session.c 26 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027
  1. #define _FILE_OFFSET_BITS 64
  2. #include <linux/kernel.h>
  3. #include <byteswap.h>
  4. #include <unistd.h>
  5. #include <sys/types.h>
  6. #include <sys/mman.h>
  7. #include "session.h"
  8. #include "sort.h"
  9. #include "util.h"
  10. static int perf_session__open(struct perf_session *self, bool force)
  11. {
  12. struct stat input_stat;
  13. if (!strcmp(self->filename, "-")) {
  14. self->fd_pipe = true;
  15. self->fd = STDIN_FILENO;
  16. if (perf_header__read(self, self->fd) < 0)
  17. pr_err("incompatible file format");
  18. return 0;
  19. }
  20. self->fd = open(self->filename, O_RDONLY);
  21. if (self->fd < 0) {
  22. int err = errno;
  23. pr_err("failed to open %s: %s", self->filename, strerror(err));
  24. if (err == ENOENT && !strcmp(self->filename, "perf.data"))
  25. pr_err(" (try 'perf record' first)");
  26. pr_err("\n");
  27. return -errno;
  28. }
  29. if (fstat(self->fd, &input_stat) < 0)
  30. goto out_close;
  31. if (!force && input_stat.st_uid && (input_stat.st_uid != geteuid())) {
  32. pr_err("file %s not owned by current user or root\n",
  33. self->filename);
  34. goto out_close;
  35. }
  36. if (!input_stat.st_size) {
  37. pr_info("zero-sized file (%s), nothing to do!\n",
  38. self->filename);
  39. goto out_close;
  40. }
  41. if (perf_header__read(self, self->fd) < 0) {
  42. pr_err("incompatible file format");
  43. goto out_close;
  44. }
  45. self->size = input_stat.st_size;
  46. return 0;
  47. out_close:
  48. close(self->fd);
  49. self->fd = -1;
  50. return -1;
  51. }
  52. void perf_session__update_sample_type(struct perf_session *self)
  53. {
  54. self->sample_type = perf_header__sample_type(&self->header);
  55. }
  56. void perf_session__set_sample_type(struct perf_session *session, u64 type)
  57. {
  58. session->sample_type = type;
  59. }
  60. int perf_session__create_kernel_maps(struct perf_session *self)
  61. {
  62. int ret = machine__create_kernel_maps(&self->host_machine);
  63. if (ret >= 0)
  64. ret = machines__create_guest_kernel_maps(&self->machines);
  65. return ret;
  66. }
  67. static void perf_session__destroy_kernel_maps(struct perf_session *self)
  68. {
  69. machine__destroy_kernel_maps(&self->host_machine);
  70. machines__destroy_guest_kernel_maps(&self->machines);
  71. }
  72. struct perf_session *perf_session__new(const char *filename, int mode, bool force, bool repipe)
  73. {
  74. size_t len = filename ? strlen(filename) + 1 : 0;
  75. struct perf_session *self = zalloc(sizeof(*self) + len);
  76. if (self == NULL)
  77. goto out;
  78. if (perf_header__init(&self->header) < 0)
  79. goto out_free;
  80. memcpy(self->filename, filename, len);
  81. self->threads = RB_ROOT;
  82. INIT_LIST_HEAD(&self->dead_threads);
  83. self->hists_tree = RB_ROOT;
  84. self->last_match = NULL;
  85. /*
  86. * On 64bit we can mmap the data file in one go. No need for tiny mmap
  87. * slices. On 32bit we use 32MB.
  88. */
  89. #if BITS_PER_LONG == 64
  90. self->mmap_window = ULLONG_MAX;
  91. #else
  92. self->mmap_window = 32 * 1024 * 1024ULL;
  93. #endif
  94. self->machines = RB_ROOT;
  95. self->repipe = repipe;
  96. INIT_LIST_HEAD(&self->ordered_samples.samples);
  97. INIT_LIST_HEAD(&self->ordered_samples.sample_cache);
  98. INIT_LIST_HEAD(&self->ordered_samples.to_free);
  99. machine__init(&self->host_machine, "", HOST_KERNEL_ID);
  100. if (mode == O_RDONLY) {
  101. if (perf_session__open(self, force) < 0)
  102. goto out_delete;
  103. } else if (mode == O_WRONLY) {
  104. /*
  105. * In O_RDONLY mode this will be performed when reading the
  106. * kernel MMAP event, in event__process_mmap().
