qla3xxx.c 101 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939
  1. /*
  2. * QLogic QLA3xxx NIC HBA Driver
  3. * Copyright (c) 2003-2006 QLogic Corporation
  4. *
  5. * See LICENSE.qla3xxx for copyright and licensing details.
  6. */
  7. #include <linux/kernel.h>
  8. #include <linux/init.h>
  9. #include <linux/types.h>
  10. #include <linux/module.h>
  11. #include <linux/list.h>
  12. #include <linux/pci.h>
  13. #include <linux/dma-mapping.h>
  14. #include <linux/sched.h>
  15. #include <linux/slab.h>
  16. #include <linux/dmapool.h>
  17. #include <linux/mempool.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/kthread.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/errno.h>
  22. #include <linux/ioport.h>
  23. #include <linux/ip.h>
  24. #include <linux/in.h>
  25. #include <linux/if_arp.h>
  26. #include <linux/if_ether.h>
  27. #include <linux/netdevice.h>
  28. #include <linux/etherdevice.h>
  29. #include <linux/ethtool.h>
  30. #include <linux/skbuff.h>
  31. #include <linux/rtnetlink.h>
  32. #include <linux/if_vlan.h>
  33. #include <linux/init.h>
  34. #include <linux/delay.h>
  35. #include <linux/mm.h>
  36. #include "qla3xxx.h"
  37. #define DRV_NAME "qla3xxx"
  38. #define DRV_STRING "QLogic ISP3XXX Network Driver"
  39. #define DRV_VERSION "v2.03.00-k3"
  40. #define PFX DRV_NAME " "
  41. static const char ql3xxx_driver_name[] = DRV_NAME;
  42. static const char ql3xxx_driver_version[] = DRV_VERSION;
  43. MODULE_AUTHOR("QLogic Corporation");
  44. MODULE_DESCRIPTION("QLogic ISP3XXX Network Driver " DRV_VERSION " ");
  45. MODULE_LICENSE("GPL");
  46. MODULE_VERSION(DRV_VERSION);
  47. static const u32 default_msg
  48. = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
  49. | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
  50. static int debug = -1; /* defaults above */
  51. module_param(debug, int, 0);
  52. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  53. static int msi;
  54. module_param(msi, int, 0);
  55. MODULE_PARM_DESC(msi, "Turn on Message Signaled Interrupts.");
  56. static struct pci_device_id ql3xxx_pci_tbl[] __devinitdata = {
  57. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3022_DEVICE_ID)},
  58. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3032_DEVICE_ID)},
  59. /* required last entry */
  60. {0,}
  61. };
  62. MODULE_DEVICE_TABLE(pci, ql3xxx_pci_tbl);
  63. /*
  64. * Caller must take hw_lock.
  65. */
  66. static int ql_sem_spinlock(struct ql3_adapter *qdev,
  67. u32 sem_mask, u32 sem_bits)
  68. {
  69. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  70. u32 value;
  71. unsigned int seconds = 3;
  72. do {
  73. writel((sem_mask | sem_bits),
  74. &port_regs->CommonRegs.semaphoreReg);
  75. value = readl(&port_regs->CommonRegs.semaphoreReg);
  76. if ((value & (sem_mask >> 16)) == sem_bits)
  77. return 0;
  78. ssleep(1);
  79. } while(--seconds);
  80. return -1;
  81. }
  82. static void ql_sem_unlock(struct ql3_adapter *qdev, u32 sem_mask)
  83. {
  84. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  85. writel(sem_mask, &port_regs->CommonRegs.semaphoreReg);
  86. readl(&port_regs->CommonRegs.semaphoreReg);
  87. }
  88. static int ql_sem_lock(struct ql3_adapter *qdev, u32 sem_mask, u32 sem_bits)
  89. {
  90. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  91. u32 value;
  92. writel((sem_mask | sem_bits), &port_regs->CommonRegs.semaphoreReg);
  93. value = readl(&port_regs->CommonRegs.semaphoreReg);
  94. return ((value & (sem_mask >> 16)) == sem_bits);
  95. }
  96. /*
  97. * Caller holds hw_lock.
  98. */
  99. static int ql_wait_for_drvr_lock(struct ql3_adapter *qdev)
  100. {
  101. int i = 0;
  102. while (1) {
  103. if (!ql_sem_lock(qdev,
  104. QL_DRVR_SEM_MASK,
  105. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
  106. * 2) << 1)) {
  107. if (i < 10) {
  108. ssleep(1);
  109. i++;
  110. } else {
  111. printk(KERN_ERR PFX "%s: Timed out waiting for "
  112. "driver lock...\n",
  113. qdev->ndev->name);
  114. return 0;
  115. }
  116. } else {
  117. printk(KERN_DEBUG PFX
  118. "%s: driver lock acquired.\n",
  119. qdev->ndev->name);
  120. return 1;
  121. }
  122. }
  123. }
  124. static void ql_set_register_page(struct ql3_adapter *qdev, u32 page)
  125. {
  126. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  127. writel(((ISP_CONTROL_NP_MASK << 16) | page),
  128. &port_regs->CommonRegs.ispControlStatus);
  129. readl(&port_regs->CommonRegs.ispControlStatus);
  130. qdev->current_page = page;
  131. }
  132. static u32 ql_read_common_reg_l(struct ql3_adapter *qdev,
  133. u32 __iomem * reg)
  134. {
  135. u32 value;
  136. unsigned long hw_flags;
  137. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  138. value = readl(reg);
  139. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  140. return value;
  141. }
  142. static u32 ql_read_common_reg(struct ql3_adapter *qdev,
  143. u32 __iomem * reg)
  144. {
  145. return readl(reg);
  146. }
  147. static u32 ql_read_page0_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
  148. {
  149. u32 value;
  150. unsigned long hw_flags;
  151. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  152. if (qdev->current_page != 0)
  153. ql_set_register_page(qdev,0);
  154. value = readl(reg);
  155. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  156. return value;
  157. }
  158. static u32 ql_read_page0_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
  159. {
  160. if (qdev->current_page != 0)
  161. ql_set_register_page(qdev,0);
  162. return readl(reg);
  163. }
  164. static void ql_write_common_reg_l(struct ql3_adapter *qdev,
  165. u32 __iomem *reg, u32 value)
  166. {
  167. unsigned long hw_flags;
  168. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  169. writel(value, reg);
  170. readl(reg);
  171. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  172. return;
  173. }
  174. static void ql_write_common_reg(struct ql3_adapter *qdev,
  175. u32 __iomem *reg, u32 value)
  176. {
  177. writel(value, reg);
  178. readl(reg);
  179. return;
  180. }
  181. static void ql_write_nvram_reg(struct ql3_adapter *qdev,
  182. u32 __iomem *reg, u32 value)
  183. {
  184. writel(value, reg);
  185. readl(reg);
  186. udelay(1);
  187. return;
  188. }
  189. static void ql_write_page0_reg(struct ql3_adapter *qdev,
  190. u32 __iomem *reg, u32 value)
  191. {
  192. if (qdev->current_page != 0)
  193. ql_set_register_page(qdev,0);
  194. writel(value, reg);
  195. readl(reg);
  196. return;
  197. }
  198. /*
  199. * Caller holds hw_lock. Only called during init.
  200. */
  201. static void ql_write_page1_reg(struct ql3_adapter *qdev,
  202. u32 __iomem *reg, u32 value)
  203. {
  204. if (qdev->current_page != 1)
  205. ql_set_register_page(qdev,1);
  206. writel(value, reg);
  207. readl(reg);
  208. return;
  209. }
  210. /*
  211. * Caller holds hw_lock. Only called during init.
  212. */
  213. static void ql_write_page2_reg(struct ql3_adapter *qdev,
  214. u32 __iomem *reg, u32 value)
  215. {
  216. if (qdev->current_page != 2)
  217. ql_set_register_page(qdev,2);
  218. writel(value, reg);
  219. readl(reg);
  220. return;
  221. }
  222. static void ql_disable_interrupts(struct ql3_adapter *qdev)
  223. {
  224. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  225. ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
  226. (ISP_IMR_ENABLE_INT << 16));
  227. }
  228. static void ql_enable_interrupts(struct ql3_adapter *qdev)
  229. {
  230. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  231. ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
  232. ((0xff << 16) | ISP_IMR_ENABLE_INT));
  233. }
  234. static void ql_release_to_lrg_buf_free_list(struct ql3_adapter *qdev,
  235. struct ql_rcv_buf_cb *lrg_buf_cb)
  236. {
  237. dma_addr_t map;
  238. int err;
  239. lrg_buf_cb->next = NULL;
  240. if (qdev->lrg_buf_free_tail == NULL) { /* The list is empty */
  241. qdev->lrg_buf_free_head = qdev->lrg_buf_free_tail = lrg_buf_cb;
  242. } else {
  243. qdev->lrg_buf_free_tail->next = lrg_buf_cb;
  244. qdev->lrg_buf_free_tail = lrg_buf_cb;
  245. }
  246. if (!lrg_buf_cb->skb) {
  247. lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
  248. qdev->lrg_buffer_len);
  249. if (unlikely(!lrg_buf_cb->skb)) {
  250. printk(KERN_ERR PFX "%s: failed netdev_alloc_skb().\n",
  251. qdev->ndev->name);
  252. qdev->lrg_buf_skb_check++;
  253. } else {
  254. /*
  255. * We save some space to copy the ethhdr from first
  256. * buffer
  257. */
  258. skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
  259. map = pci_map_single(qdev->pdev,
  260. lrg_buf_cb->skb->data,
  261. qdev->lrg_buffer_len -
  262. QL_HEADER_SPACE,
  263. PCI_DMA_FROMDEVICE);
  264. err = pci_dma_mapping_error(map);
  265. if(err) {
  266. printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
  267. qdev->ndev->name, err);
  268. dev_kfree_skb(lrg_buf_cb->skb);
  269. lrg_buf_cb->skb = NULL;
  270. qdev->lrg_buf_skb_check++;
  271. return;
  272. }
  273. lrg_buf_cb->buf_phy_addr_low =
  274. cpu_to_le32(LS_64BITS(map));
  275. lrg_buf_cb->buf_phy_addr_high =
  276. cpu_to_le32(MS_64BITS(map));
  277. pci_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  278. pci_unmap_len_set(lrg_buf_cb, maplen,
  279. qdev->lrg_buffer_len -
  280. QL_HEADER_SPACE);
  281. }
  282. }
  283. qdev->lrg_buf_free_count++;
  284. }
  285. static struct ql_rcv_buf_cb *ql_get_from_lrg_buf_free_list(struct ql3_adapter
  286. *qdev)
  287. {
  288. struct ql_rcv_buf_cb *lrg_buf_cb;
  289. if ((lrg_buf_cb = qdev->lrg_buf_free_head) != NULL) {
  290. if ((qdev->lrg_buf_free_head = lrg_buf_cb->next) == NULL)
  291. qdev->lrg_buf_free_tail = NULL;
  292. qdev->lrg_buf_free_count--;
  293. }
  294. return lrg_buf_cb;
  295. }
  296. static u32 addrBits = EEPROM_NO_ADDR_BITS;
  297. static u32 dataBits = EEPROM_NO_DATA_BITS;
  298. static void fm93c56a_deselect(struct ql3_adapter *qdev);
  299. static void eeprom_readword(struct ql3_adapter *qdev, u32 eepromAddr,
  300. unsigned short *value);
  301. /*
  302. * Caller holds hw_lock.
  303. */
  304. static void fm93c56a_select(struct ql3_adapter *qdev)
  305. {
  306. struct ql3xxx_port_registers __iomem *port_regs =
  307. qdev->mem_map_registers;
  308. qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_1;
  309. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  310. ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
  311. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  312. ((ISP_NVRAM_MASK << 16) | qdev->eeprom_cmd_data));
  313. }
  314. /*
  315. * Caller holds hw_lock.
  316. */
  317. static void fm93c56a_cmd(struct ql3_adapter *qdev, u32 cmd, u32 eepromAddr)
  318. {
  319. int i;
  320. u32 mask;
  321. u32 dataBit;
  322. u32 previousBit;
  323. struct ql3xxx_port_registers __iomem *port_regs =
  324. qdev->mem_map_registers;
  325. /* Clock in a zero, then do the start bit */
  326. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  327. ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  328. AUBURN_EEPROM_DO_1);
  329. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  330. ISP_NVRAM_MASK | qdev->
  331. eeprom_cmd_data | AUBURN_EEPROM_DO_1 |
  332. AUBURN_EEPROM_CLK_RISE);
  333. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  334. ISP_NVRAM_MASK | qdev->
  335. eeprom_cmd_data | AUBURN_EEPROM_DO_1 |
  336. AUBURN_EEPROM_CLK_FALL);
  337. mask = 1 << (FM93C56A_CMD_BITS - 1);
  338. /* Force the previous data bit to be different */
  339. previousBit = 0xffff;
  340. for (i = 0; i < FM93C56A_CMD_BITS; i++) {
  341. dataBit =
  342. (cmd & mask) ? AUBURN_EEPROM_DO_1 : AUBURN_EEPROM_DO_0;
  343. if (previousBit != dataBit) {
  344. /*
  345. * If the bit changed, then change the DO state to
  346. * match
  347. */
  348. ql_write_nvram_reg(qdev,
  349. &port_regs->CommonRegs.
  350. serialPortInterfaceReg,
  351. ISP_NVRAM_MASK | qdev->
  352. eeprom_cmd_data | dataBit);
  353. previousBit = dataBit;
  354. }
  355. ql_write_nvram_reg(qdev,
  356. &port_regs->CommonRegs.
  357. serialPortInterfaceReg,
  358. ISP_NVRAM_MASK | qdev->
  359. eeprom_cmd_data | dataBit |
  360. AUBURN_EEPROM_CLK_RISE);
  361. ql_write_nvram_reg(qdev,
  362. &port_regs->CommonRegs.
  363. serialPortInterfaceReg,
  364. ISP_NVRAM_MASK | qdev->
  365. eeprom_cmd_data | dataBit |
  366. AUBURN_EEPROM_CLK_FALL);
  367. cmd = cmd << 1;
  368. }
  369. mask = 1 << (addrBits - 1);
  370. /* Force the previous data bit to be different */
  371. previousBit = 0xffff;
  372. for (i = 0; i < addrBits; i++) {
  373. dataBit =
  374. (eepromAddr & mask) ? AUBURN_EEPROM_DO_1 :
  375. AUBURN_EEPROM_DO_0;
  376. if (previousBit != dataBit) {
  377. /*
  378. * If the bit changed, then change the DO state to
  379. * match
  380. */
  381. ql_write_nvram_reg(qdev,
  382. &port_regs->CommonRegs.
  383. serialPortInterfaceReg,
  384. ISP_NVRAM_MASK | qdev->
  385. eeprom_cmd_data | dataBit);
  386. previousBit = dataBit;
  387. }
  388. ql_write_nvram_reg(qdev,
  389. &port_regs->CommonRegs.
  390. serialPortInterfaceReg,
  391. ISP_NVRAM_MASK | qdev->
  392. eeprom_cmd_data | dataBit |
  393. AUBURN_EEPROM_CLK_RISE);
  394. ql_write_nvram_reg(qdev,
  395. &port_regs->CommonRegs.
  396. serialPortInterfaceReg,
  397. ISP_NVRAM_MASK | qdev->
  398. eeprom_cmd_data | dataBit |
  399. AUBURN_EEPROM_CLK_FALL);
  400. eepromAddr = eepromAddr << 1;
  401. }
  402. }
  403. /*
  404. * Caller holds hw_lock.
  405. */
  406. static void fm93c56a_deselect(struct ql3_adapter *qdev)
  407. {
  408. struct ql3xxx_port_registers __iomem *port_regs =
  409. qdev->mem_map_registers;
  410. qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_0;
  411. ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  412. ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
  413. }
  414. /*
  415. * Caller holds hw_lock.
  416. */
  417. static void fm93c56a_datain(struct ql3_adapter *qdev, unsigned short *value)
  418. {
  419. int i;
  420. u32 data = 0;
  421. u32 dataBit;
  422. struct ql3xxx_port_registers __iomem *port_regs =
  423. qdev->mem_map_registers;
  424. /* Read the data bits */
  425. /* The first bit is a dummy. Clock right over it. */
  426. for (i = 0; i < dataBits; i++) {
  427. ql_write_nvram_reg(qdev,
  428. &port_regs->CommonRegs.
  429. serialPortInterfaceReg,
  430. ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  431. AUBURN_EEPROM_CLK_RISE);
  432. ql_write_nvram_reg(qdev,
  433. &port_regs->CommonRegs.
  434. serialPortInterfaceReg,
  435. ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  436. AUBURN_EEPROM_CLK_FALL);
  437. dataBit =
  438. (ql_read_common_reg
  439. (qdev,
  440. &port_regs->CommonRegs.
  441. serialPortInterfaceReg) & AUBURN_EEPROM_DI_1) ? 1 : 0;
  442. data = (data << 1) | dataBit;
  443. }
  444. *value = (u16) data;
  445. }
  446. /*
  447. * Caller holds hw_lock.
  448. */
  449. static void eeprom_readword(struct ql3_adapter *qdev,
  450. u32 eepromAddr, unsigned short *value)
  451. {
  452. fm93c56a_select(qdev);
  453. fm93c56a_cmd(qdev, (int)FM93C56A_READ, eepromAddr);
  454. fm93c56a_datain(qdev, value);
  455. fm93c56a_deselect(qdev);
  456. }
  457. static void ql_swap_mac_addr(u8 * macAddress)
  458. {
  459. #ifdef __BIG_ENDIAN
  460. u8 temp;
  461. temp = macAddress[0];
  462. macAddress[0] = macAddress[1];
  463. macAddress[1] = temp;
  464. temp = macAddress[2];
  465. macAddress[2] = macAddress[3];
  466. macAddress[3] = temp;
  467. temp = macAddress[4];
  468. macAddress[4] = macAddress[5];
  469. macAddress[5] = temp;
  470. #endif
  471. }
  472. static int ql_get_nvram_params(struct ql3_adapter *qdev)
  473. {
  474. u16 *pEEPROMData;
  475. u16 checksum = 0;
  476. u32 index;
  477. unsigned long hw_flags;
  478. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  479. pEEPROMData = (u16 *) & qdev->nvram_data;
  480. qdev->eeprom_cmd_data = 0;
  481. if(ql_sem_spinlock(qdev, QL_NVRAM_SEM_MASK,
  482. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  483. 2) << 10)) {
  484. printk(KERN_ERR PFX"%s: Failed ql_sem_spinlock().\n",
  485. __func__);
  486. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  487. return -1;
  488. }
  489. for (index = 0; index < EEPROM_SIZE; index++) {
  490. eeprom_readword(qdev, index, pEEPROMData);
  491. checksum += *pEEPROMData;
  492. pEEPROMData++;
  493. }
  494. ql_sem_unlock(qdev, QL_NVRAM_SEM_MASK);
  495. if (checksum != 0) {
  496. printk(KERN_ERR PFX "%s: checksum should be zero, is %x!!\n",
  497. qdev->ndev->name, checksum);
  498. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  499. return -1;
  500. }
  501. /*
  502. * We have a problem with endianness for the MAC addresses
  503. * and the two 8-bit values version, and numPorts. We
  504. * have to swap them on big endian systems.
