sched.c 188 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. */
  26. #include <linux/mm.h>
  27. #include <linux/module.h>
  28. #include <linux/nmi.h>
  29. #include <linux/init.h>
  30. #include <linux/uaccess.h>
  31. #include <linux/highmem.h>
  32. #include <linux/smp_lock.h>
  33. #include <asm/mmu_context.h>
  34. #include <linux/interrupt.h>
  35. #include <linux/capability.h>
  36. #include <linux/completion.h>
  37. #include <linux/kernel_stat.h>
  38. #include <linux/debug_locks.h>
  39. #include <linux/security.h>
  40. #include <linux/notifier.h>
  41. #include <linux/profile.h>
  42. #include <linux/freezer.h>
  43. #include <linux/vmalloc.h>
  44. #include <linux/blkdev.h>
  45. #include <linux/delay.h>
  46. #include <linux/pid_namespace.h>
  47. #include <linux/smp.h>
  48. #include <linux/threads.h>
  49. #include <linux/timer.h>
  50. #include <linux/rcupdate.h>
  51. #include <linux/cpu.h>
  52. #include <linux/cpuset.h>
  53. #include <linux/percpu.h>
  54. #include <linux/kthread.h>
  55. #include <linux/seq_file.h>
  56. #include <linux/sysctl.h>
  57. #include <linux/syscalls.h>
  58. #include <linux/times.h>
  59. #include <linux/tsacct_kern.h>
  60. #include <linux/kprobes.h>
  61. #include <linux/delayacct.h>
  62. #include <linux/reciprocal_div.h>
  63. #include <linux/unistd.h>
  64. #include <linux/pagemap.h>
  65. #include <asm/tlb.h>
  66. #include <asm/irq_regs.h>
  67. /*
  68. * Scheduler clock - returns current time in nanosec units.
  69. * This is default implementation.
  70. * Architectures and sub-architectures can override this.
  71. */
  72. unsigned long long __attribute__((weak)) sched_clock(void)
  73. {
  74. return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
  75. }
  76. /*
  77. * Convert user-nice values [ -20 ... 0 ... 19 ]
  78. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  79. * and back.
  80. */
  81. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  82. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  83. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  84. /*
  85. * 'User priority' is the nice value converted to something we
  86. * can work with better when scaling various scheduler parameters,
  87. * it's a [ 0 ... 39 ] range.
  88. */
  89. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  90. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  91. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  92. /*
  93. * Some helpers for converting nanosecond timing to jiffy resolution
  94. */
  95. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  96. #define JIFFIES_TO_NS(TIME) ((TIME) * (NSEC_PER_SEC / HZ))
  97. #define NICE_0_LOAD SCHED_LOAD_SCALE
  98. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  99. /*
  100. * These are the 'tuning knobs' of the scheduler:
  101. *
  102. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  103. * Timeslices get refilled after they expire.
  104. */
  105. #define DEF_TIMESLICE (100 * HZ / 1000)
  106. #ifdef CONFIG_SMP
  107. /*
  108. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  109. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  110. */
  111. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  112. {
  113. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  114. }
  115. /*
  116. * Each time a sched group cpu_power is changed,
  117. * we must compute its reciprocal value
  118. */
  119. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  120. {
  121. sg->__cpu_power += val;
  122. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  123. }
  124. #endif
  125. static inline int rt_policy(int policy)
  126. {
  127. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  128. return 1;
  129. return 0;
  130. }
  131. static inline int task_has_rt_policy(struct task_struct *p)
  132. {
  133. return rt_policy(p->policy);
  134. }
  135. /*
  136. * This is the priority-queue data structure of the RT scheduling class:
  137. */
  138. struct rt_prio_array {
  139. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  140. struct list_head queue[MAX_RT_PRIO];
  141. };
  142. #ifdef CONFIG_FAIR_GROUP_SCHED
  143. #include <linux/cgroup.h>
  144. struct cfs_rq;
  145. /* task group related information */
  146. struct task_group {
  147. #ifdef CONFIG_FAIR_CGROUP_SCHED
  148. struct cgroup_subsys_state css;
  149. #endif
  150. /* schedulable entities of this group on each cpu */
  151. struct sched_entity **se;
  152. /* runqueue "owned" by this group on each cpu */
  153. struct cfs_rq **cfs_rq;
  154. /*
  155. * shares assigned to a task group governs how much of cpu bandwidth
  156. * is allocated to the group. The more shares a group has, the more is
  157. * the cpu bandwidth allocated to it.