  107. */
  108. if (perf_session__create_kernel_maps(self) < 0)
  109. goto out_delete;
  110. }
  111. perf_session__update_sample_type(self);
  112. out:
  113. return self;
  114. out_free:
  115. free(self);
  116. return NULL;
  117. out_delete:
  118. perf_session__delete(self);
  119. return NULL;
  120. }
  121. static void perf_session__delete_dead_threads(struct perf_session *self)
  122. {
  123. struct thread *n, *t;
  124. list_for_each_entry_safe(t, n, &self->dead_threads, node) {
  125. list_del(&t->node);
  126. thread__delete(t);
  127. }
  128. }
  129. static void perf_session__delete_threads(struct perf_session *self)
  130. {
  131. struct rb_node *nd = rb_first(&self->threads);
  132. while (nd) {
  133. struct thread *t = rb_entry(nd, struct thread, rb_node);
  134. rb_erase(&t->rb_node, &self->threads);
  135. nd = rb_next(nd);
  136. thread__delete(t);
  137. }
  138. }
  139. void perf_session__delete(struct perf_session *self)
  140. {
  141. perf_header__exit(&self->header);
  142. perf_session__destroy_kernel_maps(self);
  143. perf_session__delete_dead_threads(self);
  144. perf_session__delete_threads(self);
  145. machine__exit(&self->host_machine);
  146. close(self->fd);
  147. free(self);
  148. }
  149. void perf_session__remove_thread(struct perf_session *self, struct thread *th)
  150. {
  151. self->last_match = NULL;
  152. rb_erase(&th->rb_node, &self->threads);
  153. /*
  154. * We may have references to this thread, for instance in some hist_entry
  155. * instances, so just move them to a separate list.
  156. */
  157. list_add_tail(&th->node, &self->dead_threads);
  158. }
  159. static bool symbol__match_parent_regex(struct symbol *sym)
  160. {
  161. if (sym->name && !regexec(&parent_regex, sym->name, 0, NULL, 0))
  162. return 1;
  163. return 0;
  164. }
  165. struct map_symbol *perf_session__resolve_callchain(struct perf_session *self,
  166. struct thread *thread,
  167. struct ip_callchain *chain,
  168. struct symbol **parent)
  169. {
  170. u8 cpumode = PERF_RECORD_MISC_USER;
  171. unsigned int i;
  172. struct map_symbol *syms = calloc(chain->nr, sizeof(*syms));
  173. if (!syms)
  174. return NULL;
  175. for (i = 0; i < chain->nr; i++) {
  176. u64 ip = chain->ips[i];
  177. struct addr_location al;
  178. if (ip >= PERF_CONTEXT_MAX) {
  179. switch (ip) {
  180. case PERF_CONTEXT_HV:
  181. cpumode = PERF_RECORD_MISC_HYPERVISOR; break;
  182. case PERF_CONTEXT_KERNEL:
  183. cpumode = PERF_RECORD_MISC_KERNEL; break;
  184. case PERF_CONTEXT_USER:
  185. cpumode = PERF_RECORD_MISC_USER; break;
  186. default:
  187. break;
  188. }
  189. continue;
  190. }
  191. al.filtered = false;
  192. thread__find_addr_location(thread, self, cpumode,
  193. MAP__FUNCTION, thread->pid, ip, &al, NULL);
  194. if (al.sym != NULL) {
  195. if (sort__has_parent && !*parent &&
  196. symbol__match_parent_regex(al.sym))
  197. *parent = al.sym;
  198. if (!symbol_conf.use_callchain)
  199. break;
  200. syms[i].map = al.map;
  201. syms[i].sym = al.sym;
  202. }
  203. }
  204. return syms;
  205. }
  206. static int process_event_synth_stub(event_t *event __used,
  207. struct perf_session *session __used)
  208. {
  209. dump_printf(": unhandled!\n");
  210. return 0;
  211. }
  212. static int process_event_stub(event_t *event __used,
  213. struct sample_data *sample __used,
  214. struct perf_session *session __used)
  215. {
  216. dump_printf(": unhandled!\n");
  217. return 0;
  218. }
  219. static int process_finished_round_stub(event_t *event __used,
  220. struct perf_session *session __used,
  221. struct perf_event_ops *ops __used)
  222. {
  223. dump_printf(": unhandled!\n");
  224. return 0;
  225. }
  226. static int process_finished_round(event_t *event,
  227. struct perf_session *session,