  505. */
  506. ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn0.macAddress);
  507. ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn1.macAddress);
  508. ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn2.macAddress);
  509. ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn3.macAddress);
  510. pEEPROMData = (u16 *) & qdev->nvram_data.version;
  511. *pEEPROMData = le16_to_cpu(*pEEPROMData);
  512. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  513. return checksum;
  514. }
  515. static const u32 PHYAddr[2] = {
  516. PORT0_PHY_ADDRESS, PORT1_PHY_ADDRESS
  517. };
  518. static int ql_wait_for_mii_ready(struct ql3_adapter *qdev)
  519. {
  520. struct ql3xxx_port_registers __iomem *port_regs =
  521. qdev->mem_map_registers;
  522. u32 temp;
  523. int count = 1000;
  524. while (count) {
  525. temp = ql_read_page0_reg(qdev, &port_regs->macMIIStatusReg);
  526. if (!(temp & MAC_MII_STATUS_BSY))
  527. return 0;
  528. udelay(10);
  529. count--;
  530. }
  531. return -1;
  532. }
  533. static void ql_mii_enable_scan_mode(struct ql3_adapter *qdev)
  534. {
  535. struct ql3xxx_port_registers __iomem *port_regs =
  536. qdev->mem_map_registers;
  537. u32 scanControl;
  538. if (qdev->numPorts > 1) {
  539. /* Auto scan will cycle through multiple ports */
  540. scanControl = MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC;
  541. } else {
  542. scanControl = MAC_MII_CONTROL_SC;
  543. }
  544. /*
  545. * Scan register 1 of PHY/PETBI,
  546. * Set up to scan both devices
  547. * The autoscan starts from the first register, completes
  548. * the last one before rolling over to the first
  549. */
  550. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  551. PHYAddr[0] | MII_SCAN_REGISTER);
  552. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  553. (scanControl) |
  554. ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS) << 16));
  555. }
  556. static u8 ql_mii_disable_scan_mode(struct ql3_adapter *qdev)
  557. {
  558. u8 ret;
  559. struct ql3xxx_port_registers __iomem *port_regs =
  560. qdev->mem_map_registers;
  561. /* See if scan mode is enabled before we turn it off */
  562. if (ql_read_page0_reg(qdev, &port_regs->macMIIMgmtControlReg) &
  563. (MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC)) {
  564. /* Scan is enabled */
  565. ret = 1;
  566. } else {
  567. /* Scan is disabled */
  568. ret = 0;
  569. }
  570. /*
  571. * When disabling scan mode you must first change the MII register
  572. * address
  573. */
  574. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  575. PHYAddr[0] | MII_SCAN_REGISTER);
  576. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  577. ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS |
  578. MAC_MII_CONTROL_RC) << 16));
  579. return ret;
  580. }
  581. static int ql_mii_write_reg_ex(struct ql3_adapter *qdev,
  582. u16 regAddr, u16 value, u32 mac_index)
  583. {
  584. struct ql3xxx_port_registers __iomem *port_regs =
  585. qdev->mem_map_registers;
  586. u8 scanWasEnabled;
  587. scanWasEnabled = ql_mii_disable_scan_mode(qdev);
  588. if (ql_wait_for_mii_ready(qdev)) {
  589. if (netif_msg_link(qdev))
  590. printk(KERN_WARNING PFX
  591. "%s Timed out waiting for management port to "
  592. "get free before issuing command.\n",
  593. qdev->ndev->name);
  594. return -1;
  595. }
  596. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  597. PHYAddr[mac_index] | regAddr);
  598. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
  599. /* Wait for write to complete 9/10/04 SJP */
  600. if (ql_wait_for_mii_ready(qdev)) {
  601. if (netif_msg_link(qdev))
  602. printk(KERN_WARNING PFX
  603. "%s: Timed out waiting for management port to"
  604. "get free before issuing command.\n",
  605. qdev->ndev->name);
  606. return -1;
  607. }
  608. if (scanWasEnabled)
  609. ql_mii_enable_scan_mode(qdev);
  610. return 0;
  611. }
  612. static int ql_mii_read_reg_ex(struct ql3_adapter *qdev, u16 regAddr,
  613. u16 * value, u32 mac_index)
  614. {
  615. struct ql3xxx_port_registers __iomem *port_regs =
  616. qdev->mem_map_registers;
  617. u8 scanWasEnabled;
  618. u32 temp;
  619. scanWasEnabled = ql_mii_disable_scan_mode(qdev);
  620. if (ql_wait_for_mii_ready(qdev)) {
  621. if (netif_msg_link(qdev))
  622. printk(KERN_WARNING PFX
  623. "%s: Timed out waiting for management port to "
  624. "get free before issuing command.\n",
  625. qdev->ndev->name);
  626. return -1;
  627. }
  628. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  629. PHYAddr[mac_index] | regAddr);
  630. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  631. (MAC_MII_CONTROL_RC << 16));
  632. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  633. (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
  634. /* Wait for the read to complete */
  635. if (ql_wait_for_mii_ready(qdev)) {
  636. if (netif_msg_link(qdev))
  637. printk(KERN_WARNING PFX
  638. "%s: Timed out waiting for management port to "
  639. "get free after issuing command.\n",
  640. qdev->ndev->name);
  641. return -1;
  642. }
  643. temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
  644. *value = (u16) temp;
  645. if (scanWasEnabled)
  646. ql_mii_enable_scan_mode(qdev);
  647. return 0;
  648. }
  649. static int ql_mii_write_reg(struct ql3_adapter *qdev, u16 regAddr, u16 value)
  650. {
  651. struct ql3xxx_port_registers __iomem *port_regs =
  652. qdev->mem_map_registers;
  653. ql_mii_disable_scan_mode(qdev);
  654. if (ql_wait_for_mii_ready(qdev)) {
  655. if (netif_msg_link(qdev))
  656. printk(KERN_WARNING PFX
  657. "%s: Timed out waiting for management port to "
  658. "get free before issuing command.\n",
  659. qdev->ndev->name);
  660. return -1;
  661. }
  662. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  663. qdev->PHYAddr | regAddr);
  664. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
  665. /* Wait for write to complete. */
  666. if (ql_wait_for_mii_ready(qdev)) {
  667. if (netif_msg_link(qdev))
  668. printk(KERN_WARNING PFX
  669. "%s: Timed out waiting for management port to "
  670. "get free before issuing command.\n",
  671. qdev->ndev->name);
  672. return -1;
  673. }
  674. ql_mii_enable_scan_mode(qdev);
  675. return 0;
  676. }
  677. static int ql_mii_read_reg(struct ql3_adapter *qdev, u16 regAddr, u16 *value)
  678. {
  679. u32 temp;
  680. struct ql3xxx_port_registers __iomem *port_regs =
  681. qdev->mem_map_registers;
  682. ql_mii_disable_scan_mode(qdev);
  683. if (ql_wait_for_mii_ready(qdev)) {
  684. if (netif_msg_link(qdev))
  685. printk(KERN_WARNING PFX
  686. "%s: Timed out waiting for management port to "
  687. "get free before issuing command.\n",
  688. qdev->ndev->name);
  689. return -1;
  690. }
  691. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  692. qdev->PHYAddr | regAddr);
  693. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  694. (MAC_MII_CONTROL_RC << 16));
  695. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  696. (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
  697. /* Wait for the read to complete */
  698. if (ql_wait_for_mii_ready(qdev)) {
  699. if (netif_msg_link(qdev))
  700. printk(KERN_WARNING PFX
  701. "%s: Timed out waiting for management port to "
  702. "get free before issuing command.\n",
  703. qdev->ndev->name);
  704. return -1;
  705. }
  706. temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
  707. *value = (u16) temp;
  708. ql_mii_enable_scan_mode(qdev);
  709. return 0;
  710. }
  711. static void ql_petbi_reset(struct ql3_adapter *qdev)
  712. {
  713. ql_mii_write_reg(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET);
  714. }
  715. static void ql_petbi_start_neg(struct ql3_adapter *qdev)
  716. {
  717. u16 reg;
  718. /* Enable Auto-negotiation sense */
  719. ql_mii_read_reg(qdev, PETBI_TBI_CTRL, &reg);
  720. reg |= PETBI_TBI_AUTO_SENSE;
  721. ql_mii_write_reg(qdev, PETBI_TBI_CTRL, reg);
  722. ql_mii_write_reg(qdev, PETBI_NEG_ADVER,
  723. PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX);
  724. ql_mii_write_reg(qdev, PETBI_CONTROL_REG,
  725. PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
  726. PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000);
  727. }
  728. static void ql_petbi_reset_ex(struct ql3_adapter *qdev, u32 mac_index)
  729. {
  730. ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET,
  731. mac_index);
  732. }
  733. static void ql_petbi_start_neg_ex(struct ql3_adapter *qdev, u32 mac_index)
  734. {
  735. u16 reg;
  736. /* Enable Auto-negotiation sense */
  737. ql_mii_read_reg_ex(qdev, PETBI_TBI_CTRL, &reg, mac_index);
  738. reg |= PETBI_TBI_AUTO_SENSE;
  739. ql_mii_write_reg_ex(qdev, PETBI_TBI_CTRL, reg, mac_index);
  740. ql_mii_write_reg_ex(qdev, PETBI_NEG_ADVER,
  741. PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX, mac_index);
  742. ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG,
  743. PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
  744. PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000,
  745. mac_index);
  746. }
  747. static void ql_petbi_init(struct ql3_adapter *qdev)
  748. {
  749. ql_petbi_reset(qdev);
  750. ql_petbi_start_neg(qdev);
  751. }
  752. static void ql_petbi_init_ex(struct ql3_adapter *qdev, u32 mac_index)
  753. {
  754. ql_petbi_reset_ex(qdev, mac_index);
  755. ql_petbi_start_neg_ex(qdev, mac_index);
  756. }
  757. static int ql_is_petbi_neg_pause(struct ql3_adapter *qdev)
  758. {
  759. u16 reg;
  760. if (ql_mii_read_reg(qdev, PETBI_NEG_PARTNER, &reg) < 0)
  761. return 0;
  762. return (reg & PETBI_NEG_PAUSE_MASK) == PETBI_NEG_PAUSE;
  763. }
  764. static int ql_phy_get_speed(struct ql3_adapter *qdev)
  765. {
  766. u16 reg;
  767. if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
  768. return 0;
  769. reg = (((reg & 0x18) >> 3) & 3);
  770. if (reg == 2)
  771. return SPEED_1000;
  772. else if (reg == 1)
  773. return SPEED_100;
  774. else if (reg == 0)
  775. return SPEED_10;
  776. else
  777. return -1;
  778. }
  779. static int ql_is_full_dup(struct ql3_adapter *qdev)
  780. {
  781. u16 reg;
  782. if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
  783. return 0;
  784. return (reg & PHY_AUX_DUPLEX_STAT) != 0;
  785. }
  786. static int ql_is_phy_neg_pause(struct ql3_adapter *qdev)
  787. {
  788. u16 reg;
  789. if (ql_mii_read_reg(qdev, PHY_NEG_PARTNER, &reg) < 0)
  790. return 0;
  791. return (reg & PHY_NEG_PAUSE) != 0;
  792. }
  793. /*
  794. * Caller holds hw_lock.
  795. */
  796. static void ql_mac_enable(struct ql3_adapter *qdev, u32 enable)
  797. {
  798. struct ql3xxx_port_registers __iomem *port_regs =
  799. qdev->mem_map_registers;
  800. u32 value;
  801. if (enable)
  802. value = (MAC_CONFIG_REG_PE | (MAC_CONFIG_REG_PE << 16));
  803. else
  804. value = (MAC_CONFIG_REG_PE << 16);
  805. if (qdev->mac_index)
  806. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  807. else
  808. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  809. }
  810. /*
  811. * Caller holds hw_lock.
  812. */
  813. static void ql_mac_cfg_soft_reset(struct ql3_adapter *qdev, u32 enable)
  814. {
  815. struct ql3xxx_port_registers __iomem *port_regs =
  816. qdev->mem_map_registers;
  817. u32 value;
  818. if (enable)
  819. value = (MAC_CONFIG_REG_SR | (MAC_CONFIG_REG_SR << 16));
  820. else
  821. value = (MAC_CONFIG_REG_SR << 16);
  822. if (qdev->mac_index)
  823. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  824. else
  825. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  826. }
  827. /*
  828. * Caller holds hw_lock.
  829. */
  830. static void ql_mac_cfg_gig(struct ql3_adapter *qdev, u32 enable)
  831. {
  832. struct ql3xxx_port_registers __iomem *port_regs =
  833. qdev->mem_map_registers;
  834. u32 value;
  835. if (enable)
  836. value = (MAC_CONFIG_REG_GM | (MAC_CONFIG_REG_GM << 16));
  837. else
  838. value = (MAC_CONFIG_REG_GM << 16);
  839. if (qdev->mac_index)
  840. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  841. else
  842. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  843. }
  844. /*
  845. * Caller holds hw_lock.
  846. */
  847. static void ql_mac_cfg_full_dup(struct ql3_adapter *qdev, u32 enable)
  848. {
  849. struct ql3xxx_port_registers __iomem *port_regs =
  850. qdev->mem_map_registers;
  851. u32 value;
  852. if (enable)
  853. value = (MAC_CONFIG_REG_FD | (MAC_CONFIG_REG_FD << 16));
  854. else
  855. value = (MAC_CONFIG_REG_FD << 16);
  856. if (qdev->mac_index)
  857. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  858. else
  859. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  860. }
  861. /*
  862. * Caller holds hw_lock.
  863. */
  864. static void ql_mac_cfg_pause(struct ql3_adapter *qdev, u32 enable)
  865. {
  866. struct ql3xxx_port_registers __iomem *port_regs =
  867. qdev->mem_map_registers;
  868. u32 value;
  869. if (enable)
  870. value =
  871. ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) |
  872. ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16));
  873. else
  874. value = ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16);
  875. if (qdev->mac_index)
  876. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  877. else
  878. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  879. }
  880. /*
  881. * Caller holds hw_lock.
  882. */
  883. static int ql_is_fiber(struct ql3_adapter *qdev)
  884. {
  885. struct ql3xxx_port_registers __iomem *port_regs =
  886. qdev->mem_map_registers;
  887. u32 bitToCheck = 0;
  888. u32 temp;
  889. switch (qdev->mac_index) {
  890. case 0:
  891. bitToCheck = PORT_STATUS_SM0;
  892. break;
  893. case 1:
  894. bitToCheck = PORT_STATUS_SM1;
  895. break;
  896. }
  897. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  898. return (temp & bitToCheck) != 0;
  899. }
  900. static int ql_is_auto_cfg(struct ql3_adapter *qdev)
  901. {
  902. u16 reg;
  903. ql_mii_read_reg(qdev, 0x00, &reg);
  904. return (reg & 0x1000) != 0;
  905. }
  906. /*
  907. * Caller holds hw_lock.
  908. */
  909. static int ql_is_auto_neg_complete(struct ql3_adapter *qdev)
  910. {
  911. struct ql3xxx_port_registers __iomem *port_regs =
  912. qdev->mem_map_registers;
  913. u32 bitToCheck = 0;
  914. u32 temp;
  915. switch (qdev->mac_index) {
  916. case 0:
  917. bitToCheck = PORT_STATUS_AC0;
  918. break;
  919. case 1:
  920. bitToCheck = PORT_STATUS_AC1;
  921. break;
  922. }
  923. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  924. if (temp & bitToCheck) {
  925. if (netif_msg_link(qdev))
  926. printk(KERN_INFO PFX
  927. "%s: Auto-Negotiate complete.\n",
  928. qdev->ndev->name);
  929. return 1;
  930. } else {
  931. if (netif_msg_link(qdev))
  932. printk(KERN_WARNING PFX
  933. "%s: Auto-Negotiate incomplete.\n",
  934. qdev->ndev->name);
  935. return 0;
  936. }
  937. }
  938. /*
  939. * ql_is_neg_pause() returns 1 if pause was negotiated to be on
  940. */
  941. static int ql_is_neg_pause(struct ql3_adapter *qdev)
  942. {
  943. if (ql_is_fiber(qdev))
  944. return ql_is_petbi_neg_pause(qdev);
  945. else
  946. return ql_is_phy_neg_pause(qdev);
  947. }
  948. static int ql_auto_neg_error(struct ql3_adapter *qdev)
  949. {
  950. struct ql3xxx_port_registers __iomem *port_regs =
  951. qdev->mem_map_registers;
  952. u32 bitToCheck = 0;
  953. u32 temp;
  954. switch (qdev->mac_index) {
  955. case 0:
  956. bitToCheck = PORT_STATUS_AE0;
  957. break;
  958. case 1:
  959. bitToCheck = PORT_STATUS_AE1;
  960. break;
  961. }
  962. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  963. return (temp & bitToCheck) != 0;
  964. }
  965. static u32 ql_get_link_speed(struct ql3_adapter *qdev)
  966. {
  967. if (ql_is_fiber(qdev))
  968. return SPEED_1000;
  969. else
  970. return ql_phy_get_speed(qdev);
  971. }
  972. static int ql_is_link_full_dup(struct ql3_adapter *qdev)
  973. {
  974. if (ql_is_fiber(qdev))
  975. return 1;
  976. else
  977. return ql_is_full_dup(qdev);
  978. }
  979. /*
  980. * Caller holds hw_lock.
