951. bp->flags |= PCI_32BIT_FLAG;
  4952. }
  4953. static int __devinit
  4954. bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
  4955. {
  4956. struct bnx2 *bp;
  4957. unsigned long mem_len;
  4958. int rc;
  4959. u32 reg;
  4960. u64 dma_mask, persist_dma_mask;
  4961. SET_MODULE_OWNER(dev);
  4962. SET_NETDEV_DEV(dev, &pdev->dev);
  4963. bp = netdev_priv(dev);
  4964. bp->flags = 0;
  4965. bp->phy_flags = 0;
  4966. /* enable device (incl. PCI PM wakeup), and bus-mastering */
  4967. rc = pci_enable_device(pdev);
  4968. if (rc) {
  4969. dev_err(&pdev->dev, "Cannot enable PCI device, aborting.");
  4970. goto err_out;
  4971. }
  4972. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
  4973. dev_err(&pdev->dev,
  4974. "Cannot find PCI device base address, aborting.\n");
  4975. rc = -ENODEV;
  4976. goto err_out_disable;
  4977. }
  4978. rc = pci_request_regions(pdev, DRV_MODULE_NAME);
  4979. if (rc) {
  4980. dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
  4981. goto err_out_disable;
  4982. }
  4983. pci_set_master(pdev);
  4984. bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
  4985. if (bp->pm_cap == 0) {
  4986. dev_err(&pdev->dev,
  4987. "Cannot find power management capability, aborting.\n");
  4988. rc = -EIO;
  4989. goto err_out_release;
  4990. }
  4991. bp->dev = dev;
  4992. bp->pdev = pdev;
  4993. spin_lock_init(&bp->phy_lock);
  4994. spin_lock_init(&bp->indirect_lock);
  4995. INIT_WORK(&bp->reset_task, bnx2_reset_task);
  4996. dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
  4997. mem_len = MB_GET_CID_ADDR(TX_TSS_CID + 1);
  4998. dev->mem_end = dev->mem_start + mem_len;
  4999. dev->irq = pdev->irq;
  5000. bp->regview = ioremap_nocache(dev->base_addr, mem_len);
  5001. if (!bp->regview) {
  5002. dev_err(&pdev->dev, "Cannot map register space, aborting.\n");
  5003. rc = -ENOMEM;
  5004. goto err_out_release;
  5005. }
  5006. /* Configure byte swap and enable write to the reg_window registers.
  5007. * Rely on CPU to do target byte swapping on big endian systems
  5008. * The chip's target access swapping will not swap all accesses
  5009. */
  5010. pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
  5011. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  5012. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
  5013. bnx2_set_power_state(bp, PCI_D0);
  5014. bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
  5015. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  5016. if (pci_find_capability(pdev, PCI_CAP_ID_EXP) == 0) {
  5017. dev_err(&pdev->dev,
  5018. "Cannot find PCIE capability, aborting.\n");
  5019. rc = -EIO;
  5020. goto err_out_unmap;
  5021. }
  5022. bp->flags |= PCIE_FLAG;
  5023. } else {
  5024. bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
  5025. if (bp->pcix_cap == 0) {
  5026. dev_err(&pdev->dev,
  5027. "Cannot find PCIX capability, aborting.\n");
  5028. rc = -EIO;
  5029. goto err_out_unmap;
  5030. }
  5031. }
  5032. if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) {
  5033. if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
  5034. bp->flags |= MSI_CAP_FLAG;
  5035. }
  5036. /* 5708 cannot support DMA addresses > 40-bit. */
  5037. if (CHIP_NUM(bp) == CHIP_NUM_5708)
  5038. persist_dma_mask = dma_mask = DMA_40BIT_MASK;
  5039. else
  5040. persist_dma_mask = dma_mask = DMA_64BIT_MASK;
  5041. /* Configure DMA attributes. */
  5042. if (pci_set_dma_mask(pdev, dma_mask) == 0) {
  5043. dev->features |= NETIF_F_HIGHDMA;
  5044. rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
  5045. if (rc) {
  5046. dev_err(&pdev->dev,
  5047. "pci_set_consistent_dma_mask failed, aborting.\n");
  5048. goto err_out_unmap;
  5049. }
  5050. } else if ((rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) != 0) {
  5051. dev_err(&pdev->dev, "System does not support DMA, aborting.\n");
  5052. goto err_out_unmap;
  5053. }
  5054. if (!(bp->flags & PCIE_FLAG))
  5055. bnx2_get_pci_speed(bp);
  5056. /* 5706A0 may falsely detect SERR and PERR. */
  5057. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  5058. reg = REG_RD(bp, PCI_COMMAND);
  5059. reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  5060. REG_WR(bp, PCI_COMMAND, reg);
  5061. }
  5062. else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
  5063. !(bp->flags & PCIX_FLAG)) {
  5064. dev_err(&pdev->dev,
  5065. "5706 A1 can only be used in a PCIX bus, aborting.\n");
  5066. goto err_out_unmap;
  5067. }
  5068. bnx2_init_nvram(bp);
  5069. reg = REG_RD_IND(bp, BNX2_SHM_HDR_SIGNATURE);
  5070. if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
  5071. BNX2_SHM_HDR_SIGNATURE_SIG) {
  5072. u32 off = PCI_FUNC(pdev->devfn) << 2;
  5073. bp->shmem_base = REG_RD_IND(bp, BNX2_SHM_HDR_ADDR_0 + off);
  5074. } else
  5075. bp->shmem_base = HOST_VIEW_SHMEM_BASE;
  5076. /* Get the permanent MAC address. First we need to make sure the
  5077. * firmware is actually running.
