cpuset.c 78 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750
  1. /*
  2. * kernel/cpuset.c
  3. *
  4. * Processor and Memory placement constraints for sets of tasks.
  5. *
  6. * Copyright (C) 2003 BULL SA.
  7. * Copyright (C) 2004-2007 Silicon Graphics, Inc.
  8. * Copyright (C) 2006 Google, Inc
  9. *
  10. * Portions derived from Patrick Mochel's sysfs code.
  11. * sysfs is Copyright (c) 2001-3 Patrick Mochel
  12. *
  13. * 2003-10-10 Written by Simon Derr.
  14. * 2003-10-22 Updates by Stephen Hemminger.
  15. * 2004 May-July Rework by Paul Jackson.
  16. * 2006 Rework by Paul Menage to use generic cgroups
  17. * 2008 Rework of the scheduler domains and CPU hotplug handling
  18. * by Max Krasnyansky
  19. *
  20. * This file is subject to the terms and conditions of the GNU General Public
  21. * License. See the file COPYING in the main directory of the Linux
  22. * distribution for more details.
  23. */
  24. #include <linux/cpu.h>
  25. #include <linux/cpumask.h>
  26. #include <linux/cpuset.h>
  27. #include <linux/err.h>
  28. #include <linux/errno.h>
  29. #include <linux/file.h>
  30. #include <linux/fs.h>
  31. #include <linux/init.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/kernel.h>
  34. #include <linux/kmod.h>
  35. #include <linux/list.h>
  36. #include <linux/mempolicy.h>
  37. #include <linux/mm.h>
  38. #include <linux/memory.h>
  39. #include <linux/export.h>
  40. #include <linux/mount.h>
  41. #include <linux/namei.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/proc_fs.h>
  44. #include <linux/rcupdate.h>
  45. #include <linux/sched.h>
  46. #include <linux/seq_file.h>
  47. #include <linux/security.h>
  48. #include <linux/slab.h>
  49. #include <linux/spinlock.h>
  50. #include <linux/stat.h>
  51. #include <linux/string.h>
  52. #include <linux/time.h>
  53. #include <linux/backing-dev.h>
  54. #include <linux/sort.h>
  55. #include <asm/uaccess.h>
  56. #include <linux/atomic.h>
  57. #include <linux/mutex.h>
  58. #include <linux/workqueue.h>
  59. #include <linux/cgroup.h>
  60. #include <linux/wait.h>
  61. /*
  62. * Tracks how many cpusets are currently defined in system.
  63. * When there is only one cpuset (the root cpuset) we can
  64. * short circuit some hooks.
  65. */
  66. int number_of_cpusets __read_mostly;
  67. /* Forward declare cgroup structures */
  68. struct cgroup_subsys cpuset_subsys;
  69. /* See "Frequency meter" comments, below. */
  70. struct fmeter {
  71. int cnt; /* unprocessed events count */
  72. int val; /* most recent output value */
  73. time_t time; /* clock (secs) when val computed */
  74. spinlock_t lock; /* guards read or write of above */
  75. };
  76. struct cpuset {
  77. struct cgroup_subsys_state css;
  78. unsigned long flags; /* "unsigned long" so bitops work */
  79. cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
  80. nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
  81. /*
  82. * This is old Memory Nodes tasks took on.
  83. *
  84. * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
  85. * - A new cpuset's old_mems_allowed is initialized when some
  86. * task is moved into it.
  87. * - old_mems_allowed is used in cpuset_migrate_mm() when we change
  88. * cpuset.mems_allowed and have tasks' nodemask updated, and
  89. * then old_mems_allowed is updated to mems_allowed.
  90. */
  91. nodemask_t old_mems_allowed;
  92. struct fmeter fmeter; /* memory_pressure filter */
  93. /*
  94. * Tasks are being attached to this cpuset. Used to prevent
  95. * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
  96. */
  97. int attach_in_progress;
  98. /* partition number for rebuild_sched_domains() */
  99. int pn;
  100. /* for custom sched domain */
  101. int relax_domain_level;
  102. };
  103. static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
  104. {
  105. return css ? container_of(css, struct cpuset, css) : NULL;
  106. }
  107. /* Retrieve the cpuset for a cgroup */
  108. static inline struct cpuset *cgroup_cs(struct cgroup *cgrp)
  109. {
  110. return css_cs(cgroup_css(cgrp, cpuset_subsys_id));
  111. }
  112. /* Retrieve the cpuset for a task */
  113. static inline struct cpuset *task_cs(struct task_struct *task)
  114. {
  115. return css_cs(task_css(task, cpuset_subsys_id));
  116. }
  117. static inline struct cpuset *parent_cs(struct cpuset *cs)
  118. {
  119. return css_cs(css_parent(&cs->css));
  120. }
  121. #ifdef CONFIG_NUMA
  122. static inline bool task_has_mempolicy(struct task_struct *task)
  123. {
  124. return task->mempolicy;
  125. }
  126. #else
  127. static inline bool task_has_mempolicy(struct task_struct *task)
  128. {
  129. return false;
  130. }
  131. #endif
  132. /* bits in struct cpuset flags field */
  133. typedef enum {
  134. CS_ONLINE,
  135. CS_CPU_EXCLUSIVE,
  136. CS_MEM_EXCLUSIVE,
  137. CS_MEM_HARDWALL,
  138. CS_MEMORY_MIGRATE,
  139. CS_SCHED_LOAD_BALANCE,
  140. CS_SPREAD_PAGE,
  141. CS_SPREAD_SLAB,
  142. } cpuset_flagbits_t;
  143. /* convenient tests for these bits */
  144. static inline bool is_cpuset_online(const struct cpuset *cs)
  145. {
  146. return test_bit(CS_ONLINE, &cs->flags);
  147. }
  148. static inline int is_cpu_exclusive(const struct cpuset *cs)
  149. {
  150. return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
  151. }
  152. static inline int is_mem_exclusive(const struct cpuset *cs)
  153. {
  154. return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
  155. }
  156. static inline int is_mem_hardwall(const struct cpuset *cs)
  157. {
  158. return test_bit(CS_MEM_HARDWALL, &cs->flags);
  159. }
  160. static inline int is_sched_load_balance(const struct cpuset *cs)
  161. {
  162. return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  163. }
  164. static inline int is_memory_migrate(const struct cpuset *cs)
  165. {
  166. return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
  167. }
  168. static inline int is_spread_page(const struct cpuset *cs)
  169. {
  170. return test_bit(CS_SPREAD_PAGE, &cs->flags);
  171. }
  172. static inline int is_spread_slab(const struct cpuset *cs)
  173. {
  174. return test_bit(CS_SPREAD_SLAB, &cs->flags);
  175. }
  176. static struct cpuset top_cpuset = {
  177. .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
  178. (1 << CS_MEM_EXCLUSIVE)),
  179. };
  180. /**
  181. * cpuset_for_each_child - traverse online children of a cpuset
  182. * @child_cs: loop cursor pointing to the current child
  183. * @pos_cgrp: used for iteration
  184. * @parent_cs: target cpuset to walk children of
  185. *
  186. * Walk @child_cs through the online children of @parent_cs. Must be used
  187. * with RCU read locked.
  188. */
  189. #define cpuset_for_each_child(child_cs, pos_cgrp, parent_cs) \
  190. cgroup_for_each_child((pos_cgrp), (parent_cs)->css.cgroup) \
  191. if (is_cpuset_online(((child_cs) = cgroup_cs((pos_cgrp)))))
  192. /**
  193. * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
  194. * @des_cs: loop cursor pointing to the current descendant
  195. * @pos_cgrp: used for iteration
  196. * @root_cs: target cpuset to walk ancestor of
  197. *
  198. * Walk @des_cs through the online descendants of @root_cs. Must be used
  199. * with RCU read locked. The caller may modify @pos_cgrp by calling
  200. * cgroup_rightmost_descendant() to skip subtree.
  201. */
  202. #define cpuset_for_each_descendant_pre(des_cs, pos_cgrp, root_cs) \
  203. cgroup_for_each_descendant_pre((pos_cgrp), (root_cs)->css.cgroup) \
  204. if (is_cpuset_online(((des_cs) = cgroup_cs((pos_cgrp)))))
  205. /*
  206. * There are two global mutexes guarding cpuset structures - cpuset_mutex
  207. * and callback_mutex. The latter may nest inside the former. We also
  208. * require taking task_lock() when dereferencing a task's cpuset pointer.
  209. * See "The task_lock() exception", at the end of this comment.
  210. *
  211. * A task must hold both mutexes to modify cpusets. If a task holds
  212. * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
  213. * is the only task able to also acquire callback_mutex and be able to
  214. * modify cpusets. It can perform various checks on the cpuset structure
  215. * first, knowing nothing will change. It can also allocate memory while
  216. * just holding cpuset_mutex. While it is performing these checks, various
  217. * callback routines can briefly acquire callback_mutex to query cpusets.
  218. * Once it is ready to make the changes, it takes callback_mutex, blocking
  219. * everyone else.
  220. *
  221. * Calls to the kernel memory allocator can not be made while holding
  222. * callback_mutex, as that would risk double tripping on callback_mutex
  223. * from one of the callbacks into the cpuset code from within
  224. * __alloc_pages().
  225. *
  226. * If a task is only holding callback_mutex, then it has read-only
  227. * access to cpusets.
  228. *
  229. * Now, the task_struct fields mems_allowed and mempolicy may be changed
  230. * by other task, we use alloc_lock in the task_struct fields to protect
  231. * them.
  232. *
  233. * The cpuset_common_file_read() handlers only hold callback_mutex across
  234. * small pieces of code, such as when reading out possibly multi-word
  235. * cpumasks and nodemasks.
  236. *
  237. * Accessing a task's cpuset should be done in accordance with the
  238. * guidelines for accessing subsystem state in kernel/cgroup.c
  239. */
  240. static DEFINE_MUTEX(cpuset_mutex);
  241. static DEFINE_MUTEX(callback_mutex);
  242. /*
  243. * CPU / memory hotplug is handled asynchronously.
  244. */
  245. static void cpuset_hotplug_workfn(struct work_struct *work);
  246. static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
  247. static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
  248. /*
  249. * This is ugly, but preserves the userspace API for existing cpuset
  250. * users. If someone tries to mount the "cpuset" filesystem, we
  251. * silently switch it to mount "cgroup" instead
  252. */
  253. static struct dentry *cpuset_mount(struct file_system_type *fs_type,
  254. int flags, const char *unused_dev_name, void *data)
  255. {
  256. struct file_system_type *cgroup_fs = get_fs_type("cgroup");
  257. struct dentry *ret = ERR_PTR(-ENODEV);
  258. if (cgroup_fs) {
  259. char mountopts[] =
  260. "cpuset,noprefix,"
  261. "release_agent=/sbin/cpuset_release_agent";
  262. ret = cgroup_fs->mount(cgroup_fs, flags,
  263. unused_dev_name, mountopts);
  264. put_filesystem(cgroup_fs);
  265. }
  266. return ret;
  267. }
  268. static struct file_system_type cpuset_fs_type = {
  269. .name = "cpuset",
  270. .mount = cpuset_mount,
  271. };
  272. /*
  273. * Return in pmask the portion of a cpusets's cpus_allowed that
  274. * are online. If none are online, walk up the cpuset hierarchy
  275. * until we find one that does have some online cpus. The top
  276. * cpuset always has some cpus online.
  277. *
  278. * One way or another, we guarantee to return some non-empty subset
  279. * of cpu_online_mask.
  280. *
  281. * Call with callback_mutex held.
  282. */
  283. static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
  284. {
  285. while (!cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
  286. cs = parent_cs(cs);
  287. cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
  288. }
  289. /*
  290. * Return in *pmask the portion of a cpusets's mems_allowed that
  291. * are online, with memory. If none are online with memory, walk
  292. * up the cpuset hierarchy until we find one that does have some
  293. * online mems. The top cpuset always has some mems online.