  158. *
  159. * For ex, lets say that there are three task groups, A, B and C which
  160. * have been assigned shares 1000, 2000 and 3000 respectively. Then,
  161. * cpu bandwidth allocated by the scheduler to task groups A, B and C
  162. * should be:
  163. *
  164. * Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
  165. * Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
  166. * Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
  167. *
  168. * The weight assigned to a task group's schedulable entities on every
  169. * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
  170. * group's shares. For ex: lets say that task group A has been
  171. * assigned shares of 1000 and there are two CPUs in a system. Then,
  172. *
  173. * tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
  174. *
  175. * Note: It's not necessary that each of a task's group schedulable
  176. * entity have the same weight on all CPUs. If the group
  177. * has 2 of its tasks on CPU0 and 1 task on CPU1, then a
  178. * better distribution of weight could be:
  179. *
  180. * tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
  181. * tg_A->se[1]->load.weight = 1/2 * 2000 = 667
  182. *
  183. * rebalance_shares() is responsible for distributing the shares of a
  184. * task groups like this among the group's schedulable entities across
  185. * cpus.
  186. *
  187. */
  188. unsigned long shares;
  189. struct rcu_head rcu;
  190. };
  191. /* Default task group's sched entity on each cpu */
  192. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  193. /* Default task group's cfs_rq on each cpu */
  194. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  195. static struct sched_entity *init_sched_entity_p[NR_CPUS];
  196. static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
  197. /* task_group_mutex serializes add/remove of task groups and also changes to
  198. * a task group's cpu shares.
  199. */
  200. static DEFINE_MUTEX(task_group_mutex);
  201. /* doms_cur_mutex serializes access to doms_cur[] array */
  202. static DEFINE_MUTEX(doms_cur_mutex);
  203. #ifdef CONFIG_SMP
  204. /* kernel thread that runs rebalance_shares() periodically */
  205. static struct task_struct *lb_monitor_task;
  206. static int load_balance_monitor(void *unused);
  207. #endif
  208. static void set_se_shares(struct sched_entity *se, unsigned long shares);
  209. /* Default task group.
  210. * Every task in system belong to this group at bootup.
  211. */
  212. struct task_group init_task_group = {
  213. .se = init_sched_entity_p,
  214. .cfs_rq = init_cfs_rq_p,
  215. };
  216. #ifdef CONFIG_FAIR_USER_SCHED
  217. # define INIT_TASK_GROUP_LOAD 2*NICE_0_LOAD
  218. #else
  219. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  220. #endif
  221. #define MIN_GROUP_SHARES 2
  222. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  223. /* return group to which a task belongs */
  224. static inline struct task_group *task_group(struct task_struct *p)
  225. {
  226. struct task_group *tg;
  227. #ifdef CONFIG_FAIR_USER_SCHED
  228. tg = p->user->tg;
  229. #elif defined(CONFIG_FAIR_CGROUP_SCHED)
  230. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  231. struct task_group, css);
  232. #else
  233. tg = &init_task_group;
  234. #endif
  235. return tg;
  236. }
  237. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  238. static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
  239. {
  240. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  241. p->se.parent = task_group(p)->se[cpu];
  242. }
  243. static inline void lock_task_group_list(void)
  244. {
  245. mutex_lock(&task_group_mutex);
  246. }
  247. static inline void unlock_task_group_list(void)
  248. {
  249. mutex_unlock(&task_group_mutex);
  250. }
  251. static inline void lock_doms_cur(void)
  252. {
  253. mutex_lock(&doms_cur_mutex);
  254. }
  255. static inline void unlock_doms_cur(void)
  256. {
  257. mutex_unlock(&doms_cur_mutex);
  258. }
  259. #else
  260. static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
  261. static inline void lock_task_group_list(void) { }
  262. static inline void unlock_task_group_list(void) { }
  263. static inline void lock_doms_cur(void) { }
  264. static inline void unlock_doms_cur(void) { }
  265. #endif /* CONFIG_FAIR_GROUP_SCHED */
  266. /* CFS-related fields in a runqueue */
  267. struct cfs_rq {
  268. struct load_weight load;
  269. unsigned long nr_running;
  270. u64 exec_clock;
  271. u64 min_vruntime;
  272. struct rb_root tasks_timeline;
  273. struct rb_node *rb_leftmost;
  274. struct rb_node *rb_load_balance_curr;
  275. /* 'curr' points to currently running entity on this cfs_rq.
  276. * It is set to NULL otherwise (i.e when none are currently running).
  277. */
  278. struct sched_entity *curr;
  279. unsigned long nr_spread_over;
  280. #ifdef CONFIG_FAIR_GROUP_SCHED
  281. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  282. /*
  283. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  284. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  285. * (like users, containers etc.)
  286. *
  287. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  288. * list is used during load balance.
