sa11x0-dma.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029
  1. /*
  2. * SA11x0 DMAengine support
  3. *
  4. * Copyright (C) 2012 Russell King
  5. * Derived in part from arch/arm/mach-sa1100/dma.c,
  6. * Copyright (C) 2000, 2001 by Nicolas Pitre
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/sched.h>
  13. #include <linux/device.h>
  14. #include <linux/dmaengine.h>
  15. #include <linux/init.h>
  16. #include <linux/interrupt.h>
  17. #include <linux/kernel.h>
  18. #include <linux/module.h>
  19. #include <linux/platform_device.h>
  20. #include <linux/sa11x0-dma.h>
  21. #include <linux/slab.h>
  22. #include <linux/spinlock.h>
  23. #include "virt-dma.h"
  24. #define NR_PHY_CHAN 6
  25. #define DMA_ALIGN 3
  26. #define DMA_MAX_SIZE 0x1fff
  27. #define DMA_CHUNK_SIZE 0x1000
  28. #define DMA_DDAR 0x00
  29. #define DMA_DCSR_S 0x04
  30. #define DMA_DCSR_C 0x08
  31. #define DMA_DCSR_R 0x0c
  32. #define DMA_DBSA 0x10
  33. #define DMA_DBTA 0x14
  34. #define DMA_DBSB 0x18
  35. #define DMA_DBTB 0x1c
  36. #define DMA_SIZE 0x20
  37. #define DCSR_RUN (1 << 0)
  38. #define DCSR_IE (1 << 1)
  39. #define DCSR_ERROR (1 << 2)
  40. #define DCSR_DONEA (1 << 3)
  41. #define DCSR_STRTA (1 << 4)
  42. #define DCSR_DONEB (1 << 5)
  43. #define DCSR_STRTB (1 << 6)
  44. #define DCSR_BIU (1 << 7)
  45. #define DDAR_RW (1 << 0) /* 0 = W, 1 = R */
  46. #define DDAR_E (1 << 1) /* 0 = LE, 1 = BE */
  47. #define DDAR_BS (1 << 2) /* 0 = BS4, 1 = BS8 */
  48. #define DDAR_DW (1 << 3) /* 0 = 8b, 1 = 16b */
  49. #define DDAR_Ser0UDCTr (0x0 << 4)
  50. #define DDAR_Ser0UDCRc (0x1 << 4)
  51. #define DDAR_Ser1SDLCTr (0x2 << 4)
  52. #define DDAR_Ser1SDLCRc (0x3 << 4)
  53. #define DDAR_Ser1UARTTr (0x4 << 4)
  54. #define DDAR_Ser1UARTRc (0x5 << 4)
  55. #define DDAR_Ser2ICPTr (0x6 << 4)
  56. #define DDAR_Ser2ICPRc (0x7 << 4)
  57. #define DDAR_Ser3UARTTr (0x8 << 4)
  58. #define DDAR_Ser3UARTRc (0x9 << 4)
  59. #define DDAR_Ser4MCP0Tr (0xa << 4)
  60. #define DDAR_Ser4MCP0Rc (0xb << 4)
  61. #define DDAR_Ser4MCP1Tr (0xc << 4)
  62. #define DDAR_Ser4MCP1Rc (0xd << 4)
  63. #define DDAR_Ser4SSPTr (0xe << 4)
  64. #define DDAR_Ser4SSPRc (0xf << 4)
  65. struct sa11x0_dma_sg {
  66. u32 addr;
  67. u32 len;
  68. };
  69. struct sa11x0_dma_desc {
  70. struct virt_dma_desc vd;
  71. u32 ddar;
  72. size_t size;
  73. unsigned sglen;
  74. struct sa11x0_dma_sg sg[0];
  75. };
  76. struct sa11x0_dma_phy;
  77. struct sa11x0_dma_chan {
  78. struct virt_dma_chan vc;
  79. /* protected by c->vc.lock */
  80. struct sa11x0_dma_phy *phy;
  81. enum dma_status status;
  82. /* protected by d->lock */
  83. struct list_head node;
  84. u32 ddar;
  85. const char *name;
  86. };
  87. struct sa11x0_dma_phy {
  88. void __iomem *base;
  89. struct sa11x0_dma_dev *dev;
  90. unsigned num;
  91. struct sa11x0_dma_chan *vchan;
  92. /* Protected by c->vc.lock */
  93. unsigned sg_load;
  94. struct sa11x0_dma_desc *txd_load;
  95. unsigned sg_done;
  96. struct sa11x0_dma_desc *txd_done;
  97. #ifdef CONFIG_PM_SLEEP
  98. u32 dbs[2];
  99. u32 dbt[2];
  100. u32 dcsr;
  101. #endif
  102. };
  103. struct sa11x0_dma_dev {
  104. struct dma_device slave;
  105. void __iomem *base;
  106. spinlock_t lock;
  107. struct tasklet_struct task;
  108. struct list_head chan_pending;
  109. struct sa11x0_dma_phy phy[NR_PHY_CHAN];
  110. };
  111. static struct sa11x0_dma_chan *to_sa11x0_dma_chan(struct dma_chan *chan)
  112. {
  113. return container_of(chan, struct sa11x0_dma_chan, vc.chan);
  114. }
  115. static struct sa11x0_dma_dev *to_sa11x0_dma(struct dma_device *dmadev)
  116. {
  117. return container_of(dmadev, struct sa11x0_dma_dev, slave);
  118. }
  119. static struct sa11x0_dma_desc *sa11x0_dma_next_desc(struct sa11x0_dma_chan *c)
  120. {
  121. struct virt_dma_desc *vd = vchan_next_desc(&c->vc);
  122. return vd ? container_of(vd, struct sa11x0_dma_desc, vd) : NULL;
  123. }