  981. */
  982. static int ql_link_down_detect(struct ql3_adapter *qdev)
  983. {
  984. struct ql3xxx_port_registers __iomem *port_regs =
  985. qdev->mem_map_registers;
  986. u32 bitToCheck = 0;
  987. u32 temp;
  988. switch (qdev->mac_index) {
  989. case 0:
  990. bitToCheck = ISP_CONTROL_LINK_DN_0;
  991. break;
  992. case 1:
  993. bitToCheck = ISP_CONTROL_LINK_DN_1;
  994. break;
  995. }
  996. temp =
  997. ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
  998. return (temp & bitToCheck) != 0;
  999. }
  1000. /*
  1001. * Caller holds hw_lock.
  1002. */
  1003. static int ql_link_down_detect_clear(struct ql3_adapter *qdev)
  1004. {
  1005. struct ql3xxx_port_registers __iomem *port_regs =
  1006. qdev->mem_map_registers;
  1007. switch (qdev->mac_index) {
  1008. case 0:
  1009. ql_write_common_reg(qdev,
  1010. &port_regs->CommonRegs.ispControlStatus,
  1011. (ISP_CONTROL_LINK_DN_0) |
  1012. (ISP_CONTROL_LINK_DN_0 << 16));
  1013. break;
  1014. case 1:
  1015. ql_write_common_reg(qdev,
  1016. &port_regs->CommonRegs.ispControlStatus,
  1017. (ISP_CONTROL_LINK_DN_1) |
  1018. (ISP_CONTROL_LINK_DN_1 << 16));
  1019. break;
  1020. default:
  1021. return 1;
  1022. }
  1023. return 0;
  1024. }
  1025. /*
  1026. * Caller holds hw_lock.
  1027. */
  1028. static int ql_this_adapter_controls_port(struct ql3_adapter *qdev,
  1029. u32 mac_index)
  1030. {
  1031. struct ql3xxx_port_registers __iomem *port_regs =
  1032. qdev->mem_map_registers;
  1033. u32 bitToCheck = 0;
  1034. u32 temp;
  1035. switch (mac_index) {
  1036. case 0:
  1037. bitToCheck = PORT_STATUS_F1_ENABLED;
  1038. break;
  1039. case 1:
  1040. bitToCheck = PORT_STATUS_F3_ENABLED;
  1041. break;
  1042. default:
  1043. break;
  1044. }
  1045. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1046. if (temp & bitToCheck) {
  1047. if (netif_msg_link(qdev))
  1048. printk(KERN_DEBUG PFX
  1049. "%s: is not link master.\n", qdev->ndev->name);
  1050. return 0;
  1051. } else {
  1052. if (netif_msg_link(qdev))
  1053. printk(KERN_DEBUG PFX
  1054. "%s: is link master.\n", qdev->ndev->name);
  1055. return 1;
  1056. }
  1057. }
  1058. static void ql_phy_reset_ex(struct ql3_adapter *qdev, u32 mac_index)
  1059. {
  1060. ql_mii_write_reg_ex(qdev, CONTROL_REG, PHY_CTRL_SOFT_RESET, mac_index);
  1061. }
  1062. static void ql_phy_start_neg_ex(struct ql3_adapter *qdev, u32 mac_index)
  1063. {
  1064. u16 reg;
  1065. ql_mii_write_reg_ex(qdev, PHY_NEG_ADVER,
  1066. PHY_NEG_PAUSE | PHY_NEG_ADV_SPEED | 1, mac_index);
  1067. ql_mii_read_reg_ex(qdev, CONTROL_REG, &reg, mac_index);
  1068. ql_mii_write_reg_ex(qdev, CONTROL_REG, reg | PHY_CTRL_RESTART_NEG,
  1069. mac_index);
  1070. }
  1071. static void ql_phy_init_ex(struct ql3_adapter *qdev, u32 mac_index)
  1072. {
  1073. ql_phy_reset_ex(qdev, mac_index);
  1074. ql_phy_start_neg_ex(qdev, mac_index);
  1075. }
  1076. /*
  1077. * Caller holds hw_lock.
  1078. */
  1079. static u32 ql_get_link_state(struct ql3_adapter *qdev)
  1080. {
  1081. struct ql3xxx_port_registers __iomem *port_regs =
  1082. qdev->mem_map_registers;
  1083. u32 bitToCheck = 0;
  1084. u32 temp, linkState;
  1085. switch (qdev->mac_index) {
  1086. case 0:
  1087. bitToCheck = PORT_STATUS_UP0;
  1088. break;
  1089. case 1:
  1090. bitToCheck = PORT_STATUS_UP1;
  1091. break;
  1092. }
  1093. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1094. if (temp & bitToCheck) {
  1095. linkState = LS_UP;
  1096. } else {
  1097. linkState = LS_DOWN;
  1098. if (netif_msg_link(qdev))
  1099. printk(KERN_WARNING PFX
  1100. "%s: Link is down.\n", qdev->ndev->name);
  1101. }
  1102. return linkState;
  1103. }
  1104. static int ql_port_start(struct ql3_adapter *qdev)
  1105. {
  1106. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1107. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1108. 2) << 7))
  1109. return -1;
  1110. if (ql_is_fiber(qdev)) {
  1111. ql_petbi_init(qdev);
  1112. } else {
  1113. /* Copper port */
  1114. ql_phy_init_ex(qdev, qdev->mac_index);
  1115. }
  1116. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1117. return 0;
  1118. }
  1119. static int ql_finish_auto_neg(struct ql3_adapter *qdev)
  1120. {
  1121. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1122. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1123. 2) << 7))
  1124. return -1;
  1125. if (!ql_auto_neg_error(qdev)) {
  1126. if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
  1127. /* configure the MAC */
  1128. if (netif_msg_link(qdev))
  1129. printk(KERN_DEBUG PFX
  1130. "%s: Configuring link.\n",
  1131. qdev->ndev->
  1132. name);
  1133. ql_mac_cfg_soft_reset(qdev, 1);
  1134. ql_mac_cfg_gig(qdev,
  1135. (ql_get_link_speed
  1136. (qdev) ==
  1137. SPEED_1000));
  1138. ql_mac_cfg_full_dup(qdev,
  1139. ql_is_link_full_dup
  1140. (qdev));
  1141. ql_mac_cfg_pause(qdev,
  1142. ql_is_neg_pause
  1143. (qdev));
  1144. ql_mac_cfg_soft_reset(qdev, 0);
  1145. /* enable the MAC */
  1146. if (netif_msg_link(qdev))
  1147. printk(KERN_DEBUG PFX
  1148. "%s: Enabling mac.\n",
  1149. qdev->ndev->
  1150. name);
  1151. ql_mac_enable(qdev, 1);
  1152. }
  1153. if (netif_msg_link(qdev))
  1154. printk(KERN_DEBUG PFX
  1155. "%s: Change port_link_state LS_DOWN to LS_UP.\n",
  1156. qdev->ndev->name);
  1157. qdev->port_link_state = LS_UP;
  1158. netif_start_queue(qdev->ndev);
  1159. netif_carrier_on(qdev->ndev);
  1160. if (netif_msg_link(qdev))
  1161. printk(KERN_INFO PFX
  1162. "%s: Link is up at %d Mbps, %s duplex.\n",
  1163. qdev->ndev->name,
  1164. ql_get_link_speed(qdev),
  1165. ql_is_link_full_dup(qdev)
  1166. ? "full" : "half");
  1167. } else { /* Remote error detected */
  1168. if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
  1169. if (netif_msg_link(qdev))
  1170. printk(KERN_DEBUG PFX
  1171. "%s: Remote error detected. "
  1172. "Calling ql_port_start().\n",
  1173. qdev->ndev->
  1174. name);
  1175. /*
  1176. * ql_port_start() is shared code and needs
  1177. * to lock the PHY on it's own.
  1178. */
  1179. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1180. if(ql_port_start(qdev)) {/* Restart port */
  1181. return -1;
  1182. } else
  1183. return 0;
  1184. }
  1185. }
  1186. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1187. return 0;
  1188. }
  1189. static void ql_link_state_machine(struct ql3_adapter *qdev)
  1190. {
  1191. u32 curr_link_state;
  1192. unsigned long hw_flags;
  1193. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1194. curr_link_state = ql_get_link_state(qdev);
  1195. if (test_bit(QL_RESET_ACTIVE,&qdev->flags)) {
  1196. if (netif_msg_link(qdev))
  1197. printk(KERN_INFO PFX
  1198. "%s: Reset in progress, skip processing link "
  1199. "state.\n", qdev->ndev->name);
  1200. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1201. return;
  1202. }
  1203. switch (qdev->port_link_state) {
  1204. default:
  1205. if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
  1206. ql_port_start(qdev);
  1207. }
  1208. qdev->port_link_state = LS_DOWN;
  1209. /* Fall Through */
  1210. case LS_DOWN:
  1211. if (netif_msg_link(qdev))
  1212. printk(KERN_DEBUG PFX
  1213. "%s: port_link_state = LS_DOWN.\n",
  1214. qdev->ndev->name);
  1215. if (curr_link_state == LS_UP) {
  1216. if (netif_msg_link(qdev))
  1217. printk(KERN_DEBUG PFX
  1218. "%s: curr_link_state = LS_UP.\n",
  1219. qdev->ndev->name);
  1220. if (ql_is_auto_neg_complete(qdev))
  1221. ql_finish_auto_neg(qdev);
  1222. if (qdev->port_link_state == LS_UP)
  1223. ql_link_down_detect_clear(qdev);
  1224. }
  1225. break;
  1226. case LS_UP:
  1227. /*
  1228. * See if the link is currently down or went down and came
  1229. * back up
  1230. */
  1231. if ((curr_link_state == LS_DOWN) || ql_link_down_detect(qdev)) {
  1232. if (netif_msg_link(qdev))
  1233. printk(KERN_INFO PFX "%s: Link is down.\n",
  1234. qdev->ndev->name);
  1235. qdev->port_link_state = LS_DOWN;
  1236. }
  1237. break;
  1238. }
  1239. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1240. }
  1241. /*
  1242. * Caller must take hw_lock and QL_PHY_GIO_SEM.
  1243. */
  1244. static void ql_get_phy_owner(struct ql3_adapter *qdev)
  1245. {
  1246. if (ql_this_adapter_controls_port(qdev, qdev->mac_index))
  1247. set_bit(QL_LINK_MASTER,&qdev->flags);
  1248. else
  1249. clear_bit(QL_LINK_MASTER,&qdev->flags);
  1250. }
  1251. /*
  1252. * Caller must take hw_lock and QL_PHY_GIO_SEM.
  1253. */
  1254. static void ql_init_scan_mode(struct ql3_adapter *qdev)
  1255. {
  1256. ql_mii_enable_scan_mode(qdev);
  1257. if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
  1258. if (ql_this_adapter_controls_port(qdev, qdev->mac_index))
  1259. ql_petbi_init_ex(qdev, qdev->mac_index);
  1260. } else {
  1261. if (ql_this_adapter_controls_port(qdev, qdev->mac_index))
  1262. ql_phy_init_ex(qdev, qdev->mac_index);
  1263. }
  1264. }
  1265. /*
  1266. * MII_Setup needs to be called before taking the PHY out of reset so that the
  1267. * management interface clock speed can be set properly. It would be better if
  1268. * we had a way to disable MDC until after the PHY is out of reset, but we
  1269. * don't have that capability.
  1270. */
  1271. static int ql_mii_setup(struct ql3_adapter *qdev)
  1272. {
  1273. u32 reg;
  1274. struct ql3xxx_port_registers __iomem *port_regs =
  1275. qdev->mem_map_registers;
  1276. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1277. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1278. 2) << 7))
  1279. return -1;
  1280. if (qdev->device_id == QL3032_DEVICE_ID)
  1281. ql_write_page0_reg(qdev,
  1282. &port_regs->macMIIMgmtControlReg, 0x0f00000);
  1283. /* Divide 125MHz clock by 28 to meet PHY timing requirements */
  1284. reg = MAC_MII_CONTROL_CLK_SEL_DIV28;
  1285. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  1286. reg | ((MAC_MII_CONTROL_CLK_SEL_MASK) << 16));
  1287. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1288. return 0;
  1289. }
  1290. static u32 ql_supported_modes(struct ql3_adapter *qdev)
  1291. {
  1292. u32 supported;
  1293. if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
  1294. supported = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE
  1295. | SUPPORTED_Autoneg;
  1296. } else {
  1297. supported = SUPPORTED_10baseT_Half
  1298. | SUPPORTED_10baseT_Full
  1299. | SUPPORTED_100baseT_Half
  1300. | SUPPORTED_100baseT_Full
  1301. | SUPPORTED_1000baseT_Half
  1302. | SUPPORTED_1000baseT_Full
  1303. | SUPPORTED_Autoneg | SUPPORTED_TP;
  1304. }
  1305. return supported;
  1306. }
  1307. static int ql_get_auto_cfg_status(struct ql3_adapter *qdev)
  1308. {
  1309. int status;
  1310. unsigned long hw_flags;
  1311. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1312. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1313. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1314. 2) << 7)) {
  1315. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1316. return 0;
  1317. }
  1318. status = ql_is_auto_cfg(qdev);
  1319. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1320. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1321. return status;
  1322. }
  1323. static u32 ql_get_speed(struct ql3_adapter *qdev)
  1324. {
  1325. u32 status;
  1326. unsigned long hw_flags;
  1327. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1328. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1329. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1330. 2) << 7)) {
  1331. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1332. return 0;
  1333. }
  1334. status = ql_get_link_speed(qdev);
  1335. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1336. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1337. return status;
  1338. }
  1339. static int ql_get_full_dup(struct ql3_adapter *qdev)
  1340. {
  1341. int status;
  1342. unsigned long hw_flags;
  1343. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1344. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1345. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1346. 2) << 7)) {
  1347. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1348. return 0;
  1349. }
  1350. status = ql_is_link_full_dup(qdev);
  1351. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1352. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1353. return status;
  1354. }
  1355. static int ql_get_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
  1356. {
  1357. struct ql3_adapter *qdev = netdev_priv(ndev);
  1358. ecmd->transceiver = XCVR_INTERNAL;
  1359. ecmd->supported = ql_supported_modes(qdev);
  1360. if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
  1361. ecmd->port = PORT_FIBRE;
  1362. } else {
  1363. ecmd->port = PORT_TP;
  1364. ecmd->phy_address = qdev->PHYAddr;
  1365. }
  1366. ecmd->advertising = ql_supported_modes(qdev);
  1367. ecmd->autoneg = ql_get_auto_cfg_status(qdev);
  1368. ecmd->speed = ql_get_speed(qdev);
  1369. ecmd->duplex = ql_get_full_dup(qdev);
  1370. return 0;
  1371. }
  1372. static void ql_get_drvinfo(struct net_device *ndev,
  1373. struct ethtool_drvinfo *drvinfo)
  1374. {
  1375. struct ql3_adapter *qdev = netdev_priv(ndev);
  1376. strncpy(drvinfo->driver, ql3xxx_driver_name, 32);
  1377. strncpy(drvinfo->version, ql3xxx_driver_version, 32);
  1378. strncpy(drvinfo->fw_version, "N/A", 32);
  1379. strncpy(drvinfo->bus_info, pci_name(qdev->pdev), 32);
  1380. drvinfo->n_stats = 0;
  1381. drvinfo->testinfo_len = 0;
  1382. drvinfo->regdump_len = 0;
  1383. drvinfo->eedump_len = 0;
  1384. }
  1385. static u32 ql_get_msglevel(struct net_device *ndev)
  1386. {
  1387. struct ql3_adapter *qdev = netdev_priv(ndev);
  1388. return qdev->msg_enable;
  1389. }
  1390. static void ql_set_msglevel(struct net_device *ndev, u32 value)
  1391. {
  1392. struct ql3_adapter *qdev = netdev_priv(ndev);
  1393. qdev->msg_enable = value;
  1394. }
  1395. static const struct ethtool_ops ql3xxx_ethtool_ops = {
  1396. .get_settings = ql_get_settings,
  1397. .get_drvinfo = ql_get_drvinfo,
  1398. .get_perm_addr = ethtool_op_get_perm_addr,
  1399. .get_link = ethtool_op_get_link,
  1400. .get_msglevel = ql_get_msglevel,
  1401. .set_msglevel = ql_set_msglevel,
  1402. };
  1403. static int ql_populate_free_queue(struct ql3_adapter *qdev)
  1404. {
  1405. struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
  1406. dma_addr_t map;
  1407. int err;
  1408. while (lrg_buf_cb) {
  1409. if (!lrg_buf_cb->skb) {
  1410. lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
  1411. qdev->lrg_buffer_len);
  1412. if (unlikely(!lrg_buf_cb->skb)) {
  1413. printk(KERN_DEBUG PFX
  1414. "%s: Failed netdev_alloc_skb().\n",
  1415. qdev->ndev->name);
  1416. break;
  1417. } else {
  1418. /*
  1419. * We save some space to copy the ethhdr from
  1420. * first buffer
  1421. */
  1422. skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
  1423. map = pci_map_single(qdev->pdev,
  1424. lrg_buf_cb->skb->data,
  1425. qdev->lrg_buffer_len -
  1426. QL_HEADER_SPACE,
  1427. PCI_DMA_FROMDEVICE);
  1428. err = pci_dma_mapping_error(map);
  1429. if(err) {
  1430. printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
  1431. qdev->ndev->name, err);
  1432. dev_kfree_skb(lrg_buf_cb->skb);
  1433. lrg_buf_cb->skb = NULL;
  1434. break;
  1435. }
  1436. lrg_buf_cb->buf_phy_addr_low =
  1437. cpu_to_le32(LS_64BITS(map));
  1438. lrg_buf_cb->buf_phy_addr_high =
  1439. cpu_to_le32(MS_64BITS(map));
  1440. pci_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  1441. pci_unmap_len_set(lrg_buf_cb, maplen,
  1442. qdev->lrg_buffer_len -
  1443. QL_HEADER_SPACE);
  1444. --qdev->lrg_buf_skb_check;
  1445. if (!qdev->lrg_buf_skb_check)
  1446. return 1;
  1447. }
  1448. }
  1449. lrg_buf_cb = lrg_buf_cb->next;
  1450. }
  1451. return 0;
  1452. }
  1453. /*
  1454. * Caller holds hw_lock.