  289. */
  290. struct list_head leaf_cfs_rq_list;
  291. struct task_group *tg; /* group that "owns" this runqueue */
  292. #endif
  293. };
  294. /* Real-Time classes' related field in a runqueue: */
  295. struct rt_rq {
  296. struct rt_prio_array active;
  297. int rt_load_balance_idx;
  298. struct list_head *rt_load_balance_head, *rt_load_balance_curr;
  299. unsigned long rt_nr_running;
  300. unsigned long rt_nr_migratory;
  301. /* highest queued rt task prio */
  302. int highest_prio;
  303. int overloaded;
  304. };
  305. #ifdef CONFIG_SMP
  306. /*
  307. * We add the notion of a root-domain which will be used to define per-domain
  308. * variables. Each exclusive cpuset essentially defines an island domain by
  309. * fully partitioning the member cpus from any other cpuset. Whenever a new
  310. * exclusive cpuset is created, we also create and attach a new root-domain
  311. * object.
  312. *
  313. * By default the system creates a single root-domain with all cpus as
  314. * members (mimicking the global state we have today).
  315. */
  316. struct root_domain {
  317. atomic_t refcount;
  318. cpumask_t span;
  319. cpumask_t online;
  320. /*
  321. * The "RT overload" flag: it gets set if a CPU has more than
  322. * one runnable RT task.
  323. */
  324. cpumask_t rto_mask;
  325. atomic_t rto_count;
  326. };
  327. static struct root_domain def_root_domain;
  328. #endif
  329. /*
  330. * This is the main, per-CPU runqueue data structure.
  331. *
  332. * Locking rule: those places that want to lock multiple runqueues
  333. * (such as the load balancing or the thread migration code), lock
  334. * acquire operations must be ordered by ascending &runqueue.
  335. */
  336. struct rq {
  337. /* runqueue lock: */
  338. spinlock_t lock;
  339. /*
  340. * nr_running and cpu_load should be in the same cacheline because
  341. * remote CPUs use both these fields when doing load calculation.
  342. */
  343. unsigned long nr_running;
  344. #define CPU_LOAD_IDX_MAX 5
  345. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  346. unsigned char idle_at_tick;
  347. #ifdef CONFIG_NO_HZ
  348. unsigned char in_nohz_recently;
  349. #endif
  350. /* capture load from *all* tasks on this cpu: */
  351. struct load_weight load;
  352. unsigned long nr_load_updates;
  353. u64 nr_switches;
  354. struct cfs_rq cfs;
  355. #ifdef CONFIG_FAIR_GROUP_SCHED
  356. /* list of leaf cfs_rq on this cpu: */
  357. struct list_head leaf_cfs_rq_list;
  358. #endif
  359. struct rt_rq rt;
  360. /*
  361. * This is part of a global counter where only the total sum
  362. * over all CPUs matters. A task can increase this counter on
  363. * one CPU and if it got migrated afterwards it may decrease
  364. * it on another CPU. Always updated under the runqueue lock:
  365. */
  366. unsigned long nr_uninterruptible;
  367. struct task_struct *curr, *idle;
  368. unsigned long next_balance;
  369. struct mm_struct *prev_mm;
  370. u64 clock, prev_clock_raw;
  371. s64 clock_max_delta;
  372. unsigned int clock_warps, clock_overflows;
  373. u64 idle_clock;
  374. unsigned int clock_deep_idle_events;
  375. u64 tick_timestamp;
  376. atomic_t nr_iowait;
  377. #ifdef CONFIG_SMP
  378. struct root_domain *rd;
  379. struct sched_domain *sd;
  380. /* For active balancing */
  381. int active_balance;
  382. int push_cpu;
  383. /* cpu of this runqueue: */
  384. int cpu;
  385. struct task_struct *migration_thread;
  386. struct list_head migration_queue;
  387. #endif
  388. #ifdef CONFIG_SCHEDSTATS
  389. /* latency stats */
  390. struct sched_info rq_sched_info;
  391. /* sys_sched_yield() stats */
  392. unsigned int yld_exp_empty;
  393. unsigned int yld_act_empty;
  394. unsigned int yld_both_empty;
  395. unsigned int yld_count;
  396. /* schedule() stats */
  397. unsigned int sched_switch;
  398. unsigned int sched_count;
  399. unsigned int sched_goidle;
  400. /* try_to_wake_up() stats */
  401. unsigned int ttwu_count;
  402. unsigned int ttwu_local;
  403. /* BKL stats */
  404. unsigned int bkl_count;
  405. #endif
  406. struct lock_class_key rq_lock_key;
  407. };
  408. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  409. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  410. {
  411. rq->curr->sched_class->check_preempt_curr(rq, p);
  412. }
  413. static inline int cpu_of(struct rq *rq)
  414. {
  415. #ifdef CONFIG_SMP
  416. return rq->cpu;
  417. #else
  418. return 0;
  419. #endif
  420. }
  421. /*
  422. * Update the per-runqueue clock, as finegrained as the platform can give
  423. * us, but without assuming monotonicity, etc.:
  424. */
  425. static void __update_rq_clock(struct rq *rq)
  426. {
  427. u64 prev_raw = rq->prev_clock_raw;
  428. u64 now = sched_clock();
  429. s64 delta = now - prev_raw;