  124. static void sa11x0_dma_free_desc(struct virt_dma_desc *vd)
  125. {
  126. kfree(container_of(vd, struct sa11x0_dma_desc, vd));
  127. }
  128. static void sa11x0_dma_start_desc(struct sa11x0_dma_phy *p, struct sa11x0_dma_desc *txd)
  129. {
  130. list_del(&txd->vd.node);
  131. p->txd_load = txd;
  132. p->sg_load = 0;
  133. dev_vdbg(p->dev->slave.dev, "pchan %u: txd %p[%x]: starting: DDAR:%x\n",
  134. p->num, &txd->vd, txd->vd.tx.cookie, txd->ddar);
  135. }
  136. static void noinline sa11x0_dma_start_sg(struct sa11x0_dma_phy *p,
  137. struct sa11x0_dma_chan *c)
  138. {
  139. struct sa11x0_dma_desc *txd = p->txd_load;
  140. struct sa11x0_dma_sg *sg;
  141. void __iomem *base = p->base;
  142. unsigned dbsx, dbtx;
  143. u32 dcsr;
  144. if (!txd)
  145. return;
  146. dcsr = readl_relaxed(base + DMA_DCSR_R);
  147. /* Don't try to load the next transfer if both buffers are started */
  148. if ((dcsr & (DCSR_STRTA | DCSR_STRTB)) == (DCSR_STRTA | DCSR_STRTB))
  149. return;
  150. if (p->sg_load == txd->sglen) {
  151. struct sa11x0_dma_desc *txn = sa11x0_dma_next_desc(c);
  152. /*
  153. * We have reached the end of the current descriptor.
  154. * Peek at the next descriptor, and if compatible with
  155. * the current, start processing it.
  156. */
  157. if (txn && txn->ddar == txd->ddar) {
  158. txd = txn;
  159. sa11x0_dma_start_desc(p, txn);
  160. } else {
  161. p->txd_load = NULL;
  162. return;
  163. }
  164. }
  165. sg = &txd->sg[p->sg_load++];
  166. /* Select buffer to load according to channel status */
  167. if (((dcsr & (DCSR_BIU | DCSR_STRTB)) == (DCSR_BIU | DCSR_STRTB)) ||
  168. ((dcsr & (DCSR_BIU | DCSR_STRTA)) == 0)) {
  169. dbsx = DMA_DBSA;
  170. dbtx = DMA_DBTA;
  171. dcsr = DCSR_STRTA | DCSR_IE | DCSR_RUN;
  172. } else {
  173. dbsx = DMA_DBSB;
  174. dbtx = DMA_DBTB;
  175. dcsr = DCSR_STRTB | DCSR_IE | DCSR_RUN;
  176. }
  177. writel_relaxed(sg->addr, base + dbsx);
  178. writel_relaxed(sg->len, base + dbtx);
  179. writel(dcsr, base + DMA_DCSR_S);
  180. dev_dbg(p->dev->slave.dev, "pchan %u: load: DCSR:%02x DBS%c:%08x DBT%c:%08x\n",
  181. p->num, dcsr,
  182. 'A' + (dbsx == DMA_DBSB), sg->addr,
  183. 'A' + (dbtx == DMA_DBTB), sg->len);
  184. }
  185. static void noinline sa11x0_dma_complete(struct sa11x0_dma_phy *p,
  186. struct sa11x0_dma_chan *c)
  187. {
  188. struct sa11x0_dma_desc *txd = p->txd_done;
  189. if (++p->sg_done == txd->sglen) {
  190. vchan_cookie_complete(&txd->vd);
  191. p->sg_done = 0;
  192. p->txd_done = p->txd_load;
  193. if (!p->txd_done)
  194. tasklet_schedule(&p->dev->task);
  195. }
  196. sa11x0_dma_start_sg(p, c);
  197. }
  198. static irqreturn_t sa11x0_dma_irq(int irq, void *dev_id)
  199. {
  200. struct sa11x0_dma_phy *p = dev_id;
  201. struct sa11x0_dma_dev *d = p->dev;
  202. struct sa11x0_dma_chan *c;
  203. u32 dcsr;
  204. dcsr = readl_relaxed(p->base + DMA_DCSR_R);
  205. if (!(dcsr & (DCSR_ERROR | DCSR_DONEA | DCSR_DONEB)))
  206. return IRQ_NONE;
  207. /* Clear reported status bits */
  208. writel_relaxed(dcsr & (DCSR_ERROR | DCSR_DONEA | DCSR_DONEB),
  209. p->base + DMA_DCSR_C);
  210. dev_dbg(d->slave.dev, "pchan %u: irq: DCSR:%02x\n", p->num, dcsr);
  211. if (dcsr & DCSR_ERROR) {
  212. dev_err(d->slave.dev, "pchan %u: error. DCSR:%02x DDAR:%08x DBSA:%08x DBTA:%08x DBSB:%08x DBTB:%08x\n",
  213. p->num, dcsr,
  214. readl_relaxed(p->base + DMA_DDAR),
  215. readl_relaxed(p->base + DMA_DBSA),
  216. readl_relaxed(p->base + DMA_DBTA),
  217. readl_relaxed(p->base + DMA_DBSB),
  218. readl_relaxed(p->base + DMA_DBTB));
  219. }
  220. c = p->vchan;
  221. if (c) {
  222. unsigned long flags;
  223. spin_lock_irqsave(&c->vc.lock, flags);
  224. /*
  225. * Now that we're holding the lock, check that the vchan
  226. * really is associated with this pchan before touching the
  227. * hardware. This should always succeed, because we won't
  228. * change p->vchan or c->phy while the channel is actively
  229. * transferring.