  294. *
  295. * One way or another, we guarantee to return some non-empty subset
  296. * of node_states[N_MEMORY].
  297. *
  298. * Call with callback_mutex held.
  299. */
  300. static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
  301. {
  302. while (!nodes_intersects(cs->mems_allowed, node_states[N_MEMORY]))
  303. cs = parent_cs(cs);
  304. nodes_and(*pmask, cs->mems_allowed, node_states[N_MEMORY]);
  305. }
  306. /*
  307. * update task's spread flag if cpuset's page/slab spread flag is set
  308. *
  309. * Called with callback_mutex/cpuset_mutex held
  310. */
  311. static void cpuset_update_task_spread_flag(struct cpuset *cs,
  312. struct task_struct *tsk)
  313. {
  314. if (is_spread_page(cs))
  315. tsk->flags |= PF_SPREAD_PAGE;
  316. else
  317. tsk->flags &= ~PF_SPREAD_PAGE;
  318. if (is_spread_slab(cs))
  319. tsk->flags |= PF_SPREAD_SLAB;
  320. else
  321. tsk->flags &= ~PF_SPREAD_SLAB;
  322. }
  323. /*
  324. * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
  325. *
  326. * One cpuset is a subset of another if all its allowed CPUs and
  327. * Memory Nodes are a subset of the other, and its exclusive flags
  328. * are only set if the other's are set. Call holding cpuset_mutex.
  329. */
  330. static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
  331. {
  332. return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
  333. nodes_subset(p->mems_allowed, q->mems_allowed) &&
  334. is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
  335. is_mem_exclusive(p) <= is_mem_exclusive(q);
  336. }
  337. /**
  338. * alloc_trial_cpuset - allocate a trial cpuset
  339. * @cs: the cpuset that the trial cpuset duplicates
  340. */
  341. static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
  342. {
  343. struct cpuset *trial;
  344. trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
  345. if (!trial)
  346. return NULL;
  347. if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
  348. kfree(trial);
  349. return NULL;
  350. }
  351. cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
  352. return trial;
  353. }
  354. /**
  355. * free_trial_cpuset - free the trial cpuset
  356. * @trial: the trial cpuset to be freed
  357. */
  358. static void free_trial_cpuset(struct cpuset *trial)
  359. {
  360. free_cpumask_var(trial->cpus_allowed);
  361. kfree(trial);
  362. }
  363. /*
  364. * validate_change() - Used to validate that any proposed cpuset change
  365. * follows the structural rules for cpusets.
  366. *
  367. * If we replaced the flag and mask values of the current cpuset
  368. * (cur) with those values in the trial cpuset (trial), would
  369. * our various subset and exclusive rules still be valid? Presumes
  370. * cpuset_mutex held.
  371. *
  372. * 'cur' is the address of an actual, in-use cpuset. Operations
  373. * such as list traversal that depend on the actual address of the
  374. * cpuset in the list must use cur below, not trial.
  375. *
  376. * 'trial' is the address of bulk structure copy of cur, with
  377. * perhaps one or more of the fields cpus_allowed, mems_allowed,
  378. * or flags changed to new, trial values.
  379. *
  380. * Return 0 if valid, -errno if not.
  381. */
  382. static int validate_change(struct cpuset *cur, struct cpuset *trial)
  383. {
  384. struct cgroup *cgrp;
  385. struct cpuset *c, *par;
  386. int ret;
  387. rcu_read_lock();
  388. /* Each of our child cpusets must be a subset of us */
  389. ret = -EBUSY;
  390. cpuset_for_each_child(c, cgrp, cur)
  391. if (!is_cpuset_subset(c, trial))
  392. goto out;
  393. /* Remaining checks don't apply to root cpuset */
  394. ret = 0;
  395. if (cur == &top_cpuset)
  396. goto out;
  397. par = parent_cs(cur);
  398. /* We must be a subset of our parent cpuset */
  399. ret = -EACCES;
  400. if (!is_cpuset_subset(trial, par))
  401. goto out;
  402. /*
  403. * If either I or some sibling (!= me) is exclusive, we can't
  404. * overlap
  405. */
  406. ret = -EINVAL;
  407. cpuset_for_each_child(c, cgrp, par) {
  408. if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
  409. c != cur &&
  410. cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
  411. goto out;
  412. if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
  413. c != cur &&
  414. nodes_intersects(trial->mems_allowed, c->mems_allowed))
  415. goto out;
  416. }
  417. /*
  418. * Cpusets with tasks - existing or newly being attached - can't
  419. * have empty cpus_allowed or mems_allowed.
  420. */
  421. ret = -ENOSPC;
  422. if ((cgroup_task_count(cur->css.cgroup) || cur->attach_in_progress) &&
  423. (cpumask_empty(trial->cpus_allowed) &&
  424. nodes_empty(trial->mems_allowed)))
  425. goto out;
  426. ret = 0;
  427. out:
  428. rcu_read_unlock();
  429. return ret;
  430. }
  431. #ifdef CONFIG_SMP
  432. /*
  433. * Helper routine for generate_sched_domains().
  434. * Do cpusets a, b have overlapping cpus_allowed masks?
  435. */
  436. static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
  437. {
  438. return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
  439. }
  440. static void
  441. update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
  442. {
  443. if (dattr->relax_domain_level < c->relax_domain_level)
  444. dattr->relax_domain_level = c->relax_domain_level;
  445. return;
  446. }
  447. static void update_domain_attr_tree(struct sched_domain_attr *dattr,
  448. struct cpuset *root_cs)
  449. {
  450. struct cpuset *cp;
  451. struct cgroup *pos_cgrp;
  452. rcu_read_lock();
  453. cpuset_for_each_descendant_pre(cp, pos_cgrp, root_cs) {
  454. /* skip the whole subtree if @cp doesn't have any CPU */
  455. if (cpumask_empty(cp->cpus_allowed)) {
  456. pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
  457. continue;
  458. }
  459. if (is_sched_load_balance(cp))
  460. update_domain_attr(dattr, cp);
  461. }
  462. rcu_read_unlock();
  463. }
  464. /*
  465. * generate_sched_domains()
  466. *
  467. * This function builds a partial partition of the systems CPUs
  468. * A 'partial partition' is a set of non-overlapping subsets whose
  469. * union is a subset of that set.
  470. * The output of this function needs to be passed to kernel/sched/core.c
  471. * partition_sched_domains() routine, which will rebuild the scheduler's
  472. * load balancing domains (sched domains) as specified by that partial
  473. * partition.
  474. *
  475. * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
  476. * for a background explanation of this.
  477. *
  478. * Does not return errors, on the theory that the callers of this
  479. * routine would rather not worry about failures to rebuild sched
  480. * domains when operating in the severe memory shortage situations
  481. * that could cause allocation failures below.
  482. *
  483. * Must be called with cpuset_mutex held.
  484. *
  485. * The three key local variables below are:
  486. * q - a linked-list queue of cpuset pointers, used to implement a
  487. * top-down scan of all cpusets. This scan loads a pointer
  488. * to each cpuset marked is_sched_load_balance into the
  489. * array 'csa'. For our purposes, rebuilding the schedulers
  490. * sched domains, we can ignore !is_sched_load_balance cpusets.
  491. * csa - (for CpuSet Array) Array of pointers to all the cpusets
  492. * that need to be load balanced, for convenient iterative
  493. * access by the subsequent code that finds the best partition,
  494. * i.e the set of domains (subsets) of CPUs such that the
  495. * cpus_allowed of every cpuset marked is_sched_load_balance
  496. * is a subset of one of these domains, while there are as
  497. * many such domains as possible, each as small as possible.
  498. * doms - Conversion of 'csa' to an array of cpumasks, for passing to
  499. * the kernel/sched/core.c routine partition_sched_domains() in a
  500. * convenient format, that can be easily compared to the prior
  501. * value to determine what partition elements (sched domains)
  502. * were changed (added or removed.)
  503. *
  504. * Finding the best partition (set of domains):
  505. * The triple nested loops below over i, j, k scan over the
  506. * load balanced cpusets (using the array of cpuset pointers in
  507. * csa[]) looking for pairs of cpusets that have overlapping
  508. * cpus_allowed, but which don't have the same 'pn' partition
  509. * number and gives them in the same partition number. It keeps
  510. * looping on the 'restart' label until it can no longer find
  511. * any such pairs.
  512. *
  513. * The union of the cpus_allowed masks from the set of
  514. * all cpusets having the same 'pn' value then form the one
  515. * element of the partition (one sched domain) to be passed to
  516. * partition_sched_domains().
  517. */
  518. static int generate_sched_domains(cpumask_var_t **domains,
  519. struct sched_domain_attr **attributes)
  520. {
  521. struct cpuset *cp; /* scans q */
  522. struct cpuset **csa; /* array of all cpuset ptrs */
  523. int csn; /* how many cpuset ptrs in csa so far */
  524. int i, j, k; /* indices for partition finding loops */
  525. cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
  526. struct sched_domain_attr *dattr; /* attributes for custom domains */
  527. int ndoms = 0; /* number of sched domains in result */
  528. int nslot; /* next empty doms[] struct cpumask slot */
  529. struct cgroup *pos_cgrp;
  530. doms = NULL;
  531. dattr = NULL;
  532. csa = NULL;
  533. /* Special case for the 99% of systems with one, full, sched domain */
  534. if (is_sched_load_balance(&top_cpuset)) {
  535. ndoms = 1;
  536. doms = alloc_sched_domains(ndoms);
  537. if (!doms)
  538. goto done;
  539. dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
  540. if (dattr) {
  541. *dattr = SD_ATTR_INIT;
  542. update_domain_attr_tree(dattr, &top_cpuset);
  543. }
  544. cpumask_copy(doms[0], top_cpuset.cpus_allowed);
  545. goto done;
  546. }
  547. csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
  548. if (!csa)
  549. goto done;
  550. csn = 0;
  551. rcu_read_lock();
  552. cpuset_for_each_descendant_pre(cp, pos_cgrp, &top_cpuset) {
  553. /*
  554. * Continue traversing beyond @cp iff @cp has some CPUs and
  555. * isn't load balancing. The former is obvious. The
  556. * latter: All child cpusets contain a subset of the
  557. * parent's cpus, so just skip them, and then we call
  558. * update_domain_attr_tree() to calc relax_domain_level of
  559. * the corresponding sched domain.
  560. */
  561. if (!cpumask_empty(cp->cpus_allowed) &&
  562. !is_sched_load_balance(cp))
  563. continue;
  564. if (is_sched_load_balance(cp))
  565. csa[csn++] = cp;
  566. /* skip @cp's subtree */
  567. pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
  568. }
  569. rcu_read_unlock();
  570. for (i = 0; i < csn; i++)
  571. csa[i]->pn = i;
  572. ndoms = csn;
  573. restart:
  574. /* Find the best partition (set of sched domains) */
  575. for (i = 0; i < csn; i++) {
  576. struct cpuset *a = csa[i];
  577. int apn = a->pn;
  578. for (j = 0; j < csn; j++) {
  579. struct cpuset *b = csa[j];
  580. int bpn = b->pn;
  581. if (apn != bpn && cpusets_overlap(a, b)) {
  582. for (k = 0; k < csn; k++) {
  583. struct cpuset *c = csa[k];
  584. if (c->pn == bpn)
  585. c->pn = apn;
  586. }
  587. ndoms--; /* one less element */
  588. goto restart;
  589. }
  590. }
  591. }
  592. /*
  593. * Now we know how many domains to create.
  594. * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
  595. */
  596. doms = alloc_sched_domains(ndoms);
  597. if (!doms)
  598. goto done;
  599. /*
  600. * The rest of the code, including the scheduler, can deal with
  601. * dattr==NULL case. No need to abort if alloc fails.