  430. u64 clock = rq->clock;
  431. #ifdef CONFIG_SCHED_DEBUG
  432. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  433. #endif
  434. /*
  435. * Protect against sched_clock() occasionally going backwards:
  436. */
  437. if (unlikely(delta < 0)) {
  438. clock++;
  439. rq->clock_warps++;
  440. } else {
  441. /*
  442. * Catch too large forward jumps too:
  443. */
  444. if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
  445. if (clock < rq->tick_timestamp + TICK_NSEC)
  446. clock = rq->tick_timestamp + TICK_NSEC;
  447. else
  448. clock++;
  449. rq->clock_overflows++;
  450. } else {
  451. if (unlikely(delta > rq->clock_max_delta))
  452. rq->clock_max_delta = delta;
  453. clock += delta;
  454. }
  455. }
  456. rq->prev_clock_raw = now;
  457. rq->clock = clock;
  458. }
  459. static void update_rq_clock(struct rq *rq)
  460. {
  461. if (likely(smp_processor_id() == cpu_of(rq)))
  462. __update_rq_clock(rq);
  463. }
  464. /*
  465. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  466. * See detach_destroy_domains: synchronize_sched for details.
  467. *
  468. * The domain tree of any CPU may only be accessed from within
  469. * preempt-disabled sections.
  470. */
  471. #define for_each_domain(cpu, __sd) \
  472. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  473. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  474. #define this_rq() (&__get_cpu_var(runqueues))
  475. #define task_rq(p) cpu_rq(task_cpu(p))
  476. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  477. /*
  478. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  479. */
  480. #ifdef CONFIG_SCHED_DEBUG
  481. # define const_debug __read_mostly
  482. #else
  483. # define const_debug static const
  484. #endif
  485. /*
  486. * Debugging: various feature bits
  487. */
  488. enum {
  489. SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
  490. SCHED_FEAT_WAKEUP_PREEMPT = 2,
  491. SCHED_FEAT_START_DEBIT = 4,
  492. SCHED_FEAT_TREE_AVG = 8,
  493. SCHED_FEAT_APPROX_AVG = 16,
  494. };
  495. const_debug unsigned int sysctl_sched_features =
  496. SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
  497. SCHED_FEAT_WAKEUP_PREEMPT * 1 |
  498. SCHED_FEAT_START_DEBIT * 1 |
  499. SCHED_FEAT_TREE_AVG * 0 |
  500. SCHED_FEAT_APPROX_AVG * 0;
  501. #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
  502. /*
  503. * Number of tasks to iterate in a single balance run.
  504. * Limited because this is done with IRQs disabled.
  505. */
  506. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  507. /*
  508. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  509. * clock constructed from sched_clock():
  510. */
  511. unsigned long long cpu_clock(int cpu)
  512. {
  513. unsigned long long now;
  514. unsigned long flags;
  515. struct rq *rq;
  516. local_irq_save(flags);
  517. rq = cpu_rq(cpu);
  518. /*
  519. * Only call sched_clock() if the scheduler has already been
  520. * initialized (some code might call cpu_clock() very early):
  521. */
  522. if (rq->idle)
  523. update_rq_clock(rq);
  524. now = rq->clock;
  525. local_irq_restore(flags);
  526. return now;
  527. }
  528. EXPORT_SYMBOL_GPL(cpu_clock);
  529. #ifndef prepare_arch_switch
  530. # define prepare_arch_switch(next) do { } while (0)
  531. #endif
  532. #ifndef finish_arch_switch
  533. # define finish_arch_switch(prev) do { } while (0)
  534. #endif
  535. static inline int task_current(struct rq *rq, struct task_struct *p)
  536. {
  537. return rq->curr == p;
  538. }
  539. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  540. static inline int task_running(struct rq *rq, struct task_struct *p)
  541. {
  542. return task_current(rq, p);
  543. }
  544. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  545. {
  546. }
  547. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  548. {
  549. #ifdef CONFIG_DEBUG_SPINLOCK
  550. /* this is a valid case when another task releases the spinlock */
  551. rq->lock.owner = current;
  552. #endif
  553. /*
  554. * If we are tracking spinlock dependencies then we have to
  555. * fix up the runqueue lock - which gets 'carried over' from
  556. * prev into current:
  557. */
  558. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  559. spin_unlock_irq(&rq->lock);
  560. }
  561. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  562. static inline int task_running(struct rq *rq, struct task_struct *p)
  563. {
  564. #ifdef CONFIG_SMP
  565. return p->oncpu;
  566. #else
  567. return task_current(rq, p);
  568. #endif
  569. }
  570. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  571. {
  572. #ifdef CONFIG_SMP
  573. /*
  574. * We can optimise this out completely for !SMP, because the
  575. * SMP rebalancing from interrupt is the only thing that cares
  576. * here.