  230. */
  231. if (c->phy == p) {
  232. if (dcsr & DCSR_DONEA)
  233. sa11x0_dma_complete(p, c);
  234. if (dcsr & DCSR_DONEB)
  235. sa11x0_dma_complete(p, c);
  236. }
  237. spin_unlock_irqrestore(&c->vc.lock, flags);
  238. }
  239. return IRQ_HANDLED;
  240. }
  241. static void sa11x0_dma_start_txd(struct sa11x0_dma_chan *c)
  242. {
  243. struct sa11x0_dma_desc *txd = sa11x0_dma_next_desc(c);
  244. /* If the issued list is empty, we have no further txds to process */
  245. if (txd) {
  246. struct sa11x0_dma_phy *p = c->phy;
  247. sa11x0_dma_start_desc(p, txd);
  248. p->txd_done = txd;
  249. p->sg_done = 0;
  250. /* The channel should not have any transfers started */
  251. WARN_ON(readl_relaxed(p->base + DMA_DCSR_R) &
  252. (DCSR_STRTA | DCSR_STRTB));
  253. /* Clear the run and start bits before changing DDAR */
  254. writel_relaxed(DCSR_RUN | DCSR_STRTA | DCSR_STRTB,
  255. p->base + DMA_DCSR_C);
  256. writel_relaxed(txd->ddar, p->base + DMA_DDAR);
  257. /* Try to start both buffers */
  258. sa11x0_dma_start_sg(p, c);
  259. sa11x0_dma_start_sg(p, c);
  260. }
  261. }
  262. static void sa11x0_dma_tasklet(unsigned long arg)
  263. {
  264. struct sa11x0_dma_dev *d = (struct sa11x0_dma_dev *)arg;
  265. struct sa11x0_dma_phy *p;
  266. struct sa11x0_dma_chan *c;
  267. unsigned pch, pch_alloc = 0;
  268. dev_dbg(d->slave.dev, "tasklet enter\n");
  269. list_for_each_entry(c, &d->slave.channels, vc.chan.device_node) {
  270. spin_lock_irq(&c->vc.lock);
  271. p = c->phy;
  272. if (p && !p->txd_done) {
  273. sa11x0_dma_start_txd(c);
  274. if (!p->txd_done) {
  275. /* No current txd associated with this channel */
  276. dev_dbg(d->slave.dev, "pchan %u: free\n", p->num);
  277. /* Mark this channel free */
  278. c->phy = NULL;
  279. p->vchan = NULL;
  280. }
  281. }
  282. spin_unlock_irq(&c->vc.lock);
  283. }
  284. spin_lock_irq(&d->lock);
  285. for (pch = 0; pch < NR_PHY_CHAN; pch++) {
  286. p = &d->phy[pch];
  287. if (p->vchan == NULL && !list_empty(&d->chan_pending)) {
  288. c = list_first_entry(&d->chan_pending,
  289. struct sa11x0_dma_chan, node);
  290. list_del_init(&c->node);
  291. pch_alloc |= 1 << pch;
  292. /* Mark this channel allocated */
  293. p->vchan = c;
  294. dev_dbg(d->slave.dev, "pchan %u: alloc vchan %p\n", pch, &c->vc);
  295. }
  296. }
  297. spin_unlock_irq(&d->lock);
  298. for (pch = 0; pch < NR_PHY_CHAN; pch++) {
  299. if (pch_alloc & (1 << pch)) {
  300. p = &d->phy[pch];
  301. c = p->vchan;
  302. spin_lock_irq(&c->vc.lock);
  303. c->phy = p;
  304. sa11x0_dma_start_txd(c);
  305. spin_unlock_irq(&c->vc.lock);
  306. }
  307. }
  308. dev_dbg(d->slave.dev, "tasklet exit\n");
  309. }
  310. static int sa11x0_dma_alloc_chan_resources(struct dma_chan *chan)
  311. {
  312. return 0;
  313. }
  314. static void sa11x0_dma_free_chan_resources(struct dma_chan *chan)
  315. {
  316. struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
  317. struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device);