  602. */
  603. dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
  604. for (nslot = 0, i = 0; i < csn; i++) {
  605. struct cpuset *a = csa[i];
  606. struct cpumask *dp;
  607. int apn = a->pn;
  608. if (apn < 0) {
  609. /* Skip completed partitions */
  610. continue;
  611. }
  612. dp = doms[nslot];
  613. if (nslot == ndoms) {
  614. static int warnings = 10;
  615. if (warnings) {
  616. printk(KERN_WARNING
  617. "rebuild_sched_domains confused:"
  618. " nslot %d, ndoms %d, csn %d, i %d,"
  619. " apn %d\n",
  620. nslot, ndoms, csn, i, apn);
  621. warnings--;
  622. }
  623. continue;
  624. }
  625. cpumask_clear(dp);
  626. if (dattr)
  627. *(dattr + nslot) = SD_ATTR_INIT;
  628. for (j = i; j < csn; j++) {
  629. struct cpuset *b = csa[j];
  630. if (apn == b->pn) {
  631. cpumask_or(dp, dp, b->cpus_allowed);
  632. if (dattr)
  633. update_domain_attr_tree(dattr + nslot, b);
  634. /* Done with this partition */
  635. b->pn = -1;
  636. }
  637. }
  638. nslot++;
  639. }
  640. BUG_ON(nslot != ndoms);
  641. done:
  642. kfree(csa);
  643. /*
  644. * Fallback to the default domain if kmalloc() failed.
  645. * See comments in partition_sched_domains().
  646. */
  647. if (doms == NULL)
  648. ndoms = 1;
  649. *domains = doms;
  650. *attributes = dattr;
  651. return ndoms;
  652. }
  653. /*
  654. * Rebuild scheduler domains.
  655. *
  656. * If the flag 'sched_load_balance' of any cpuset with non-empty
  657. * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
  658. * which has that flag enabled, or if any cpuset with a non-empty
  659. * 'cpus' is removed, then call this routine to rebuild the
  660. * scheduler's dynamic sched domains.
  661. *
  662. * Call with cpuset_mutex held. Takes get_online_cpus().
  663. */
  664. static void rebuild_sched_domains_locked(void)
  665. {
  666. struct sched_domain_attr *attr;
  667. cpumask_var_t *doms;
  668. int ndoms;
  669. lockdep_assert_held(&cpuset_mutex);
  670. get_online_cpus();
  671. /*
  672. * We have raced with CPU hotplug. Don't do anything to avoid
  673. * passing doms with offlined cpu to partition_sched_domains().
  674. * Anyways, hotplug work item will rebuild sched domains.
  675. */
  676. if (!cpumask_equal(top_cpuset.cpus_allowed, cpu_active_mask))
  677. goto out;
  678. /* Generate domain masks and attrs */
  679. ndoms = generate_sched_domains(&doms, &attr);
  680. /* Have scheduler rebuild the domains */
  681. partition_sched_domains(ndoms, doms, attr);
  682. out:
  683. put_online_cpus();
  684. }
  685. #else /* !CONFIG_SMP */
  686. static void rebuild_sched_domains_locked(void)
  687. {
  688. }
  689. #endif /* CONFIG_SMP */
  690. void rebuild_sched_domains(void)
  691. {
  692. mutex_lock(&cpuset_mutex);
  693. rebuild_sched_domains_locked();
  694. mutex_unlock(&cpuset_mutex);
  695. }
  696. /*
  697. * effective_cpumask_cpuset - return nearest ancestor with non-empty cpus
  698. * @cs: the cpuset in interest
  699. *
  700. * A cpuset's effective cpumask is the cpumask of the nearest ancestor
  701. * with non-empty cpus. We use effective cpumask whenever:
  702. * - we update tasks' cpus_allowed. (they take on the ancestor's cpumask
  703. * if the cpuset they reside in has no cpus)
  704. * - we want to retrieve task_cs(tsk)'s cpus_allowed.
  705. *
  706. * Called with cpuset_mutex held. cpuset_cpus_allowed_fallback() is an
  707. * exception. See comments there.
  708. */
  709. static struct cpuset *effective_cpumask_cpuset(struct cpuset *cs)
  710. {
  711. while (cpumask_empty(cs->cpus_allowed))
  712. cs = parent_cs(cs);
  713. return cs;
  714. }
  715. /*
  716. * effective_nodemask_cpuset - return nearest ancestor with non-empty mems
  717. * @cs: the cpuset in interest
  718. *
  719. * A cpuset's effective nodemask is the nodemask of the nearest ancestor
  720. * with non-empty memss. We use effective nodemask whenever:
  721. * - we update tasks' mems_allowed. (they take on the ancestor's nodemask
  722. * if the cpuset they reside in has no mems)
  723. * - we want to retrieve task_cs(tsk)'s mems_allowed.
  724. *
  725. * Called with cpuset_mutex held.
  726. */
  727. static struct cpuset *effective_nodemask_cpuset(struct cpuset *cs)
  728. {
  729. while (nodes_empty(cs->mems_allowed))
  730. cs = parent_cs(cs);
  731. return cs;
  732. }
  733. /**
  734. * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
  735. * @tsk: task to test
  736. * @scan: struct cgroup_scanner containing the cgroup of the task
  737. *
  738. * Called by cgroup_scan_tasks() for each task in a cgroup whose
  739. * cpus_allowed mask needs to be changed.
  740. *
  741. * We don't need to re-check for the cgroup/cpuset membership, since we're
  742. * holding cpuset_mutex at this point.
  743. */
  744. static void cpuset_change_cpumask(struct task_struct *tsk,
  745. struct cgroup_scanner *scan)
  746. {
  747. struct cpuset *cpus_cs;
  748. cpus_cs = effective_cpumask_cpuset(cgroup_cs(scan->cgrp));
  749. set_cpus_allowed_ptr(tsk, cpus_cs->cpus_allowed);
  750. }
  751. /**
  752. * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
  753. * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
  754. * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
  755. *
  756. * Called with cpuset_mutex held
  757. *
  758. * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
  759. * calling callback functions for each.
  760. *
  761. * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
  762. * if @heap != NULL.
  763. */
  764. static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
  765. {
  766. struct cgroup_scanner scan;
  767. scan.cgrp = cs->css.cgroup;
  768. scan.test_task = NULL;
  769. scan.process_task = cpuset_change_cpumask;
  770. scan.heap = heap;
  771. cgroup_scan_tasks(&scan);
  772. }
  773. /*
  774. * update_tasks_cpumask_hier - Update the cpumasks of tasks in the hierarchy.
  775. * @root_cs: the root cpuset of the hierarchy
  776. * @update_root: update root cpuset or not?
  777. * @heap: the heap used by cgroup_scan_tasks()
  778. *
  779. * This will update cpumasks of tasks in @root_cs and all other empty cpusets
  780. * which take on cpumask of @root_cs.
  781. *
  782. * Called with cpuset_mutex held
  783. */
  784. static void update_tasks_cpumask_hier(struct cpuset *root_cs,
  785. bool update_root, struct ptr_heap *heap)
  786. {
  787. struct cpuset *cp;
  788. struct cgroup *pos_cgrp;
  789. if (update_root)
  790. update_tasks_cpumask(root_cs, heap);
  791. rcu_read_lock();
  792. cpuset_for_each_descendant_pre(cp, pos_cgrp, root_cs) {
  793. /* skip the whole subtree if @cp have some CPU */
  794. if (!cpumask_empty(cp->cpus_allowed)) {
  795. pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
  796. continue;
  797. }
  798. if (!css_tryget(&cp->css))
  799. continue;
  800. rcu_read_unlock();
  801. update_tasks_cpumask(cp, heap);
  802. rcu_read_lock();
  803. css_put(&cp->css);
  804. }
  805. rcu_read_unlock();
  806. }
  807. /**
  808. * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
  809. * @cs: the cpuset to consider
  810. * @buf: buffer of cpu numbers written to this cpuset
  811. */
  812. static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
  813. const char *buf)
  814. {
  815. struct ptr_heap heap;
  816. int retval;
  817. int is_load_balanced;
  818. /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
  819. if (cs == &top_cpuset)
  820. return -EACCES;
  821. /*
  822. * An empty cpus_allowed is ok only if the cpuset has no tasks.
  823. * Since cpulist_parse() fails on an empty mask, we special case
  824. * that parsing. The validate_change() call ensures that cpusets
  825. * with tasks have cpus.
  826. */
  827. if (!*buf) {
  828. cpumask_clear(trialcs->cpus_allowed);
  829. } else {
  830. retval = cpulist_parse(buf, trialcs->cpus_allowed);
  831. if (retval < 0)
  832. return retval;
  833. if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
  834. return -EINVAL;
  835. }
  836. /* Nothing to do if the cpus didn't change */
  837. if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
  838. return 0;
  839. retval = validate_change(cs, trialcs);
  840. if (retval < 0)
  841. return retval;
  842. retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
  843. if (retval)
  844. return retval;
  845. is_load_balanced = is_sched_load_balance(trialcs);
  846. mutex_lock(&callback_mutex);
  847. cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
  848. mutex_unlock(&callback_mutex);
  849. update_tasks_cpumask_hier(cs, true, &heap);
  850. heap_free(&heap);
  851. if (is_load_balanced)
  852. rebuild_sched_domains_locked();
  853. return 0;
  854. }
  855. /*
  856. * cpuset_migrate_mm
  857. *
  858. * Migrate memory region from one set of nodes to another.
  859. *
  860. * Temporarilly set tasks mems_allowed to target nodes of migration,
  861. * so that the migration code can allocate pages on these nodes.
  862. *
  863. * Call holding cpuset_mutex, so current's cpuset won't change
  864. * during this call, as manage_mutex holds off any cpuset_attach()
  865. * calls. Therefore we don't need to take task_lock around the
  866. * call to guarantee_online_mems(), as we know no one is changing
  867. * our task's cpuset.
  868. *
  869. * While the mm_struct we are migrating is typically from some
  870. * other task, the task_struct mems_allowed that we are hacking
  871. * is for our current task, which must allocate new pages for that
  872. * migrating memory region.
  873. */
  874. static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
  875. const nodemask_t *to)
  876. {
  877. struct task_struct *tsk = current;
  878. struct cpuset *mems_cs;
  879. tsk->mems_allowed = *to;
  880. do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
  881. mems_cs = effective_nodemask_cpuset(task_cs(tsk));
  882. guarantee_online_mems(mems_cs, &tsk->mems_allowed);
  883. }
  884. /*
  885. * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
  886. * @tsk: the task to change
  887. * @newmems: new nodes that the task will be set
  888. *
  889. * In order to avoid seeing no nodes if the old and new nodes are disjoint,
  890. * we structure updates as setting all new allowed nodes, then clearing newly
  891. * disallowed ones.
  892. */
  893. static void cpuset_change_task_nodemask(struct task_struct *tsk,
  894. nodemask_t *newmems)
  895. {
  896. bool need_loop;
  897. /*
  898. * Allow tasks that have access to memory reserves because they have
  899. * been OOM killed to get memory anywhere.
  900. */
  901. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  902. return;
  903. if (current->flags & PF_EXITING) /* Let dying task have memory */
  904. return;
  905. task_lock(tsk);
  906. /*
  907. * Determine if a loop is necessary if another thread is doing
  908. * get_mems_allowed(). If at least one node remains unchanged and
  909. * tsk does not have a mempolicy, then an empty nodemask will not be
  910. * possible when mems_allowed is larger than a word.
  911. */
  912. need_loop = task_has_mempolicy(tsk) ||
  913. !nodes_intersects(*newmems, tsk->mems_allowed);
  914. if (need_loop)
  915. write_seqcount_begin(&tsk->mems_allowed_seq);
  916. nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
  917. mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
  918. mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
  919. tsk->mems_allowed = *newmems;
  920. if (need_loop)
  921. write_seqcount_end(&tsk->mems_allowed_seq);
  922. task_unlock(tsk);
  923. }
  924. /*
  925. * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
  926. * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
  927. * memory_migrate flag is set. Called with cpuset_mutex held.