  5078. */
  5079. reg = REG_RD_IND(bp, bp->shmem_base + BNX2_DEV_INFO_SIGNATURE);
  5080. if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
  5081. BNX2_DEV_INFO_SIGNATURE_MAGIC) {
  5082. dev_err(&pdev->dev, "Firmware not running, aborting.\n");
  5083. rc = -ENODEV;
  5084. goto err_out_unmap;
  5085. }
  5086. bp->fw_ver = REG_RD_IND(bp, bp->shmem_base + BNX2_DEV_INFO_BC_REV);
  5087. reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_MAC_UPPER);
  5088. bp->mac_addr[0] = (u8) (reg >> 8);
  5089. bp->mac_addr[1] = (u8) reg;
  5090. reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_MAC_LOWER);
  5091. bp->mac_addr[2] = (u8) (reg >> 24);
  5092. bp->mac_addr[3] = (u8) (reg >> 16);
  5093. bp->mac_addr[4] = (u8) (reg >> 8);
  5094. bp->mac_addr[5] = (u8) reg;
  5095. bp->tx_ring_size = MAX_TX_DESC_CNT;
  5096. bnx2_set_rx_ring_size(bp, 255);
  5097. bp->rx_csum = 1;
  5098. bp->rx_offset = sizeof(struct l2_fhdr) + 2;
  5099. bp->tx_quick_cons_trip_int = 20;
  5100. bp->tx_quick_cons_trip = 20;
  5101. bp->tx_ticks_int = 80;
  5102. bp->tx_ticks = 80;
  5103. bp->rx_quick_cons_trip_int = 6;
  5104. bp->rx_quick_cons_trip = 6;
  5105. bp->rx_ticks_int = 18;
  5106. bp->rx_ticks = 18;
  5107. bp->stats_ticks = 1000000 & 0xffff00;
  5108. bp->timer_interval = HZ;
  5109. bp->current_interval = HZ;
  5110. bp->phy_addr = 1;
  5111. /* Disable WOL support if we are running on a SERDES chip. */
  5112. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  5113. bnx2_get_5709_media(bp);
  5114. else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
  5115. bp->phy_flags |= PHY_SERDES_FLAG;
  5116. if (bp->phy_flags & PHY_SERDES_FLAG) {
  5117. bp->flags |= NO_WOL_FLAG;
  5118. if (CHIP_NUM(bp) != CHIP_NUM_5706) {
  5119. bp->phy_addr = 2;
  5120. reg = REG_RD_IND(bp, bp->shmem_base +
  5121. BNX2_SHARED_HW_CFG_CONFIG);
  5122. if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
  5123. bp->phy_flags |= PHY_2_5G_CAPABLE_FLAG;
  5124. }
  5125. } else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
  5126. CHIP_NUM(bp) == CHIP_NUM_5708)
  5127. bp->phy_flags |= PHY_CRC_FIX_FLAG;
  5128. else if (CHIP_ID(bp) == CHIP_ID_5709_A0)
  5129. bp->phy_flags |= PHY_DIS_EARLY_DAC_FLAG;
  5130. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  5131. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  5132. (CHIP_ID(bp) == CHIP_ID_5708_B1))
  5133. bp->flags |= NO_WOL_FLAG;
  5134. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  5135. bp->tx_quick_cons_trip_int =
  5136. bp->tx_quick_cons_trip;
  5137. bp->tx_ticks_int = bp->tx_ticks;
  5138. bp->rx_quick_cons_trip_int =
  5139. bp->rx_quick_cons_trip;
  5140. bp->rx_ticks_int = bp->rx_ticks;
  5141. bp->comp_prod_trip_int = bp->comp_prod_trip;
  5142. bp->com_ticks_int = bp->com_ticks;
  5143. bp->cmd_ticks_int = bp->cmd_ticks;
  5144. }
  5145. /* Disable MSI on 5706 if AMD 8132 bridge is found.