  318. unsigned long flags;
  319. spin_lock_irqsave(&d->lock, flags);
  320. list_del_init(&c->node);
  321. spin_unlock_irqrestore(&d->lock, flags);
  322. vchan_free_chan_resources(&c->vc);
  323. }
  324. static dma_addr_t sa11x0_dma_pos(struct sa11x0_dma_phy *p)
  325. {
  326. unsigned reg;
  327. u32 dcsr;
  328. dcsr = readl_relaxed(p->base + DMA_DCSR_R);
  329. if ((dcsr & (DCSR_BIU | DCSR_STRTA)) == DCSR_STRTA ||
  330. (dcsr & (DCSR_BIU | DCSR_STRTB)) == DCSR_BIU)
  331. reg = DMA_DBSA;
  332. else
  333. reg = DMA_DBSB;
  334. return readl_relaxed(p->base + reg);
  335. }
  336. static enum dma_status sa11x0_dma_tx_status(struct dma_chan *chan,
  337. dma_cookie_t cookie, struct dma_tx_state *state)
  338. {
  339. struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
  340. struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device);
  341. struct sa11x0_dma_phy *p;
  342. struct virt_dma_desc *vd;
  343. unsigned long flags;
  344. enum dma_status ret;
  345. ret = dma_cookie_status(&c->vc.chan, cookie, state);
  346. if (ret == DMA_SUCCESS)
  347. return ret;
  348. if (!state)
  349. return c->status;
  350. spin_lock_irqsave(&c->vc.lock, flags);
  351. p = c->phy;
  352. /*
  353. * If the cookie is on our issue queue, then the residue is
  354. * its total size.
  355. */
  356. vd = vchan_find_desc(&c->vc, cookie);
  357. if (vd) {
  358. state->residue = container_of(vd, struct sa11x0_dma_desc, vd)->size;
  359. } else if (!p) {
  360. state->residue = 0;
  361. } else {
  362. struct sa11x0_dma_desc *txd;
  363. size_t bytes = 0;
  364. if (p->txd_done && p->txd_done->vd.tx.cookie == cookie)
  365. txd = p->txd_done;
  366. else if (p->txd_load && p->txd_load->vd.tx.cookie == cookie)
  367. txd = p->txd_load;
  368. else
  369. txd = NULL;
  370. ret = c->status;
  371. if (txd) {
  372. dma_addr_t addr = sa11x0_dma_pos(p);
  373. unsigned i;
  374. dev_vdbg(d->slave.dev, "tx_status: addr:%x\n", addr);
  375. for (i = 0; i < txd->sglen; i++) {
  376. dev_vdbg(d->slave.dev, "tx_status: [%u] %x+%x\n",
  377. i, txd->sg[i].addr, txd->sg[i].len);
  378. if (addr >= txd->sg[i].addr &&
  379. addr < txd->sg[i].addr + txd->sg[i].len) {
  380. unsigned len;
  381. len = txd->sg[i].len -
  382. (addr - txd->sg[i].addr);
  383. dev_vdbg(d->slave.dev, "tx_status: [%u] +%x\n",
  384. i, len);
  385. bytes += len;
  386. i++;
  387. break;
  388. }
  389. }
  390. for (; i < txd->sglen; i++) {
  391. dev_vdbg(d->slave.dev, "tx_status: [%u] %x+%x ++\n",
  392. i, txd->sg[i].addr, txd->sg[i].len);
  393. bytes += txd->sg[i].len;
  394. }
  395. }
  396. state->residue = bytes;
  397. }
  398. spin_unlock_irqrestore(&c->vc.lock, flags);
  399. dev_vdbg(d->slave.dev, "tx_status: bytes 0x%zx\n", state->residue);
  400. return ret;
  401. }
  402. /*
  403. * Move pending txds to the issued list, and re-init pending list.
  404. * If not already pending, add this channel to the list of pending
  405. * channels and trigger the tasklet to run.
