recv.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873
  1. /*
  2. * Copyright (c) 2008-2009 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include "ath9k.h"
  17. static struct ieee80211_hw * ath_get_virt_hw(struct ath_softc *sc,
  18. struct ieee80211_hdr *hdr)
  19. {
  20. struct ieee80211_hw *hw = sc->pri_wiphy->hw;
  21. int i;
  22. spin_lock_bh(&sc->wiphy_lock);
  23. for (i = 0; i < sc->num_sec_wiphy; i++) {
  24. struct ath_wiphy *aphy = sc->sec_wiphy[i];
  25. if (aphy == NULL)
  26. continue;
  27. if (compare_ether_addr(hdr->addr1, aphy->hw->wiphy->perm_addr)
  28. == 0) {
  29. hw = aphy->hw;
  30. break;
  31. }
  32. }
  33. spin_unlock_bh(&sc->wiphy_lock);
  34. return hw;
  35. }
  36. /*
  37. * Setup and link descriptors.
  38. *
  39. * 11N: we can no longer afford to self link the last descriptor.
  40. * MAC acknowledges BA status as long as it copies frames to host
  41. * buffer (or rx fifo). This can incorrectly acknowledge packets
  42. * to a sender if last desc is self-linked.
  43. */
  44. static void ath_rx_buf_link(struct ath_softc *sc, struct ath_buf *bf)
  45. {
  46. struct ath_hw *ah = sc->sc_ah;
  47. struct ath_desc *ds;
  48. struct sk_buff *skb;
  49. ATH_RXBUF_RESET(bf);
  50. ds = bf->bf_desc;
  51. ds->ds_link = 0; /* link to null */
  52. ds->ds_data = bf->bf_buf_addr;
  53. /* virtual addr of the beginning of the buffer. */
  54. skb = bf->bf_mpdu;
  55. ASSERT(skb != NULL);
  56. ds->ds_vdata = skb->data;
  57. /* setup rx descriptors. The rx.bufsize here tells the harware
  58. * how much data it can DMA to us and that we are prepared
  59. * to process */
  60. ath9k_hw_setuprxdesc(ah, ds,
  61. sc->rx.bufsize,
  62. 0);
  63. if (sc->rx.rxlink == NULL)
  64. ath9k_hw_putrxbuf(ah, bf->bf_daddr);
  65. else
  66. *sc->rx.rxlink = bf->bf_daddr;
  67. sc->rx.rxlink = &ds->ds_link;
  68. ath9k_hw_rxena(ah);
  69. }
  70. static void ath_setdefantenna(struct ath_softc *sc, u32 antenna)
  71. {
  72. /* XXX block beacon interrupts */
  73. ath9k_hw_setantenna(sc->sc_ah, antenna);
  74. sc->rx.defant = antenna;
  75. sc->rx.rxotherant = 0;
  76. }
  77. /*
  78. * Extend 15-bit time stamp from rx descriptor to
  79. * a full 64-bit TSF using the current h/w TSF.
  80. */
  81. static u64 ath_extend_tsf(struct ath_softc *sc, u32 rstamp)
  82. {
  83. u64 tsf;
  84. tsf = ath9k_hw_gettsf64(sc->sc_ah);
  85. if ((tsf & 0x7fff) < rstamp)
  86. tsf -= 0x8000;
  87. return (tsf & ~0x7fff) | rstamp;
  88. }
  89. static struct sk_buff *ath_rxbuf_alloc(struct ath_softc *sc, u32 len, gfp_t gfp_mask)
  90. {
  91. struct sk_buff *skb;
  92. u32 off;
  93. /*
  94. * Cache-line-align. This is important (for the
  95. * 5210 at least) as not doing so causes bogus data
  96. * in rx'd frames.
  97. */
  98. /* Note: the kernel can allocate a value greater than
  99. * what we ask it to give us. We really only need 4 KB as that
  100. * is this hardware supports and in fact we need at least 3849
  101. * as that is the MAX AMSDU size this hardware supports.
  102. * Unfortunately this means we may get 8 KB here from the
  103. * kernel... and that is actually what is observed on some
  104. * systems :( */
  105. skb = __dev_alloc_skb(len + sc->cachelsz - 1, gfp_mask);
  106. if (skb != NULL) {
  107. off = ((unsigned long) skb->data) % sc->cachelsz;
  108. if (off != 0)
  109. skb_reserve(skb, sc->cachelsz - off);
  110. } else {
  111. DPRINTF(sc, ATH_DBG_FATAL,
  112. "skbuff alloc of size %u failed\n", len);
  113. return NULL;
  114. }
  115. return skb;
  116. }
  117. /*
  118. * For Decrypt or Demic errors, we only mark packet status here and always push
  119. * up the frame up to let mac80211 handle the actual error case, be it no
  120. * decryption key or real decryption error. This let us keep statistics there.