  577. */
  578. next->oncpu = 1;
  579. #endif
  580. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  581. spin_unlock_irq(&rq->lock);
  582. #else
  583. spin_unlock(&rq->lock);
  584. #endif
  585. }
  586. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  587. {
  588. #ifdef CONFIG_SMP
  589. /*
  590. * After ->oncpu is cleared, the task can be moved to a different CPU.
  591. * We must ensure this doesn't happen until the switch is completely
  592. * finished.
  593. */
  594. smp_wmb();
  595. prev->oncpu = 0;
  596. #endif
  597. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  598. local_irq_enable();
  599. #endif
  600. }
  601. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  602. /*
  603. * __task_rq_lock - lock the runqueue a given task resides on.
  604. * Must be called interrupts disabled.
  605. */
  606. static inline struct rq *__task_rq_lock(struct task_struct *p)
  607. __acquires(rq->lock)
  608. {
  609. for (;;) {
  610. struct rq *rq = task_rq(p);
  611. spin_lock(&rq->lock);
  612. if (likely(rq == task_rq(p)))
  613. return rq;
  614. spin_unlock(&rq->lock);
  615. }
  616. }
  617. /*
  618. * task_rq_lock - lock the runqueue a given task resides on and disable
  619. * interrupts. Note the ordering: we can safely lookup the task_rq without
  620. * explicitly disabling preemption.
  621. */
  622. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  623. __acquires(rq->lock)
  624. {
  625. struct rq *rq;
  626. for (;;) {
  627. local_irq_save(*flags);
  628. rq = task_rq(p);
  629. spin_lock(&rq->lock);
  630. if (likely(rq == task_rq(p)))
  631. return rq;
  632. spin_unlock_irqrestore(&rq->lock, *flags);
  633. }
  634. }
  635. static void __task_rq_unlock(struct rq *rq)
  636. __releases(rq->lock)
  637. {
  638. spin_unlock(&rq->lock);
  639. }
  640. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  641. __releases(rq->lock)
  642. {
  643. spin_unlock_irqrestore(&rq->lock, *flags);
  644. }
  645. /*
  646. * this_rq_lock - lock this runqueue and disable interrupts.
  647. */
  648. static struct rq *this_rq_lock(void)
  649. __acquires(rq->lock)
  650. {
  651. struct rq *rq;
  652. local_irq_disable();
  653. rq = this_rq();
  654. spin_lock(&rq->lock);
  655. return rq;
  656. }
  657. /*
  658. * We are going deep-idle (irqs are disabled):
  659. */
  660. void sched_clock_idle_sleep_event(void)
  661. {
  662. struct rq *rq = cpu_rq(smp_processor_id());
  663. spin_lock(&rq->lock);
  664. __update_rq_clock(rq);
  665. spin_unlock(&rq->lock);
  666. rq->clock_deep_idle_events++;
  667. }
  668. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  669. /*
  670. * We just idled delta nanoseconds (called with irqs disabled):
  671. */
  672. void sched_clock_idle_wakeup_event(u64 delta_ns)
  673. {
  674. struct rq *rq = cpu_rq(smp_processor_id());
  675. u64 now = sched_clock();
  676. touch_softlockup_watchdog();
  677. rq->idle_clock += delta_ns;
  678. /*
  679. * Override the previous timestamp and ignore all
  680. * sched_clock() deltas that occured while we idled,
  681. * and use the PM-provided delta_ns to advance the
  682. * rq clock:
  683. */
  684. spin_lock(&rq->lock);
  685. rq->prev_clock_raw = now;
  686. rq->clock += delta_ns;
  687. spin_unlock(&rq->lock);
  688. }
  689. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  690. /*
  691. * resched_task - mark a task 'to be rescheduled now'.
  692. *
  693. * On UP this means the setting of the need_resched flag, on SMP it
  694. * might also involve a cross-CPU call to trigger the scheduler on
  695. * the target CPU.