  928. */
  929. static void cpuset_change_nodemask(struct task_struct *p,
  930. struct cgroup_scanner *scan)
  931. {
  932. struct cpuset *cs = cgroup_cs(scan->cgrp);
  933. struct mm_struct *mm;
  934. int migrate;
  935. nodemask_t *newmems = scan->data;
  936. cpuset_change_task_nodemask(p, newmems);
  937. mm = get_task_mm(p);
  938. if (!mm)
  939. return;
  940. migrate = is_memory_migrate(cs);
  941. mpol_rebind_mm(mm, &cs->mems_allowed);
  942. if (migrate)
  943. cpuset_migrate_mm(mm, &cs->old_mems_allowed, newmems);
  944. mmput(mm);
  945. }
  946. static void *cpuset_being_rebound;
  947. /**
  948. * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
  949. * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
  950. * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
  951. *
  952. * Called with cpuset_mutex held
  953. * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
  954. * if @heap != NULL.
  955. */
  956. static void update_tasks_nodemask(struct cpuset *cs, struct ptr_heap *heap)
  957. {
  958. static nodemask_t newmems; /* protected by cpuset_mutex */
  959. struct cgroup_scanner scan;
  960. struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
  961. cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
  962. guarantee_online_mems(mems_cs, &newmems);
  963. scan.cgrp = cs->css.cgroup;
  964. scan.test_task = NULL;
  965. scan.process_task = cpuset_change_nodemask;
  966. scan.heap = heap;
  967. scan.data = &newmems;
  968. /*
  969. * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
  970. * take while holding tasklist_lock. Forks can happen - the
  971. * mpol_dup() cpuset_being_rebound check will catch such forks,
  972. * and rebind their vma mempolicies too. Because we still hold
  973. * the global cpuset_mutex, we know that no other rebind effort
  974. * will be contending for the global variable cpuset_being_rebound.
  975. * It's ok if we rebind the same mm twice; mpol_rebind_mm()
  976. * is idempotent. Also migrate pages in each mm to new nodes.
  977. */
  978. cgroup_scan_tasks(&scan);
  979. /*
  980. * All the tasks' nodemasks have been updated, update
  981. * cs->old_mems_allowed.
  982. */
  983. cs->old_mems_allowed = newmems;
  984. /* We're done rebinding vmas to this cpuset's new mems_allowed. */
  985. cpuset_being_rebound = NULL;
  986. }
  987. /*
  988. * update_tasks_nodemask_hier - Update the nodemasks of tasks in the hierarchy.
  989. * @cs: the root cpuset of the hierarchy
  990. * @update_root: update the root cpuset or not?
  991. * @heap: the heap used by cgroup_scan_tasks()
  992. *
  993. * This will update nodemasks of tasks in @root_cs and all other empty cpusets
  994. * which take on nodemask of @root_cs.
  995. *
  996. * Called with cpuset_mutex held
  997. */
  998. static void update_tasks_nodemask_hier(struct cpuset *root_cs,
  999. bool update_root, struct ptr_heap *heap)
  1000. {
  1001. struct cpuset *cp;
  1002. struct cgroup *pos_cgrp;
  1003. if (update_root)
  1004. update_tasks_nodemask(root_cs, heap);
  1005. rcu_read_lock();
  1006. cpuset_for_each_descendant_pre(cp, pos_cgrp, root_cs) {
  1007. /* skip the whole subtree if @cp have some CPU */
  1008. if (!nodes_empty(cp->mems_allowed)) {
  1009. pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
  1010. continue;
  1011. }
  1012. if (!css_tryget(&cp->css))
  1013. continue;
  1014. rcu_read_unlock();
  1015. update_tasks_nodemask(cp, heap);
  1016. rcu_read_lock();
  1017. css_put(&cp->css);
  1018. }
  1019. rcu_read_unlock();
  1020. }
  1021. /*
  1022. * Handle user request to change the 'mems' memory placement
  1023. * of a cpuset. Needs to validate the request, update the
  1024. * cpusets mems_allowed, and for each task in the cpuset,
  1025. * update mems_allowed and rebind task's mempolicy and any vma
  1026. * mempolicies and if the cpuset is marked 'memory_migrate',
  1027. * migrate the tasks pages to the new memory.
  1028. *
  1029. * Call with cpuset_mutex held. May take callback_mutex during call.
  1030. * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
  1031. * lock each such tasks mm->mmap_sem, scan its vma's and rebind
  1032. * their mempolicies to the cpusets new mems_allowed.
  1033. */
  1034. static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
  1035. const char *buf)
  1036. {
  1037. int retval;
  1038. struct ptr_heap heap;
  1039. /*
  1040. * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
  1041. * it's read-only
  1042. */
  1043. if (cs == &top_cpuset) {
  1044. retval = -EACCES;
  1045. goto done;
  1046. }
  1047. /*
  1048. * An empty mems_allowed is ok iff there are no tasks in the cpuset.
  1049. * Since nodelist_parse() fails on an empty mask, we special case
  1050. * that parsing. The validate_change() call ensures that cpusets
  1051. * with tasks have memory.
  1052. */
  1053. if (!*buf) {
  1054. nodes_clear(trialcs->mems_allowed);
  1055. } else {
  1056. retval = nodelist_parse(buf, trialcs->mems_allowed);
  1057. if (retval < 0)
  1058. goto done;
  1059. if (!nodes_subset(trialcs->mems_allowed,
  1060. node_states[N_MEMORY])) {
  1061. retval = -EINVAL;
  1062. goto done;
  1063. }
  1064. }
  1065. if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
  1066. retval = 0; /* Too easy - nothing to do */
  1067. goto done;
  1068. }
  1069. retval = validate_change(cs, trialcs);
  1070. if (retval < 0)
  1071. goto done;
  1072. retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
  1073. if (retval < 0)
  1074. goto done;
  1075. mutex_lock(&callback_mutex);
  1076. cs->mems_allowed = trialcs->mems_allowed;
  1077. mutex_unlock(&callback_mutex);
  1078. update_tasks_nodemask_hier(cs, true, &heap);
  1079. heap_free(&heap);
  1080. done:
  1081. return retval;
  1082. }
  1083. int current_cpuset_is_being_rebound(void)
  1084. {
  1085. return task_cs(current) == cpuset_being_rebound;
  1086. }
  1087. static int update_relax_domain_level(struct cpuset *cs, s64 val)
  1088. {
  1089. #ifdef CONFIG_SMP
  1090. if (val < -1 || val >= sched_domain_level_max)
  1091. return -EINVAL;
  1092. #endif
  1093. if (val != cs->relax_domain_level) {
  1094. cs->relax_domain_level = val;
  1095. if (!cpumask_empty(cs->cpus_allowed) &&
  1096. is_sched_load_balance(cs))
  1097. rebuild_sched_domains_locked();
  1098. }
  1099. return 0;
  1100. }
  1101. /*
  1102. * cpuset_change_flag - make a task's spread flags the same as its cpuset's
  1103. * @tsk: task to be updated
  1104. * @scan: struct cgroup_scanner containing the cgroup of the task
  1105. *
  1106. * Called by cgroup_scan_tasks() for each task in a cgroup.
  1107. *
  1108. * We don't need to re-check for the cgroup/cpuset membership, since we're
  1109. * holding cpuset_mutex at this point.
  1110. */
  1111. static void cpuset_change_flag(struct task_struct *tsk,
  1112. struct cgroup_scanner *scan)
  1113. {
  1114. cpuset_update_task_spread_flag(cgroup_cs(scan->cgrp), tsk);
  1115. }
  1116. /*
  1117. * update_tasks_flags - update the spread flags of tasks in the cpuset.
  1118. * @cs: the cpuset in which each task's spread flags needs to be changed
  1119. * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
  1120. *
  1121. * Called with cpuset_mutex held
  1122. *
  1123. * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
  1124. * calling callback functions for each.
  1125. *
  1126. * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
  1127. * if @heap != NULL.
  1128. */
  1129. static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
  1130. {
  1131. struct cgroup_scanner scan;
  1132. scan.cgrp = cs->css.cgroup;
  1133. scan.test_task = NULL;
  1134. scan.process_task = cpuset_change_flag;
  1135. scan.heap = heap;
  1136. cgroup_scan_tasks(&scan);
  1137. }
  1138. /*
  1139. * update_flag - read a 0 or a 1 in a file and update associated flag
  1140. * bit: the bit to update (see cpuset_flagbits_t)
  1141. * cs: the cpuset to update
  1142. * turning_on: whether the flag is being set or cleared
  1143. *
  1144. * Call with cpuset_mutex held.
  1145. */
  1146. static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
  1147. int turning_on)
  1148. {
  1149. struct cpuset *trialcs;
  1150. int balance_flag_changed;
  1151. int spread_flag_changed;
  1152. struct ptr_heap heap;
  1153. int err;
  1154. trialcs = alloc_trial_cpuset(cs);
  1155. if (!trialcs)
  1156. return -ENOMEM;
  1157. if (turning_on)
  1158. set_bit(bit, &trialcs->flags);
  1159. else
  1160. clear_bit(bit, &trialcs->flags);
  1161. err = validate_change(cs, trialcs);
  1162. if (err < 0)
  1163. goto out;
  1164. err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
  1165. if (err < 0)
  1166. goto out;
  1167. balance_flag_changed = (is_sched_load_balance(cs) !=
  1168. is_sched_load_balance(trialcs));
  1169. spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
  1170. || (is_spread_page(cs) != is_spread_page(trialcs)));
  1171. mutex_lock(&callback_mutex);
  1172. cs->flags = trialcs->flags;
  1173. mutex_unlock(&callback_mutex);
  1174. if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
  1175. rebuild_sched_domains_locked();
  1176. if (spread_flag_changed)
  1177. update_tasks_flags(cs, &heap);
  1178. heap_free(&heap);
  1179. out:
  1180. free_trial_cpuset(trialcs);
  1181. return err;
  1182. }
  1183. /*
  1184. * Frequency meter - How fast is some event occurring?
  1185. *
  1186. * These routines manage a digitally filtered, constant time based,
  1187. * event frequency meter. There are four routines:
  1188. * fmeter_init() - initialize a frequency meter.
  1189. * fmeter_markevent() - called each time the event happens.
  1190. * fmeter_getrate() - returns the recent rate of such events.
  1191. * fmeter_update() - internal routine used to update fmeter.
  1192. *
  1193. * A common data structure is passed to each of these routines,
  1194. * which is used to keep track of the state required to manage the
  1195. * frequency meter and its digital filter.
  1196. *
  1197. * The filter works on the number of events marked per unit time.
  1198. * The filter is single-pole low-pass recursive (IIR). The time unit
  1199. * is 1 second. Arithmetic is done using 32-bit integers scaled to
  1200. * simulate 3 decimal digits of precision (multiplied by 1000).
  1201. *
  1202. * With an FM_COEF of 933, and a time base of 1 second, the filter
  1203. * has a half-life of 10 seconds, meaning that if the events quit
  1204. * happening, then the rate returned from the fmeter_getrate()
  1205. * will be cut in half each 10 seconds, until it converges to zero.
  1206. *
  1207. * It is not worth doing a real infinitely recursive filter. If more
  1208. * than FM_MAXTICKS ticks have elapsed since the last filter event,
  1209. * just compute FM_MAXTICKS ticks worth, by which point the level
  1210. * will be stable.
  1211. *
  1212. * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
  1213. * arithmetic overflow in the fmeter_update() routine.
  1214. *
  1215. * Given the simple 32 bit integer arithmetic used, this meter works
  1216. * best for reporting rates between one per millisecond (msec) and
  1217. * one per 32 (approx) seconds. At constant rates faster than one
  1218. * per msec it maxes out at values just under 1,000,000. At constant
  1219. * rates between one per msec, and one per second it will stabilize
  1220. * to a value N*1000, where N is the rate of events per second.