  1455. */
  1456. static void ql_update_lrg_bufq_prod_index(struct ql3_adapter *qdev)
  1457. {
  1458. struct bufq_addr_element *lrg_buf_q_ele;
  1459. int i;
  1460. struct ql_rcv_buf_cb *lrg_buf_cb;
  1461. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  1462. if ((qdev->lrg_buf_free_count >= 8)
  1463. && (qdev->lrg_buf_release_cnt >= 16)) {
  1464. if (qdev->lrg_buf_skb_check)
  1465. if (!ql_populate_free_queue(qdev))
  1466. return;
  1467. lrg_buf_q_ele = qdev->lrg_buf_next_free;
  1468. while ((qdev->lrg_buf_release_cnt >= 16)
  1469. && (qdev->lrg_buf_free_count >= 8)) {
  1470. for (i = 0; i < 8; i++) {
  1471. lrg_buf_cb =
  1472. ql_get_from_lrg_buf_free_list(qdev);
  1473. lrg_buf_q_ele->addr_high =
  1474. lrg_buf_cb->buf_phy_addr_high;
  1475. lrg_buf_q_ele->addr_low =
  1476. lrg_buf_cb->buf_phy_addr_low;
  1477. lrg_buf_q_ele++;
  1478. qdev->lrg_buf_release_cnt--;
  1479. }
  1480. qdev->lrg_buf_q_producer_index++;
  1481. if (qdev->lrg_buf_q_producer_index == qdev->num_lbufq_entries)
  1482. qdev->lrg_buf_q_producer_index = 0;
  1483. if (qdev->lrg_buf_q_producer_index ==
  1484. (qdev->num_lbufq_entries - 1)) {
  1485. lrg_buf_q_ele = qdev->lrg_buf_q_virt_addr;
  1486. }
  1487. }
  1488. qdev->lrg_buf_next_free = lrg_buf_q_ele;
  1489. ql_write_common_reg(qdev,
  1490. &port_regs->CommonRegs.
  1491. rxLargeQProducerIndex,
  1492. qdev->lrg_buf_q_producer_index);
  1493. }
  1494. }
  1495. static void ql_process_mac_tx_intr(struct ql3_adapter *qdev,
  1496. struct ob_mac_iocb_rsp *mac_rsp)
  1497. {
  1498. struct ql_tx_buf_cb *tx_cb;
  1499. int i;
  1500. int retval = 0;
  1501. if(mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
  1502. printk(KERN_WARNING "Frame short but, frame was padded and sent.\n");
  1503. }
  1504. tx_cb = &qdev->tx_buf[mac_rsp->transaction_id];
  1505. /* Check the transmit response flags for any errors */
  1506. if(mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
  1507. printk(KERN_ERR "Frame too short to be legal, frame not sent.\n");
  1508. qdev->stats.tx_errors++;
  1509. retval = -EIO;
  1510. goto frame_not_sent;
  1511. }
  1512. if(tx_cb->seg_count == 0) {
  1513. printk(KERN_ERR "tx_cb->seg_count == 0: %d\n", mac_rsp->transaction_id);
  1514. qdev->stats.tx_errors++;
  1515. retval = -EIO;
  1516. goto invalid_seg_count;
  1517. }
  1518. pci_unmap_single(qdev->pdev,
  1519. pci_unmap_addr(&tx_cb->map[0], mapaddr),
  1520. pci_unmap_len(&tx_cb->map[0], maplen),
  1521. PCI_DMA_TODEVICE);
  1522. tx_cb->seg_count--;
  1523. if (tx_cb->seg_count) {
  1524. for (i = 1; i < tx_cb->seg_count; i++) {
  1525. pci_unmap_page(qdev->pdev,
  1526. pci_unmap_addr(&tx_cb->map[i],
  1527. mapaddr),
  1528. pci_unmap_len(&tx_cb->map[i], maplen),
  1529. PCI_DMA_TODEVICE);
  1530. }
  1531. }
  1532. qdev->stats.tx_packets++;
  1533. qdev->stats.tx_bytes += tx_cb->skb->len;
  1534. frame_not_sent:
  1535. dev_kfree_skb_irq(tx_cb->skb);
  1536. tx_cb->skb = NULL;
  1537. invalid_seg_count:
  1538. atomic_inc(&qdev->tx_count);
  1539. }
  1540. void ql_get_sbuf(struct ql3_adapter *qdev)
  1541. {
  1542. if (++qdev->small_buf_index == NUM_SMALL_BUFFERS)
  1543. qdev->small_buf_index = 0;
  1544. qdev->small_buf_release_cnt++;
  1545. }
  1546. struct ql_rcv_buf_cb *ql_get_lbuf(struct ql3_adapter *qdev)
  1547. {
  1548. struct ql_rcv_buf_cb *lrg_buf_cb = NULL;
  1549. lrg_buf_cb = &qdev->lrg_buf[qdev->lrg_buf_index];
  1550. qdev->lrg_buf_release_cnt++;
  1551. if (++qdev->lrg_buf_index == qdev->num_large_buffers)
  1552. qdev->lrg_buf_index = 0;
  1553. return(lrg_buf_cb);
  1554. }
  1555. /*
  1556. * The difference between 3022 and 3032 for inbound completions:
  1557. * 3022 uses two buffers per completion. The first buffer contains
  1558. * (some) header info, the second the remainder of the headers plus
  1559. * the data. For this chip we reserve some space at the top of the
  1560. * receive buffer so that the header info in buffer one can be
  1561. * prepended to the buffer two. Buffer two is the sent up while
  1562. * buffer one is returned to the hardware to be reused.
  1563. * 3032 receives all of it's data and headers in one buffer for a
  1564. * simpler process. 3032 also supports checksum verification as
  1565. * can be seen in ql_process_macip_rx_intr().
  1566. */
  1567. static void ql_process_mac_rx_intr(struct ql3_adapter *qdev,
  1568. struct ib_mac_iocb_rsp *ib_mac_rsp_ptr)
  1569. {
  1570. struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
  1571. struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
  1572. struct sk_buff *skb;
  1573. u16 length = le16_to_cpu(ib_mac_rsp_ptr->length);
  1574. /*
  1575. * Get the inbound address list (small buffer).
  1576. */
  1577. ql_get_sbuf(qdev);
  1578. if (qdev->device_id == QL3022_DEVICE_ID)
  1579. lrg_buf_cb1 = ql_get_lbuf(qdev);
  1580. /* start of second buffer */
  1581. lrg_buf_cb2 = ql_get_lbuf(qdev);
  1582. skb = lrg_buf_cb2->skb;
  1583. qdev->stats.rx_packets++;
  1584. qdev->stats.rx_bytes += length;
  1585. skb_put(skb, length);
  1586. pci_unmap_single(qdev->pdev,
  1587. pci_unmap_addr(lrg_buf_cb2, mapaddr),
  1588. pci_unmap_len(lrg_buf_cb2, maplen),
  1589. PCI_DMA_FROMDEVICE);
  1590. prefetch(skb->data);
  1591. skb->dev = qdev->ndev;
  1592. skb->ip_summed = CHECKSUM_NONE;
  1593. skb->protocol = eth_type_trans(skb, qdev->ndev);
  1594. netif_receive_skb(skb);
  1595. qdev->ndev->last_rx = jiffies;
  1596. lrg_buf_cb2->skb = NULL;
  1597. if (qdev->device_id == QL3022_DEVICE_ID)
  1598. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
  1599. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
  1600. }
  1601. static void ql_process_macip_rx_intr(struct ql3_adapter *qdev,
  1602. struct ib_ip_iocb_rsp *ib_ip_rsp_ptr)
  1603. {
  1604. struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
  1605. struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
  1606. struct sk_buff *skb1 = NULL, *skb2;
  1607. struct net_device *ndev = qdev->ndev;
  1608. u16 length = le16_to_cpu(ib_ip_rsp_ptr->length);
  1609. u16 size = 0;
  1610. /*
  1611. * Get the inbound address list (small buffer).
  1612. */
  1613. ql_get_sbuf(qdev);
  1614. if (qdev->device_id == QL3022_DEVICE_ID) {
  1615. /* start of first buffer on 3022 */
  1616. lrg_buf_cb1 = ql_get_lbuf(qdev);
  1617. skb1 = lrg_buf_cb1->skb;
  1618. size = ETH_HLEN;
  1619. if (*((u16 *) skb1->data) != 0xFFFF)
  1620. size += VLAN_ETH_HLEN - ETH_HLEN;
  1621. }
  1622. /* start of second buffer */
  1623. lrg_buf_cb2 = ql_get_lbuf(qdev);
  1624. skb2 = lrg_buf_cb2->skb;
  1625. skb_put(skb2, length); /* Just the second buffer length here. */
  1626. pci_unmap_single(qdev->pdev,
  1627. pci_unmap_addr(lrg_buf_cb2, mapaddr),
  1628. pci_unmap_len(lrg_buf_cb2, maplen),
  1629. PCI_DMA_FROMDEVICE);
  1630. prefetch(skb2->data);
  1631. skb2->ip_summed = CHECKSUM_NONE;
  1632. if (qdev->device_id == QL3022_DEVICE_ID) {
  1633. /*
  1634. * Copy the ethhdr from first buffer to second. This
  1635. * is necessary for 3022 IP completions.
  1636. */
  1637. memcpy(skb_push(skb2, size), skb1->data + VLAN_ID_LEN, size);
  1638. } else {
  1639. u16 checksum = le16_to_cpu(ib_ip_rsp_ptr->checksum);
  1640. if (checksum &
  1641. (IB_IP_IOCB_RSP_3032_ICE |
  1642. IB_IP_IOCB_RSP_3032_CE |
  1643. IB_IP_IOCB_RSP_3032_NUC)) {
  1644. printk(KERN_ERR
  1645. "%s: Bad checksum for this %s packet, checksum = %x.\n",
  1646. __func__,
  1647. ((checksum &
  1648. IB_IP_IOCB_RSP_3032_TCP) ? "TCP" :
  1649. "UDP"),checksum);
  1650. } else if (checksum & IB_IP_IOCB_RSP_3032_TCP) {
  1651. skb2->ip_summed = CHECKSUM_UNNECESSARY;
  1652. }
  1653. }
  1654. skb2->dev = qdev->ndev;
  1655. skb2->protocol = eth_type_trans(skb2, qdev->ndev);
  1656. netif_receive_skb(skb2);
  1657. qdev->stats.rx_packets++;
  1658. qdev->stats.rx_bytes += length;
  1659. ndev->last_rx = jiffies;
  1660. lrg_buf_cb2->skb = NULL;
  1661. if (qdev->device_id == QL3022_DEVICE_ID)
  1662. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
  1663. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
  1664. }
  1665. static int ql_tx_rx_clean(struct ql3_adapter *qdev,
  1666. int *tx_cleaned, int *rx_cleaned, int work_to_do)
  1667. {
  1668. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  1669. struct net_rsp_iocb *net_rsp;
  1670. struct net_device *ndev = qdev->ndev;
  1671. unsigned long hw_flags;
  1672. int work_done = 0;
  1673. u32 rsp_producer_index = le32_to_cpu(*(qdev->prsp_producer_index));
  1674. /* While there are entries in the completion queue. */
  1675. while ((rsp_producer_index !=
  1676. qdev->rsp_consumer_index) && (work_done < work_to_do)) {
  1677. net_rsp = qdev->rsp_current;
  1678. switch (net_rsp->opcode) {
  1679. case OPCODE_OB_MAC_IOCB_FN0:
  1680. case OPCODE_OB_MAC_IOCB_FN2:
  1681. ql_process_mac_tx_intr(qdev, (struct ob_mac_iocb_rsp *)
  1682. net_rsp);
  1683. (*tx_cleaned)++;
  1684. break;
  1685. case OPCODE_IB_MAC_IOCB:
  1686. case OPCODE_IB_3032_MAC_IOCB:
  1687. ql_process_mac_rx_intr(qdev, (struct ib_mac_iocb_rsp *)
  1688. net_rsp);
  1689. (*rx_cleaned)++;
  1690. break;
  1691. case OPCODE_IB_IP_IOCB:
  1692. case OPCODE_IB_3032_IP_IOCB:
  1693. ql_process_macip_rx_intr(qdev, (struct ib_ip_iocb_rsp *)
  1694. net_rsp);
  1695. (*rx_cleaned)++;
  1696. break;
  1697. default:
  1698. {
  1699. u32 *tmp = (u32 *) net_rsp;
  1700. printk(KERN_ERR PFX
  1701. "%s: Hit default case, not "
  1702. "handled!\n"
  1703. " dropping the packet, opcode = "
  1704. "%x.\n",
  1705. ndev->name, net_rsp->opcode);
  1706. printk(KERN_ERR PFX
  1707. "0x%08lx 0x%08lx 0x%08lx 0x%08lx \n",
  1708. (unsigned long int)tmp[0],
  1709. (unsigned long int)tmp[1],
  1710. (unsigned long int)tmp[2],
  1711. (unsigned long int)tmp[3]);
  1712. }
  1713. }
  1714. qdev->rsp_consumer_index++;
  1715. if (qdev->rsp_consumer_index == NUM_RSP_Q_ENTRIES) {
  1716. qdev->rsp_consumer_index = 0;
  1717. qdev->rsp_current = qdev->rsp_q_virt_addr;
  1718. } else {
  1719. qdev->rsp_current++;
  1720. }
  1721. work_done = *tx_cleaned + *rx_cleaned;
  1722. }
  1723. if(work_done) {
  1724. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1725. ql_update_lrg_bufq_prod_index(qdev);
  1726. if (qdev->small_buf_release_cnt >= 16) {
  1727. while (qdev->small_buf_release_cnt >= 16) {
  1728. qdev->small_buf_q_producer_index++;
  1729. if (qdev->small_buf_q_producer_index ==
  1730. NUM_SBUFQ_ENTRIES)
  1731. qdev->small_buf_q_producer_index = 0;
  1732. qdev->small_buf_release_cnt -= 8;
  1733. }
  1734. wmb();
  1735. ql_write_common_reg(qdev,
  1736. &port_regs->CommonRegs.
  1737. rxSmallQProducerIndex,
  1738. qdev->small_buf_q_producer_index);
  1739. }
  1740. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1741. }
  1742. return *tx_cleaned + *rx_cleaned;
  1743. }
  1744. static int ql_poll(struct net_device *ndev, int *budget)
  1745. {
  1746. struct ql3_adapter *qdev = netdev_priv(ndev);
  1747. int work_to_do = min(*budget, ndev->quota);
  1748. int rx_cleaned = 0, tx_cleaned = 0;
  1749. unsigned long hw_flags;
  1750. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  1751. if (!netif_carrier_ok(ndev))
  1752. goto quit_polling;
  1753. ql_tx_rx_clean(qdev, &tx_cleaned, &rx_cleaned, work_to_do);
  1754. *budget -= rx_cleaned;
  1755. ndev->quota -= rx_cleaned;
  1756. if( tx_cleaned + rx_cleaned != work_to_do ||
  1757. !netif_running(ndev)) {
  1758. quit_polling:
  1759. netif_rx_complete(ndev);
  1760. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1761. ql_write_common_reg(qdev,
  1762. &port_regs->CommonRegs.rspQConsumerIndex,
  1763. qdev->rsp_consumer_index);
  1764. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1765. ql_enable_interrupts(qdev);
  1766. return 0;
  1767. }
  1768. return 1;
  1769. }
  1770. static irqreturn_t ql3xxx_isr(int irq, void *dev_id)
  1771. {
  1772. struct net_device *ndev = dev_id;
  1773. struct ql3_adapter *qdev = netdev_priv(ndev);
  1774. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  1775. u32 value;
  1776. int handled = 1;
  1777. u32 var;
  1778. port_regs = qdev->mem_map_registers;
  1779. value =
  1780. ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
  1781. if (value & (ISP_CONTROL_FE | ISP_CONTROL_RI)) {
  1782. spin_lock(&qdev->adapter_lock);
  1783. netif_stop_queue(qdev->ndev);
  1784. netif_carrier_off(qdev->ndev);
  1785. ql_disable_interrupts(qdev);
  1786. qdev->port_link_state = LS_DOWN;
  1787. set_bit(QL_RESET_ACTIVE,&qdev->flags) ;
  1788. if (value & ISP_CONTROL_FE) {
  1789. /*
  1790. * Chip Fatal Error.
  1791. */
  1792. var =
  1793. ql_read_page0_reg_l(qdev,
  1794. &port_regs->PortFatalErrStatus);
  1795. printk(KERN_WARNING PFX
  1796. "%s: Resetting chip. PortFatalErrStatus "
  1797. "register = 0x%x\n", ndev->name, var);
  1798. set_bit(QL_RESET_START,&qdev->flags) ;
  1799. } else {
  1800. /*
  1801. * Soft Reset Requested.
  1802. */
  1803. set_bit(QL_RESET_PER_SCSI,&qdev->flags) ;
  1804. printk(KERN_ERR PFX
  1805. "%s: Another function issued a reset to the "
  1806. "chip. ISR value = %x.\n", ndev->name, value);
  1807. }
  1808. queue_delayed_work(qdev->workqueue, &qdev->reset_work, 0);
  1809. spin_unlock(&qdev->adapter_lock);
  1810. } else if (value & ISP_IMR_DISABLE_CMPL_INT) {
  1811. ql_disable_interrupts(qdev);
  1812. if (likely(netif_rx_schedule_prep(ndev))) {
  1813. __netif_rx_schedule(ndev);
  1814. }
  1815. } else {
  1816. return IRQ_NONE;
  1817. }
  1818. return IRQ_RETVAL(handled);
  1819. }
  1820. /*
  1821. * Get the total number of segments needed for the
  1822. * given number of fragments. This is necessary because
  1823. * outbound address lists (OAL) will be used when more than
  1824. * two frags are given. Each address list has 5 addr/len
  1825. * pairs. The 5th pair in each AOL is used to point to
  1826. * the next AOL if more frags are coming.
  1827. * That is why the frags:segment count ratio is not linear.