  696. */
  697. #ifdef CONFIG_SMP
  698. #ifndef tsk_is_polling
  699. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  700. #endif
  701. static void resched_task(struct task_struct *p)
  702. {
  703. int cpu;
  704. assert_spin_locked(&task_rq(p)->lock);
  705. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  706. return;
  707. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  708. cpu = task_cpu(p);
  709. if (cpu == smp_processor_id())
  710. return;
  711. /* NEED_RESCHED must be visible before we test polling */
  712. smp_mb();
  713. if (!tsk_is_polling(p))
  714. smp_send_reschedule(cpu);
  715. }
  716. static void resched_cpu(int cpu)
  717. {
  718. struct rq *rq = cpu_rq(cpu);
  719. unsigned long flags;
  720. if (!spin_trylock_irqsave(&rq->lock, flags))
  721. return;
  722. resched_task(cpu_curr(cpu));
  723. spin_unlock_irqrestore(&rq->lock, flags);
  724. }
  725. #else
  726. static inline void resched_task(struct task_struct *p)
  727. {
  728. assert_spin_locked(&task_rq(p)->lock);
  729. set_tsk_need_resched(p);
  730. }
  731. #endif
  732. #if BITS_PER_LONG == 32
  733. # define WMULT_CONST (~0UL)
  734. #else
  735. # define WMULT_CONST (1UL << 32)
  736. #endif
  737. #define WMULT_SHIFT 32
  738. /*
  739. * Shift right and round:
  740. */
  741. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  742. static unsigned long
  743. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  744. struct load_weight *lw)
  745. {
  746. u64 tmp;
  747. if (unlikely(!lw->inv_weight))
  748. lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
  749. tmp = (u64)delta_exec * weight;
  750. /*
  751. * Check whether we'd overflow the 64-bit multiplication:
  752. */
  753. if (unlikely(tmp > WMULT_CONST))
  754. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  755. WMULT_SHIFT/2);
  756. else
  757. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  758. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  759. }
  760. static inline unsigned long
  761. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  762. {
  763. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  764. }
  765. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  766. {
  767. lw->weight += inc;
  768. }
  769. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  770. {
  771. lw->weight -= dec;
  772. }
  773. /*
  774. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  775. * of tasks with abnormal "nice" values across CPUs the contribution that
  776. * each task makes to its run queue's load is weighted according to its
  777. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  778. * scaled version of the new time slice allocation that they receive on time
  779. * slice expiry etc.
  780. */
  781. #define WEIGHT_IDLEPRIO 2
  782. #define WMULT_IDLEPRIO (1 << 31)
  783. /*
  784. * Nice levels are multiplicative, with a gentle 10% change for every
  785. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  786. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  787. * that remained on nice 0.
  788. *
  789. * The "10% effect" is relative and cumulative: from _any_ nice level,
  790. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  791. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  792. * If a task goes up by ~10% and another task goes down by ~10% then
  793. * the relative distance between them is ~25%.)
  794. */
  795. static const int prio_to_weight[40] = {
  796. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  797. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  798. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  799. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  800. /* 0 */ 1024, 820, 655, 526, 423,
  801. /* 5 */ 335, 272, 215, 172, 137,
  802. /* 10 */ 110, 87, 70, 56, 45,
  803. /* 15 */ 36, 29, 23, 18, 15,
  804. };
  805. /*
  806. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  807. *
  808. * In cases where the weight does not change often, we can use the
  809. * precalculated inverse to speed up arithmetics by turning divisions
  810. * into multiplications:
  811. */
  812. static const u32 prio_to_wmult[40] = {
  813. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  814. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  815. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  816. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  817. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  818. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  819. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  820. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  821. };
  822. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  823. /*
  824. * runqueue iterator, to support SMP load-balancing between different
  825. * scheduling classes, without having to expose their internal data
  826. * structures to the load-balancing proper:
  827. */
  828. struct rq_iterator {
  829. void *arg;
  830. struct task_struct *(*start)(void *);
  831. struct task_struct *(*next)(void *);
  832. };
  833. #ifdef CONFIG_SMP
  834. static unsigned long
  835. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  836. unsigned long max_load_move, struct sched_domain *sd,