  121. */
  122. static int ath_rx_prepare(struct sk_buff *skb, struct ath_desc *ds,
  123. struct ieee80211_rx_status *rx_status, bool *decrypt_error,
  124. struct ath_softc *sc)
  125. {
  126. struct ieee80211_hdr *hdr;
  127. u8 ratecode;
  128. __le16 fc;
  129. struct ieee80211_hw *hw;
  130. struct ieee80211_sta *sta;
  131. struct ath_node *an;
  132. int last_rssi = ATH_RSSI_DUMMY_MARKER;
  133. hdr = (struct ieee80211_hdr *)skb->data;
  134. fc = hdr->frame_control;
  135. memset(rx_status, 0, sizeof(struct ieee80211_rx_status));
  136. hw = ath_get_virt_hw(sc, hdr);
  137. if (ds->ds_rxstat.rs_more) {
  138. /*
  139. * Frame spans multiple descriptors; this cannot happen yet
  140. * as we don't support jumbograms. If not in monitor mode,
  141. * discard the frame. Enable this if you want to see
  142. * error frames in Monitor mode.
  143. */
  144. if (sc->sc_ah->opmode != NL80211_IFTYPE_MONITOR)
  145. goto rx_next;
  146. } else if (ds->ds_rxstat.rs_status != 0) {
  147. if (ds->ds_rxstat.rs_status & ATH9K_RXERR_CRC)
  148. rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
  149. if (ds->ds_rxstat.rs_status & ATH9K_RXERR_PHY)
  150. goto rx_next;
  151. if (ds->ds_rxstat.rs_status & ATH9K_RXERR_DECRYPT) {
  152. *decrypt_error = true;
  153. } else if (ds->ds_rxstat.rs_status & ATH9K_RXERR_MIC) {
  154. if (ieee80211_is_ctl(fc))
  155. /*
  156. * Sometimes, we get invalid
  157. * MIC failures on valid control frames.
  158. * Remove these mic errors.
  159. */
  160. ds->ds_rxstat.rs_status &= ~ATH9K_RXERR_MIC;
  161. else
  162. rx_status->flag |= RX_FLAG_MMIC_ERROR;
  163. }
  164. /*
  165. * Reject error frames with the exception of
  166. * decryption and MIC failures. For monitor mode,
  167. * we also ignore the CRC error.
  168. */
  169. if (sc->sc_ah->opmode == NL80211_IFTYPE_MONITOR) {
  170. if (ds->ds_rxstat.rs_status &
  171. ~(ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC |
  172. ATH9K_RXERR_CRC))
  173. goto rx_next;
  174. } else {
  175. if (ds->ds_rxstat.rs_status &
  176. ~(ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC)) {
  177. goto rx_next;
  178. }
  179. }
  180. }
  181. ratecode = ds->ds_rxstat.rs_rate;
  182. if (ratecode & 0x80) {
  183. /* HT rate */
  184. rx_status->flag |= RX_FLAG_HT;
  185. if (ds->ds_rxstat.rs_flags & ATH9K_RX_2040)
  186. rx_status->flag |= RX_FLAG_40MHZ;
  187. if (ds->ds_rxstat.rs_flags & ATH9K_RX_GI)
  188. rx_status->flag |= RX_FLAG_SHORT_GI;
  189. rx_status->rate_idx = ratecode & 0x7f;
  190. } else {
  191. int i = 0, cur_band, n_rates;
  192. cur_band = hw->conf.channel->band;
  193. n_rates = sc->sbands[cur_band].n_bitrates;
  194. for (i = 0; i < n_rates; i++) {
  195. if (sc->sbands[cur_band].bitrates[i].hw_value ==
  196. ratecode) {
  197. rx_status->rate_idx = i;
  198. break;
  199. }
  200. if (sc->sbands[cur_band].bitrates[i].hw_value_short ==
  201. ratecode) {
  202. rx_status->rate_idx = i;
  203. rx_status->flag |= RX_FLAG_SHORTPRE;
  204. break;
  205. }
  206. }
  207. }
  208. rcu_read_lock();
  209. sta = ieee80211_find_sta(sc->hw, hdr->addr2);
  210. if (sta) {
  211. an = (struct ath_node *) sta->drv_priv;