  228. struct perf_event_ops *ops);
  229. static void perf_event_ops__fill_defaults(struct perf_event_ops *handler)
  230. {
  231. if (handler->sample == NULL)
  232. handler->sample = process_event_stub;
  233. if (handler->mmap == NULL)
  234. handler->mmap = process_event_stub;
  235. if (handler->comm == NULL)
  236. handler->comm = process_event_stub;
  237. if (handler->fork == NULL)
  238. handler->fork = process_event_stub;
  239. if (handler->exit == NULL)
  240. handler->exit = process_event_stub;
  241. if (handler->lost == NULL)
  242. handler->lost = event__process_lost;
  243. if (handler->read == NULL)
  244. handler->read = process_event_stub;
  245. if (handler->throttle == NULL)
  246. handler->throttle = process_event_stub;
  247. if (handler->unthrottle == NULL)
  248. handler->unthrottle = process_event_stub;
  249. if (handler->attr == NULL)
  250. handler->attr = process_event_synth_stub;
  251. if (handler->event_type == NULL)
  252. handler->event_type = process_event_synth_stub;
  253. if (handler->tracing_data == NULL)
  254. handler->tracing_data = process_event_synth_stub;
  255. if (handler->build_id == NULL)
  256. handler->build_id = process_event_synth_stub;
  257. if (handler->finished_round == NULL) {
  258. if (handler->ordered_samples)
  259. handler->finished_round = process_finished_round;
  260. else
  261. handler->finished_round = process_finished_round_stub;
  262. }
  263. }
  264. void mem_bswap_64(void *src, int byte_size)
  265. {
  266. u64 *m = src;
  267. while (byte_size > 0) {
  268. *m = bswap_64(*m);
  269. byte_size -= sizeof(u64);
  270. ++m;
  271. }
  272. }
  273. static void event__all64_swap(event_t *self)
  274. {
  275. struct perf_event_header *hdr = &self->header;
  276. mem_bswap_64(hdr + 1, self->header.size - sizeof(*hdr));
  277. }
  278. static void event__comm_swap(event_t *self)
  279. {
  280. self->comm.pid = bswap_32(self->comm.pid);
  281. self->comm.tid = bswap_32(self->comm.tid);
  282. }
  283. static void event__mmap_swap(event_t *self)
  284. {
  285. self->mmap.pid = bswap_32(self->mmap.pid);
  286. self->mmap.tid = bswap_32(self->mmap.tid);
  287. self->mmap.start = bswap_64(self->mmap.start);
  288. self->mmap.len = bswap_64(self->mmap.len);
  289. self->mmap.pgoff = bswap_64(self->mmap.pgoff);
  290. }
  291. static void event__task_swap(event_t *self)
  292. {
  293. self->fork.pid = bswap_32(self->fork.pid);
  294. self->fork.tid = bswap_32(self->fork.tid);
  295. self->fork.ppid = bswap_32(self->fork.ppid);
  296. self->fork.ptid = bswap_32(self->fork.ptid);
  297. self->fork.time = bswap_64(self->fork.time);
  298. }
  299. static void event__read_swap(event_t *self)
  300. {
  301. self->read.pid = bswap_32(self->read.pid);
  302. self->read.tid = bswap_32(self->read.tid);
  303. self->read.value = bswap_64(self->read.value);
  304. self->read.time_enabled = bswap_64(self->read.time_enabled);
  305. self->read.time_running = bswap_64(self->read.time_running);
  306. self->read.id = bswap_64(self->read.id);
  307. }
  308. static void event__attr_swap(event_t *self)
  309. {
  310. size_t size;
  311. self->attr.attr.type = bswap_32(self->attr.attr.type);
  312. self->attr.attr.size = bswap_32(self->attr.attr.size);
  313. self->attr.attr.config = bswap_64(self->attr.attr.config);
  314. self->attr.attr.sample_period = bswap_64(self->attr.attr.sample_period);
  315. self->attr.attr.sample_type = bswap_64(self->attr.attr.sample_type);
  316. self->attr.attr.read_format = bswap_64(self->attr.attr.read_format);
  317. self->attr.attr.wakeup_events = bswap_32(self->attr.attr.wakeup_events);
  318. self->attr.attr.bp_type = bswap_32(self->attr.attr.bp_type);
  319. self->attr.attr.bp_addr = bswap_64(self->attr.attr.bp_addr);
  320. self->attr.attr.bp_len = bswap_64(self->attr.attr.bp_len);