  406. */
  407. static void sa11x0_dma_issue_pending(struct dma_chan *chan)
  408. {
  409. struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
  410. struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device);
  411. unsigned long flags;
  412. spin_lock_irqsave(&c->vc.lock, flags);
  413. if (vchan_issue_pending(&c->vc)) {
  414. if (!c->phy) {
  415. spin_lock(&d->lock);
  416. if (list_empty(&c->node)) {
  417. list_add_tail(&c->node, &d->chan_pending);
  418. tasklet_schedule(&d->task);
  419. dev_dbg(d->slave.dev, "vchan %p: issued\n", &c->vc);
  420. }
  421. spin_unlock(&d->lock);
  422. }
  423. } else
  424. dev_dbg(d->slave.dev, "vchan %p: nothing to issue\n", &c->vc);
  425. spin_unlock_irqrestore(&c->vc.lock, flags);
  426. }
  427. static struct dma_async_tx_descriptor *sa11x0_dma_prep_slave_sg(
  428. struct dma_chan *chan, struct scatterlist *sg, unsigned int sglen,
  429. enum dma_transfer_direction dir, unsigned long flags, void *context)
  430. {
  431. struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
  432. struct sa11x0_dma_desc *txd;
  433. struct scatterlist *sgent;
  434. unsigned i, j = sglen;
  435. size_t size = 0;
  436. /* SA11x0 channels can only operate in their native direction */
  437. if (dir != (c->ddar & DDAR_RW ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV)) {
  438. dev_err(chan->device->dev, "vchan %p: bad DMA direction: DDAR:%08x dir:%u\n",
  439. &c->vc, c->ddar, dir);
  440. return NULL;
  441. }
  442. /* Do not allow zero-sized txds */
  443. if (sglen == 0)
  444. return NULL;
  445. for_each_sg(sg, sgent, sglen, i) {
  446. dma_addr_t addr = sg_dma_address(sgent);
  447. unsigned int len = sg_dma_len(sgent);
  448. if (len > DMA_MAX_SIZE)
  449. j += DIV_ROUND_UP(len, DMA_MAX_SIZE & ~DMA_ALIGN) - 1;
  450. if (addr & DMA_ALIGN) {
  451. dev_dbg(chan->device->dev, "vchan %p: bad buffer alignment: %08x\n",
  452. &c->vc, addr);
  453. return NULL;
  454. }
  455. }
  456. txd = kzalloc(sizeof(*txd) + j * sizeof(txd->sg[0]), GFP_ATOMIC);
  457. if (!txd) {
  458. dev_dbg(chan->device->dev, "vchan %p: kzalloc failed\n", &c->vc);
  459. return NULL;
  460. }
  461. j = 0;
  462. for_each_sg(sg, sgent, sglen, i) {
  463. dma_addr_t addr = sg_dma_address(sgent);
  464. unsigned len = sg_dma_len(sgent);
  465. size += len;
  466. do {
  467. unsigned tlen = len;
  468. /*
  469. * Check whether the transfer will fit. If not, try
  470. * to split the transfer up such that we end up with
  471. * equal chunks - but make sure that we preserve the
  472. * alignment. This avoids small segments.
  473. */
  474. if (tlen > DMA_MAX_SIZE) {
  475. unsigned mult = DIV_ROUND_UP(tlen,
  476. DMA_MAX_SIZE & ~DMA_ALIGN);
  477. tlen = (tlen / mult) & ~DMA_ALIGN;
  478. }
  479. txd->sg[j].addr = addr;
  480. txd->sg[j].len = tlen;
  481. addr += tlen;
  482. len -= tlen;
  483. j++;
  484. } while (len);
  485. }
  486. txd->ddar = c->ddar;
  487. txd->size = size;
  488. txd->sglen = j;
  489. dev_dbg(chan->device->dev, "vchan %p: txd %p: size %u nr %u\n",
  490. &c->vc, &txd->vd, txd->size, txd->sglen);
  491. return vchan_tx_prep(&c->vc, &txd->vd, flags);
  492. }
  493. static int sa11x0_dma_slave_config(struct sa11x0_dma_chan *c, struct dma_slave_config *cfg)
  494. {
  495. u32 ddar = c->ddar & ((0xf << 4) | DDAR_RW);
  496. dma_addr_t addr;
  497. enum dma_slave_buswidth width;
  498. u32 maxburst;
  499. if (ddar & DDAR_RW) {
  500. addr = cfg->src_addr;
  501. width = cfg->src_addr_width;
  502. maxburst = cfg->src_maxburst;
  503. } else {
  504. addr = cfg->dst_addr;
  505. width = cfg->dst_addr_width;
  506. maxburst = cfg->dst_maxburst;
  507. }
  508. if ((width != DMA_SLAVE_BUSWIDTH_1_BYTE &&
  509. width != DMA_SLAVE_BUSWIDTH_2_BYTES) ||
  510. (maxburst != 4 && maxburst != 8))
  511. return -EINVAL;
  512. if (width == DMA_SLAVE_BUSWIDTH_2_BYTES)