  1221. * At constant rates between one per second and one per 32 seconds,
  1222. * it will be choppy, moving up on the seconds that have an event,
  1223. * and then decaying until the next event. At rates slower than
  1224. * about one in 32 seconds, it decays all the way back to zero between
  1225. * each event.
  1226. */
  1227. #define FM_COEF 933 /* coefficient for half-life of 10 secs */
  1228. #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
  1229. #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
  1230. #define FM_SCALE 1000 /* faux fixed point scale */
  1231. /* Initialize a frequency meter */
  1232. static void fmeter_init(struct fmeter *fmp)
  1233. {
  1234. fmp->cnt = 0;
  1235. fmp->val = 0;
  1236. fmp->time = 0;
  1237. spin_lock_init(&fmp->lock);
  1238. }
  1239. /* Internal meter update - process cnt events and update value */
  1240. static void fmeter_update(struct fmeter *fmp)
  1241. {
  1242. time_t now = get_seconds();
  1243. time_t ticks = now - fmp->time;
  1244. if (ticks == 0)
  1245. return;
  1246. ticks = min(FM_MAXTICKS, ticks);
  1247. while (ticks-- > 0)
  1248. fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
  1249. fmp->time = now;
  1250. fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
  1251. fmp->cnt = 0;
  1252. }
  1253. /* Process any previous ticks, then bump cnt by one (times scale). */
  1254. static void fmeter_markevent(struct fmeter *fmp)
  1255. {
  1256. spin_lock(&fmp->lock);
  1257. fmeter_update(fmp);
  1258. fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
  1259. spin_unlock(&fmp->lock);
  1260. }
  1261. /* Process any previous ticks, then return current value. */
  1262. static int fmeter_getrate(struct fmeter *fmp)
  1263. {
  1264. int val;
  1265. spin_lock(&fmp->lock);
  1266. fmeter_update(fmp);
  1267. val = fmp->val;
  1268. spin_unlock(&fmp->lock);
  1269. return val;
  1270. }
  1271. /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
  1272. static int cpuset_can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
  1273. {
  1274. struct cpuset *cs = cgroup_cs(cgrp);
  1275. struct task_struct *task;
  1276. int ret;
  1277. mutex_lock(&cpuset_mutex);
  1278. /*
  1279. * We allow to move tasks into an empty cpuset if sane_behavior
  1280. * flag is set.
  1281. */
  1282. ret = -ENOSPC;
  1283. if (!cgroup_sane_behavior(cgrp) &&
  1284. (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
  1285. goto out_unlock;
  1286. cgroup_taskset_for_each(task, cgrp, tset) {
  1287. /*
  1288. * Kthreads which disallow setaffinity shouldn't be moved
  1289. * to a new cpuset; we don't want to change their cpu
  1290. * affinity and isolating such threads by their set of
  1291. * allowed nodes is unnecessary. Thus, cpusets are not
  1292. * applicable for such threads. This prevents checking for
  1293. * success of set_cpus_allowed_ptr() on all attached tasks
  1294. * before cpus_allowed may be changed.
  1295. */
  1296. ret = -EINVAL;
  1297. if (task->flags & PF_NO_SETAFFINITY)
  1298. goto out_unlock;
  1299. ret = security_task_setscheduler(task);
  1300. if (ret)
  1301. goto out_unlock;
  1302. }
  1303. /*
  1304. * Mark attach is in progress. This makes validate_change() fail
  1305. * changes which zero cpus/mems_allowed.
  1306. */
  1307. cs->attach_in_progress++;
  1308. ret = 0;
  1309. out_unlock:
  1310. mutex_unlock(&cpuset_mutex);
  1311. return ret;
  1312. }
  1313. static void cpuset_cancel_attach(struct cgroup *cgrp,
  1314. struct cgroup_taskset *tset)
  1315. {
  1316. mutex_lock(&cpuset_mutex);
  1317. cgroup_cs(cgrp)->attach_in_progress--;
  1318. mutex_unlock(&cpuset_mutex);
  1319. }
  1320. /*
  1321. * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
  1322. * but we can't allocate it dynamically there. Define it global and
  1323. * allocate from cpuset_init().
  1324. */
  1325. static cpumask_var_t cpus_attach;
  1326. static void cpuset_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
  1327. {
  1328. /* static buf protected by cpuset_mutex */
  1329. static nodemask_t cpuset_attach_nodemask_to;
  1330. struct mm_struct *mm;
  1331. struct task_struct *task;
  1332. struct task_struct *leader = cgroup_taskset_first(tset);
  1333. struct cgroup *oldcgrp = cgroup_taskset_cur_cgroup(tset);
  1334. struct cpuset *cs = cgroup_cs(cgrp);
  1335. struct cpuset *oldcs = cgroup_cs(oldcgrp);
  1336. struct cpuset *cpus_cs = effective_cpumask_cpuset(cs);
  1337. struct cpuset *mems_cs = effective_nodemask_cpuset(cs);
  1338. mutex_lock(&cpuset_mutex);
  1339. /* prepare for attach */
  1340. if (cs == &top_cpuset)
  1341. cpumask_copy(cpus_attach, cpu_possible_mask);
  1342. else
  1343. guarantee_online_cpus(cpus_cs, cpus_attach);
  1344. guarantee_online_mems(mems_cs, &cpuset_attach_nodemask_to);
  1345. cgroup_taskset_for_each(task, cgrp, tset) {
  1346. /*
  1347. * can_attach beforehand should guarantee that this doesn't
  1348. * fail. TODO: have a better way to handle failure here
  1349. */
  1350. WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
  1351. cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
  1352. cpuset_update_task_spread_flag(cs, task);
  1353. }
  1354. /*
  1355. * Change mm, possibly for multiple threads in a threadgroup. This is
  1356. * expensive and may sleep.
  1357. */
  1358. cpuset_attach_nodemask_to = cs->mems_allowed;
  1359. mm = get_task_mm(leader);
  1360. if (mm) {
  1361. struct cpuset *mems_oldcs = effective_nodemask_cpuset(oldcs);
  1362. mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
  1363. /*
  1364. * old_mems_allowed is the same with mems_allowed here, except
  1365. * if this task is being moved automatically due to hotplug.
  1366. * In that case @mems_allowed has been updated and is empty,
  1367. * so @old_mems_allowed is the right nodesets that we migrate
  1368. * mm from.
  1369. */
  1370. if (is_memory_migrate(cs)) {
  1371. cpuset_migrate_mm(mm, &mems_oldcs->old_mems_allowed,
  1372. &cpuset_attach_nodemask_to);
  1373. }
  1374. mmput(mm);
  1375. }
  1376. cs->old_mems_allowed = cpuset_attach_nodemask_to;
  1377. cs->attach_in_progress--;
  1378. if (!cs->attach_in_progress)
  1379. wake_up(&cpuset_attach_wq);
  1380. mutex_unlock(&cpuset_mutex);
  1381. }
  1382. /* The various types of files and directories in a cpuset file system */
  1383. typedef enum {
  1384. FILE_MEMORY_MIGRATE,
  1385. FILE_CPULIST,
  1386. FILE_MEMLIST,
  1387. FILE_CPU_EXCLUSIVE,
  1388. FILE_MEM_EXCLUSIVE,
  1389. FILE_MEM_HARDWALL,
  1390. FILE_SCHED_LOAD_BALANCE,
  1391. FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1392. FILE_MEMORY_PRESSURE_ENABLED,
  1393. FILE_MEMORY_PRESSURE,
  1394. FILE_SPREAD_PAGE,
  1395. FILE_SPREAD_SLAB,
  1396. } cpuset_filetype_t;
  1397. static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
  1398. {
  1399. struct cpuset *cs = cgroup_cs(cgrp);
  1400. cpuset_filetype_t type = cft->private;
  1401. int retval = -ENODEV;
  1402. mutex_lock(&cpuset_mutex);
  1403. if (!is_cpuset_online(cs))
  1404. goto out_unlock;
  1405. switch (type) {
  1406. case FILE_CPU_EXCLUSIVE:
  1407. retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
  1408. break;
  1409. case FILE_MEM_EXCLUSIVE:
  1410. retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
  1411. break;
  1412. case FILE_MEM_HARDWALL:
  1413. retval = update_flag(CS_MEM_HARDWALL, cs, val);
  1414. break;
  1415. case FILE_SCHED_LOAD_BALANCE:
  1416. retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
  1417. break;
  1418. case FILE_MEMORY_MIGRATE:
  1419. retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
  1420. break;
  1421. case FILE_MEMORY_PRESSURE_ENABLED:
  1422. cpuset_memory_pressure_enabled = !!val;
  1423. break;
  1424. case FILE_MEMORY_PRESSURE:
  1425. retval = -EACCES;
  1426. break;
  1427. case FILE_SPREAD_PAGE:
  1428. retval = update_flag(CS_SPREAD_PAGE, cs, val);
  1429. break;
  1430. case FILE_SPREAD_SLAB:
  1431. retval = update_flag(CS_SPREAD_SLAB, cs, val);
  1432. break;
  1433. default:
  1434. retval = -EINVAL;
  1435. break;
  1436. }
  1437. out_unlock:
  1438. mutex_unlock(&cpuset_mutex);
  1439. return retval;
  1440. }
  1441. static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
  1442. {
  1443. struct cpuset *cs = cgroup_cs(cgrp);
  1444. cpuset_filetype_t type = cft->private;
  1445. int retval = -ENODEV;
  1446. mutex_lock(&cpuset_mutex);
  1447. if (!is_cpuset_online(cs))
  1448. goto out_unlock;
  1449. switch (type) {
  1450. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1451. retval = update_relax_domain_level(cs, val);
  1452. break;
  1453. default:
  1454. retval = -EINVAL;
  1455. break;
  1456. }
  1457. out_unlock:
  1458. mutex_unlock(&cpuset_mutex);
  1459. return retval;
  1460. }
  1461. /*
  1462. * Common handling for a write to a "cpus" or "mems" file.
  1463. */
  1464. static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
  1465. const char *buf)
  1466. {
  1467. struct cpuset *cs = cgroup_cs(cgrp);
  1468. struct cpuset *trialcs;
  1469. int retval = -ENODEV;
  1470. /*
  1471. * CPU or memory hotunplug may leave @cs w/o any execution
  1472. * resources, in which case the hotplug code asynchronously updates
  1473. * configuration and transfers all tasks to the nearest ancestor
  1474. * which can execute.
  1475. *
  1476. * As writes to "cpus" or "mems" may restore @cs's execution
  1477. * resources, wait for the previously scheduled operations before
  1478. * proceeding, so that we don't end up keep removing tasks added
  1479. * after execution capability is restored.
  1480. */
  1481. flush_work(&cpuset_hotplug_work);
  1482. mutex_lock(&cpuset_mutex);
  1483. if (!is_cpuset_online(cs))
  1484. goto out_unlock;
  1485. trialcs = alloc_trial_cpuset(cs);
  1486. if (!trialcs) {
  1487. retval = -ENOMEM;
  1488. goto out_unlock;
  1489. }
  1490. switch (cft->private) {
  1491. case FILE_CPULIST:
  1492. retval = update_cpumask(cs, trialcs, buf);
  1493. break;
  1494. case FILE_MEMLIST:
  1495. retval = update_nodemask(cs, trialcs, buf);
  1496. break;
  1497. default:
  1498. retval = -EINVAL;
  1499. break;
  1500. }
  1501. free_trial_cpuset(trialcs);
  1502. out_unlock:
  1503. mutex_unlock(&cpuset_mutex);
  1504. return retval;
  1505. }
  1506. /*
  1507. * These ascii lists should be read in a single call, by using a user
  1508. * buffer large enough to hold the entire map. If read in smaller
  1509. * chunks, there is no guarantee of atomicity. Since the display format
  1510. * used, list of ranges of sequential numbers, is variable length,
  1511. * and since these maps can change value dynamically, one could read
  1512. * gibberish by doing partial reads while a list was changing.