  212. if (ds->ds_rxstat.rs_rssi != ATH9K_RSSI_BAD &&
  213. !ds->ds_rxstat.rs_moreaggr)
  214. ATH_RSSI_LPF(an->last_rssi, ds->ds_rxstat.rs_rssi);
  215. last_rssi = an->last_rssi;
  216. }
  217. rcu_read_unlock();
  218. if (likely(last_rssi != ATH_RSSI_DUMMY_MARKER))
  219. ds->ds_rxstat.rs_rssi = ATH_EP_RND(last_rssi,
  220. ATH_RSSI_EP_MULTIPLIER);
  221. if (ds->ds_rxstat.rs_rssi < 0)
  222. ds->ds_rxstat.rs_rssi = 0;
  223. else if (ds->ds_rxstat.rs_rssi > 127)
  224. ds->ds_rxstat.rs_rssi = 127;
  225. rx_status->mactime = ath_extend_tsf(sc, ds->ds_rxstat.rs_tstamp);
  226. rx_status->band = hw->conf.channel->band;
  227. rx_status->freq = hw->conf.channel->center_freq;
  228. rx_status->noise = sc->ani.noise_floor;
  229. rx_status->signal = ATH_DEFAULT_NOISE_FLOOR + ds->ds_rxstat.rs_rssi;
  230. rx_status->antenna = ds->ds_rxstat.rs_antenna;
  231. /*
  232. * Theory for reporting quality:
  233. *
  234. * At a hardware RSSI of 45 you will be able to use MCS 7 reliably.
  235. * At a hardware RSSI of 45 you will be able to use MCS 15 reliably.
  236. * At a hardware RSSI of 35 you should be able use 54 Mbps reliably.
  237. *
  238. * MCS 7 is the highets MCS index usable by a 1-stream device.
  239. * MCS 15 is the highest MCS index usable by a 2-stream device.
  240. *
  241. * All ath9k devices are either 1-stream or 2-stream.
  242. *
  243. * How many bars you see is derived from the qual reporting.
  244. *
  245. * A more elaborate scheme can be used here but it requires tables
  246. * of SNR/throughput for each possible mode used. For the MCS table
  247. * you can refer to the wireless wiki:
  248. *
  249. * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
  250. *
  251. */
  252. if (conf_is_ht(&hw->conf))
  253. rx_status->qual = ds->ds_rxstat.rs_rssi * 100 / 45;
  254. else
  255. rx_status->qual = ds->ds_rxstat.rs_rssi * 100 / 35;
  256. /* rssi can be more than 45 though, anything above that
  257. * should be considered at 100% */
  258. if (rx_status->qual > 100)
  259. rx_status->qual = 100;
  260. rx_status->flag |= RX_FLAG_TSFT;
  261. return 1;
  262. rx_next:
  263. return 0;
  264. }
  265. static void ath_opmode_init(struct ath_softc *sc)
  266. {
  267. struct ath_hw *ah = sc->sc_ah;
  268. u32 rfilt, mfilt[2];
  269. /* configure rx filter */
  270. rfilt = ath_calcrxfilter(sc);
  271. ath9k_hw_setrxfilter(ah, rfilt);
  272. /* configure bssid mask */
  273. if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
  274. ath9k_hw_setbssidmask(sc);
  275. /* configure operational mode */
  276. ath9k_hw_setopmode(ah);
  277. /* Handle any link-level address change. */
  278. ath9k_hw_setmac(ah, sc->sc_ah->macaddr);
  279. /* calculate and install multicast filter */
  280. mfilt[0] = mfilt[1] = ~0;
  281. ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]);
  282. }
  283. int ath_rx_init(struct ath_softc *sc, int nbufs)
  284. {
  285. struct sk_buff *skb;
  286. struct ath_buf *bf;
  287. int error = 0;
  288. spin_lock_init(&sc->rx.rxflushlock);
  289. sc->sc_flags &= ~SC_OP_RXFLUSH;
  290. spin_lock_init(&sc->rx.rxbuflock);
  291. sc->rx.bufsize = roundup(IEEE80211_MAX_MPDU_LEN,