  513. ddar |= DDAR_DW;
  514. if (maxburst == 8)
  515. ddar |= DDAR_BS;
  516. dev_dbg(c->vc.chan.device->dev, "vchan %p: dma_slave_config addr %x width %u burst %u\n",
  517. &c->vc, addr, width, maxburst);
  518. c->ddar = ddar | (addr & 0xf0000000) | (addr & 0x003ffffc) << 6;
  519. return 0;
  520. }
  521. static int sa11x0_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  522. unsigned long arg)
  523. {
  524. struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
  525. struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device);
  526. struct sa11x0_dma_phy *p;
  527. LIST_HEAD(head);
  528. unsigned long flags;
  529. int ret;
  530. switch (cmd) {
  531. case DMA_SLAVE_CONFIG:
  532. return sa11x0_dma_slave_config(c, (struct dma_slave_config *)arg);
  533. case DMA_TERMINATE_ALL:
  534. dev_dbg(d->slave.dev, "vchan %p: terminate all\n", &c->vc);
  535. /* Clear the tx descriptor lists */
  536. spin_lock_irqsave(&c->vc.lock, flags);
  537. vchan_get_all_descriptors(&c->vc, &head);
  538. p = c->phy;
  539. if (p) {
  540. dev_dbg(d->slave.dev, "pchan %u: terminating\n", p->num);
  541. /* vchan is assigned to a pchan - stop the channel */
  542. writel(DCSR_RUN | DCSR_IE |
  543. DCSR_STRTA | DCSR_DONEA |
  544. DCSR_STRTB | DCSR_DONEB,
  545. p->base + DMA_DCSR_C);
  546. if (p->txd_load) {
  547. if (p->txd_load != p->txd_done)
  548. list_add_tail(&p->txd_load->vd.node, &head);
  549. p->txd_load = NULL;
  550. }
  551. if (p->txd_done) {
  552. list_add_tail(&p->txd_done->vd.node, &head);
  553. p->txd_done = NULL;
  554. }
  555. c->phy = NULL;
  556. spin_lock(&d->lock);
  557. p->vchan = NULL;
  558. spin_unlock(&d->lock);
  559. tasklet_schedule(&d->task);
  560. }
  561. spin_unlock_irqrestore(&c->vc.lock, flags);
  562. vchan_dma_desc_free_list(&c->vc, &head);
  563. ret = 0;
  564. break;
  565. case DMA_PAUSE:
  566. dev_dbg(d->slave.dev, "vchan %p: pause\n", &c->vc);
  567. spin_lock_irqsave(&c->vc.lock, flags);
  568. if (c->status == DMA_IN_PROGRESS) {
  569. c->status = DMA_PAUSED;
  570. p = c->phy;
  571. if (p) {
  572. writel(DCSR_RUN | DCSR_IE, p->base + DMA_DCSR_C);
  573. } else {
  574. spin_lock(&d->lock);
  575. list_del_init(&c->node);
  576. spin_unlock(&d->lock);
  577. }
  578. }
  579. spin_unlock_irqrestore(&c->vc.lock, flags);
  580. ret = 0;
  581. break;
  582. case DMA_RESUME:
  583. dev_dbg(d->slave.dev, "vchan %p: resume\n", &c->vc);
  584. spin_lock_irqsave(&c->vc.lock, flags);
  585. if (c->status == DMA_PAUSED) {
  586. c->status = DMA_IN_PROGRESS;
  587. p = c->phy;
  588. if (p) {
  589. writel(DCSR_RUN | DCSR_IE, p->base + DMA_DCSR_S);
  590. } else if (!list_empty(&c->vc.desc_issued)) {
  591. spin_lock(&d->lock);
  592. list_add_tail(&c->node, &d->chan_pending);
  593. spin_unlock(&d->lock);
  594. }
  595. }
  596. spin_unlock_irqrestore(&c->vc.lock, flags);
  597. ret = 0;
  598. break;
  599. default:
  600. ret = -ENXIO;
  601. break;
  602. }
  603. return ret;
  604. }
  605. struct sa11x0_dma_channel_desc {
  606. u32 ddar;
  607. const char *name;
  608. };
  609. #define CD(d1, d2) { .ddar = DDAR_##d1 | d2, .name = #d1 }
  610. static const struct sa11x0_dma_channel_desc chan_desc[] = {
  611. CD(Ser0UDCTr, 0),
  612. CD(Ser0UDCRc, DDAR_RW),
  613. CD(Ser1SDLCTr, 0),
  614. CD(Ser1SDLCRc, DDAR_RW),
  615. CD(Ser1UARTTr, 0),
  616. CD(Ser1UARTRc, DDAR_RW),
  617. CD(Ser2ICPTr, 0),
  618. CD(Ser2ICPRc, DDAR_RW),
  619. CD(Ser3UARTTr, 0),
  620. CD(Ser3UARTRc, DDAR_RW),
  621. CD(Ser4MCP0Tr, 0),
  622. CD(Ser4MCP0Rc, DDAR_RW),
  623. CD(Ser4MCP1Tr, 0),
  624. CD(Ser4MCP1Rc, DDAR_RW),
  625. CD(Ser4SSPTr, 0),
  626. CD(Ser4SSPRc, DDAR_RW),
  627. };
  628. static int __devinit sa11x0_dma_init_dmadev(struct dma_device *dmadev,
  629. struct device *dev)
  630. {
  631. unsigned i;
  632. dmadev->chancnt = ARRAY_SIZE(chan_desc);