  1513. * A single large read to a buffer that crosses a page boundary is
  1514. * ok, because the result being copied to user land is not recomputed
  1515. * across a page fault.
  1516. */
  1517. static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
  1518. {
  1519. size_t count;
  1520. mutex_lock(&callback_mutex);
  1521. count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
  1522. mutex_unlock(&callback_mutex);
  1523. return count;
  1524. }
  1525. static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
  1526. {
  1527. size_t count;
  1528. mutex_lock(&callback_mutex);
  1529. count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
  1530. mutex_unlock(&callback_mutex);
  1531. return count;
  1532. }
  1533. static ssize_t cpuset_common_file_read(struct cgroup *cgrp,
  1534. struct cftype *cft,
  1535. struct file *file,
  1536. char __user *buf,
  1537. size_t nbytes, loff_t *ppos)
  1538. {
  1539. struct cpuset *cs = cgroup_cs(cgrp);
  1540. cpuset_filetype_t type = cft->private;
  1541. char *page;
  1542. ssize_t retval = 0;
  1543. char *s;
  1544. if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
  1545. return -ENOMEM;
  1546. s = page;
  1547. switch (type) {
  1548. case FILE_CPULIST:
  1549. s += cpuset_sprintf_cpulist(s, cs);
  1550. break;
  1551. case FILE_MEMLIST:
  1552. s += cpuset_sprintf_memlist(s, cs);
  1553. break;
  1554. default:
  1555. retval = -EINVAL;
  1556. goto out;
  1557. }
  1558. *s++ = '\n';
  1559. retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
  1560. out:
  1561. free_page((unsigned long)page);
  1562. return retval;
  1563. }
  1564. static u64 cpuset_read_u64(struct cgroup *cgrp, struct cftype *cft)
  1565. {
  1566. struct cpuset *cs = cgroup_cs(cgrp);
  1567. cpuset_filetype_t type = cft->private;
  1568. switch (type) {
  1569. case FILE_CPU_EXCLUSIVE:
  1570. return is_cpu_exclusive(cs);
  1571. case FILE_MEM_EXCLUSIVE:
  1572. return is_mem_exclusive(cs);
  1573. case FILE_MEM_HARDWALL:
  1574. return is_mem_hardwall(cs);
  1575. case FILE_SCHED_LOAD_BALANCE:
  1576. return is_sched_load_balance(cs);
  1577. case FILE_MEMORY_MIGRATE:
  1578. return is_memory_migrate(cs);
  1579. case FILE_MEMORY_PRESSURE_ENABLED:
  1580. return cpuset_memory_pressure_enabled;
  1581. case FILE_MEMORY_PRESSURE:
  1582. return fmeter_getrate(&cs->fmeter);
  1583. case FILE_SPREAD_PAGE:
  1584. return is_spread_page(cs);
  1585. case FILE_SPREAD_SLAB:
  1586. return is_spread_slab(cs);
  1587. default:
  1588. BUG();
  1589. }
  1590. /* Unreachable but makes gcc happy */
  1591. return 0;
  1592. }
  1593. static s64 cpuset_read_s64(struct cgroup *cgrp, struct cftype *cft)
  1594. {
  1595. struct cpuset *cs = cgroup_cs(cgrp);
  1596. cpuset_filetype_t type = cft->private;
  1597. switch (type) {
  1598. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1599. return cs->relax_domain_level;
  1600. default:
  1601. BUG();
  1602. }
  1603. /* Unrechable but makes gcc happy */
  1604. return 0;
  1605. }
  1606. /*
  1607. * for the common functions, 'private' gives the type of file
  1608. */
  1609. static struct cftype files[] = {
  1610. {
  1611. .name = "cpus",
  1612. .read = cpuset_common_file_read,
  1613. .write_string = cpuset_write_resmask,
  1614. .max_write_len = (100U + 6 * NR_CPUS),
  1615. .private = FILE_CPULIST,
  1616. },
  1617. {
  1618. .name = "mems",
  1619. .read = cpuset_common_file_read,
  1620. .write_string = cpuset_write_resmask,
  1621. .max_write_len = (100U + 6 * MAX_NUMNODES),
  1622. .private = FILE_MEMLIST,
  1623. },
  1624. {
  1625. .name = "cpu_exclusive",
  1626. .read_u64 = cpuset_read_u64,
  1627. .write_u64 = cpuset_write_u64,
  1628. .private = FILE_CPU_EXCLUSIVE,
  1629. },
  1630. {
  1631. .name = "mem_exclusive",
  1632. .read_u64 = cpuset_read_u64,
  1633. .write_u64 = cpuset_write_u64,
  1634. .private = FILE_MEM_EXCLUSIVE,
  1635. },
  1636. {
  1637. .name = "mem_hardwall",
  1638. .read_u64 = cpuset_read_u64,
  1639. .write_u64 = cpuset_write_u64,
  1640. .private = FILE_MEM_HARDWALL,
  1641. },
  1642. {
  1643. .name = "sched_load_balance",
  1644. .read_u64 = cpuset_read_u64,
  1645. .write_u64 = cpuset_write_u64,
  1646. .private = FILE_SCHED_LOAD_BALANCE,
  1647. },
  1648. {
  1649. .name = "sched_relax_domain_level",
  1650. .read_s64 = cpuset_read_s64,
  1651. .write_s64 = cpuset_write_s64,
  1652. .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1653. },
  1654. {
  1655. .name = "memory_migrate",
  1656. .read_u64 = cpuset_read_u64,
  1657. .write_u64 = cpuset_write_u64,
  1658. .private = FILE_MEMORY_MIGRATE,
  1659. },
  1660. {
  1661. .name = "memory_pressure",
  1662. .read_u64 = cpuset_read_u64,
  1663. .write_u64 = cpuset_write_u64,
  1664. .private = FILE_MEMORY_PRESSURE,
  1665. .mode = S_IRUGO,
  1666. },
  1667. {
  1668. .name = "memory_spread_page",
  1669. .read_u64 = cpuset_read_u64,
  1670. .write_u64 = cpuset_write_u64,
  1671. .private = FILE_SPREAD_PAGE,
  1672. },
  1673. {
  1674. .name = "memory_spread_slab",
  1675. .read_u64 = cpuset_read_u64,
  1676. .write_u64 = cpuset_write_u64,
  1677. .private = FILE_SPREAD_SLAB,
  1678. },
  1679. {
  1680. .name = "memory_pressure_enabled",
  1681. .flags = CFTYPE_ONLY_ON_ROOT,
  1682. .read_u64 = cpuset_read_u64,
  1683. .write_u64 = cpuset_write_u64,
  1684. .private = FILE_MEMORY_PRESSURE_ENABLED,
  1685. },
  1686. { } /* terminate */
  1687. };
  1688. /*
  1689. * cpuset_css_alloc - allocate a cpuset css
  1690. * cgrp: control group that the new cpuset will be part of
  1691. */
  1692. static struct cgroup_subsys_state *cpuset_css_alloc(struct cgroup *cgrp)
  1693. {
  1694. struct cpuset *cs;
  1695. if (!cgrp->parent)
  1696. return &top_cpuset.css;
  1697. cs = kzalloc(sizeof(*cs), GFP_KERNEL);
  1698. if (!cs)
  1699. return ERR_PTR(-ENOMEM);
  1700. if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
  1701. kfree(cs);
  1702. return ERR_PTR(-ENOMEM);
  1703. }
  1704. set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  1705. cpumask_clear(cs->cpus_allowed);
  1706. nodes_clear(cs->mems_allowed);
  1707. fmeter_init(&cs->fmeter);
  1708. cs->relax_domain_level = -1;
  1709. return &cs->css;
  1710. }
  1711. static int cpuset_css_online(struct cgroup *cgrp)
  1712. {
  1713. struct cpuset *cs = cgroup_cs(cgrp);
  1714. struct cpuset *parent = parent_cs(cs);
  1715. struct cpuset *tmp_cs;
  1716. struct cgroup *pos_cgrp;
  1717. if (!parent)
  1718. return 0;
  1719. mutex_lock(&cpuset_mutex);
  1720. set_bit(CS_ONLINE, &cs->flags);
  1721. if (is_spread_page(parent))
  1722. set_bit(CS_SPREAD_PAGE, &cs->flags);
  1723. if (is_spread_slab(parent))
  1724. set_bit(CS_SPREAD_SLAB, &cs->flags);
  1725. number_of_cpusets++;
  1726. if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags))
  1727. goto out_unlock;
  1728. /*
  1729. * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
  1730. * set. This flag handling is implemented in cgroup core for
  1731. * histrical reasons - the flag may be specified during mount.
  1732. *
  1733. * Currently, if any sibling cpusets have exclusive cpus or mem, we
  1734. * refuse to clone the configuration - thereby refusing the task to
  1735. * be entered, and as a result refusing the sys_unshare() or
  1736. * clone() which initiated it. If this becomes a problem for some
  1737. * users who wish to allow that scenario, then this could be
  1738. * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
  1739. * (and likewise for mems) to the new cgroup.
  1740. */
  1741. rcu_read_lock();
  1742. cpuset_for_each_child(tmp_cs, pos_cgrp, parent) {
  1743. if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
  1744. rcu_read_unlock();
  1745. goto out_unlock;
  1746. }
  1747. }
  1748. rcu_read_unlock();
  1749. mutex_lock(&callback_mutex);
  1750. cs->mems_allowed = parent->mems_allowed;
  1751. cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
  1752. mutex_unlock(&callback_mutex);
  1753. out_unlock:
  1754. mutex_unlock(&cpuset_mutex);
  1755. return 0;
  1756. }
  1757. /*
  1758. * If the cpuset being removed has its flag 'sched_load_balance'
  1759. * enabled, then simulate turning sched_load_balance off, which
  1760. * will call rebuild_sched_domains_locked().
  1761. */
  1762. static void cpuset_css_offline(struct cgroup *cgrp)
  1763. {
  1764. struct cpuset *cs = cgroup_cs(cgrp);
  1765. mutex_lock(&cpuset_mutex);
  1766. if (is_sched_load_balance(cs))
  1767. update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
  1768. number_of_cpusets--;
  1769. clear_bit(CS_ONLINE, &cs->flags);
  1770. mutex_unlock(&cpuset_mutex);
  1771. }
  1772. static void cpuset_css_free(struct cgroup *cgrp)
  1773. {
  1774. struct cpuset *cs = cgroup_cs(cgrp);
  1775. free_cpumask_var(cs->cpus_allowed);
  1776. kfree(cs);
  1777. }
  1778. struct cgroup_subsys cpuset_subsys = {
  1779. .name = "cpuset",
  1780. .css_alloc = cpuset_css_alloc,
  1781. .css_online = cpuset_css_online,
  1782. .css_offline = cpuset_css_offline,
  1783. .css_free = cpuset_css_free,
  1784. .can_attach = cpuset_can_attach,
  1785. .cancel_attach = cpuset_cancel_attach,
  1786. .attach = cpuset_attach,
  1787. .subsys_id = cpuset_subsys_id,
  1788. .base_cftypes = files,
  1789. .early_init = 1,
  1790. };
  1791. /**
  1792. * cpuset_init - initialize cpusets at system boot
  1793. *
  1794. * Description: Initialize top_cpuset and the cpuset internal file system,
  1795. **/
  1796. int __init cpuset_init(void)
  1797. {
  1798. int err = 0;
  1799. if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
  1800. BUG();
  1801. cpumask_setall(top_cpuset.cpus_allowed);
  1802. nodes_setall(top_cpuset.mems_allowed);
  1803. fmeter_init(&top_cpuset.fmeter);
  1804. set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
  1805. top_cpuset.relax_domain_level = -1;
  1806. err = register_filesystem(&cpuset_fs_type);
  1807. if (err < 0)
  1808. return err;
  1809. if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
  1810. BUG();
  1811. number_of_cpusets = 1;
  1812. return 0;
  1813. }
  1814. /*
  1815. * If CPU and/or memory hotplug handlers, below, unplug any CPUs
  1816. * or memory nodes, we need to walk over the cpuset hierarchy,
  1817. * removing that CPU or node from all cpusets. If this removes the
  1818. * last CPU or node from a cpuset, then move the tasks in the empty
  1819. * cpuset to its next-highest non-empty parent.