  292. min(sc->cachelsz, (u16)64));
  293. DPRINTF(sc, ATH_DBG_CONFIG, "cachelsz %u rxbufsize %u\n",
  294. sc->cachelsz, sc->rx.bufsize);
  295. /* Initialize rx descriptors */
  296. error = ath_descdma_setup(sc, &sc->rx.rxdma, &sc->rx.rxbuf,
  297. "rx", nbufs, 1);
  298. if (error != 0) {
  299. DPRINTF(sc, ATH_DBG_FATAL,
  300. "failed to allocate rx descriptors: %d\n", error);
  301. goto err;
  302. }
  303. list_for_each_entry(bf, &sc->rx.rxbuf, list) {
  304. skb = ath_rxbuf_alloc(sc, sc->rx.bufsize, GFP_KERNEL);
  305. if (skb == NULL) {
  306. error = -ENOMEM;
  307. goto err;
  308. }
  309. bf->bf_mpdu = skb;
  310. bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
  311. sc->rx.bufsize,
  312. DMA_FROM_DEVICE);
  313. if (unlikely(dma_mapping_error(sc->dev,
  314. bf->bf_buf_addr))) {
  315. dev_kfree_skb_any(skb);
  316. bf->bf_mpdu = NULL;
  317. DPRINTF(sc, ATH_DBG_FATAL,
  318. "dma_mapping_error() on RX init\n");
  319. error = -ENOMEM;
  320. goto err;
  321. }
  322. bf->bf_dmacontext = bf->bf_buf_addr;
  323. }
  324. sc->rx.rxlink = NULL;
  325. err:
  326. if (error)
  327. ath_rx_cleanup(sc);
  328. return error;
  329. }
  330. void ath_rx_cleanup(struct ath_softc *sc)
  331. {
  332. struct sk_buff *skb;
  333. struct ath_buf *bf;
  334. list_for_each_entry(bf, &sc->rx.rxbuf, list) {
  335. skb = bf->bf_mpdu;
  336. if (skb) {
  337. dma_unmap_single(sc->dev, bf->bf_buf_addr,
  338. sc->rx.bufsize, DMA_FROM_DEVICE);
  339. dev_kfree_skb(skb);
  340. }
  341. }
  342. if (sc->rx.rxdma.dd_desc_len != 0)
  343. ath_descdma_cleanup(sc, &sc->rx.rxdma, &sc->rx.rxbuf);
  344. }
  345. /*
  346. * Calculate the receive filter according to the
  347. * operating mode and state:
  348. *
  349. * o always accept unicast, broadcast, and multicast traffic
  350. * o maintain current state of phy error reception (the hal
  351. * may enable phy error frames for noise immunity work)
  352. * o probe request frames are accepted only when operating in
  353. * hostap, adhoc, or monitor modes
  354. * o enable promiscuous mode according to the interface state
  355. * o accept beacons:
  356. * - when operating in adhoc mode so the 802.11 layer creates
  357. * node table entries for peers,
  358. * - when operating in station mode for collecting rssi data when
  359. * the station is otherwise quiet, or
  360. * - when operating as a repeater so we see repeater-sta beacons
  361. * - when scanning
  362. */
  363. u32 ath_calcrxfilter(struct ath_softc *sc)
  364. {
  365. #define RX_FILTER_PRESERVE (ATH9K_RX_FILTER_PHYERR | ATH9K_RX_FILTER_PHYRADAR)
  366. u32 rfilt;
  367. rfilt = (ath9k_hw_getrxfilter(sc->sc_ah) & RX_FILTER_PRESERVE)
  368. | ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST
  369. | ATH9K_RX_FILTER_MCAST;
  370. /* If not a STA, enable processing of Probe Requests */
  371. if (sc->sc_ah->opmode != NL80211_IFTYPE_STATION)
  372. rfilt |= ATH9K_RX_FILTER_PROBEREQ;
  373. /*
  374. * Set promiscuous mode when FIF_PROMISC_IN_BSS is enabled for station
  375. * mode interface or when in monitor mode. AP mode does not need this
  376. * since it receives all in-BSS frames anyway.