  837. enum cpu_idle_type idle, int *all_pinned,
  838. int *this_best_prio, struct rq_iterator *iterator);
  839. static int
  840. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  841. struct sched_domain *sd, enum cpu_idle_type idle,
  842. struct rq_iterator *iterator);
  843. #endif
  844. #ifdef CONFIG_CGROUP_CPUACCT
  845. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  846. #else
  847. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  848. #endif
  849. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  850. {
  851. update_load_add(&rq->load, load);
  852. }
  853. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  854. {
  855. update_load_sub(&rq->load, load);
  856. }
  857. #ifdef CONFIG_SMP
  858. static unsigned long source_load(int cpu, int type);
  859. static unsigned long target_load(int cpu, int type);
  860. static unsigned long cpu_avg_load_per_task(int cpu);
  861. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  862. #endif /* CONFIG_SMP */
  863. #include "sched_stats.h"
  864. #include "sched_idletask.c"
  865. #include "sched_fair.c"
  866. #include "sched_rt.c"
  867. #ifdef CONFIG_SCHED_DEBUG
  868. # include "sched_debug.c"
  869. #endif
  870. #define sched_class_highest (&rt_sched_class)
  871. static void inc_nr_running(struct task_struct *p, struct rq *rq)
  872. {
  873. rq->nr_running++;
  874. }
  875. static void dec_nr_running(struct task_struct *p, struct rq *rq)
  876. {
  877. rq->nr_running--;
  878. }
  879. static void set_load_weight(struct task_struct *p)
  880. {
  881. if (task_has_rt_policy(p)) {
  882. p->se.load.weight = prio_to_weight[0] * 2;
  883. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  884. return;
  885. }
  886. /*
  887. * SCHED_IDLE tasks get minimal weight:
  888. */
  889. if (p->policy == SCHED_IDLE) {
  890. p->se.load.weight = WEIGHT_IDLEPRIO;
  891. p->se.load.inv_weight = WMULT_IDLEPRIO;
  892. return;
  893. }
  894. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  895. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  896. }
  897. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  898. {
  899. sched_info_queued(p);
  900. p->sched_class->enqueue_task(rq, p, wakeup);
  901. p->se.on_rq = 1;
  902. }
  903. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  904. {
  905. p->sched_class->dequeue_task(rq, p, sleep);
  906. p->se.on_rq = 0;
  907. }
  908. /*
  909. * __normal_prio - return the priority that is based on the static prio
  910. */
  911. static inline int __normal_prio(struct task_struct *p)
  912. {
  913. return p->static_prio;
  914. }
  915. /*
  916. * Calculate the expected normal priority: i.e. priority
  917. * without taking RT-inheritance into account. Might be
  918. * boosted by interactivity modifiers. Changes upon fork,
  919. * setprio syscalls, and whenever the interactivity
  920. * estimator recalculates.
  921. */
  922. static inline int normal_prio(struct task_struct *p)
  923. {
  924. int prio;
  925. if (task_has_rt_policy(p))
  926. prio = MAX_RT_PRIO-1 - p->rt_priority;
  927. else
  928. prio = __normal_prio(p);
  929. return prio;
  930. }
  931. /*
  932. * Calculate the current priority, i.e. the priority
  933. * taken into account by the scheduler. This value might
  934. * be boosted by RT tasks, or might be boosted by
  935. * interactivity modifiers. Will be RT if the task got
  936. * RT-boosted. If not then it returns p->normal_prio.
  937. */
  938. static int effective_prio(struct task_struct *p)
  939. {
  940. p->normal_prio = normal_prio(p);
  941. /*
  942. * If we are RT tasks or we were boosted to RT priority,
  943. * keep the priority unchanged. Otherwise, update priority
  944. * to the normal priority:
  945. */
  946. if (!rt_prio(p->prio))
  947. return p->normal_prio;
  948. return p->prio;
  949. }
  950. /*
  951. * activate_task - move a task to the runqueue.
  952. */
  953. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  954. {
  955. if (p->state == TASK_UNINTERRUPTIBLE)
  956. rq->nr_uninterruptible--;
  957. enqueue_task(rq, p, wakeup);
  958. inc_nr_running(p, rq);
  959. }
  960. /*
  961. * deactivate_task - remove a task from the runqueue.
  962. */
  963. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  964. {
  965. if (p->state == TASK_UNINTERRUPTIBLE)
  966. rq->nr_uninterruptible++;
  967. dequeue_task(rq, p, sleep);
  968. dec_nr_running(p, rq);
  969. }
  970. /**
  971. * task_curr - is this task currently executing on a CPU?
  972. * @p: the task in question.
  973. */
  974. inline int task_curr(const struct task_struct *p)
  975. {
  976. return cpu_curr(task_cpu(p)) == p;
  977. }
  978. /* Used instead of source_load when we know the type == 0 */
  979. unsigned long weighted_cpuload(const int cpu)
  980. {
  981. return cpu_rq(cpu)->load.weight;
  982. }
  983. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  984. {
  985. set_task_cfs_rq(p, cpu);
  986. #ifdef CONFIG_SMP
  987. /*
  988. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  989. * successfuly executed on another CPU. We must ensure that updates of
  990. * per-task data have been completed by this moment.