  1820. */
  1821. static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
  1822. {
  1823. struct cpuset *parent;
  1824. /*
  1825. * Find its next-highest non-empty parent, (top cpuset
  1826. * has online cpus, so can't be empty).
  1827. */
  1828. parent = parent_cs(cs);
  1829. while (cpumask_empty(parent->cpus_allowed) ||
  1830. nodes_empty(parent->mems_allowed))
  1831. parent = parent_cs(parent);
  1832. if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
  1833. rcu_read_lock();
  1834. printk(KERN_ERR "cpuset: failed to transfer tasks out of empty cpuset %s\n",
  1835. cgroup_name(cs->css.cgroup));
  1836. rcu_read_unlock();
  1837. }
  1838. }
  1839. /**
  1840. * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
  1841. * @cs: cpuset in interest
  1842. *
  1843. * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
  1844. * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
  1845. * all its tasks are moved to the nearest ancestor with both resources.
  1846. */
  1847. static void cpuset_hotplug_update_tasks(struct cpuset *cs)
  1848. {
  1849. static cpumask_t off_cpus;
  1850. static nodemask_t off_mems;
  1851. bool is_empty;
  1852. bool sane = cgroup_sane_behavior(cs->css.cgroup);
  1853. retry:
  1854. wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
  1855. mutex_lock(&cpuset_mutex);
  1856. /*
  1857. * We have raced with task attaching. We wait until attaching
  1858. * is finished, so we won't attach a task to an empty cpuset.
  1859. */
  1860. if (cs->attach_in_progress) {
  1861. mutex_unlock(&cpuset_mutex);
  1862. goto retry;
  1863. }
  1864. cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
  1865. nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
  1866. mutex_lock(&callback_mutex);
  1867. cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
  1868. mutex_unlock(&callback_mutex);
  1869. /*
  1870. * If sane_behavior flag is set, we need to update tasks' cpumask
  1871. * for empty cpuset to take on ancestor's cpumask. Otherwise, don't
  1872. * call update_tasks_cpumask() if the cpuset becomes empty, as
  1873. * the tasks in it will be migrated to an ancestor.
  1874. */
  1875. if ((sane && cpumask_empty(cs->cpus_allowed)) ||
  1876. (!cpumask_empty(&off_cpus) && !cpumask_empty(cs->cpus_allowed)))
  1877. update_tasks_cpumask(cs, NULL);
  1878. mutex_lock(&callback_mutex);
  1879. nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
  1880. mutex_unlock(&callback_mutex);
  1881. /*
  1882. * If sane_behavior flag is set, we need to update tasks' nodemask
  1883. * for empty cpuset to take on ancestor's nodemask. Otherwise, don't
  1884. * call update_tasks_nodemask() if the cpuset becomes empty, as
  1885. * the tasks in it will be migratd to an ancestor.
  1886. */
  1887. if ((sane && nodes_empty(cs->mems_allowed)) ||
  1888. (!nodes_empty(off_mems) && !nodes_empty(cs->mems_allowed)))
  1889. update_tasks_nodemask(cs, NULL);
  1890. is_empty = cpumask_empty(cs->cpus_allowed) ||
  1891. nodes_empty(cs->mems_allowed);
  1892. mutex_unlock(&cpuset_mutex);
  1893. /*
  1894. * If sane_behavior flag is set, we'll keep tasks in empty cpusets.
  1895. *
  1896. * Otherwise move tasks to the nearest ancestor with execution
  1897. * resources. This is full cgroup operation which will
  1898. * also call back into cpuset. Should be done outside any lock.
  1899. */
  1900. if (!sane && is_empty)
  1901. remove_tasks_in_empty_cpuset(cs);
  1902. }
  1903. /**
  1904. * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
  1905. *
  1906. * This function is called after either CPU or memory configuration has
  1907. * changed and updates cpuset accordingly. The top_cpuset is always
  1908. * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
  1909. * order to make cpusets transparent (of no affect) on systems that are
  1910. * actively using CPU hotplug but making no active use of cpusets.
  1911. *
  1912. * Non-root cpusets are only affected by offlining. If any CPUs or memory
  1913. * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
  1914. * all descendants.
  1915. *
  1916. * Note that CPU offlining during suspend is ignored. We don't modify
  1917. * cpusets across suspend/resume cycles at all.
  1918. */
  1919. static void cpuset_hotplug_workfn(struct work_struct *work)
  1920. {
  1921. static cpumask_t new_cpus;
  1922. static nodemask_t new_mems;
  1923. bool cpus_updated, mems_updated;
  1924. mutex_lock(&cpuset_mutex);
  1925. /* fetch the available cpus/mems and find out which changed how */
  1926. cpumask_copy(&new_cpus, cpu_active_mask);
  1927. new_mems = node_states[N_MEMORY];
  1928. cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
  1929. mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
  1930. /* synchronize cpus_allowed to cpu_active_mask */
  1931. if (cpus_updated) {
  1932. mutex_lock(&callback_mutex);
  1933. cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
  1934. mutex_unlock(&callback_mutex);
  1935. /* we don't mess with cpumasks of tasks in top_cpuset */
  1936. }
  1937. /* synchronize mems_allowed to N_MEMORY */
  1938. if (mems_updated) {
  1939. mutex_lock(&callback_mutex);
  1940. top_cpuset.mems_allowed = new_mems;
  1941. mutex_unlock(&callback_mutex);
  1942. update_tasks_nodemask(&top_cpuset, NULL);
  1943. }
  1944. mutex_unlock(&cpuset_mutex);
  1945. /* if cpus or mems changed, we need to propagate to descendants */
  1946. if (cpus_updated || mems_updated) {
  1947. struct cpuset *cs;
  1948. struct cgroup *pos_cgrp;
  1949. rcu_read_lock();
  1950. cpuset_for_each_descendant_pre(cs, pos_cgrp, &top_cpuset) {
  1951. if (!css_tryget(&cs->css))
  1952. continue;
  1953. rcu_read_unlock();
  1954. cpuset_hotplug_update_tasks(cs);
  1955. rcu_read_lock();
  1956. css_put(&cs->css);
  1957. }
  1958. rcu_read_unlock();
  1959. }
  1960. /* rebuild sched domains if cpus_allowed has changed */
  1961. if (cpus_updated)
  1962. rebuild_sched_domains();
  1963. }
  1964. void cpuset_update_active_cpus(bool cpu_online)
  1965. {
  1966. /*
  1967. * We're inside cpu hotplug critical region which usually nests
  1968. * inside cgroup synchronization. Bounce actual hotplug processing
  1969. * to a work item to avoid reverse locking order.
  1970. *
  1971. * We still need to do partition_sched_domains() synchronously;
  1972. * otherwise, the scheduler will get confused and put tasks to the
  1973. * dead CPU. Fall back to the default single domain.
  1974. * cpuset_hotplug_workfn() will rebuild it as necessary.
  1975. */
  1976. partition_sched_domains(1, NULL, NULL);
  1977. schedule_work(&cpuset_hotplug_work);
  1978. }
  1979. /*
  1980. * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
  1981. * Call this routine anytime after node_states[N_MEMORY] changes.
  1982. * See cpuset_update_active_cpus() for CPU hotplug handling.
  1983. */
  1984. static int cpuset_track_online_nodes(struct notifier_block *self,
  1985. unsigned long action, void *arg)
  1986. {
  1987. schedule_work(&cpuset_hotplug_work);
  1988. return NOTIFY_OK;
  1989. }
  1990. static struct notifier_block cpuset_track_online_nodes_nb = {
  1991. .notifier_call = cpuset_track_online_nodes,
  1992. .priority = 10, /* ??! */
  1993. };
  1994. /**
  1995. * cpuset_init_smp - initialize cpus_allowed
  1996. *
  1997. * Description: Finish top cpuset after cpu, node maps are initialized
  1998. */
  1999. void __init cpuset_init_smp(void)
  2000. {
  2001. cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
  2002. top_cpuset.mems_allowed = node_states[N_MEMORY];
  2003. top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
  2004. register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
  2005. }
  2006. /**
  2007. * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
  2008. * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
  2009. * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
  2010. *
  2011. * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
  2012. * attached to the specified @tsk. Guaranteed to return some non-empty
  2013. * subset of cpu_online_mask, even if this means going outside the
  2014. * tasks cpuset.
  2015. **/
  2016. void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
  2017. {
  2018. struct cpuset *cpus_cs;
  2019. mutex_lock(&callback_mutex);
  2020. task_lock(tsk);
  2021. cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
  2022. guarantee_online_cpus(cpus_cs, pmask);
  2023. task_unlock(tsk);
  2024. mutex_unlock(&callback_mutex);
  2025. }
  2026. void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
  2027. {
  2028. struct cpuset *cpus_cs;
  2029. rcu_read_lock();
  2030. cpus_cs = effective_cpumask_cpuset(task_cs(tsk));
  2031. do_set_cpus_allowed(tsk, cpus_cs->cpus_allowed);
  2032. rcu_read_unlock();
  2033. /*
  2034. * We own tsk->cpus_allowed, nobody can change it under us.
  2035. *
  2036. * But we used cs && cs->cpus_allowed lockless and thus can
  2037. * race with cgroup_attach_task() or update_cpumask() and get
  2038. * the wrong tsk->cpus_allowed. However, both cases imply the
  2039. * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
  2040. * which takes task_rq_lock().
  2041. *
  2042. * If we are called after it dropped the lock we must see all
  2043. * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
  2044. * set any mask even if it is not right from task_cs() pov,
  2045. * the pending set_cpus_allowed_ptr() will fix things.
  2046. *
  2047. * select_fallback_rq() will fix things ups and set cpu_possible_mask
  2048. * if required.
  2049. */
  2050. }
  2051. void cpuset_init_current_mems_allowed(void)
  2052. {
  2053. nodes_setall(current->mems_allowed);
  2054. }
  2055. /**
  2056. * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
  2057. * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
  2058. *
  2059. * Description: Returns the nodemask_t mems_allowed of the cpuset
  2060. * attached to the specified @tsk. Guaranteed to return some non-empty
  2061. * subset of node_states[N_MEMORY], even if this means going outside the
  2062. * tasks cpuset.
  2063. **/
  2064. nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
  2065. {
  2066. struct cpuset *mems_cs;
  2067. nodemask_t mask;
  2068. mutex_lock(&callback_mutex);
  2069. task_lock(tsk);
  2070. mems_cs = effective_nodemask_cpuset(task_cs(tsk));
  2071. guarantee_online_mems(mems_cs, &mask);
  2072. task_unlock(tsk);
  2073. mutex_unlock(&callback_mutex);
  2074. return mask;
  2075. }
  2076. /**
  2077. * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
  2078. * @nodemask: the nodemask to be checked
  2079. *
  2080. * Are any of the nodes in the nodemask allowed in current->mems_allowed?
  2081. */
  2082. int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
  2083. {
  2084. return nodes_intersects(*nodemask, current->mems_allowed);
  2085. }
  2086. /*
  2087. * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
  2088. * mem_hardwall ancestor to the specified cpuset. Call holding
  2089. * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
  2090. * (an unusual configuration), then returns the root cpuset.