  377. */
  378. if (((sc->sc_ah->opmode != NL80211_IFTYPE_AP) &&
  379. (sc->rx.rxfilter & FIF_PROMISC_IN_BSS)) ||
  380. (sc->sc_ah->opmode == NL80211_IFTYPE_MONITOR))
  381. rfilt |= ATH9K_RX_FILTER_PROM;
  382. if (sc->rx.rxfilter & FIF_CONTROL)
  383. rfilt |= ATH9K_RX_FILTER_CONTROL;
  384. if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) &&
  385. !(sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC))
  386. rfilt |= ATH9K_RX_FILTER_MYBEACON;
  387. else
  388. rfilt |= ATH9K_RX_FILTER_BEACON;
  389. if (sc->rx.rxfilter & FIF_PSPOLL)
  390. rfilt |= ATH9K_RX_FILTER_PSPOLL;
  391. if (sc->sec_wiphy) {
  392. /* TODO: only needed if more than one BSSID is in use in
  393. * station/adhoc mode */
  394. /* TODO: for older chips, may need to add ATH9K_RX_FILTER_PROM
  395. */
  396. rfilt |= ATH9K_RX_FILTER_MCAST_BCAST_ALL;
  397. }
  398. return rfilt;
  399. #undef RX_FILTER_PRESERVE
  400. }
  401. int ath_startrecv(struct ath_softc *sc)
  402. {
  403. struct ath_hw *ah = sc->sc_ah;
  404. struct ath_buf *bf, *tbf;
  405. spin_lock_bh(&sc->rx.rxbuflock);
  406. if (list_empty(&sc->rx.rxbuf))
  407. goto start_recv;
  408. sc->rx.rxlink = NULL;
  409. list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) {
  410. ath_rx_buf_link(sc, bf);
  411. }
  412. /* We could have deleted elements so the list may be empty now */
  413. if (list_empty(&sc->rx.rxbuf))
  414. goto start_recv;
  415. bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
  416. ath9k_hw_putrxbuf(ah, bf->bf_daddr);
  417. ath9k_hw_rxena(ah);
  418. start_recv:
  419. spin_unlock_bh(&sc->rx.rxbuflock);
  420. ath_opmode_init(sc);
  421. ath9k_hw_startpcureceive(ah);
  422. return 0;
  423. }
  424. bool ath_stoprecv(struct ath_softc *sc)
  425. {
  426. struct ath_hw *ah = sc->sc_ah;
  427. bool stopped;
  428. ath9k_hw_stoppcurecv(ah);
  429. ath9k_hw_setrxfilter(ah, 0);
  430. stopped = ath9k_hw_stopdmarecv(ah);
  431. sc->rx.rxlink = NULL;
  432. return stopped;
  433. }
  434. void ath_flushrecv(struct ath_softc *sc)
  435. {
  436. spin_lock_bh(&sc->rx.rxflushlock);
  437. sc->sc_flags |= SC_OP_RXFLUSH;
  438. ath_rx_tasklet(sc, 1);
  439. sc->sc_flags &= ~SC_OP_RXFLUSH;
  440. spin_unlock_bh(&sc->rx.rxflushlock);
  441. }
  442. static bool ath_beacon_dtim_pending_cab(struct sk_buff *skb)
  443. {
  444. /* Check whether the Beacon frame has DTIM indicating buffered bc/mc */
  445. struct ieee80211_mgmt *mgmt;
  446. u8 *pos, *end, id, elen;
  447. struct ieee80211_tim_ie *tim;
  448. mgmt = (struct ieee80211_mgmt *)skb->data;
  449. pos = mgmt->u.beacon.variable;
  450. end = skb->data + skb->len;
  451. while (pos + 2 < end) {
  452. id = *pos++;
  453. elen = *pos++;
  454. if (pos + elen > end)
  455. break;
  456. if (id == WLAN_EID_TIM) {
  457. if (elen < sizeof(*tim))
  458. break;
  459. tim = (struct ieee80211_tim_ie *) pos;
  460. if (tim->dtim_count != 0)
  461. break;
  462. return tim->bitmap_ctrl & 0x01;
  463. }
  464. pos += elen;
  465. }
  466. return false;
  467. }
  468. static void ath_rx_ps_beacon(struct ath_softc *sc, struct sk_buff *skb)
  469. {
  470. struct ieee80211_mgmt *mgmt;
  471. if (skb->len < 24 + 8 + 2 + 2)
  472. return;
  473. mgmt = (struct ieee80211_mgmt *)skb->data;
  474. if (memcmp(sc->curbssid, mgmt->bssid, ETH_ALEN) != 0)
  475. return; /* not from our current AP */
  476. sc->sc_flags &= ~SC_OP_WAIT_FOR_BEACON;
  477. if (sc->sc_flags & SC_OP_BEACON_SYNC) {
  478. sc->sc_flags &= ~SC_OP_BEACON_SYNC;
  479. DPRINTF(sc, ATH_DBG_PS, "Reconfigure Beacon timers based on "
  480. "timestamp from the AP\n");
  481. ath_beacon_config(sc, NULL);
  482. }
  483. if (ath_beacon_dtim_pending_cab(skb)) {
  484. /*
  485. * Remain awake waiting for buffered broadcast/multicast
  486. * frames. If the last broadcast/multicast frame is not
  487. * received properly, the next beacon frame will work as
  488. * a backup trigger for returning into NETWORK SLEEP state,
  489. * so we are waiting for it as well.