  1828. */
  1829. static int ql_get_seg_count(struct ql3_adapter *qdev,
  1830. unsigned short frags)
  1831. {
  1832. if (qdev->device_id == QL3022_DEVICE_ID)
  1833. return 1;
  1834. switch(frags) {
  1835. case 0: return 1; /* just the skb->data seg */
  1836. case 1: return 2; /* skb->data + 1 frag */
  1837. case 2: return 3; /* skb->data + 2 frags */
  1838. case 3: return 5; /* skb->data + 1 frag + 1 AOL containting 2 frags */
  1839. case 4: return 6;
  1840. case 5: return 7;
  1841. case 6: return 8;
  1842. case 7: return 10;
  1843. case 8: return 11;
  1844. case 9: return 12;
  1845. case 10: return 13;
  1846. case 11: return 15;
  1847. case 12: return 16;
  1848. case 13: return 17;
  1849. case 14: return 18;
  1850. case 15: return 20;
  1851. case 16: return 21;
  1852. case 17: return 22;
  1853. case 18: return 23;
  1854. }
  1855. return -1;
  1856. }
  1857. static void ql_hw_csum_setup(struct sk_buff *skb,
  1858. struct ob_mac_iocb_req *mac_iocb_ptr)
  1859. {
  1860. struct ethhdr *eth;
  1861. struct iphdr *ip = NULL;
  1862. u8 offset = ETH_HLEN;
  1863. eth = (struct ethhdr *)(skb->data);
  1864. if (eth->h_proto == __constant_htons(ETH_P_IP)) {
  1865. ip = (struct iphdr *)&skb->data[ETH_HLEN];
  1866. } else if (eth->h_proto == htons(ETH_P_8021Q) &&
  1867. ((struct vlan_ethhdr *)skb->data)->
  1868. h_vlan_encapsulated_proto == __constant_htons(ETH_P_IP)) {
  1869. ip = (struct iphdr *)&skb->data[VLAN_ETH_HLEN];
  1870. offset = VLAN_ETH_HLEN;
  1871. }
  1872. if (ip) {
  1873. if (ip->protocol == IPPROTO_TCP) {
  1874. mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_TC |
  1875. OB_3032MAC_IOCB_REQ_IC;
  1876. mac_iocb_ptr->ip_hdr_off = offset;
  1877. mac_iocb_ptr->ip_hdr_len = ip->ihl;
  1878. } else if (ip->protocol == IPPROTO_UDP) {
  1879. mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_UC |
  1880. OB_3032MAC_IOCB_REQ_IC;
  1881. mac_iocb_ptr->ip_hdr_off = offset;
  1882. mac_iocb_ptr->ip_hdr_len = ip->ihl;
  1883. }
  1884. }
  1885. }
  1886. /*
  1887. * Map the buffers for this transmit. This will return
  1888. * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  1889. */
  1890. static int ql_send_map(struct ql3_adapter *qdev,
  1891. struct ob_mac_iocb_req *mac_iocb_ptr,
  1892. struct ql_tx_buf_cb *tx_cb,
  1893. struct sk_buff *skb)
  1894. {
  1895. struct oal *oal;
  1896. struct oal_entry *oal_entry;
  1897. int len = skb_headlen(skb);
  1898. dma_addr_t map;
  1899. int err;
  1900. int completed_segs, i;
  1901. int seg_cnt, seg = 0;
  1902. int frag_cnt = (int)skb_shinfo(skb)->nr_frags;
  1903. seg_cnt = tx_cb->seg_count = ql_get_seg_count(qdev,
  1904. (skb_shinfo(skb)->nr_frags));
  1905. if(seg_cnt == -1) {
  1906. printk(KERN_ERR PFX"%s: invalid segment count!\n",__func__);
  1907. return NETDEV_TX_BUSY;
  1908. }
  1909. /*
  1910. * Map the skb buffer first.
  1911. */
  1912. map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1913. err = pci_dma_mapping_error(map);
  1914. if(err) {
  1915. printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
  1916. qdev->ndev->name, err);
  1917. return NETDEV_TX_BUSY;
  1918. }
  1919. oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
  1920. oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
  1921. oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
  1922. oal_entry->len = cpu_to_le32(len);
  1923. pci_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
  1924. pci_unmap_len_set(&tx_cb->map[seg], maplen, len);
  1925. seg++;
  1926. if (seg_cnt == 1) {
  1927. /* Terminate the last segment. */
  1928. oal_entry->len =
  1929. cpu_to_le32(le32_to_cpu(oal_entry->len) | OAL_LAST_ENTRY);
  1930. } else {
  1931. oal = tx_cb->oal;
  1932. for (completed_segs=0; completed_segs<frag_cnt; completed_segs++,seg++) {
  1933. skb_frag_t *frag = &skb_shinfo(skb)->frags[completed_segs];
  1934. oal_entry++;
  1935. if ((seg == 2 && seg_cnt > 3) || /* Check for continuation */
  1936. (seg == 7 && seg_cnt > 8) || /* requirements. It's strange */
  1937. (seg == 12 && seg_cnt > 13) || /* but necessary. */
  1938. (seg == 17 && seg_cnt > 18)) {
  1939. /* Continuation entry points to outbound address list. */
  1940. map = pci_map_single(qdev->pdev, oal,
  1941. sizeof(struct oal),
  1942. PCI_DMA_TODEVICE);
  1943. err = pci_dma_mapping_error(map);
  1944. if(err) {
  1945. printk(KERN_ERR "%s: PCI mapping outbound address list with error: %d\n",
  1946. qdev->ndev->name, err);
  1947. goto map_error;
  1948. }
  1949. oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
  1950. oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
  1951. oal_entry->len =
  1952. cpu_to_le32(sizeof(struct oal) |
  1953. OAL_CONT_ENTRY);
  1954. pci_unmap_addr_set(&tx_cb->map[seg], mapaddr,
  1955. map);
  1956. pci_unmap_len_set(&tx_cb->map[seg], maplen,
  1957. len);
  1958. oal_entry = (struct oal_entry *)oal;
  1959. oal++;
  1960. seg++;
  1961. }
  1962. map =
  1963. pci_map_page(qdev->pdev, frag->page,
  1964. frag->page_offset, frag->size,
  1965. PCI_DMA_TODEVICE);
  1966. err = pci_dma_mapping_error(map);
  1967. if(err) {
  1968. printk(KERN_ERR "%s: PCI mapping frags failed with error: %d\n",
  1969. qdev->ndev->name, err);
  1970. goto map_error;
  1971. }
  1972. oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
  1973. oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
  1974. oal_entry->len = cpu_to_le32(frag->size);
  1975. pci_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
  1976. pci_unmap_len_set(&tx_cb->map[seg], maplen,
  1977. frag->size);
  1978. }
  1979. /* Terminate the last segment. */
  1980. oal_entry->len =
  1981. cpu_to_le32(le32_to_cpu(oal_entry->len) | OAL_LAST_ENTRY);
  1982. }
  1983. return NETDEV_TX_OK;
  1984. map_error:
  1985. /* A PCI mapping failed and now we will need to back out
  1986. * We need to traverse through the oal's and associated pages which
  1987. * have been mapped and now we must unmap them to clean up properly
  1988. */
  1989. seg = 1;
  1990. oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
  1991. oal = tx_cb->oal;
  1992. for (i=0; i<completed_segs; i++,seg++) {
  1993. oal_entry++;
  1994. if((seg == 2 && seg_cnt > 3) || /* Check for continuation */
  1995. (seg == 7 && seg_cnt > 8) || /* requirements. It's strange */
  1996. (seg == 12 && seg_cnt > 13) || /* but necessary. */
  1997. (seg == 17 && seg_cnt > 18)) {
  1998. pci_unmap_single(qdev->pdev,
  1999. pci_unmap_addr(&tx_cb->map[seg], mapaddr),
  2000. pci_unmap_len(&tx_cb->map[seg], maplen),
  2001. PCI_DMA_TODEVICE);
  2002. oal++;
  2003. seg++;
  2004. }
  2005. pci_unmap_page(qdev->pdev,
  2006. pci_unmap_addr(&tx_cb->map[seg], mapaddr),
  2007. pci_unmap_len(&tx_cb->map[seg], maplen),
  2008. PCI_DMA_TODEVICE);
  2009. }
  2010. pci_unmap_single(qdev->pdev,
  2011. pci_unmap_addr(&tx_cb->map[0], mapaddr),
  2012. pci_unmap_addr(&tx_cb->map[0], maplen),
  2013. PCI_DMA_TODEVICE);
  2014. return NETDEV_TX_BUSY;
  2015. }
  2016. /*
  2017. * The difference between 3022 and 3032 sends:
  2018. * 3022 only supports a simple single segment transmission.
  2019. * 3032 supports checksumming and scatter/gather lists (fragments).
  2020. * The 3032 supports sglists by using the 3 addr/len pairs (ALP)
  2021. * in the IOCB plus a chain of outbound address lists (OAL) that
  2022. * each contain 5 ALPs. The last ALP of the IOCB (3rd) or OAL (5th)
  2023. * will used to point to an OAL when more ALP entries are required.
  2024. * The IOCB is always the top of the chain followed by one or more
  2025. * OALs (when necessary).
  2026. */
  2027. static int ql3xxx_send(struct sk_buff *skb, struct net_device *ndev)
  2028. {
  2029. struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
  2030. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  2031. struct ql_tx_buf_cb *tx_cb;
  2032. u32 tot_len = skb->len;
  2033. struct ob_mac_iocb_req *mac_iocb_ptr;
  2034. if (unlikely(atomic_read(&qdev->tx_count) < 2)) {
  2035. return NETDEV_TX_BUSY;
  2036. }
  2037. tx_cb = &qdev->tx_buf[qdev->req_producer_index] ;
  2038. if((tx_cb->seg_count = ql_get_seg_count(qdev,
  2039. (skb_shinfo(skb)->nr_frags))) == -1) {
  2040. printk(KERN_ERR PFX"%s: invalid segment count!\n",__func__);
  2041. return NETDEV_TX_OK;
  2042. }
  2043. mac_iocb_ptr = tx_cb->queue_entry;
  2044. mac_iocb_ptr->opcode = qdev->mac_ob_opcode;
  2045. mac_iocb_ptr->flags = OB_MAC_IOCB_REQ_X;
  2046. mac_iocb_ptr->flags |= qdev->mb_bit_mask;
  2047. mac_iocb_ptr->transaction_id = qdev->req_producer_index;
  2048. mac_iocb_ptr->data_len = cpu_to_le16((u16) tot_len);
  2049. tx_cb->skb = skb;
  2050. if (qdev->device_id == QL3032_DEVICE_ID &&
  2051. skb->ip_summed == CHECKSUM_PARTIAL)
  2052. ql_hw_csum_setup(skb, mac_iocb_ptr);
  2053. if(ql_send_map(qdev,mac_iocb_ptr,tx_cb,skb) != NETDEV_TX_OK) {
  2054. printk(KERN_ERR PFX"%s: Could not map the segments!\n",__func__);
  2055. return NETDEV_TX_BUSY;
  2056. }
  2057. wmb();
  2058. qdev->req_producer_index++;
  2059. if (qdev->req_producer_index == NUM_REQ_Q_ENTRIES)
  2060. qdev->req_producer_index = 0;
  2061. wmb();
  2062. ql_write_common_reg_l(qdev,
  2063. &port_regs->CommonRegs.reqQProducerIndex,
  2064. qdev->req_producer_index);
  2065. ndev->trans_start = jiffies;
  2066. if (netif_msg_tx_queued(qdev))
  2067. printk(KERN_DEBUG PFX "%s: tx queued, slot %d, len %d\n",
  2068. ndev->name, qdev->req_producer_index, skb->len);
  2069. atomic_dec(&qdev->tx_count);
  2070. return NETDEV_TX_OK;
  2071. }
  2072. static int ql_alloc_net_req_rsp_queues(struct ql3_adapter *qdev)
  2073. {
  2074. qdev->req_q_size =
  2075. (u32) (NUM_REQ_Q_ENTRIES * sizeof(struct ob_mac_iocb_req));
  2076. qdev->req_q_virt_addr =
  2077. pci_alloc_consistent(qdev->pdev,
  2078. (size_t) qdev->req_q_size,
  2079. &qdev->req_q_phy_addr);
  2080. if ((qdev->req_q_virt_addr == NULL) ||
  2081. LS_64BITS(qdev->req_q_phy_addr) & (qdev->req_q_size - 1)) {
  2082. printk(KERN_ERR PFX "%s: reqQ failed.\n",
  2083. qdev->ndev->name);
  2084. return -ENOMEM;
  2085. }
  2086. qdev->rsp_q_size = NUM_RSP_Q_ENTRIES * sizeof(struct net_rsp_iocb);
  2087. qdev->rsp_q_virt_addr =
  2088. pci_alloc_consistent(qdev->pdev,
  2089. (size_t) qdev->rsp_q_size,
  2090. &qdev->rsp_q_phy_addr);
  2091. if ((qdev->rsp_q_virt_addr == NULL) ||
  2092. LS_64BITS(qdev->rsp_q_phy_addr) & (qdev->rsp_q_size - 1)) {
  2093. printk(KERN_ERR PFX
  2094. "%s: rspQ allocation failed\n",
  2095. qdev->ndev->name);
  2096. pci_free_consistent(qdev->pdev, (size_t) qdev->req_q_size,
  2097. qdev->req_q_virt_addr,
  2098. qdev->req_q_phy_addr);
  2099. return -ENOMEM;
  2100. }
  2101. set_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags);
  2102. return 0;
  2103. }
  2104. static void ql_free_net_req_rsp_queues(struct ql3_adapter *qdev)
  2105. {
  2106. if (!test_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags)) {
  2107. printk(KERN_INFO PFX
  2108. "%s: Already done.\n", qdev->ndev->name);
  2109. return;
  2110. }
  2111. pci_free_consistent(qdev->pdev,
  2112. qdev->req_q_size,
  2113. qdev->req_q_virt_addr, qdev->req_q_phy_addr);
  2114. qdev->req_q_virt_addr = NULL;
  2115. pci_free_consistent(qdev->pdev,
  2116. qdev->rsp_q_size,
  2117. qdev->rsp_q_virt_addr, qdev->rsp_q_phy_addr);
  2118. qdev->rsp_q_virt_addr = NULL;
  2119. clear_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags);
  2120. }
  2121. static int ql_alloc_buffer_queues(struct ql3_adapter *qdev)
  2122. {
  2123. /* Create Large Buffer Queue */
  2124. qdev->lrg_buf_q_size =
  2125. qdev->num_lbufq_entries * sizeof(struct lrg_buf_q_entry);
  2126. if (qdev->lrg_buf_q_size < PAGE_SIZE)
  2127. qdev->lrg_buf_q_alloc_size = PAGE_SIZE;
  2128. else
  2129. qdev->lrg_buf_q_alloc_size = qdev->lrg_buf_q_size * 2;
  2130. qdev->lrg_buf = kmalloc(qdev->num_large_buffers * sizeof(struct ql_rcv_buf_cb),GFP_KERNEL);
  2131. if (qdev->lrg_buf == NULL) {
  2132. printk(KERN_ERR PFX
  2133. "%s: qdev->lrg_buf alloc failed.\n", qdev->ndev->name);
  2134. return -ENOMEM;
  2135. }
  2136. qdev->lrg_buf_q_alloc_virt_addr =
  2137. pci_alloc_consistent(qdev->pdev,
  2138. qdev->lrg_buf_q_alloc_size,
  2139. &qdev->lrg_buf_q_alloc_phy_addr);
  2140. if (qdev->lrg_buf_q_alloc_virt_addr == NULL) {
  2141. printk(KERN_ERR PFX
  2142. "%s: lBufQ failed\n", qdev->ndev->name);
  2143. return -ENOMEM;
  2144. }
  2145. qdev->lrg_buf_q_virt_addr = qdev->lrg_buf_q_alloc_virt_addr;
  2146. qdev->lrg_buf_q_phy_addr = qdev->lrg_buf_q_alloc_phy_addr;
  2147. /* Create Small Buffer Queue */
  2148. qdev->small_buf_q_size =
  2149. NUM_SBUFQ_ENTRIES * sizeof(struct lrg_buf_q_entry);
  2150. if (qdev->small_buf_q_size < PAGE_SIZE)
  2151. qdev->small_buf_q_alloc_size = PAGE_SIZE;
  2152. else
  2153. qdev->small_buf_q_alloc_size = qdev->small_buf_q_size * 2;
  2154. qdev->small_buf_q_alloc_virt_addr =
  2155. pci_alloc_consistent(qdev->pdev,
  2156. qdev->small_buf_q_alloc_size,
  2157. &qdev->small_buf_q_alloc_phy_addr);
  2158. if (qdev->small_buf_q_alloc_virt_addr == NULL) {
  2159. printk(KERN_ERR PFX
  2160. "%s: Small Buffer Queue allocation failed.\n",
  2161. qdev->ndev->name);
  2162. pci_free_consistent(qdev->pdev, qdev->lrg_buf_q_alloc_size,
  2163. qdev->lrg_buf_q_alloc_virt_addr,
  2164. qdev->lrg_buf_q_alloc_phy_addr);
  2165. return -ENOMEM;
  2166. }
  2167. qdev->small_buf_q_virt_addr = qdev->small_buf_q_alloc_virt_addr;
  2168. qdev->small_buf_q_phy_addr = qdev->small_buf_q_alloc_phy_addr;
  2169. set_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags);
  2170. return 0;
  2171. }
  2172. static void ql_free_buffer_queues(struct ql3_adapter *qdev)
  2173. {
  2174. if (!test_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags)) {
  2175. printk(KERN_INFO PFX
  2176. "%s: Already done.\n", qdev->ndev->name);
  2177. return;
  2178. }
  2179. if(qdev->lrg_buf) kfree(qdev->lrg_buf);
  2180. pci_free_consistent(qdev->pdev,
  2181. qdev->lrg_buf_q_alloc_size,
  2182. qdev->lrg_buf_q_alloc_virt_addr,
  2183. qdev->lrg_buf_q_alloc_phy_addr);
  2184. qdev->lrg_buf_q_virt_addr = NULL;
  2185. pci_free_consistent(qdev->pdev,
  2186. qdev->small_buf_q_alloc_size,
  2187. qdev->small_buf_q_alloc_virt_addr,
  2188. qdev->small_buf_q_alloc_phy_addr);
  2189. qdev->small_buf_q_virt_addr = NULL;
  2190. clear_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags);
  2191. }
  2192. static int ql_alloc_small_buffers(struct ql3_adapter *qdev)
  2193. {
  2194. int i;
  2195. struct bufq_addr_element *small_buf_q_entry;
  2196. /* Currently we allocate on one of memory and use it for smallbuffers */
  2197. qdev->small_buf_total_size =
  2198. (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES *
  2199. QL_SMALL_BUFFER_SIZE);
  2200. qdev->small_buf_virt_addr =
  2201. pci_alloc_consistent(qdev->pdev,
  2202. qdev->small_buf_total_size,