  633. INIT_LIST_HEAD(&dmadev->channels);
  634. dmadev->dev = dev;
  635. dmadev->device_alloc_chan_resources = sa11x0_dma_alloc_chan_resources;
  636. dmadev->device_free_chan_resources = sa11x0_dma_free_chan_resources;
  637. dmadev->device_control = sa11x0_dma_control;
  638. dmadev->device_tx_status = sa11x0_dma_tx_status;
  639. dmadev->device_issue_pending = sa11x0_dma_issue_pending;
  640. for (i = 0; i < dmadev->chancnt; i++) {
  641. struct sa11x0_dma_chan *c;
  642. c = kzalloc(sizeof(*c), GFP_KERNEL);
  643. if (!c) {
  644. dev_err(dev, "no memory for channel %u\n", i);
  645. return -ENOMEM;
  646. }
  647. c->status = DMA_IN_PROGRESS;
  648. c->ddar = chan_desc[i].ddar;
  649. c->name = chan_desc[i].name;
  650. INIT_LIST_HEAD(&c->node);
  651. c->vc.desc_free = sa11x0_dma_free_desc;
  652. vchan_init(&c->vc, dmadev);
  653. }
  654. return dma_async_device_register(dmadev);
  655. }
  656. static int sa11x0_dma_request_irq(struct platform_device *pdev, int nr,
  657. void *data)
  658. {
  659. int irq = platform_get_irq(pdev, nr);
  660. if (irq <= 0)
  661. return -ENXIO;
  662. return request_irq(irq, sa11x0_dma_irq, 0, dev_name(&pdev->dev), data);
  663. }
  664. static void sa11x0_dma_free_irq(struct platform_device *pdev, int nr,
  665. void *data)
  666. {
  667. int irq = platform_get_irq(pdev, nr);
  668. if (irq > 0)
  669. free_irq(irq, data);
  670. }
  671. static void sa11x0_dma_free_channels(struct dma_device *dmadev)
  672. {
  673. struct sa11x0_dma_chan *c, *cn;
  674. list_for_each_entry_safe(c, cn, &dmadev->channels, vc.chan.device_node) {
  675. list_del(&c->vc.chan.device_node);
  676. tasklet_kill(&c->vc.task);
  677. kfree(c);
  678. }
  679. }
  680. static int __devinit sa11x0_dma_probe(struct platform_device *pdev)
  681. {
  682. struct sa11x0_dma_dev *d;
  683. struct resource *res;
  684. unsigned i;
  685. int ret;
  686. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  687. if (!res)
  688. return -ENXIO;
  689. d = kzalloc(sizeof(*d), GFP_KERNEL);
  690. if (!d) {
  691. ret = -ENOMEM;
  692. goto err_alloc;
  693. }
  694. spin_lock_init(&d->lock);
  695. INIT_LIST_HEAD(&d->chan_pending);
  696. d->base = ioremap(res->start, resource_size(res));
  697. if (!d->base) {
  698. ret = -ENOMEM;
  699. goto err_ioremap;
  700. }
  701. tasklet_init(&d->task, sa11x0_dma_tasklet, (unsigned long)d);
  702. for (i = 0; i < NR_PHY_CHAN; i++) {
  703. struct sa11x0_dma_phy *p = &d->phy[i];
  704. p->dev = d;
  705. p->num = i;
  706. p->base = d->base + i * DMA_SIZE;
  707. writel_relaxed(DCSR_RUN | DCSR_IE | DCSR_ERROR |
  708. DCSR_DONEA | DCSR_STRTA | DCSR_DONEB | DCSR_STRTB,
  709. p->base + DMA_DCSR_C);
  710. writel_relaxed(0, p->base + DMA_DDAR);
  711. ret = sa11x0_dma_request_irq(pdev, i, p);
  712. if (ret) {
  713. while (i) {
  714. i--;
  715. sa11x0_dma_free_irq(pdev, i, &d->phy[i]);
  716. }
  717. goto err_irq;
  718. }
  719. }
  720. dma_cap_set(DMA_SLAVE, d->slave.cap_mask);
  721. d->slave.device_prep_slave_sg = sa11x0_dma_prep_slave_sg;
  722. ret = sa11x0_dma_init_dmadev(&d->slave, &pdev->dev);
  723. if (ret) {
  724. dev_warn(d->slave.dev, "failed to register slave async device: %d\n",
  725. ret);
  726. goto err_slave_reg;
  727. }
  728. platform_set_drvdata(pdev, d);
  729. return 0;
  730. err_slave_reg:
  731. sa11x0_dma_free_channels(&d->slave);
  732. for (i = 0; i < NR_PHY_CHAN; i++)
  733. sa11x0_dma_free_irq(pdev, i, &d->phy[i]);
  734. err_irq:
  735. tasklet_kill(&d->task);
  736. iounmap(d->base);
  737. err_ioremap:
  738. kfree(d);
  739. err_alloc:
  740. return ret;
  741. }
  742. static int __devexit sa11x0_dma_remove(struct platform_device *pdev)
  743. {
  744. struct sa11x0_dma_dev *d = platform_get_drvdata(pdev);
  745. unsigned pch;
  746. dma_async_device_unregister(&d->slave);
  747. sa11x0_dma_free_channels(&d->slave);