  321. size = self->header.size;
  322. size -= (void *)&self->attr.id - (void *)self;
  323. mem_bswap_64(self->attr.id, size);
  324. }
  325. static void event__event_type_swap(event_t *self)
  326. {
  327. self->event_type.event_type.event_id =
  328. bswap_64(self->event_type.event_type.event_id);
  329. }
  330. static void event__tracing_data_swap(event_t *self)
  331. {
  332. self->tracing_data.size = bswap_32(self->tracing_data.size);
  333. }
  334. typedef void (*event__swap_op)(event_t *self);
  335. static event__swap_op event__swap_ops[] = {
  336. [PERF_RECORD_MMAP] = event__mmap_swap,
  337. [PERF_RECORD_COMM] = event__comm_swap,
  338. [PERF_RECORD_FORK] = event__task_swap,
  339. [PERF_RECORD_EXIT] = event__task_swap,
  340. [PERF_RECORD_LOST] = event__all64_swap,
  341. [PERF_RECORD_READ] = event__read_swap,
  342. [PERF_RECORD_SAMPLE] = event__all64_swap,
  343. [PERF_RECORD_HEADER_ATTR] = event__attr_swap,
  344. [PERF_RECORD_HEADER_EVENT_TYPE] = event__event_type_swap,
  345. [PERF_RECORD_HEADER_TRACING_DATA] = event__tracing_data_swap,
  346. [PERF_RECORD_HEADER_BUILD_ID] = NULL,
  347. [PERF_RECORD_HEADER_MAX] = NULL,
  348. };
  349. struct sample_queue {
  350. u64 timestamp;
  351. event_t *event;
  352. struct list_head list;
  353. };
  354. static void perf_session_free_sample_buffers(struct perf_session *session)
  355. {
  356. struct ordered_samples *os = &session->ordered_samples;
  357. while (!list_empty(&os->to_free)) {
  358. struct sample_queue *sq;
  359. sq = list_entry(os->to_free.next, struct sample_queue, list);
  360. list_del(&sq->list);
  361. free(sq);
  362. }
  363. }
  364. static void flush_sample_queue(struct perf_session *s,
  365. struct perf_event_ops *ops)
  366. {
  367. struct ordered_samples *os = &s->ordered_samples;
  368. struct list_head *head = &os->samples;
  369. struct sample_queue *tmp, *iter;
  370. struct sample_data sample;
  371. u64 limit = os->next_flush;
  372. u64 last_ts = os->last_sample ? os->last_sample->timestamp : 0ULL;
  373. if (!ops->ordered_samples || !limit)
  374. return;
  375. list_for_each_entry_safe(iter, tmp, head, list) {
  376. if (iter->timestamp > limit)
  377. break;
  378. event__parse_sample(iter->event, s->sample_type, &sample);
  379. ops->sample(iter->event, &sample, s);
  380. os->last_flush = iter->timestamp;
  381. list_del(&iter->list);
  382. list_add(&iter->list, &os->sample_cache);
  383. }
  384. if (list_empty(head)) {
  385. os->last_sample = NULL;
  386. } else if (last_ts <= limit) {
  387. os->last_sample =
  388. list_entry(head->prev, struct sample_queue, list);
  389. }
  390. }
  391. /*
  392. * When perf record finishes a pass on every buffers, it records this pseudo
  393. * event.
  394. * We record the max timestamp t found in the pass n.
  395. * Assuming these timestamps are monotonic across cpus, we know that if
  396. * a buffer still has events with timestamps below t, they will be all
  397. * available and then read in the pass n + 1.
  398. * Hence when we start to read the pass n + 2, we can safely flush every
  399. * events with timestamps below t.
  400. *
  401. * ============ PASS n =================
  402. * CPU 0 | CPU 1
  403. * |
  404. * cnt1 timestamps | cnt2 timestamps
  405. * 1 | 2
  406. * 2 | 3
  407. * - | 4 <--- max recorded
  408. *
  409. * ============ PASS n + 1 ==============
  410. * CPU 0 | CPU 1
  411. * |
  412. * cnt1 timestamps | cnt2 timestamps
  413. * 3 | 5
  414. * 4 | 6
  415. * 5 | 7 <---- max recorded
  416. *
  417. * Flush every events below timestamp 4
  418. *
  419. * ============ PASS n + 2 ==============
  420. * CPU 0 | CPU 1
  421. * |
  422. * cnt1 timestamps | cnt2 timestamps
  423. * 6 | 8
  424. * 7 | 9
  425. * - | 10
  426. *
  427. * Flush every events below timestamp 7
  428. * etc...