  2203. &qdev->small_buf_phy_addr);
  2204. if (qdev->small_buf_virt_addr == NULL) {
  2205. printk(KERN_ERR PFX
  2206. "%s: Failed to get small buffer memory.\n",
  2207. qdev->ndev->name);
  2208. return -ENOMEM;
  2209. }
  2210. qdev->small_buf_phy_addr_low = LS_64BITS(qdev->small_buf_phy_addr);
  2211. qdev->small_buf_phy_addr_high = MS_64BITS(qdev->small_buf_phy_addr);
  2212. small_buf_q_entry = qdev->small_buf_q_virt_addr;
  2213. /* Initialize the small buffer queue. */
  2214. for (i = 0; i < (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES); i++) {
  2215. small_buf_q_entry->addr_high =
  2216. cpu_to_le32(qdev->small_buf_phy_addr_high);
  2217. small_buf_q_entry->addr_low =
  2218. cpu_to_le32(qdev->small_buf_phy_addr_low +
  2219. (i * QL_SMALL_BUFFER_SIZE));
  2220. small_buf_q_entry++;
  2221. }
  2222. qdev->small_buf_index = 0;
  2223. set_bit(QL_ALLOC_SMALL_BUF_DONE,&qdev->flags);
  2224. return 0;
  2225. }
  2226. static void ql_free_small_buffers(struct ql3_adapter *qdev)
  2227. {
  2228. if (!test_bit(QL_ALLOC_SMALL_BUF_DONE,&qdev->flags)) {
  2229. printk(KERN_INFO PFX
  2230. "%s: Already done.\n", qdev->ndev->name);
  2231. return;
  2232. }
  2233. if (qdev->small_buf_virt_addr != NULL) {
  2234. pci_free_consistent(qdev->pdev,
  2235. qdev->small_buf_total_size,
  2236. qdev->small_buf_virt_addr,
  2237. qdev->small_buf_phy_addr);
  2238. qdev->small_buf_virt_addr = NULL;
  2239. }
  2240. }
  2241. static void ql_free_large_buffers(struct ql3_adapter *qdev)
  2242. {
  2243. int i = 0;
  2244. struct ql_rcv_buf_cb *lrg_buf_cb;
  2245. for (i = 0; i < qdev->num_large_buffers; i++) {
  2246. lrg_buf_cb = &qdev->lrg_buf[i];
  2247. if (lrg_buf_cb->skb) {
  2248. dev_kfree_skb(lrg_buf_cb->skb);
  2249. pci_unmap_single(qdev->pdev,
  2250. pci_unmap_addr(lrg_buf_cb, mapaddr),
  2251. pci_unmap_len(lrg_buf_cb, maplen),
  2252. PCI_DMA_FROMDEVICE);
  2253. memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
  2254. } else {
  2255. break;
  2256. }
  2257. }
  2258. }
  2259. static void ql_init_large_buffers(struct ql3_adapter *qdev)
  2260. {
  2261. int i;
  2262. struct ql_rcv_buf_cb *lrg_buf_cb;
  2263. struct bufq_addr_element *buf_addr_ele = qdev->lrg_buf_q_virt_addr;
  2264. for (i = 0; i < qdev->num_large_buffers; i++) {
  2265. lrg_buf_cb = &qdev->lrg_buf[i];
  2266. buf_addr_ele->addr_high = lrg_buf_cb->buf_phy_addr_high;
  2267. buf_addr_ele->addr_low = lrg_buf_cb->buf_phy_addr_low;
  2268. buf_addr_ele++;
  2269. }
  2270. qdev->lrg_buf_index = 0;
  2271. qdev->lrg_buf_skb_check = 0;
  2272. }
  2273. static int ql_alloc_large_buffers(struct ql3_adapter *qdev)
  2274. {
  2275. int i;
  2276. struct ql_rcv_buf_cb *lrg_buf_cb;
  2277. struct sk_buff *skb;
  2278. dma_addr_t map;
  2279. int err;
  2280. for (i = 0; i < qdev->num_large_buffers; i++) {
  2281. skb = netdev_alloc_skb(qdev->ndev,
  2282. qdev->lrg_buffer_len);
  2283. if (unlikely(!skb)) {
  2284. /* Better luck next round */
  2285. printk(KERN_ERR PFX
  2286. "%s: large buff alloc failed, "
  2287. "for %d bytes at index %d.\n",
  2288. qdev->ndev->name,
  2289. qdev->lrg_buffer_len * 2, i);
  2290. ql_free_large_buffers(qdev);
  2291. return -ENOMEM;
  2292. } else {
  2293. lrg_buf_cb = &qdev->lrg_buf[i];
  2294. memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
  2295. lrg_buf_cb->index = i;
  2296. lrg_buf_cb->skb = skb;
  2297. /*
  2298. * We save some space to copy the ethhdr from first
  2299. * buffer
  2300. */
  2301. skb_reserve(skb, QL_HEADER_SPACE);
  2302. map = pci_map_single(qdev->pdev,
  2303. skb->data,
  2304. qdev->lrg_buffer_len -
  2305. QL_HEADER_SPACE,
  2306. PCI_DMA_FROMDEVICE);
  2307. err = pci_dma_mapping_error(map);
  2308. if(err) {
  2309. printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
  2310. qdev->ndev->name, err);
  2311. ql_free_large_buffers(qdev);
  2312. return -ENOMEM;
  2313. }
  2314. pci_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  2315. pci_unmap_len_set(lrg_buf_cb, maplen,
  2316. qdev->lrg_buffer_len -
  2317. QL_HEADER_SPACE);
  2318. lrg_buf_cb->buf_phy_addr_low =
  2319. cpu_to_le32(LS_64BITS(map));
  2320. lrg_buf_cb->buf_phy_addr_high =
  2321. cpu_to_le32(MS_64BITS(map));
  2322. }
  2323. }
  2324. return 0;
  2325. }
  2326. static void ql_free_send_free_list(struct ql3_adapter *qdev)
  2327. {
  2328. struct ql_tx_buf_cb *tx_cb;
  2329. int i;
  2330. tx_cb = &qdev->tx_buf[0];
  2331. for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
  2332. if (tx_cb->oal) {
  2333. kfree(tx_cb->oal);
  2334. tx_cb->oal = NULL;
  2335. }
  2336. tx_cb++;
  2337. }
  2338. }
  2339. static int ql_create_send_free_list(struct ql3_adapter *qdev)
  2340. {
  2341. struct ql_tx_buf_cb *tx_cb;
  2342. int i;
  2343. struct ob_mac_iocb_req *req_q_curr =
  2344. qdev->req_q_virt_addr;
  2345. /* Create free list of transmit buffers */
  2346. for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
  2347. tx_cb = &qdev->tx_buf[i];
  2348. tx_cb->skb = NULL;
  2349. tx_cb->queue_entry = req_q_curr;
  2350. req_q_curr++;
  2351. tx_cb->oal = kmalloc(512, GFP_KERNEL);
  2352. if (tx_cb->oal == NULL)
  2353. return -1;
  2354. }
  2355. return 0;
  2356. }
  2357. static int ql_alloc_mem_resources(struct ql3_adapter *qdev)
  2358. {
  2359. if (qdev->ndev->mtu == NORMAL_MTU_SIZE) {
  2360. qdev->num_lbufq_entries = NUM_LBUFQ_ENTRIES;
  2361. qdev->lrg_buffer_len = NORMAL_MTU_SIZE;
  2362. }
  2363. else if (qdev->ndev->mtu == JUMBO_MTU_SIZE) {
  2364. /*
  2365. * Bigger buffers, so less of them.
  2366. */
  2367. qdev->num_lbufq_entries = JUMBO_NUM_LBUFQ_ENTRIES;
  2368. qdev->lrg_buffer_len = JUMBO_MTU_SIZE;
  2369. } else {
  2370. printk(KERN_ERR PFX
  2371. "%s: Invalid mtu size. Only 1500 and 9000 are accepted.\n",
  2372. qdev->ndev->name);
  2373. return -ENOMEM;
  2374. }
  2375. qdev->num_large_buffers = qdev->num_lbufq_entries * QL_ADDR_ELE_PER_BUFQ_ENTRY;
  2376. qdev->lrg_buffer_len += VLAN_ETH_HLEN + VLAN_ID_LEN + QL_HEADER_SPACE;
  2377. qdev->max_frame_size =
  2378. (qdev->lrg_buffer_len - QL_HEADER_SPACE) + ETHERNET_CRC_SIZE;
  2379. /*
  2380. * First allocate a page of shared memory and use it for shadow
  2381. * locations of Network Request Queue Consumer Address Register and
  2382. * Network Completion Queue Producer Index Register
  2383. */
  2384. qdev->shadow_reg_virt_addr =
  2385. pci_alloc_consistent(qdev->pdev,
  2386. PAGE_SIZE, &qdev->shadow_reg_phy_addr);
  2387. if (qdev->shadow_reg_virt_addr != NULL) {
  2388. qdev->preq_consumer_index = (u16 *) qdev->shadow_reg_virt_addr;
  2389. qdev->req_consumer_index_phy_addr_high =
  2390. MS_64BITS(qdev->shadow_reg_phy_addr);
  2391. qdev->req_consumer_index_phy_addr_low =
  2392. LS_64BITS(qdev->shadow_reg_phy_addr);
  2393. qdev->prsp_producer_index =
  2394. (u32 *) (((u8 *) qdev->preq_consumer_index) + 8);
  2395. qdev->rsp_producer_index_phy_addr_high =
  2396. qdev->req_consumer_index_phy_addr_high;
  2397. qdev->rsp_producer_index_phy_addr_low =
  2398. qdev->req_consumer_index_phy_addr_low + 8;
  2399. } else {
  2400. printk(KERN_ERR PFX
  2401. "%s: shadowReg Alloc failed.\n", qdev->ndev->name);
  2402. return -ENOMEM;
  2403. }
  2404. if (ql_alloc_net_req_rsp_queues(qdev) != 0) {
  2405. printk(KERN_ERR PFX
  2406. "%s: ql_alloc_net_req_rsp_queues failed.\n",
  2407. qdev->ndev->name);
  2408. goto err_req_rsp;
  2409. }
  2410. if (ql_alloc_buffer_queues(qdev) != 0) {
  2411. printk(KERN_ERR PFX
  2412. "%s: ql_alloc_buffer_queues failed.\n",
  2413. qdev->ndev->name);
  2414. goto err_buffer_queues;
  2415. }
  2416. if (ql_alloc_small_buffers(qdev) != 0) {
  2417. printk(KERN_ERR PFX
  2418. "%s: ql_alloc_small_buffers failed\n", qdev->ndev->name);
  2419. goto err_small_buffers;
  2420. }
  2421. if (ql_alloc_large_buffers(qdev) != 0) {
  2422. printk(KERN_ERR PFX
  2423. "%s: ql_alloc_large_buffers failed\n", qdev->ndev->name);
  2424. goto err_small_buffers;
  2425. }
  2426. /* Initialize the large buffer queue. */
  2427. ql_init_large_buffers(qdev);
  2428. if (ql_create_send_free_list(qdev))
  2429. goto err_free_list;
  2430. qdev->rsp_current = qdev->rsp_q_virt_addr;
  2431. return 0;
  2432. err_free_list:
  2433. ql_free_send_free_list(qdev);
  2434. err_small_buffers:
  2435. ql_free_buffer_queues(qdev);
  2436. err_buffer_queues:
  2437. ql_free_net_req_rsp_queues(qdev);
  2438. err_req_rsp:
  2439. pci_free_consistent(qdev->pdev,
  2440. PAGE_SIZE,
  2441. qdev->shadow_reg_virt_addr,
  2442. qdev->shadow_reg_phy_addr);
  2443. return -ENOMEM;
  2444. }
  2445. static void ql_free_mem_resources(struct ql3_adapter *qdev)
  2446. {
  2447. ql_free_send_free_list(qdev);
  2448. ql_free_large_buffers(qdev);
  2449. ql_free_small_buffers(qdev);
  2450. ql_free_buffer_queues(qdev);
  2451. ql_free_net_req_rsp_queues(qdev);
  2452. if (qdev->shadow_reg_virt_addr != NULL) {
  2453. pci_free_consistent(qdev->pdev,
  2454. PAGE_SIZE,
  2455. qdev->shadow_reg_virt_addr,
  2456. qdev->shadow_reg_phy_addr);
  2457. qdev->shadow_reg_virt_addr = NULL;
  2458. }
  2459. }
  2460. static int ql_init_misc_registers(struct ql3_adapter *qdev)
  2461. {
  2462. struct ql3xxx_local_ram_registers __iomem *local_ram =
  2463. (void __iomem *)qdev->mem_map_registers;
  2464. if(ql_sem_spinlock(qdev, QL_DDR_RAM_SEM_MASK,
  2465. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  2466. 2) << 4))
  2467. return -1;
  2468. ql_write_page2_reg(qdev,
  2469. &local_ram->bufletSize, qdev->nvram_data.bufletSize);
  2470. ql_write_page2_reg(qdev,
  2471. &local_ram->maxBufletCount,
  2472. qdev->nvram_data.bufletCount);
  2473. ql_write_page2_reg(qdev,
  2474. &local_ram->freeBufletThresholdLow,
  2475. (qdev->nvram_data.tcpWindowThreshold25 << 16) |
  2476. (qdev->nvram_data.tcpWindowThreshold0));
  2477. ql_write_page2_reg(qdev,
  2478. &local_ram->freeBufletThresholdHigh,
  2479. qdev->nvram_data.tcpWindowThreshold50);
  2480. ql_write_page2_reg(qdev,
  2481. &local_ram->ipHashTableBase,
  2482. (qdev->nvram_data.ipHashTableBaseHi << 16) |
  2483. qdev->nvram_data.ipHashTableBaseLo);
  2484. ql_write_page2_reg(qdev,
  2485. &local_ram->ipHashTableCount,
  2486. qdev->nvram_data.ipHashTableSize);
  2487. ql_write_page2_reg(qdev,
  2488. &local_ram->tcpHashTableBase,
  2489. (qdev->nvram_data.tcpHashTableBaseHi << 16) |
  2490. qdev->nvram_data.tcpHashTableBaseLo);
  2491. ql_write_page2_reg(qdev,
  2492. &local_ram->tcpHashTableCount,
  2493. qdev->nvram_data.tcpHashTableSize);
  2494. ql_write_page2_reg(qdev,
  2495. &local_ram->ncbBase,
  2496. (qdev->nvram_data.ncbTableBaseHi << 16) |
  2497. qdev->nvram_data.ncbTableBaseLo);
  2498. ql_write_page2_reg(qdev,
  2499. &local_ram->maxNcbCount,
  2500. qdev->nvram_data.ncbTableSize);
  2501. ql_write_page2_reg(qdev,
  2502. &local_ram->drbBase,
  2503. (qdev->nvram_data.drbTableBaseHi << 16) |
  2504. qdev->nvram_data.drbTableBaseLo);
  2505. ql_write_page2_reg(qdev,
  2506. &local_ram->maxDrbCount,
  2507. qdev->nvram_data.drbTableSize);
  2508. ql_sem_unlock(qdev, QL_DDR_RAM_SEM_MASK);
  2509. return 0;
  2510. }
  2511. static int ql_adapter_initialize(struct ql3_adapter *qdev)
  2512. {
  2513. u32 value;
  2514. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  2515. struct ql3xxx_host_memory_registers __iomem *hmem_regs =
  2516. (void __iomem *)port_regs;
  2517. u32 delay = 10;
  2518. int status = 0;
  2519. if(ql_mii_setup(qdev))
  2520. return -1;
  2521. /* Bring out PHY out of reset */
  2522. ql_write_common_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  2523. (ISP_SERIAL_PORT_IF_WE |
  2524. (ISP_SERIAL_PORT_IF_WE << 16)));
  2525. qdev->port_link_state = LS_DOWN;
  2526. netif_carrier_off(qdev->ndev);
  2527. /* V2 chip fix for ARS-39168. */
  2528. ql_write_common_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  2529. (ISP_SERIAL_PORT_IF_SDE |
  2530. (ISP_SERIAL_PORT_IF_SDE << 16)));
  2531. /* Request Queue Registers */
  2532. *((u32 *) (qdev->preq_consumer_index)) = 0;
  2533. atomic_set(&qdev->tx_count,NUM_REQ_Q_ENTRIES);
  2534. qdev->req_producer_index = 0;
  2535. ql_write_page1_reg(qdev,
  2536. &hmem_regs->reqConsumerIndexAddrHigh,
  2537. qdev->req_consumer_index_phy_addr_high);
  2538. ql_write_page1_reg(qdev,
  2539. &hmem_regs->reqConsumerIndexAddrLow,
  2540. qdev->req_consumer_index_phy_addr_low);
  2541. ql_write_page1_reg(qdev,
  2542. &hmem_regs->reqBaseAddrHigh,
  2543. MS_64BITS(qdev->req_q_phy_addr));
  2544. ql_write_page1_reg(qdev,
  2545. &hmem_regs->reqBaseAddrLow,
  2546. LS_64BITS(qdev->req_q_phy_addr));
  2547. ql_write_page1_reg(qdev, &hmem_regs->reqLength, NUM_REQ_Q_ENTRIES);
  2548. /* Response Queue Registers */
  2549. *((u16 *) (qdev->prsp_producer_index)) = 0;
  2550. qdev->rsp_consumer_index = 0;
  2551. qdev->rsp_current = qdev->rsp_q_virt_addr;
  2552. ql_write_page1_reg(qdev,
  2553. &hmem_regs->rspProducerIndexAddrHigh,
  2554. qdev->rsp_producer_index_phy_addr_high);
  2555. ql_write_page1_reg(qdev,
  2556. &hmem_regs->rspProducerIndexAddrLow,
  2557. qdev->rsp_producer_index_phy_addr_low);
  2558. ql_write_page1_reg(qdev,
  2559. &hmem_regs->rspBaseAddrHigh,
  2560. MS_64BITS(qdev->rsp_q_phy_addr));
  2561. ql_write_page1_reg(qdev,
  2562. &hmem_regs->rspBaseAddrLow,
  2563. LS_64BITS(qdev->rsp_q_phy_addr));
  2564. ql_write_page1_reg(qdev, &hmem_regs->rspLength, NUM_RSP_Q_ENTRIES);
  2565. /* Large Buffer Queue */
  2566. ql_write_page1_reg(qdev,
  2567. &hmem_regs->rxLargeQBaseAddrHigh,
  2568. MS_64BITS(qdev->lrg_buf_q_phy_addr));
  2569. ql_write_page1_reg(qdev,
  2570. &hmem_regs->rxLargeQBaseAddrLow,
  2571. LS_64BITS(qdev->lrg_buf_q_phy_addr));
  2572. ql_write_page1_reg(qdev, &hmem_regs->rxLargeQLength, qdev->num_lbufq_entries);
  2573. ql_write_page1_reg(qdev,
  2574. &hmem_regs->rxLargeBufferLength,
  2575. qdev->lrg_buffer_len);
  2576. /* Small Buffer Queue */
  2577. ql_write_page1_reg(qdev,
  2578. &hmem_regs->rxSmallQBaseAddrHigh,
  2579. MS_64BITS(qdev->small_buf_q_phy_addr));
  2580. ql_write_page1_reg(qdev,
  2581. &hmem_regs->rxSmallQBaseAddrLow,
  2582. LS_64BITS(qdev->small_buf_q_phy_addr));
  2583. ql_write_page1_reg(qdev, &hmem_regs->rxSmallQLength, NUM_SBUFQ_ENTRIES);
  2584. ql_write_page1_reg(qdev,
  2585. &hmem_regs->rxSmallBufferLength,
  2586. QL_SMALL_BUFFER_SIZE);
  2587. qdev->small_buf_q_producer_index = NUM_SBUFQ_ENTRIES - 1;
  2588. qdev->small_buf_release_cnt = 8;
  2589. qdev->lrg_buf_q_producer_index = qdev->num_lbufq_entries - 1;
  2590. qdev->lrg_buf_release_cnt = 8;
  2591. qdev->lrg_buf_next_free =
  2592. (struct bufq_addr_element *)qdev->lrg_buf_q_virt_addr;
  2593. qdev->small_buf_index = 0;
  2594. qdev->lrg_buf_index = 0;
  2595. qdev->lrg_buf_free_count = 0;
  2596. qdev->lrg_buf_free_head = NULL;
  2597. qdev->lrg_buf_free_tail = NULL;
  2598. ql_write_common_reg(qdev,
  2599. &port_regs->CommonRegs.