  5146. *
  5147. * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
  5148. * with byte enables disabled on the unused 32-bit word. This is legal
  5149. * but causes problems on the AMD 8132 which will eventually stop
  5150. * responding after a while.
  5151. *
  5152. * AMD believes this incompatibility is unique to the 5706, and
  5153. * prefers to locally disable MSI rather than globally disabling it.
  5154. */
  5155. if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
  5156. struct pci_dev *amd_8132 = NULL;
  5157. while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
  5158. PCI_DEVICE_ID_AMD_8132_BRIDGE,
  5159. amd_8132))) {
  5160. u8 rev;
  5161. pci_read_config_byte(amd_8132, PCI_REVISION_ID, &rev);
  5162. if (rev >= 0x10 && rev <= 0x13) {
  5163. disable_msi = 1;
  5164. pci_dev_put(amd_8132);
  5165. break;
  5166. }
  5167. }
  5168. }
  5169. bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
  5170. bp->req_line_speed = 0;
  5171. if (bp->phy_flags & PHY_SERDES_FLAG) {
  5172. bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
  5173. reg = REG_RD_IND(bp, bp->shmem_base + BNX2_PORT_HW_CFG_CONFIG);
  5174. reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
  5175. if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
  5176. bp->autoneg = 0;
  5177. bp->req_line_speed = bp->line_speed = SPEED_1000;
  5178. bp->req_duplex = DUPLEX_FULL;
  5179. }
  5180. }
  5181. else {
  5182. bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
  5183. }
  5184. bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
  5185. init_timer(&bp->timer);
  5186. bp->timer.expires = RUN_AT(bp->timer_interval);
  5187. bp->timer.data = (unsigned long) bp;
  5188. bp->timer.function = bnx2_timer;
  5189. return 0;
  5190. err_out_unmap:
  5191. if (bp->regview) {
  5192. iounmap(bp->regview);
  5193. bp->regview = NULL;
  5194. }
  5195. err_out_release:
  5196. pci_release_regions(pdev);
  5197. err_out_disable:
  5198. pci_disable_device(pdev);
  5199. pci_set_drvdata(pdev, NULL);
  5200. err_out:
  5201. return rc;
  5202. }
  5203. static char * __devinit
  5204. bnx2_bus_string(struct bnx2 *bp, char *str)
  5205. {
  5206. char *s = str;
  5207. if (bp->flags & PCIE_FLAG) {
  5208. s += sprintf(s, "PCI Express");
  5209. } else {
  5210. s += sprintf(s, "PCI");
  5211. if (bp->flags & PCIX_FLAG)
  5212. s += sprintf(s, "-X");
  5213. if (bp->flags & PCI_32BIT_FLAG)
  5214. s += sprintf(s, " 32-bit");
  5215. else
  5216. s += sprintf(s, " 64-bit");
  5217. s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
  5218. }
  5219. return str;
  5220. }
  5221. static int __devinit
  5222. bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  5223. {
  5224. static int version_printed = 0;
  5225. struct net_device *dev = NULL;
  5226. struct bnx2 *bp;
  5227. int rc, i;
  5228. char str[40];
  5229. if (version_printed++ == 0)
  5230. printk(KERN_INFO "%s", version);
  5231. /* dev zeroed in init_etherdev */
  5232. dev = alloc_etherdev(sizeof(*bp));
  5233. if (!dev)
  5234. return -ENOMEM;
  5235. rc = bnx2_init_board(pdev, dev);
  5236. if (rc < 0) {
  5237. free_netdev(dev);
  5238. return rc;
  5239. }
  5240. dev->open = bnx2_open;
  5241. dev->hard_start_xmit = bnx2_start_xmit;
  5242. dev->stop = bnx2_close;
  5243. dev->get_stats = bnx2_get_stats;
  5244. dev->set_multicast_list = bnx2_set_rx_mode;
  5245. dev->do_ioctl = bnx2_ioctl;
  5246. dev->set_mac_address = bnx2_change_mac_addr;
  5247. dev->change_mtu = bnx2_change_mtu;
  5248. dev->tx_timeout = bnx2_tx_timeout;
  5249. dev->watchdog_timeo = TX_TIMEOUT;
  5250. #ifdef BCM_VLAN
  5251. dev->vlan_rx_register = bnx2_vlan_rx_register;
  5252. #endif
  5253. dev->poll = bnx2_poll;
  5254. dev->ethtool_ops = &bnx2_ethtool_ops;
  5255. dev->weight = 64;
  5256. bp = netdev_priv(dev);