  748. for (pch = 0; pch < NR_PHY_CHAN; pch++)
  749. sa11x0_dma_free_irq(pdev, pch, &d->phy[pch]);
  750. tasklet_kill(&d->task);
  751. iounmap(d->base);
  752. kfree(d);
  753. return 0;
  754. }
  755. #ifdef CONFIG_PM_SLEEP
  756. static int sa11x0_dma_suspend(struct device *dev)
  757. {
  758. struct sa11x0_dma_dev *d = dev_get_drvdata(dev);
  759. unsigned pch;
  760. for (pch = 0; pch < NR_PHY_CHAN; pch++) {
  761. struct sa11x0_dma_phy *p = &d->phy[pch];
  762. u32 dcsr, saved_dcsr;
  763. dcsr = saved_dcsr = readl_relaxed(p->base + DMA_DCSR_R);
  764. if (dcsr & DCSR_RUN) {
  765. writel(DCSR_RUN | DCSR_IE, p->base + DMA_DCSR_C);
  766. dcsr = readl_relaxed(p->base + DMA_DCSR_R);
  767. }
  768. saved_dcsr &= DCSR_RUN | DCSR_IE;
  769. if (dcsr & DCSR_BIU) {
  770. p->dbs[0] = readl_relaxed(p->base + DMA_DBSB);
  771. p->dbt[0] = readl_relaxed(p->base + DMA_DBTB);
  772. p->dbs[1] = readl_relaxed(p->base + DMA_DBSA);
  773. p->dbt[1] = readl_relaxed(p->base + DMA_DBTA);
  774. saved_dcsr |= (dcsr & DCSR_STRTA ? DCSR_STRTB : 0) |
  775. (dcsr & DCSR_STRTB ? DCSR_STRTA : 0);
  776. } else {
  777. p->dbs[0] = readl_relaxed(p->base + DMA_DBSA);
  778. p->dbt[0] = readl_relaxed(p->base + DMA_DBTA);
  779. p->dbs[1] = readl_relaxed(p->base + DMA_DBSB);
  780. p->dbt[1] = readl_relaxed(p->base + DMA_DBTB);
  781. saved_dcsr |= dcsr & (DCSR_STRTA | DCSR_STRTB);
  782. }
  783. p->dcsr = saved_dcsr;
  784. writel(DCSR_STRTA | DCSR_STRTB, p->base + DMA_DCSR_C);
  785. }
  786. return 0;
  787. }
  788. static int sa11x0_dma_resume(struct device *dev)
  789. {
  790. struct sa11x0_dma_dev *d = dev_get_drvdata(dev);
  791. unsigned pch;
  792. for (pch = 0; pch < NR_PHY_CHAN; pch++) {
  793. struct sa11x0_dma_phy *p = &d->phy[pch];
  794. struct sa11x0_dma_desc *txd = NULL;
  795. u32 dcsr = readl_relaxed(p->base + DMA_DCSR_R);
  796. WARN_ON(dcsr & (DCSR_BIU | DCSR_STRTA | DCSR_STRTB | DCSR_RUN));
  797. if (p->txd_done)
  798. txd = p->txd_done;
  799. else if (p->txd_load)
  800. txd = p->txd_load;
  801. if (!txd)
  802. continue;
  803. writel_relaxed(txd->ddar, p->base + DMA_DDAR);
  804. writel_relaxed(p->dbs[0], p->base + DMA_DBSA);
  805. writel_relaxed(p->dbt[0], p->base + DMA_DBTA);
  806. writel_relaxed(p->dbs[1], p->base + DMA_DBSB);
  807. writel_relaxed(p->dbt[1], p->base + DMA_DBTB);
  808. writel_relaxed(p->dcsr, p->base + DMA_DCSR_S);
  809. }
  810. return 0;
  811. }
  812. #endif
  813. static const struct dev_pm_ops sa11x0_dma_pm_ops = {
  814. .suspend_noirq = sa11x0_dma_suspend,
  815. .resume_noirq = sa11x0_dma_resume,
  816. .freeze_noirq = sa11x0_dma_suspend,
  817. .thaw_noirq = sa11x0_dma_resume,
  818. .poweroff_noirq = sa11x0_dma_suspend,
  819. .restore_noirq = sa11x0_dma_resume,
  820. };
  821. static struct platform_driver sa11x0_dma_driver = {
  822. .driver = {
  823. .name = "sa11x0-dma",
  824. .owner = THIS_MODULE,
  825. .pm = &sa11x0_dma_pm_ops,
  826. },
  827. .probe = sa11x0_dma_probe,
  828. .remove = __devexit_p(sa11x0_dma_remove),
  829. };
  830. bool sa11x0_dma_filter_fn(struct dma_chan *chan, void *param)
  831. {
  832. if (chan->device->dev->driver == &sa11x0_dma_driver.driver) {
  833. struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
  834. const char *p = param;
  835. return !strcmp(c->name, p);
  836. }
  837. return false;
  838. }
  839. EXPORT_SYMBOL(sa11x0_dma_filter_fn);
  840. static int __init sa11x0_dma_init(void)
  841. {
  842. return platform_driver_register(&sa11x0_dma_driver);
  843. }
  844. subsys_initcall(sa11x0_dma_init);
  845. static void __exit sa11x0_dma_exit(void)
  846. {
  847. platform_driver_unregister(&sa11x0_dma_driver);
  848. }
  849. module_exit(sa11x0_dma_exit);
  850. MODULE_AUTHOR("Russell King");
  851. MODULE_DESCRIPTION("SA-11x0 DMA driver");
  852. MODULE_LICENSE("GPL v2");
  853. MODULE_ALIAS("platform:sa11x0-dma");