  2600. rxSmallQProducerIndex,
  2601. qdev->small_buf_q_producer_index);
  2602. ql_write_common_reg(qdev,
  2603. &port_regs->CommonRegs.
  2604. rxLargeQProducerIndex,
  2605. qdev->lrg_buf_q_producer_index);
  2606. /*
  2607. * Find out if the chip has already been initialized. If it has, then
  2608. * we skip some of the initialization.
  2609. */
  2610. clear_bit(QL_LINK_MASTER, &qdev->flags);
  2611. value = ql_read_page0_reg(qdev, &port_regs->portStatus);
  2612. if ((value & PORT_STATUS_IC) == 0) {
  2613. /* Chip has not been configured yet, so let it rip. */
  2614. if(ql_init_misc_registers(qdev)) {
  2615. status = -1;
  2616. goto out;
  2617. }
  2618. if (qdev->mac_index)
  2619. ql_write_page0_reg(qdev,
  2620. &port_regs->mac1MaxFrameLengthReg,
  2621. qdev->max_frame_size);
  2622. else
  2623. ql_write_page0_reg(qdev,
  2624. &port_regs->mac0MaxFrameLengthReg,
  2625. qdev->max_frame_size);
  2626. value = qdev->nvram_data.tcpMaxWindowSize;
  2627. ql_write_page0_reg(qdev, &port_regs->tcpMaxWindow, value);
  2628. value = (0xFFFF << 16) | qdev->nvram_data.extHwConfig;
  2629. if(ql_sem_spinlock(qdev, QL_FLASH_SEM_MASK,
  2630. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
  2631. * 2) << 13)) {
  2632. status = -1;
  2633. goto out;
  2634. }
  2635. ql_write_page0_reg(qdev, &port_regs->ExternalHWConfig, value);
  2636. ql_write_page0_reg(qdev, &port_regs->InternalChipConfig,
  2637. (((INTERNAL_CHIP_SD | INTERNAL_CHIP_WE) <<
  2638. 16) | (INTERNAL_CHIP_SD |
  2639. INTERNAL_CHIP_WE)));
  2640. ql_sem_unlock(qdev, QL_FLASH_SEM_MASK);
  2641. }
  2642. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  2643. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  2644. 2) << 7)) {
  2645. status = -1;
  2646. goto out;
  2647. }
  2648. ql_init_scan_mode(qdev);
  2649. ql_get_phy_owner(qdev);
  2650. /* Load the MAC Configuration */
  2651. /* Program lower 32 bits of the MAC address */
  2652. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2653. (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
  2654. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  2655. ((qdev->ndev->dev_addr[2] << 24)
  2656. | (qdev->ndev->dev_addr[3] << 16)
  2657. | (qdev->ndev->dev_addr[4] << 8)
  2658. | qdev->ndev->dev_addr[5]));
  2659. /* Program top 16 bits of the MAC address */
  2660. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2661. ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
  2662. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  2663. ((qdev->ndev->dev_addr[0] << 8)
  2664. | qdev->ndev->dev_addr[1]));
  2665. /* Enable Primary MAC */
  2666. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2667. ((MAC_ADDR_INDIRECT_PTR_REG_PE << 16) |
  2668. MAC_ADDR_INDIRECT_PTR_REG_PE));
  2669. /* Clear Primary and Secondary IP addresses */
  2670. ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
  2671. ((IP_ADDR_INDEX_REG_MASK << 16) |
  2672. (qdev->mac_index << 2)));
  2673. ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
  2674. ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
  2675. ((IP_ADDR_INDEX_REG_MASK << 16) |
  2676. ((qdev->mac_index << 2) + 1)));
  2677. ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
  2678. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  2679. /* Indicate Configuration Complete */
  2680. ql_write_page0_reg(qdev,
  2681. &port_regs->portControl,
  2682. ((PORT_CONTROL_CC << 16) | PORT_CONTROL_CC));
  2683. do {
  2684. value = ql_read_page0_reg(qdev, &port_regs->portStatus);
  2685. if (value & PORT_STATUS_IC)
  2686. break;
  2687. msleep(500);
  2688. } while (--delay);
  2689. if (delay == 0) {
  2690. printk(KERN_ERR PFX
  2691. "%s: Hw Initialization timeout.\n", qdev->ndev->name);
  2692. status = -1;
  2693. goto out;
  2694. }
  2695. /* Enable Ethernet Function */
  2696. if (qdev->device_id == QL3032_DEVICE_ID) {
  2697. value =
  2698. (QL3032_PORT_CONTROL_EF | QL3032_PORT_CONTROL_KIE |
  2699. QL3032_PORT_CONTROL_EIv6 | QL3032_PORT_CONTROL_EIv4);
  2700. ql_write_page0_reg(qdev, &port_regs->functionControl,
  2701. ((value << 16) | value));
  2702. } else {
  2703. value =
  2704. (PORT_CONTROL_EF | PORT_CONTROL_ET | PORT_CONTROL_EI |
  2705. PORT_CONTROL_HH);
  2706. ql_write_page0_reg(qdev, &port_regs->portControl,
  2707. ((value << 16) | value));
  2708. }
  2709. out:
  2710. return status;
  2711. }
  2712. /*
  2713. * Caller holds hw_lock.
  2714. */
  2715. static int ql_adapter_reset(struct ql3_adapter *qdev)
  2716. {
  2717. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  2718. int status = 0;
  2719. u16 value;
  2720. int max_wait_time;
  2721. set_bit(QL_RESET_ACTIVE, &qdev->flags);
  2722. clear_bit(QL_RESET_DONE, &qdev->flags);
  2723. /*
  2724. * Issue soft reset to chip.
  2725. */
  2726. printk(KERN_DEBUG PFX
  2727. "%s: Issue soft reset to chip.\n",
  2728. qdev->ndev->name);
  2729. ql_write_common_reg(qdev,
  2730. &port_regs->CommonRegs.ispControlStatus,
  2731. ((ISP_CONTROL_SR << 16) | ISP_CONTROL_SR));
  2732. /* Wait 3 seconds for reset to complete. */
  2733. printk(KERN_DEBUG PFX
  2734. "%s: Wait 10 milliseconds for reset to complete.\n",
  2735. qdev->ndev->name);
  2736. /* Wait until the firmware tells us the Soft Reset is done */
  2737. max_wait_time = 5;
  2738. do {
  2739. value =
  2740. ql_read_common_reg(qdev,
  2741. &port_regs->CommonRegs.ispControlStatus);
  2742. if ((value & ISP_CONTROL_SR) == 0)
  2743. break;
  2744. ssleep(1);
  2745. } while ((--max_wait_time));
  2746. /*
  2747. * Also, make sure that the Network Reset Interrupt bit has been
  2748. * cleared after the soft reset has taken place.
  2749. */
  2750. value =
  2751. ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
  2752. if (value & ISP_CONTROL_RI) {
  2753. printk(KERN_DEBUG PFX
  2754. "ql_adapter_reset: clearing RI after reset.\n");
  2755. ql_write_common_reg(qdev,
  2756. &port_regs->CommonRegs.
  2757. ispControlStatus,
  2758. ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
  2759. }
  2760. if (max_wait_time == 0) {
  2761. /* Issue Force Soft Reset */
  2762. ql_write_common_reg(qdev,
  2763. &port_regs->CommonRegs.
  2764. ispControlStatus,
  2765. ((ISP_CONTROL_FSR << 16) |
  2766. ISP_CONTROL_FSR));
  2767. /*
  2768. * Wait until the firmware tells us the Force Soft Reset is
  2769. * done
  2770. */
  2771. max_wait_time = 5;
  2772. do {
  2773. value =
  2774. ql_read_common_reg(qdev,
  2775. &port_regs->CommonRegs.
  2776. ispControlStatus);
  2777. if ((value & ISP_CONTROL_FSR) == 0) {
  2778. break;
  2779. }
  2780. ssleep(1);
  2781. } while ((--max_wait_time));
  2782. }
  2783. if (max_wait_time == 0)
  2784. status = 1;
  2785. clear_bit(QL_RESET_ACTIVE, &qdev->flags);
  2786. set_bit(QL_RESET_DONE, &qdev->flags);
  2787. return status;
  2788. }
  2789. static void ql_set_mac_info(struct ql3_adapter *qdev)
  2790. {
  2791. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  2792. u32 value, port_status;
  2793. u8 func_number;
  2794. /* Get the function number */
  2795. value =
  2796. ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
  2797. func_number = (u8) ((value >> 4) & OPCODE_FUNC_ID_MASK);
  2798. port_status = ql_read_page0_reg(qdev, &port_regs->portStatus);
  2799. switch (value & ISP_CONTROL_FN_MASK) {
  2800. case ISP_CONTROL_FN0_NET:
  2801. qdev->mac_index = 0;
  2802. qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
  2803. qdev->tcp_ob_opcode = OUTBOUND_TCP_IOCB | func_number;
  2804. qdev->update_ob_opcode = UPDATE_NCB_IOCB | func_number;
  2805. qdev->mb_bit_mask = FN0_MA_BITS_MASK;
  2806. qdev->PHYAddr = PORT0_PHY_ADDRESS;
  2807. if (port_status & PORT_STATUS_SM0)
  2808. set_bit(QL_LINK_OPTICAL,&qdev->flags);
  2809. else
  2810. clear_bit(QL_LINK_OPTICAL,&qdev->flags);
  2811. break;
  2812. case ISP_CONTROL_FN1_NET:
  2813. qdev->mac_index = 1;
  2814. qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
  2815. qdev->tcp_ob_opcode = OUTBOUND_TCP_IOCB | func_number;
  2816. qdev->update_ob_opcode = UPDATE_NCB_IOCB | func_number;
  2817. qdev->mb_bit_mask = FN1_MA_BITS_MASK;
  2818. qdev->PHYAddr = PORT1_PHY_ADDRESS;
  2819. if (port_status & PORT_STATUS_SM1)
  2820. set_bit(QL_LINK_OPTICAL,&qdev->flags);
  2821. else
  2822. clear_bit(QL_LINK_OPTICAL,&qdev->flags);
  2823. break;
  2824. case ISP_CONTROL_FN0_SCSI:
  2825. case ISP_CONTROL_FN1_SCSI:
  2826. default:
  2827. printk(KERN_DEBUG PFX
  2828. "%s: Invalid function number, ispControlStatus = 0x%x\n",
  2829. qdev->ndev->name,value);
  2830. break;
  2831. }
  2832. qdev->numPorts = qdev->nvram_data.numPorts;
  2833. }
  2834. static void ql_display_dev_info(struct net_device *ndev)
  2835. {
  2836. struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
  2837. struct pci_dev *pdev = qdev->pdev;
  2838. printk(KERN_INFO PFX
  2839. "\n%s Adapter %d RevisionID %d found %s on PCI slot %d.\n",
  2840. DRV_NAME, qdev->index, qdev->chip_rev_id,
  2841. (qdev->device_id == QL3032_DEVICE_ID) ? "QLA3032" : "QLA3022",
  2842. qdev->pci_slot);
  2843. printk(KERN_INFO PFX
  2844. "%s Interface.\n",
  2845. test_bit(QL_LINK_OPTICAL,&qdev->flags) ? "OPTICAL" : "COPPER");
  2846. /*
  2847. * Print PCI bus width/type.
  2848. */
  2849. printk(KERN_INFO PFX
  2850. "Bus interface is %s %s.\n",
  2851. ((qdev->pci_width == 64) ? "64-bit" : "32-bit"),
  2852. ((qdev->pci_x) ? "PCI-X" : "PCI"));
  2853. printk(KERN_INFO PFX
  2854. "mem IO base address adjusted = 0x%p\n",
  2855. qdev->mem_map_registers);
  2856. printk(KERN_INFO PFX "Interrupt number = %d\n", pdev->irq);
  2857. if (netif_msg_probe(qdev))
  2858. printk(KERN_INFO PFX
  2859. "%s: MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
  2860. ndev->name, ndev->dev_addr[0], ndev->dev_addr[1],
  2861. ndev->dev_addr[2], ndev->dev_addr[3], ndev->dev_addr[4],
  2862. ndev->dev_addr[5]);
  2863. }
  2864. static int ql_adapter_down(struct ql3_adapter *qdev, int do_reset)
  2865. {
  2866. struct net_device *ndev = qdev->ndev;
  2867. int retval = 0;
  2868. netif_stop_queue(ndev);
  2869. netif_carrier_off(ndev);
  2870. clear_bit(QL_ADAPTER_UP,&qdev->flags);
  2871. clear_bit(QL_LINK_MASTER,&qdev->flags);
  2872. ql_disable_interrupts(qdev);
  2873. free_irq(qdev->pdev->irq, ndev);
  2874. if (qdev->msi && test_bit(QL_MSI_ENABLED,&qdev->flags)) {
  2875. printk(KERN_INFO PFX
  2876. "%s: calling pci_disable_msi().\n", qdev->ndev->name);
  2877. clear_bit(QL_MSI_ENABLED,&qdev->flags);
  2878. pci_disable_msi(qdev->pdev);
  2879. }
  2880. del_timer_sync(&qdev->adapter_timer);
  2881. netif_poll_disable(ndev);
  2882. if (do_reset) {
  2883. int soft_reset;
  2884. unsigned long hw_flags;
  2885. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  2886. if (ql_wait_for_drvr_lock(qdev)) {
  2887. if ((soft_reset = ql_adapter_reset(qdev))) {
  2888. printk(KERN_ERR PFX
  2889. "%s: ql_adapter_reset(%d) FAILED!\n",
  2890. ndev->name, qdev->index);
  2891. }
  2892. printk(KERN_ERR PFX
  2893. "%s: Releaseing driver lock via chip reset.\n",ndev->name);
  2894. } else {
  2895. printk(KERN_ERR PFX
  2896. "%s: Could not acquire driver lock to do "
  2897. "reset!\n", ndev->name);
  2898. retval = -1;
  2899. }
  2900. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  2901. }
  2902. ql_free_mem_resources(qdev);
  2903. return retval;
  2904. }
  2905. static int ql_adapter_up(struct ql3_adapter *qdev)
  2906. {
  2907. struct net_device *ndev = qdev->ndev;
  2908. int err;
  2909. unsigned long irq_flags = IRQF_SAMPLE_RANDOM | IRQF_SHARED;
  2910. unsigned long hw_flags;
  2911. if (ql_alloc_mem_resources(qdev)) {
  2912. printk(KERN_ERR PFX
  2913. "%s Unable to allocate buffers.\n", ndev->name);
  2914. return -ENOMEM;
  2915. }
  2916. if (qdev->msi) {
  2917. if (pci_enable_msi(qdev->pdev)) {
  2918. printk(KERN_ERR PFX
  2919. "%s: User requested MSI, but MSI failed to "
  2920. "initialize. Continuing without MSI.\n",
  2921. qdev->ndev->name);
  2922. qdev->msi = 0;
  2923. } else {
  2924. printk(KERN_INFO PFX "%s: MSI Enabled...\n", qdev->ndev->name);
  2925. set_bit(QL_MSI_ENABLED,&qdev->flags);
  2926. irq_flags &= ~IRQF_SHARED;
  2927. }
  2928. }
  2929. if ((err = request_irq(qdev->pdev->irq,
  2930. ql3xxx_isr,
  2931. irq_flags, ndev->name, ndev))) {
  2932. printk(KERN_ERR PFX
  2933. "%s: Failed to reserve interrupt %d already in use.\n",
  2934. ndev->name, qdev->pdev->irq);
  2935. goto err_irq;
  2936. }
  2937. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  2938. if ((err = ql_wait_for_drvr_lock(qdev))) {
  2939. if ((err = ql_adapter_initialize(qdev))) {
  2940. printk(KERN_ERR PFX
  2941. "%s: Unable to initialize adapter.\n",
  2942. ndev->name);
  2943. goto err_init;
  2944. }
  2945. printk(KERN_ERR PFX
  2946. "%s: Releaseing driver lock.\n",ndev->name);
  2947. ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
  2948. } else {
  2949. printk(KERN_ERR PFX
  2950. "%s: Could not aquire driver lock.\n",
  2951. ndev->name);
  2952. goto err_lock;
  2953. }
  2954. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  2955. set_bit(QL_ADAPTER_UP,&qdev->flags);
  2956. mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
  2957. netif_poll_enable(ndev);
  2958. ql_enable_interrupts(qdev);
  2959. return 0;
  2960. err_init:
  2961. ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
  2962. err_lock:
  2963. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  2964. free_irq(qdev->pdev->irq, ndev);
  2965. err_irq:
  2966. if (qdev->msi && test_bit(QL_MSI_ENABLED,&qdev->flags)) {
  2967. printk(KERN_INFO PFX
  2968. "%s: calling pci_disable_msi().\n",
  2969. qdev->ndev->name);
  2970. clear_bit(QL_MSI_ENABLED,&qdev->flags);
  2971. pci_disable_msi(qdev->pdev);
  2972. }
  2973. return err;
  2974. }
  2975. static int ql_cycle_adapter(struct ql3_adapter *qdev, int reset)
  2976. {
  2977. if( ql_adapter_down(qdev,reset) || ql_adapter_up(qdev)) {
  2978. printk(KERN_ERR PFX
  2979. "%s: Driver up/down cycle failed, "
  2980. "closing device\n",qdev->ndev->name);
  2981. dev_close(qdev->ndev);
  2982. return -1;
  2983. }
  2984. return 0;
  2985. }
  2986. static int ql3xxx_close(struct net_device *ndev)
  2987. {
  2988. struct ql3_adapter *qdev = netdev_priv(ndev);
  2989. /*
  2990. * Wait for device to recover from a reset.