  429. */
  430. static int process_finished_round(event_t *event __used,
  431. struct perf_session *session,
  432. struct perf_event_ops *ops)
  433. {
  434. flush_sample_queue(session, ops);
  435. session->ordered_samples.next_flush = session->ordered_samples.max_timestamp;
  436. return 0;
  437. }
  438. /* The queue is ordered by time */
  439. static void __queue_sample_event(struct sample_queue *new,
  440. struct perf_session *s)
  441. {
  442. struct ordered_samples *os = &s->ordered_samples;
  443. struct sample_queue *sample = os->last_sample;
  444. u64 timestamp = new->timestamp;
  445. struct list_head *p;
  446. os->last_sample = new;
  447. if (!sample) {
  448. list_add(&new->list, &os->samples);
  449. os->max_timestamp = timestamp;
  450. return;
  451. }
  452. /*
  453. * last_sample might point to some random place in the list as it's
  454. * the last queued event. We expect that the new event is close to
  455. * this.
  456. */
  457. if (sample->timestamp <= timestamp) {
  458. while (sample->timestamp <= timestamp) {
  459. p = sample->list.next;
  460. if (p == &os->samples) {
  461. list_add_tail(&new->list, &os->samples);
  462. os->max_timestamp = timestamp;
  463. return;
  464. }
  465. sample = list_entry(p, struct sample_queue, list);
  466. }
  467. list_add_tail(&new->list, &sample->list);
  468. } else {
  469. while (sample->timestamp > timestamp) {
  470. p = sample->list.prev;
  471. if (p == &os->samples) {
  472. list_add(&new->list, &os->samples);
  473. return;
  474. }
  475. sample = list_entry(p, struct sample_queue, list);
  476. }
  477. list_add(&new->list, &sample->list);
  478. }
  479. }
  480. #define MAX_SAMPLE_BUFFER (64 * 1024 / sizeof(struct sample_queue))
  481. static int queue_sample_event(event_t *event, struct sample_data *data,
  482. struct perf_session *s)
  483. {
  484. struct ordered_samples *os = &s->ordered_samples;
  485. struct list_head *sc = &os->sample_cache;
  486. u64 timestamp = data->time;
  487. struct sample_queue *new;
  488. if (timestamp < s->ordered_samples.last_flush) {
  489. printf("Warning: Timestamp below last timeslice flush\n");
  490. return -EINVAL;
  491. }
  492. if (!list_empty(sc)) {
  493. new = list_entry(sc->next, struct sample_queue, list);
  494. list_del(&new->list);
  495. } else if (os->sample_buffer) {
  496. new = os->sample_buffer + os->sample_buffer_idx;
  497. if (++os->sample_buffer_idx == MAX_SAMPLE_BUFFER)
  498. os->sample_buffer = NULL;
  499. } else {
  500. os->sample_buffer = malloc(MAX_SAMPLE_BUFFER * sizeof(*new));
  501. if (!os->sample_buffer)
  502. return -ENOMEM;
  503. list_add(&os->sample_buffer->list, &os->to_free);
  504. os->sample_buffer_idx = 2;
  505. new = os->sample_buffer + 1;
  506. }
  507. new->timestamp = timestamp;
  508. new->event = event;
  509. __queue_sample_event(new, s);
  510. return 0;
  511. }
  512. static int perf_session__process_sample(event_t *event,
  513. struct sample_data *sample,
  514. struct perf_session *s,
  515. struct perf_event_ops *ops)
  516. {
  517. if (!ops->ordered_samples)
  518. return ops->sample(event, sample, s);
  519. queue_sample_event(event, sample, s);
  520. return 0;
  521. }
  522. static void callchain__dump(struct sample_data *sample)
  523. {
  524. unsigned int i;
  525. if (!dump_trace)
  526. return;
  527. printf("... chain: nr:%Lu\n", sample->callchain->nr);
  528. for (i = 0; i < sample->callchain->nr; i++)
  529. printf("..... %2d: %016Lx\n", i, sample->callchain->ips[i]);
  530. }
  531. static int perf_session__process_event(struct perf_session *self,
  532. event_t *event,
  533. struct perf_event_ops *ops,
  534. u64 file_offset)
  535. {
  536. struct sample_data sample;
  537. trace_event(event);
  538. if (self->header.needs_swap && event__swap_ops[event->header.type])
  539. event__swap_ops[event->header.type](event);
  540. if (event->header.type == PERF_RECORD_SAMPLE)
  541. event__parse_sample(event, self->sample_type, &sample);
  542. if (event->header.type < PERF_RECORD_HEADER_MAX) {
  543. dump_printf("%#Lx [%#x]: PERF_RECORD_%s",
  544. file_offset, event->header.size,
  545. event__name[event->header.type]);
  546. hists__inc_nr_events(&self->hists, event->header.type);
  547. }