  5257. #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
  5258. dev->poll_controller = poll_bnx2;
  5259. #endif
  5260. pci_set_drvdata(pdev, dev);
  5261. memcpy(dev->dev_addr, bp->mac_addr, 6);
  5262. memcpy(dev->perm_addr, bp->mac_addr, 6);
  5263. bp->name = board_info[ent->driver_data].name;
  5264. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  5265. dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
  5266. else
  5267. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  5268. #ifdef BCM_VLAN
  5269. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  5270. #endif
  5271. dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
  5272. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  5273. dev->features |= NETIF_F_TSO6;
  5274. if ((rc = register_netdev(dev))) {
  5275. dev_err(&pdev->dev, "Cannot register net device\n");
  5276. if (bp->regview)
  5277. iounmap(bp->regview);
  5278. pci_release_regions(pdev);
  5279. pci_disable_device(pdev);
  5280. pci_set_drvdata(pdev, NULL);
  5281. free_netdev(dev);
  5282. return rc;
  5283. }
  5284. printk(KERN_INFO "%s: %s (%c%d) %s found at mem %lx, "
  5285. "IRQ %d, ",
  5286. dev->name,
  5287. bp->name,
  5288. ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
  5289. ((CHIP_ID(bp) & 0x0ff0) >> 4),
  5290. bnx2_bus_string(bp, str),
  5291. dev->base_addr,
  5292. bp->pdev->irq);
  5293. printk("node addr ");
  5294. for (i = 0; i < 6; i++)
  5295. printk("%2.2x", dev->dev_addr[i]);
  5296. printk("\n");
  5297. return 0;
  5298. }
  5299. static void __devexit
  5300. bnx2_remove_one(struct pci_dev *pdev)
  5301. {
  5302. struct net_device *dev = pci_get_drvdata(pdev);
  5303. struct bnx2 *bp = netdev_priv(dev);
  5304. flush_scheduled_work();
  5305. unregister_netdev(dev);
  5306. if (bp->regview)
  5307. iounmap(bp->regview);
  5308. free_netdev(dev);
  5309. pci_release_regions(pdev);
  5310. pci_disable_device(pdev);
  5311. pci_set_drvdata(pdev, NULL);
  5312. }
  5313. static int
  5314. bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
  5315. {
  5316. struct net_device *dev = pci_get_drvdata(pdev);
  5317. struct bnx2 *bp = netdev_priv(dev);
  5318. u32 reset_code;
  5319. if (!netif_running(dev))
  5320. return 0;
  5321. flush_scheduled_work();
  5322. bnx2_netif_stop(bp);
  5323. netif_device_detach(dev);
  5324. del_timer_sync(&bp->timer);
  5325. if (bp->flags & NO_WOL_FLAG)
  5326. reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
  5327. else if (bp->wol)
  5328. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  5329. else
  5330. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  5331. bnx2_reset_chip(bp, reset_code);
  5332. bnx2_free_skbs(bp);
  5333. pci_save_state(pdev);
  5334. bnx2_set_power_state(bp, pci_choose_state(pdev, state));
  5335. return 0;
  5336. }
  5337. static int
  5338. bnx2_resume(struct pci_dev *pdev)
  5339. {
  5340. struct net_device *dev = pci_get_drvdata(pdev);
  5341. struct bnx2 *bp = netdev_priv(dev);
  5342. if (!netif_running(dev))
  5343. return 0;
  5344. pci_restore_state(pdev);
  5345. bnx2_set_power_state(bp, PCI_D0);
  5346. netif_device_attach(dev);
  5347. bnx2_init_nic(bp);
  5348. bnx2_netif_start(bp);
  5349. return 0;
  5350. }
  5351. static struct pci_driver bnx2_pci_driver = {
  5352. .name = DRV_MODULE_NAME,
  5353. .id_table = bnx2_pci_tbl,
  5354. .probe = bnx2_init_one,
  5355. .remove = __devexit_p(bnx2_remove_one),
  5356. .suspend = bnx2_suspend,
  5357. .resume = bnx2_resume,
  5358. };
  5359. static int __init bnx2_init(void)
  5360. {
  5361. return pci_register_driver(&bnx2_pci_driver);
  5362. }
  5363. static void __exit bnx2_cleanup(void)
  5364. {
  5365. pci_unregister_driver(&bnx2_pci_driver);
  5366. }
  5367. module_init(bnx2_init);
  5368. module_exit(bnx2_cleanup);