  2991. * (Rarely happens, but possible.)
  2992. */
  2993. while (!test_bit(QL_ADAPTER_UP,&qdev->flags))
  2994. msleep(50);
  2995. ql_adapter_down(qdev,QL_DO_RESET);
  2996. return 0;
  2997. }
  2998. static int ql3xxx_open(struct net_device *ndev)
  2999. {
  3000. struct ql3_adapter *qdev = netdev_priv(ndev);
  3001. return (ql_adapter_up(qdev));
  3002. }
  3003. static struct net_device_stats *ql3xxx_get_stats(struct net_device *dev)
  3004. {
  3005. struct ql3_adapter *qdev = (struct ql3_adapter *)dev->priv;
  3006. return &qdev->stats;
  3007. }
  3008. static void ql3xxx_set_multicast_list(struct net_device *ndev)
  3009. {
  3010. /*
  3011. * We are manually parsing the list in the net_device structure.
  3012. */
  3013. return;
  3014. }
  3015. static int ql3xxx_set_mac_address(struct net_device *ndev, void *p)
  3016. {
  3017. struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
  3018. struct ql3xxx_port_registers __iomem *port_regs =
  3019. qdev->mem_map_registers;
  3020. struct sockaddr *addr = p;
  3021. unsigned long hw_flags;
  3022. if (netif_running(ndev))
  3023. return -EBUSY;
  3024. if (!is_valid_ether_addr(addr->sa_data))
  3025. return -EADDRNOTAVAIL;
  3026. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  3027. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  3028. /* Program lower 32 bits of the MAC address */
  3029. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  3030. (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
  3031. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  3032. ((ndev->dev_addr[2] << 24) | (ndev->
  3033. dev_addr[3] << 16) |
  3034. (ndev->dev_addr[4] << 8) | ndev->dev_addr[5]));
  3035. /* Program top 16 bits of the MAC address */
  3036. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  3037. ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
  3038. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  3039. ((ndev->dev_addr[0] << 8) | ndev->dev_addr[1]));
  3040. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3041. return 0;
  3042. }
  3043. static void ql3xxx_tx_timeout(struct net_device *ndev)
  3044. {
  3045. struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
  3046. printk(KERN_ERR PFX "%s: Resetting...\n", ndev->name);
  3047. /*
  3048. * Stop the queues, we've got a problem.
  3049. */
  3050. netif_stop_queue(ndev);
  3051. /*
  3052. * Wake up the worker to process this event.
  3053. */
  3054. queue_delayed_work(qdev->workqueue, &qdev->tx_timeout_work, 0);
  3055. }
  3056. static void ql_reset_work(struct work_struct *work)
  3057. {
  3058. struct ql3_adapter *qdev =
  3059. container_of(work, struct ql3_adapter, reset_work.work);
  3060. struct net_device *ndev = qdev->ndev;
  3061. u32 value;
  3062. struct ql_tx_buf_cb *tx_cb;
  3063. int max_wait_time, i;
  3064. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  3065. unsigned long hw_flags;
  3066. if (test_bit((QL_RESET_PER_SCSI | QL_RESET_START),&qdev->flags)) {
  3067. clear_bit(QL_LINK_MASTER,&qdev->flags);
  3068. /*
  3069. * Loop through the active list and return the skb.
  3070. */
  3071. for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
  3072. int j;
  3073. tx_cb = &qdev->tx_buf[i];
  3074. if (tx_cb->skb) {
  3075. printk(KERN_DEBUG PFX
  3076. "%s: Freeing lost SKB.\n",
  3077. qdev->ndev->name);
  3078. pci_unmap_single(qdev->pdev,
  3079. pci_unmap_addr(&tx_cb->map[0], mapaddr),
  3080. pci_unmap_len(&tx_cb->map[0], maplen),
  3081. PCI_DMA_TODEVICE);
  3082. for(j=1;j<tx_cb->seg_count;j++) {
  3083. pci_unmap_page(qdev->pdev,
  3084. pci_unmap_addr(&tx_cb->map[j],mapaddr),
  3085. pci_unmap_len(&tx_cb->map[j],maplen),
  3086. PCI_DMA_TODEVICE);
  3087. }
  3088. dev_kfree_skb(tx_cb->skb);
  3089. tx_cb->skb = NULL;
  3090. }
  3091. }
  3092. printk(KERN_ERR PFX
  3093. "%s: Clearing NRI after reset.\n", qdev->ndev->name);
  3094. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  3095. ql_write_common_reg(qdev,
  3096. &port_regs->CommonRegs.
  3097. ispControlStatus,
  3098. ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
  3099. /*
  3100. * Wait the for Soft Reset to Complete.
  3101. */
  3102. max_wait_time = 10;
  3103. do {
  3104. value = ql_read_common_reg(qdev,
  3105. &port_regs->CommonRegs.
  3106. ispControlStatus);
  3107. if ((value & ISP_CONTROL_SR) == 0) {
  3108. printk(KERN_DEBUG PFX
  3109. "%s: reset completed.\n",
  3110. qdev->ndev->name);
  3111. break;
  3112. }
  3113. if (value & ISP_CONTROL_RI) {
  3114. printk(KERN_DEBUG PFX
  3115. "%s: clearing NRI after reset.\n",
  3116. qdev->ndev->name);
  3117. ql_write_common_reg(qdev,
  3118. &port_regs->
  3119. CommonRegs.
  3120. ispControlStatus,
  3121. ((ISP_CONTROL_RI <<
  3122. 16) | ISP_CONTROL_RI));
  3123. }
  3124. ssleep(1);
  3125. } while (--max_wait_time);
  3126. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3127. if (value & ISP_CONTROL_SR) {
  3128. /*
  3129. * Set the reset flags and clear the board again.
  3130. * Nothing else to do...
  3131. */
  3132. printk(KERN_ERR PFX
  3133. "%s: Timed out waiting for reset to "
  3134. "complete.\n", ndev->name);
  3135. printk(KERN_ERR PFX
  3136. "%s: Do a reset.\n", ndev->name);
  3137. clear_bit(QL_RESET_PER_SCSI,&qdev->flags);
  3138. clear_bit(QL_RESET_START,&qdev->flags);
  3139. ql_cycle_adapter(qdev,QL_DO_RESET);
  3140. return;
  3141. }
  3142. clear_bit(QL_RESET_ACTIVE,&qdev->flags);
  3143. clear_bit(QL_RESET_PER_SCSI,&qdev->flags);
  3144. clear_bit(QL_RESET_START,&qdev->flags);
  3145. ql_cycle_adapter(qdev,QL_NO_RESET);
  3146. }
  3147. }
  3148. static void ql_tx_timeout_work(struct work_struct *work)
  3149. {
  3150. struct ql3_adapter *qdev =
  3151. container_of(work, struct ql3_adapter, tx_timeout_work.work);
  3152. ql_cycle_adapter(qdev, QL_DO_RESET);
  3153. }
  3154. static void ql_get_board_info(struct ql3_adapter *qdev)
  3155. {
  3156. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  3157. u32 value;
  3158. value = ql_read_page0_reg_l(qdev, &port_regs->portStatus);
  3159. qdev->chip_rev_id = ((value & PORT_STATUS_REV_ID_MASK) >> 12);
  3160. if (value & PORT_STATUS_64)
  3161. qdev->pci_width = 64;
  3162. else
  3163. qdev->pci_width = 32;
  3164. if (value & PORT_STATUS_X)
  3165. qdev->pci_x = 1;
  3166. else
  3167. qdev->pci_x = 0;
  3168. qdev->pci_slot = (u8) PCI_SLOT(qdev->pdev->devfn);
  3169. }
  3170. static void ql3xxx_timer(unsigned long ptr)
  3171. {
  3172. struct ql3_adapter *qdev = (struct ql3_adapter *)ptr;
  3173. if (test_bit(QL_RESET_ACTIVE,&qdev->flags)) {
  3174. printk(KERN_DEBUG PFX
  3175. "%s: Reset in progress.\n",
  3176. qdev->ndev->name);
  3177. goto end;
  3178. }
  3179. ql_link_state_machine(qdev);
  3180. /* Restart timer on 2 second interval. */
  3181. end:
  3182. mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
  3183. }
  3184. static int __devinit ql3xxx_probe(struct pci_dev *pdev,
  3185. const struct pci_device_id *pci_entry)
  3186. {
  3187. struct net_device *ndev = NULL;
  3188. struct ql3_adapter *qdev = NULL;
  3189. static int cards_found = 0;
  3190. int pci_using_dac, err;
  3191. err = pci_enable_device(pdev);
  3192. if (err) {
  3193. printk(KERN_ERR PFX "%s cannot enable PCI device\n",
  3194. pci_name(pdev));
  3195. goto err_out;
  3196. }
  3197. err = pci_request_regions(pdev, DRV_NAME);
  3198. if (err) {
  3199. printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
  3200. pci_name(pdev));
  3201. goto err_out_disable_pdev;
  3202. }
  3203. pci_set_master(pdev);
  3204. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  3205. pci_using_dac = 1;
  3206. err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  3207. } else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
  3208. pci_using_dac = 0;
  3209. err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  3210. }
  3211. if (err) {
  3212. printk(KERN_ERR PFX "%s no usable DMA configuration\n",
  3213. pci_name(pdev));
  3214. goto err_out_free_regions;
  3215. }
  3216. ndev = alloc_etherdev(sizeof(struct ql3_adapter));
  3217. if (!ndev) {
  3218. printk(KERN_ERR PFX "%s could not alloc etherdev\n",
  3219. pci_name(pdev));
  3220. err = -ENOMEM;
  3221. goto err_out_free_regions;
  3222. }
  3223. SET_MODULE_OWNER(ndev);
  3224. SET_NETDEV_DEV(ndev, &pdev->dev);
  3225. pci_set_drvdata(pdev, ndev);
  3226. qdev = netdev_priv(ndev);
  3227. qdev->index = cards_found;
  3228. qdev->ndev = ndev;
  3229. qdev->pdev = pdev;
  3230. qdev->device_id = pci_entry->device;
  3231. qdev->port_link_state = LS_DOWN;
  3232. if (msi)
  3233. qdev->msi = 1;
  3234. qdev->msg_enable = netif_msg_init(debug, default_msg);
  3235. if (pci_using_dac)
  3236. ndev->features |= NETIF_F_HIGHDMA;
  3237. if (qdev->device_id == QL3032_DEVICE_ID)
  3238. ndev->features |= (NETIF_F_HW_CSUM | NETIF_F_SG);
  3239. qdev->mem_map_registers =
  3240. ioremap_nocache(pci_resource_start(pdev, 1),
  3241. pci_resource_len(qdev->pdev, 1));
  3242. if (!qdev->mem_map_registers) {
  3243. printk(KERN_ERR PFX "%s: cannot map device registers\n",
  3244. pci_name(pdev));
  3245. err = -EIO;
  3246. goto err_out_free_ndev;
  3247. }
  3248. spin_lock_init(&qdev->adapter_lock);
  3249. spin_lock_init(&qdev->hw_lock);
  3250. /* Set driver entry points */
  3251. ndev->open = ql3xxx_open;
  3252. ndev->hard_start_xmit = ql3xxx_send;
  3253. ndev->stop = ql3xxx_close;
  3254. ndev->get_stats = ql3xxx_get_stats;
  3255. ndev->set_multicast_list = ql3xxx_set_multicast_list;
  3256. SET_ETHTOOL_OPS(ndev, &ql3xxx_ethtool_ops);
  3257. ndev->set_mac_address = ql3xxx_set_mac_address;
  3258. ndev->tx_timeout = ql3xxx_tx_timeout;
  3259. ndev->watchdog_timeo = 5 * HZ;
  3260. ndev->poll = &ql_poll;
  3261. ndev->weight = 64;
  3262. ndev->irq = pdev->irq;
  3263. /* make sure the EEPROM is good */
  3264. if (ql_get_nvram_params(qdev)) {
  3265. printk(KERN_ALERT PFX
  3266. "ql3xxx_probe: Adapter #%d, Invalid NVRAM parameters.\n",
  3267. qdev->index);
  3268. err = -EIO;
  3269. goto err_out_iounmap;
  3270. }
  3271. ql_set_mac_info(qdev);
  3272. /* Validate and set parameters */
  3273. if (qdev->mac_index) {
  3274. ndev->mtu = qdev->nvram_data.macCfg_port1.etherMtu_mac ;
  3275. memcpy(ndev->dev_addr, &qdev->nvram_data.funcCfg_fn2.macAddress,
  3276. ETH_ALEN);
  3277. } else {
  3278. ndev->mtu = qdev->nvram_data.macCfg_port0.etherMtu_mac ;
  3279. memcpy(ndev->dev_addr, &qdev->nvram_data.funcCfg_fn0.macAddress,
  3280. ETH_ALEN);
  3281. }
  3282. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3283. ndev->tx_queue_len = NUM_REQ_Q_ENTRIES;
  3284. /* Turn off support for multicasting */
  3285. ndev->flags &= ~IFF_MULTICAST;
  3286. /* Record PCI bus information. */
  3287. ql_get_board_info(qdev);
  3288. /*
  3289. * Set the Maximum Memory Read Byte Count value. We do this to handle
  3290. * jumbo frames.
  3291. */
  3292. if (qdev->pci_x) {
  3293. pci_write_config_word(pdev, (int)0x4e, (u16) 0x0036);
  3294. }
  3295. err = register_netdev(ndev);
  3296. if (err) {
  3297. printk(KERN_ERR PFX "%s: cannot register net device\n",
  3298. pci_name(pdev));
  3299. goto err_out_iounmap;
  3300. }
  3301. /* we're going to reset, so assume we have no link for now */
  3302. netif_carrier_off(ndev);
  3303. netif_stop_queue(ndev);
  3304. qdev->workqueue = create_singlethread_workqueue(ndev->name);
  3305. INIT_DELAYED_WORK(&qdev->reset_work, ql_reset_work);
  3306. INIT_DELAYED_WORK(&qdev->tx_timeout_work, ql_tx_timeout_work);
  3307. init_timer(&qdev->adapter_timer);
  3308. qdev->adapter_timer.function = ql3xxx_timer;
  3309. qdev->adapter_timer.expires = jiffies + HZ * 2; /* two second delay */
  3310. qdev->adapter_timer.data = (unsigned long)qdev;
  3311. if(!cards_found) {
  3312. printk(KERN_ALERT PFX "%s\n", DRV_STRING);
  3313. printk(KERN_ALERT PFX "Driver name: %s, Version: %s.\n",
  3314. DRV_NAME, DRV_VERSION);
  3315. }
  3316. ql_display_dev_info(ndev);
  3317. cards_found++;
  3318. return 0;
  3319. err_out_iounmap:
  3320. iounmap(qdev->mem_map_registers);
  3321. err_out_free_ndev:
  3322. free_netdev(ndev);
  3323. err_out_free_regions:
  3324. pci_release_regions(pdev);
  3325. err_out_disable_pdev:
  3326. pci_disable_device(pdev);
  3327. pci_set_drvdata(pdev, NULL);
  3328. err_out:
  3329. return err;
  3330. }
  3331. static void __devexit ql3xxx_remove(struct pci_dev *pdev)
  3332. {
  3333. struct net_device *ndev = pci_get_drvdata(pdev);
  3334. struct ql3_adapter *qdev = netdev_priv(ndev);
  3335. unregister_netdev(ndev);
  3336. qdev = netdev_priv(ndev);
  3337. ql_disable_interrupts(qdev);
  3338. if (qdev->workqueue) {
  3339. cancel_delayed_work(&qdev->reset_work);
  3340. cancel_delayed_work(&qdev->tx_timeout_work);
  3341. destroy_workqueue(qdev->workqueue);
  3342. qdev->workqueue = NULL;
  3343. }
  3344. iounmap(qdev->mem_map_registers);
  3345. pci_release_regions(pdev);
  3346. pci_set_drvdata(pdev, NULL);
  3347. free_netdev(ndev);
  3348. }
  3349. static struct pci_driver ql3xxx_driver = {
  3350. .name = DRV_NAME,
  3351. .id_table = ql3xxx_pci_tbl,
  3352. .probe = ql3xxx_probe,
  3353. .remove = __devexit_p(ql3xxx_remove),
  3354. };
  3355. static int __init ql3xxx_init_module(void)
  3356. {
  3357. return pci_register_driver(&ql3xxx_driver);
  3358. }
  3359. static void __exit ql3xxx_exit(void)
  3360. {
  3361. pci_unregister_driver(&ql3xxx_driver);
  3362. }
  3363. module_init(ql3xxx_init_module);
  3364. module_exit(ql3xxx_exit);