  548. switch (event->header.type) {
  549. case PERF_RECORD_SAMPLE:
  550. dump_printf("(IP, %d): %d/%d: %#Lx period: %Ld\n", event->header.misc,
  551. sample.pid, sample.tid, sample.ip, sample.period);
  552. if (self->sample_type & PERF_SAMPLE_CALLCHAIN) {
  553. if (!ip_callchain__valid(sample.callchain, event)) {
  554. pr_debug("call-chain problem with event, "
  555. "skipping it.\n");
  556. ++self->hists.stats.nr_invalid_chains;
  557. self->hists.stats.total_invalid_chains += sample.period;
  558. return 0;
  559. }
  560. callchain__dump(&sample);
  561. }
  562. return perf_session__process_sample(event, &sample, self, ops);
  563. case PERF_RECORD_MMAP:
  564. return ops->mmap(event, &sample, self);
  565. case PERF_RECORD_COMM:
  566. return ops->comm(event, &sample, self);
  567. case PERF_RECORD_FORK:
  568. return ops->fork(event, &sample, self);
  569. case PERF_RECORD_EXIT:
  570. return ops->exit(event, &sample, self);
  571. case PERF_RECORD_LOST:
  572. return ops->lost(event, &sample, self);
  573. case PERF_RECORD_READ:
  574. return ops->read(event, &sample, self);
  575. case PERF_RECORD_THROTTLE:
  576. return ops->throttle(event, &sample, self);
  577. case PERF_RECORD_UNTHROTTLE:
  578. return ops->unthrottle(event, &sample, self);
  579. case PERF_RECORD_HEADER_ATTR:
  580. return ops->attr(event, self);
  581. case PERF_RECORD_HEADER_EVENT_TYPE:
  582. return ops->event_type(event, self);
  583. case PERF_RECORD_HEADER_TRACING_DATA:
  584. /* setup for reading amidst mmap */
  585. lseek(self->fd, file_offset, SEEK_SET);
  586. return ops->tracing_data(event, self);
  587. case PERF_RECORD_HEADER_BUILD_ID:
  588. return ops->build_id(event, self);
  589. case PERF_RECORD_FINISHED_ROUND:
  590. return ops->finished_round(event, self, ops);
  591. default:
  592. ++self->hists.stats.nr_unknown_events;
  593. return -1;
  594. }
  595. }
  596. void perf_event_header__bswap(struct perf_event_header *self)
  597. {
  598. self->type = bswap_32(self->type);
  599. self->misc = bswap_16(self->misc);
  600. self->size = bswap_16(self->size);
  601. }
  602. static struct thread *perf_session__register_idle_thread(struct perf_session *self)
  603. {
  604. struct thread *thread = perf_session__findnew(self, 0);
  605. if (thread == NULL || thread__set_comm(thread, "swapper")) {
  606. pr_err("problem inserting idle task.\n");
  607. thread = NULL;
  608. }
  609. return thread;
  610. }
  611. int do_read(int fd, void *buf, size_t size)
  612. {
  613. void *buf_start = buf;
  614. while (size) {
  615. int ret = read(fd, buf, size);
  616. if (ret <= 0)
  617. return ret;
  618. size -= ret;
  619. buf += ret;
  620. }
  621. return buf - buf_start;
  622. }
  623. #define session_done() (*(volatile int *)(&session_done))
  624. volatile int session_done;
  625. static int __perf_session__process_pipe_events(struct perf_session *self,
  626. struct perf_event_ops *ops)
  627. {
  628. event_t event;
  629. uint32_t size;
  630. int skip = 0;
  631. u64 head;
  632. int err;
  633. void *p;
  634. perf_event_ops__fill_defaults(ops);
  635. head = 0;
  636. more:
  637. err = do_read(self->fd, &event, sizeof(struct perf_event_header));
  638. if (err <= 0) {
  639. if (err == 0)
  640. goto done;
  641. pr_err("failed to read event header\n");
  642. goto out_err;
  643. }
  644. if (self->header.needs_swap)
  645. perf_event_header__bswap(&event.header);
  646. size = event.header.size;
  647. if (size == 0)
  648. size = 8;
  649. p = &event;
  650. p += sizeof(struct perf_event_header);
  651. if (size - sizeof(struct perf_event_header)) {
  652. err = do_read(self->fd, p,
  653. size - sizeof(struct perf_event_header));
  654. if (err <= 0) {
  655. if (err == 0) {
  656. pr_err("unexpected end of event stream\n");
  657. goto done;
  658. }
  659. pr_err("failed to read event data\n");
  660. goto out_err;
  661. }
  662. }
  663. if (size == 0 ||
  664. (skip = perf_session__process_event(self, &event, ops, head)) < 0) {
  665. dump_printf("%#Lx [%#x]: skipping unknown header type: %d\n",
  666. head, event.header.size, event.header.type);
  667. /*
  668. * assume we lost track of the stream, check alignment, and
  669. * increment a single u64 in the hope to catch on again 'soon'.