  490. */
  491. DPRINTF(sc, ATH_DBG_PS, "Received DTIM beacon indicating "
  492. "buffered broadcast/multicast frame(s)\n");
  493. sc->sc_flags |= SC_OP_WAIT_FOR_CAB | SC_OP_WAIT_FOR_BEACON;
  494. return;
  495. }
  496. if (sc->sc_flags & SC_OP_WAIT_FOR_CAB) {
  497. /*
  498. * This can happen if a broadcast frame is dropped or the AP
  499. * fails to send a frame indicating that all CAB frames have
  500. * been delivered.
  501. */
  502. sc->sc_flags &= ~SC_OP_WAIT_FOR_CAB;
  503. DPRINTF(sc, ATH_DBG_PS, "PS wait for CAB frames timed out\n");
  504. }
  505. }
  506. static void ath_rx_ps(struct ath_softc *sc, struct sk_buff *skb)
  507. {
  508. struct ieee80211_hdr *hdr;
  509. hdr = (struct ieee80211_hdr *)skb->data;
  510. /* Process Beacon and CAB receive in PS state */
  511. if ((sc->sc_flags & SC_OP_WAIT_FOR_BEACON) &&
  512. ieee80211_is_beacon(hdr->frame_control))
  513. ath_rx_ps_beacon(sc, skb);
  514. else if ((sc->sc_flags & SC_OP_WAIT_FOR_CAB) &&
  515. (ieee80211_is_data(hdr->frame_control) ||
  516. ieee80211_is_action(hdr->frame_control)) &&
  517. is_multicast_ether_addr(hdr->addr1) &&
  518. !ieee80211_has_moredata(hdr->frame_control)) {
  519. /*
  520. * No more broadcast/multicast frames to be received at this
  521. * point.
  522. */
  523. sc->sc_flags &= ~SC_OP_WAIT_FOR_CAB;
  524. DPRINTF(sc, ATH_DBG_PS, "All PS CAB frames received, back to "
  525. "sleep\n");
  526. } else if ((sc->sc_flags & SC_OP_WAIT_FOR_PSPOLL_DATA) &&
  527. !is_multicast_ether_addr(hdr->addr1) &&
  528. !ieee80211_has_morefrags(hdr->frame_control)) {
  529. sc->sc_flags &= ~SC_OP_WAIT_FOR_PSPOLL_DATA;
  530. DPRINTF(sc, ATH_DBG_PS, "Going back to sleep after having "
  531. "received PS-Poll data (0x%x)\n",
  532. sc->sc_flags & (SC_OP_WAIT_FOR_BEACON |
  533. SC_OP_WAIT_FOR_CAB |
  534. SC_OP_WAIT_FOR_PSPOLL_DATA |
  535. SC_OP_WAIT_FOR_TX_ACK));
  536. }
  537. }
  538. static void ath_rx_send_to_mac80211(struct ath_softc *sc, struct sk_buff *skb,
  539. struct ieee80211_rx_status *rx_status)
  540. {
  541. struct ieee80211_hdr *hdr;
  542. hdr = (struct ieee80211_hdr *)skb->data;
  543. /* Send the frame to mac80211 */
  544. if (is_multicast_ether_addr(hdr->addr1)) {
  545. int i;
  546. /*
  547. * Deliver broadcast/multicast frames to all suitable
  548. * virtual wiphys.