  2091. */
  2092. static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
  2093. {
  2094. while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
  2095. cs = parent_cs(cs);
  2096. return cs;
  2097. }
  2098. /**
  2099. * cpuset_node_allowed_softwall - Can we allocate on a memory node?
  2100. * @node: is this an allowed node?
  2101. * @gfp_mask: memory allocation flags
  2102. *
  2103. * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
  2104. * set, yes, we can always allocate. If node is in our task's mems_allowed,
  2105. * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
  2106. * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
  2107. * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
  2108. * flag, yes.
  2109. * Otherwise, no.
  2110. *
  2111. * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
  2112. * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
  2113. * might sleep, and might allow a node from an enclosing cpuset.
  2114. *
  2115. * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
  2116. * cpusets, and never sleeps.
  2117. *
  2118. * The __GFP_THISNODE placement logic is really handled elsewhere,
  2119. * by forcibly using a zonelist starting at a specified node, and by
  2120. * (in get_page_from_freelist()) refusing to consider the zones for
  2121. * any node on the zonelist except the first. By the time any such
  2122. * calls get to this routine, we should just shut up and say 'yes'.
  2123. *
  2124. * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
  2125. * and do not allow allocations outside the current tasks cpuset
  2126. * unless the task has been OOM killed as is marked TIF_MEMDIE.
  2127. * GFP_KERNEL allocations are not so marked, so can escape to the
  2128. * nearest enclosing hardwalled ancestor cpuset.
  2129. *
  2130. * Scanning up parent cpusets requires callback_mutex. The
  2131. * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
  2132. * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
  2133. * current tasks mems_allowed came up empty on the first pass over
  2134. * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
  2135. * cpuset are short of memory, might require taking the callback_mutex
  2136. * mutex.
  2137. *
  2138. * The first call here from mm/page_alloc:get_page_from_freelist()
  2139. * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
  2140. * so no allocation on a node outside the cpuset is allowed (unless
  2141. * in interrupt, of course).
  2142. *
  2143. * The second pass through get_page_from_freelist() doesn't even call
  2144. * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
  2145. * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
  2146. * in alloc_flags. That logic and the checks below have the combined
  2147. * affect that:
  2148. * in_interrupt - any node ok (current task context irrelevant)
  2149. * GFP_ATOMIC - any node ok
  2150. * TIF_MEMDIE - any node ok
  2151. * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
  2152. * GFP_USER - only nodes in current tasks mems allowed ok.
  2153. *
  2154. * Rule:
  2155. * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
  2156. * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
  2157. * the code that might scan up ancestor cpusets and sleep.
  2158. */
  2159. int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
  2160. {
  2161. struct cpuset *cs; /* current cpuset ancestors */
  2162. int allowed; /* is allocation in zone z allowed? */
  2163. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  2164. return 1;
  2165. might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
  2166. if (node_isset(node, current->mems_allowed))
  2167. return 1;
  2168. /*
  2169. * Allow tasks that have access to memory reserves because they have
  2170. * been OOM killed to get memory anywhere.
  2171. */
  2172. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  2173. return 1;
  2174. if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
  2175. return 0;
  2176. if (current->flags & PF_EXITING) /* Let dying task have memory */
  2177. return 1;
  2178. /* Not hardwall and node outside mems_allowed: scan up cpusets */
  2179. mutex_lock(&callback_mutex);
  2180. task_lock(current);
  2181. cs = nearest_hardwall_ancestor(task_cs(current));
  2182. task_unlock(current);
  2183. allowed = node_isset(node, cs->mems_allowed);
  2184. mutex_unlock(&callback_mutex);
  2185. return allowed;
  2186. }
  2187. /*
  2188. * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
  2189. * @node: is this an allowed node?
  2190. * @gfp_mask: memory allocation flags
  2191. *
  2192. * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
  2193. * set, yes, we can always allocate. If node is in our task's mems_allowed,
  2194. * yes. If the task has been OOM killed and has access to memory reserves as
  2195. * specified by the TIF_MEMDIE flag, yes.
  2196. * Otherwise, no.
  2197. *
  2198. * The __GFP_THISNODE placement logic is really handled elsewhere,
  2199. * by forcibly using a zonelist starting at a specified node, and by
  2200. * (in get_page_from_freelist()) refusing to consider the zones for
  2201. * any node on the zonelist except the first. By the time any such
  2202. * calls get to this routine, we should just shut up and say 'yes'.
  2203. *
  2204. * Unlike the cpuset_node_allowed_softwall() variant, above,
  2205. * this variant requires that the node be in the current task's
  2206. * mems_allowed or that we're in interrupt. It does not scan up the
  2207. * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
  2208. * It never sleeps.
  2209. */
  2210. int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
  2211. {
  2212. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  2213. return 1;
  2214. if (node_isset(node, current->mems_allowed))
  2215. return 1;
  2216. /*
  2217. * Allow tasks that have access to memory reserves because they have
  2218. * been OOM killed to get memory anywhere.
  2219. */
  2220. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  2221. return 1;
  2222. return 0;
  2223. }
  2224. /**
  2225. * cpuset_mem_spread_node() - On which node to begin search for a file page
  2226. * cpuset_slab_spread_node() - On which node to begin search for a slab page
  2227. *
  2228. * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
  2229. * tasks in a cpuset with is_spread_page or is_spread_slab set),
  2230. * and if the memory allocation used cpuset_mem_spread_node()
  2231. * to determine on which node to start looking, as it will for
  2232. * certain page cache or slab cache pages such as used for file
  2233. * system buffers and inode caches, then instead of starting on the
  2234. * local node to look for a free page, rather spread the starting
  2235. * node around the tasks mems_allowed nodes.
  2236. *
  2237. * We don't have to worry about the returned node being offline
  2238. * because "it can't happen", and even if it did, it would be ok.
  2239. *
  2240. * The routines calling guarantee_online_mems() are careful to
  2241. * only set nodes in task->mems_allowed that are online. So it
  2242. * should not be possible for the following code to return an
  2243. * offline node. But if it did, that would be ok, as this routine
  2244. * is not returning the node where the allocation must be, only
  2245. * the node where the search should start. The zonelist passed to
  2246. * __alloc_pages() will include all nodes. If the slab allocator
  2247. * is passed an offline node, it will fall back to the local node.
  2248. * See kmem_cache_alloc_node().
  2249. */
  2250. static int cpuset_spread_node(int *rotor)
  2251. {
  2252. int node;
  2253. node = next_node(*rotor, current->mems_allowed);
  2254. if (node == MAX_NUMNODES)
  2255. node = first_node(current->mems_allowed);
  2256. *rotor = node;
  2257. return node;
  2258. }
  2259. int cpuset_mem_spread_node(void)
  2260. {
  2261. if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
  2262. current->cpuset_mem_spread_rotor =
  2263. node_random(&current->mems_allowed);
  2264. return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
  2265. }
  2266. int cpuset_slab_spread_node(void)
  2267. {
  2268. if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
  2269. current->cpuset_slab_spread_rotor =
  2270. node_random(&current->mems_allowed);
  2271. return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
  2272. }
  2273. EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
  2274. /**
  2275. * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
  2276. * @tsk1: pointer to task_struct of some task.
  2277. * @tsk2: pointer to task_struct of some other task.
  2278. *
  2279. * Description: Return true if @tsk1's mems_allowed intersects the
  2280. * mems_allowed of @tsk2. Used by the OOM killer to determine if
  2281. * one of the task's memory usage might impact the memory available
  2282. * to the other.
  2283. **/
  2284. int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
  2285. const struct task_struct *tsk2)
  2286. {
  2287. return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
  2288. }
  2289. #define CPUSET_NODELIST_LEN (256)
  2290. /**
  2291. * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
  2292. * @task: pointer to task_struct of some task.
  2293. *
  2294. * Description: Prints @task's name, cpuset name, and cached copy of its
  2295. * mems_allowed to the kernel log. Must hold task_lock(task) to allow
  2296. * dereferencing task_cs(task).
  2297. */
  2298. void cpuset_print_task_mems_allowed(struct task_struct *tsk)
  2299. {
  2300. /* Statically allocated to prevent using excess stack. */
  2301. static char cpuset_nodelist[CPUSET_NODELIST_LEN];
  2302. static DEFINE_SPINLOCK(cpuset_buffer_lock);
  2303. struct cgroup *cgrp = task_cs(tsk)->css.cgroup;
  2304. rcu_read_lock();
  2305. spin_lock(&cpuset_buffer_lock);
  2306. nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
  2307. tsk->mems_allowed);
  2308. printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
  2309. tsk->comm, cgroup_name(cgrp), cpuset_nodelist);
  2310. spin_unlock(&cpuset_buffer_lock);
  2311. rcu_read_unlock();
  2312. }
  2313. /*
  2314. * Collection of memory_pressure is suppressed unless
  2315. * this flag is enabled by writing "1" to the special
  2316. * cpuset file 'memory_pressure_enabled' in the root cpuset.
  2317. */
  2318. int cpuset_memory_pressure_enabled __read_mostly;
  2319. /**
  2320. * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
  2321. *
  2322. * Keep a running average of the rate of synchronous (direct)
  2323. * page reclaim efforts initiated by tasks in each cpuset.
  2324. *
  2325. * This represents the rate at which some task in the cpuset
  2326. * ran low on memory on all nodes it was allowed to use, and
  2327. * had to enter the kernels page reclaim code in an effort to
  2328. * create more free memory by tossing clean pages or swapping
  2329. * or writing dirty pages.
  2330. *
  2331. * Display to user space in the per-cpuset read-only file
  2332. * "memory_pressure". Value displayed is an integer
  2333. * representing the recent rate of entry into the synchronous
  2334. * (direct) page reclaim by any task attached to the cpuset.
  2335. **/
  2336. void __cpuset_memory_pressure_bump(void)
  2337. {
  2338. task_lock(current);
  2339. fmeter_markevent(&task_cs(current)->fmeter);
  2340. task_unlock(current);
  2341. }
  2342. #ifdef CONFIG_PROC_PID_CPUSET
  2343. /*
  2344. * proc_cpuset_show()
  2345. * - Print tasks cpuset path into seq_file.
  2346. * - Used for /proc/<pid>/cpuset.
  2347. * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
  2348. * doesn't really matter if tsk->cpuset changes after we read it,
  2349. * and we take cpuset_mutex, keeping cpuset_attach() from changing it
  2350. * anyway.
  2351. */
  2352. int proc_cpuset_show(struct seq_file *m, void *unused_v)
  2353. {
  2354. struct pid *pid;
  2355. struct task_struct *tsk;
  2356. char *buf;
  2357. struct cgroup_subsys_state *css;
  2358. int retval;
  2359. retval = -ENOMEM;
  2360. buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2361. if (!buf)
  2362. goto out;
  2363. retval = -ESRCH;
  2364. pid = m->private;
  2365. tsk = get_pid_task(pid, PIDTYPE_PID);
  2366. if (!tsk)
  2367. goto out_free;
  2368. rcu_read_lock();
  2369. css = task_css(tsk, cpuset_subsys_id);
  2370. retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
  2371. rcu_read_unlock();
  2372. if (retval < 0)
  2373. goto out_put_task;
  2374. seq_puts(m, buf);
  2375. seq_putc(m, '\n');
  2376. out_put_task:
  2377. put_task_struct(tsk);
  2378. out_free:
  2379. kfree(buf);
  2380. out:
  2381. return retval;
  2382. }
  2383. #endif /* CONFIG_PROC_PID_CPUSET */
  2384. /* Display task mems_allowed in /proc/<pid>/status file. */
  2385. void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
  2386. {
  2387. seq_printf(m, "Mems_allowed:\t");
  2388. seq_nodemask(m, &task->mems_allowed);
  2389. seq_printf(m, "\n");
  2390. seq_printf(m, "Mems_allowed_list:\t");
  2391. seq_nodemask_list(m, &task->mems_allowed);
  2392. seq_printf(m, "\n");
  2393. }