  670. */
  671. if (unlikely(head & 7))
  672. head &= ~7ULL;
  673. size = 8;
  674. }
  675. head += size;
  676. dump_printf("\n%#Lx [%#x]: event: %d\n",
  677. head, event.header.size, event.header.type);
  678. if (skip > 0)
  679. head += skip;
  680. if (!session_done())
  681. goto more;
  682. done:
  683. err = 0;
  684. out_err:
  685. perf_session_free_sample_buffers(self);
  686. return err;
  687. }
  688. int __perf_session__process_events(struct perf_session *session,
  689. u64 data_offset, u64 data_size,
  690. u64 file_size, struct perf_event_ops *ops)
  691. {
  692. u64 head, page_offset, file_offset, file_pos, progress_next;
  693. int err, mmap_prot, mmap_flags, map_idx = 0;
  694. struct ui_progress *progress;
  695. size_t page_size, mmap_size;
  696. char *buf, *mmaps[8];
  697. event_t *event;
  698. uint32_t size;
  699. perf_event_ops__fill_defaults(ops);
  700. page_size = sysconf(_SC_PAGESIZE);
  701. page_offset = page_size * (data_offset / page_size);
  702. file_offset = page_offset;
  703. head = data_offset - page_offset;
  704. if (data_offset + data_size < file_size)
  705. file_size = data_offset + data_size;
  706. progress_next = file_size / 16;
  707. progress = ui_progress__new("Processing events...", file_size);
  708. if (progress == NULL)
  709. return -1;
  710. mmap_size = session->mmap_window;
  711. if (mmap_size > file_size)
  712. mmap_size = file_size;
  713. memset(mmaps, 0, sizeof(mmaps));
  714. mmap_prot = PROT_READ;
  715. mmap_flags = MAP_SHARED;
  716. if (session->header.needs_swap) {
  717. mmap_prot |= PROT_WRITE;
  718. mmap_flags = MAP_PRIVATE;
  719. }
  720. remap:
  721. buf = mmap(NULL, mmap_size, mmap_prot, mmap_flags, session->fd,
  722. file_offset);
  723. if (buf == MAP_FAILED) {
  724. pr_err("failed to mmap file\n");
  725. err = -errno;
  726. goto out_err;
  727. }
  728. mmaps[map_idx] = buf;
  729. map_idx = (map_idx + 1) & (ARRAY_SIZE(mmaps) - 1);
  730. file_pos = file_offset + head;
  731. more:
  732. event = (event_t *)(buf + head);
  733. if (session->header.needs_swap)
  734. perf_event_header__bswap(&event->header);
  735. size = event->header.size;
  736. if (size == 0)
  737. size = 8;
  738. if (head + event->header.size >= mmap_size) {
  739. if (mmaps[map_idx]) {
  740. munmap(mmaps[map_idx], mmap_size);
  741. mmaps[map_idx] = NULL;
  742. }
  743. page_offset = page_size * (head / page_size);
  744. file_offset += page_offset;
  745. head -= page_offset;
  746. goto remap;
  747. }
  748. size = event->header.size;
  749. dump_printf("\n%#Lx [%#x]: event: %d\n",
  750. file_pos, event->header.size, event->header.type);
  751. if (size == 0 ||
  752. perf_session__process_event(session, event, ops, file_pos) < 0) {
  753. dump_printf("%#Lx [%#x]: skipping unknown header type: %d\n",
  754. file_offset + head, event->header.size,
  755. event->header.type);
  756. /*
  757. * assume we lost track of the stream, check alignment, and
  758. * increment a single u64 in the hope to catch on again 'soon'.