  549. */
  550. /* TODO: filter based on channel configuration */
  551. for (i = 0; i < sc->num_sec_wiphy; i++) {
  552. struct ath_wiphy *aphy = sc->sec_wiphy[i];
  553. struct sk_buff *nskb;
  554. if (aphy == NULL)
  555. continue;
  556. nskb = skb_copy(skb, GFP_ATOMIC);
  557. if (nskb) {
  558. memcpy(IEEE80211_SKB_RXCB(nskb), rx_status,
  559. sizeof(*rx_status));
  560. ieee80211_rx(aphy->hw, nskb);
  561. }
  562. }
  563. memcpy(IEEE80211_SKB_RXCB(skb), rx_status, sizeof(*rx_status));
  564. ieee80211_rx(sc->hw, skb);
  565. } else {
  566. /* Deliver unicast frames based on receiver address */
  567. memcpy(IEEE80211_SKB_RXCB(skb), rx_status, sizeof(*rx_status));
  568. ieee80211_rx(ath_get_virt_hw(sc, hdr), skb);
  569. }
  570. }
  571. int ath_rx_tasklet(struct ath_softc *sc, int flush)
  572. {
  573. #define PA2DESC(_sc, _pa) \
  574. ((struct ath_desc *)((caddr_t)(_sc)->rx.rxdma.dd_desc + \
  575. ((_pa) - (_sc)->rx.rxdma.dd_desc_paddr)))
  576. struct ath_buf *bf;
  577. struct ath_desc *ds;
  578. struct sk_buff *skb = NULL, *requeue_skb;
  579. struct ieee80211_rx_status rx_status;
  580. struct ath_hw *ah = sc->sc_ah;
  581. struct ieee80211_hdr *hdr;
  582. int hdrlen, padsize, retval;
  583. bool decrypt_error = false;
  584. u8 keyix;
  585. __le16 fc;
  586. spin_lock_bh(&sc->rx.rxbuflock);
  587. do {
  588. /* If handling rx interrupt and flush is in progress => exit */
  589. if ((sc->sc_flags & SC_OP_RXFLUSH) && (flush == 0))
  590. break;
  591. if (list_empty(&sc->rx.rxbuf)) {
  592. sc->rx.rxlink = NULL;
  593. break;
  594. }
  595. bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
  596. ds = bf->bf_desc;
  597. /*
  598. * Must provide the virtual address of the current
  599. * descriptor, the physical address, and the virtual
  600. * address of the next descriptor in the h/w chain.
  601. * This allows the HAL to look ahead to see if the
  602. * hardware is done with a descriptor by checking the
  603. * done bit in the following descriptor and the address
  604. * of the current descriptor the DMA engine is working
  605. * on. All this is necessary because of our use of
  606. * a self-linked list to avoid rx overruns.
  607. */
  608. retval = ath9k_hw_rxprocdesc(ah, ds,
  609. bf->bf_daddr,
  610. PA2DESC(sc, ds->ds_link),
  611. 0);
  612. if (retval == -EINPROGRESS) {
  613. struct ath_buf *tbf;
  614. struct ath_desc *tds;
  615. if (list_is_last(&bf->list, &sc->rx.rxbuf)) {
  616. sc->rx.rxlink = NULL;
  617. break;
  618. }
  619. tbf = list_entry(bf->list.next, struct ath_buf, list);
  620. /*
  621. * On some hardware the descriptor status words could
  622. * get corrupted, including the done bit. Because of
  623. * this, check if the next descriptor's done bit is
  624. * set or not.
  625. *
  626. * If the next descriptor's done bit is set, the current
  627. * descriptor has been corrupted. Force s/w to discard
  628. * this descriptor and continue...
  629. */
  630. tds = tbf->bf_desc;
  631. retval = ath9k_hw_rxprocdesc(ah, tds, tbf->bf_daddr,
  632. PA2DESC(sc, tds->ds_link), 0);
  633. if (retval == -EINPROGRESS) {
  634. break;
  635. }
  636. }
  637. skb = bf->bf_mpdu;
  638. if (!skb)
  639. continue;
  640. /*
  641. * Synchronize the DMA transfer with CPU before
  642. * 1. accessing the frame
  643. * 2. requeueing the same buffer to h/w
  644. */
  645. dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
  646. sc->rx.bufsize,
  647. DMA_FROM_DEVICE);
  648. /*
  649. * If we're asked to flush receive queue, directly
  650. * chain it back at the queue without processing it.
  651. */
  652. if (flush)
  653. goto requeue;
  654. if (!ds->ds_rxstat.rs_datalen)
  655. goto requeue;
  656. /* The status portion of the descriptor could get corrupted. */
  657. if (sc->rx.bufsize < ds->ds_rxstat.rs_datalen)
  658. goto requeue;
  659. if (!ath_rx_prepare(skb, ds, &rx_status, &decrypt_error, sc))
  660. goto requeue;
  661. /* Ensure we always have an skb to requeue once we are done
  662. * processing the current buffer's skb */
  663. requeue_skb = ath_rxbuf_alloc(sc, sc->rx.bufsize, GFP_ATOMIC);
  664. /* If there is no memory we ignore the current RX'd frame,
  665. * tell hardware it can give us a new frame using the old
  666. * skb and put it at the tail of the sc->rx.rxbuf list for
  667. * processing. */
  668. if (!requeue_skb)
  669. goto requeue;
  670. /* Unmap the frame */
  671. dma_unmap_single(sc->dev, bf->bf_buf_addr,
  672. sc->rx.bufsize,
  673. DMA_FROM_DEVICE);
  674. skb_put(skb, ds->ds_rxstat.rs_datalen);
  675. skb->protocol = cpu_to_be16(ETH_P_CONTROL);
  676. /* see if any padding is done by the hw and remove it */
  677. hdr = (struct ieee80211_hdr *)skb->data;
  678. hdrlen = ieee80211_get_hdrlen_from_skb(skb);
  679. fc = hdr->frame_control;
  680. /* The MAC header is padded to have 32-bit boundary if the
  681. * packet payload is non-zero. The general calculation for
  682. * padsize would take into account odd header lengths:
  683. * padsize = (4 - hdrlen % 4) % 4; However, since only
  684. * even-length headers are used, padding can only be 0 or 2
  685. * bytes and we can optimize this a bit. In addition, we must
  686. * not try to remove padding from short control frames that do
  687. * not have payload. */
  688. padsize = hdrlen & 3;
  689. if (padsize && hdrlen >= 24) {
  690. memmove(skb->data + padsize, skb->data, hdrlen);
  691. skb_pull(skb, padsize);
  692. }
  693. keyix = ds->ds_rxstat.rs_keyix;
  694. if (!(keyix == ATH9K_RXKEYIX_INVALID) && !decrypt_error) {
  695. rx_status.flag |= RX_FLAG_DECRYPTED;
  696. } else if (ieee80211_has_protected(fc)
  697. && !decrypt_error && skb->len >= hdrlen + 4) {
  698. keyix = skb->data[hdrlen + 3] >> 6;
  699. if (test_bit(keyix, sc->keymap))
  700. rx_status.flag |= RX_FLAG_DECRYPTED;
  701. }
  702. if (ah->sw_mgmt_crypto &&
  703. (rx_status.flag & RX_FLAG_DECRYPTED) &&
  704. ieee80211_is_mgmt(fc)) {
  705. /* Use software decrypt for management frames. */
  706. rx_status.flag &= ~RX_FLAG_DECRYPTED;
  707. }
  708. /* We will now give hardware our shiny new allocated skb */
  709. bf->bf_mpdu = requeue_skb;
  710. bf->bf_buf_addr = dma_map_single(sc->dev, requeue_skb->data,
  711. sc->rx.bufsize,
  712. DMA_FROM_DEVICE);
  713. if (unlikely(dma_mapping_error(sc->dev,
  714. bf->bf_buf_addr))) {
  715. dev_kfree_skb_any(requeue_skb);
  716. bf->bf_mpdu = NULL;
  717. DPRINTF(sc, ATH_DBG_FATAL,
  718. "dma_mapping_error() on RX\n");
  719. ath_rx_send_to_mac80211(sc, skb, &rx_status);
  720. break;
  721. }
  722. bf->bf_dmacontext = bf->bf_buf_addr;
  723. /*
  724. * change the default rx antenna if rx diversity chooses the
  725. * other antenna 3 times in a row.
  726. */
  727. if (sc->rx.defant != ds->ds_rxstat.rs_antenna) {
  728. if (++sc->rx.rxotherant >= 3)
  729. ath_setdefantenna(sc, ds->ds_rxstat.rs_antenna);
  730. } else {
  731. sc->rx.rxotherant = 0;
  732. }
  733. if (unlikely(sc->sc_flags & (SC_OP_WAIT_FOR_BEACON |
  734. SC_OP_WAIT_FOR_CAB |
  735. SC_OP_WAIT_FOR_PSPOLL_DATA)))
  736. ath_rx_ps(sc, skb);
  737. ath_rx_send_to_mac80211(sc, skb, &rx_status);
  738. requeue:
  739. list_move_tail(&bf->list, &sc->rx.rxbuf);
  740. ath_rx_buf_link(sc, bf);
  741. } while (1);
  742. spin_unlock_bh(&sc->rx.rxbuflock);
  743. return 0;
  744. #undef PA2DESC
  745. }