  759. */
  760. if (unlikely(head & 7))
  761. head &= ~7ULL;
  762. size = 8;
  763. }
  764. head += size;
  765. file_pos += size;
  766. if (file_pos >= progress_next) {
  767. progress_next += file_size / 16;
  768. ui_progress__update(progress, file_pos);
  769. }
  770. if (file_pos < file_size)
  771. goto more;
  772. err = 0;
  773. /* do the final flush for ordered samples */
  774. session->ordered_samples.next_flush = ULLONG_MAX;
  775. flush_sample_queue(session, ops);
  776. out_err:
  777. ui_progress__delete(progress);
  778. if (ops->lost == event__process_lost &&
  779. session->hists.stats.total_lost != 0) {
  780. ui__warning("Processed %Lu events and LOST %Lu!\n\n"
  781. "Check IO/CPU overload!\n\n",
  782. session->hists.stats.total_period,
  783. session->hists.stats.total_lost);
  784. }
  785. if (session->hists.stats.nr_unknown_events != 0) {
  786. ui__warning("Found %u unknown events!\n\n"
  787. "Is this an older tool processing a perf.data "
  788. "file generated by a more recent tool?\n\n"
  789. "If that is not the case, consider "
  790. "reporting to linux-kernel@vger.kernel.org.\n\n",
  791. session->hists.stats.nr_unknown_events);
  792. }
  793. if (session->hists.stats.nr_invalid_chains != 0) {
  794. ui__warning("Found invalid callchains!\n\n"
  795. "%u out of %u events were discarded for this reason.\n\n"
  796. "Consider reporting to linux-kernel@vger.kernel.org.\n\n",
  797. session->hists.stats.nr_invalid_chains,
  798. session->hists.stats.nr_events[PERF_RECORD_SAMPLE]);
  799. }
  800. perf_session_free_sample_buffers(session);
  801. return err;
  802. }
  803. int perf_session__process_events(struct perf_session *self,
  804. struct perf_event_ops *ops)
  805. {
  806. int err;
  807. if (perf_session__register_idle_thread(self) == NULL)
  808. return -ENOMEM;
  809. if (!self->fd_pipe)
  810. err = __perf_session__process_events(self,
  811. self->header.data_offset,
  812. self->header.data_size,
  813. self->size, ops);
  814. else
  815. err = __perf_session__process_pipe_events(self, ops);
  816. return err;
  817. }
  818. bool perf_session__has_traces(struct perf_session *self, const char *msg)
  819. {
  820. if (!(self->sample_type & PERF_SAMPLE_RAW)) {
  821. pr_err("No trace sample to read. Did you call 'perf %s'?\n", msg);
  822. return false;
  823. }
  824. return true;
  825. }
  826. int perf_session__set_kallsyms_ref_reloc_sym(struct map **maps,
  827. const char *symbol_name,
  828. u64 addr)
  829. {
  830. char *bracket;
  831. enum map_type i;
  832. struct ref_reloc_sym *ref;
  833. ref = zalloc(sizeof(struct ref_reloc_sym));
  834. if (ref == NULL)
  835. return -ENOMEM;
  836. ref->name = strdup(symbol_name);
  837. if (ref->name == NULL) {
  838. free(ref);
  839. return -ENOMEM;
  840. }
  841. bracket = strchr(ref->name, ']');
  842. if (bracket)
  843. *bracket = '\0';
  844. ref->addr = addr;
  845. for (i = 0; i < MAP__NR_TYPES; ++i) {
  846. struct kmap *kmap = map__kmap(maps[i]);
  847. kmap->ref_reloc_sym = ref;
  848. }
  849. return 0;
  850. }
  851. size_t perf_session__fprintf_dsos(struct perf_session *self, FILE *fp)
  852. {
  853. return __dsos__fprintf(&self->host_machine.kernel_dsos, fp) +
  854. __dsos__fprintf(&self->host_machine.user_dsos, fp) +
  855. machines__fprintf_dsos(&self->machines, fp);
  856. }
  857. size_t perf_session__fprintf_dsos_buildid(struct perf_session *self, FILE *fp,
  858. bool with_hits)
  859. {
  860. size_t ret = machine__fprintf_dsos_buildid(&self->host_machine, fp, with_hits);
  861. return ret + machines__fprintf_dsos_buildid(&self->machines, fp, with_hits);
  862. }