  991. */
  992. smp_wmb();
  993. task_thread_info(p)->cpu = cpu;
  994. #endif
  995. }
  996. #ifdef CONFIG_SMP
  997. /*
  998. * Is this task likely cache-hot:
  999. */
  1000. static int
  1001. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1002. {
  1003. s64 delta;
  1004. if (p->sched_class != &fair_sched_class)
  1005. return 0;
  1006. if (sysctl_sched_migration_cost == -1)
  1007. return 1;
  1008. if (sysctl_sched_migration_cost == 0)
  1009. return 0;
  1010. delta = now - p->se.exec_start;
  1011. return delta < (s64)sysctl_sched_migration_cost;
  1012. }
  1013. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1014. {
  1015. int old_cpu = task_cpu(p);
  1016. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1017. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1018. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1019. u64 clock_offset;
  1020. clock_offset = old_rq->clock - new_rq->clock;
  1021. #ifdef CONFIG_SCHEDSTATS
  1022. if (p->se.wait_start)
  1023. p->se.wait_start -= clock_offset;
  1024. if (p->se.sleep_start)
  1025. p->se.sleep_start -= clock_offset;
  1026. if (p->se.block_start)
  1027. p->se.block_start -= clock_offset;
  1028. if (old_cpu != new_cpu) {
  1029. schedstat_inc(p, se.nr_migrations);
  1030. if (task_hot(p, old_rq->clock, NULL))
  1031. schedstat_inc(p, se.nr_forced2_migrations);
  1032. }
  1033. #endif
  1034. p->se.vruntime -= old_cfsrq->min_vruntime -
  1035. new_cfsrq->min_vruntime;
  1036. __set_task_cpu(p, new_cpu);
  1037. }
  1038. struct migration_req {
  1039. struct list_head list;
  1040. struct task_struct *task;
  1041. int dest_cpu;
  1042. struct completion done;
  1043. };
  1044. /*
  1045. * The task's runqueue lock must be held.
  1046. * Returns true if you have to wait for migration thread.
  1047. */
  1048. static int
  1049. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1050. {
  1051. struct rq *rq = task_rq(p);
  1052. /*
  1053. * If the task is not on a runqueue (and not running), then
  1054. * it is sufficient to simply update the task's cpu field.
  1055. */
  1056. if (!p->se.on_rq && !task_running(rq, p)) {
  1057. set_task_cpu(p, dest_cpu);
  1058. return 0;
  1059. }
  1060. init_completion(&req->done);
  1061. req->task = p;
  1062. req->dest_cpu = dest_cpu;
  1063. list_add(&req->list, &rq->migration_queue);
  1064. return 1;
  1065. }
  1066. /*
  1067. * wait_task_inactive - wait for a thread to unschedule.
  1068. *
  1069. * The caller must ensure that the task *will* unschedule sometime soon,
  1070. * else this function might spin for a *long* time. This function can't
  1071. * be called with interrupts off, or it may introduce deadlock with
  1072. * smp_call_function() if an IPI is sent by the same process we are
  1073. * waiting to become inactive.
  1074. */
  1075. void wait_task_inactive(struct task_struct *p)
  1076. {
  1077. unsigned long flags;
  1078. int running, on_rq;
  1079. struct rq *rq;
  1080. for (;;) {
  1081. /*
  1082. * We do the initial early heuristics without holding
  1083. * any task-queue locks at all. We'll only try to get
  1084. * the runqueue lock when things look like they will
  1085. * work out!
  1086. */
  1087. rq = task_rq(p);
  1088. /*
  1089. * If the task is actively running on another CPU
  1090. * still, just relax and busy-wait without holding
  1091. * any locks.
  1092. *
  1093. * NOTE! Since we don't hold any locks, it's not
  1094. * even sure that "rq" stays as the right runqueue!
  1095. * But we don't care, since "task_running()" will
  1096. * return false if the runqueue has changed and p
  1097. * is actually now running somewhere else!
  1098. */
  1099. while (task_running(rq, p))
  1100. cpu_relax();
  1101. /*
  1102. * Ok, time to look more closely! We need the rq
  1103. * lock now, to be *sure*. If we're wrong, we'll
  1104. * just go back and repeat.
  1105. */
  1106. rq = task_rq_lock(p, &flags);
  1107. running = task_running(rq, p);
  1108. on_rq = p->se.on_rq;
  1109. task_rq_unlock(rq, &flags);
  1110. /*
  1111. * Was it really running after all now that we
  1112. * checked with the proper locks actually held?
  1113. *
  1114. * Oops. Go back and try again..
  1115. */
  1116. if (unlikely(running)) {
  1117. cpu_relax();
  1118. continue;
  1119. }
  1120. /*
  1121. * It's not enough that it's not actively running,
  1122. * it must be off the runqueue _entirely_, and not
  1123. * preempted!
  1124. *
  1125. * So if it wa still runnable (but just not actively
  1126. * running right now), it's preempted, and we should
  1127. * yield - it could be a while.
  1128. */
  1129. if (unlikely(on_rq)) {
  1130. schedule_timeout_uninterruptible(1);
  1131. continue;
  1132. }
  1133. /*
  1134. * Ahh, all good. It wasn't running, and it wasn't
  1135. * runnable, which means that it will never become
  1136. * running in the future either. We're all done!
  1137. */
  1138. break;
  1139. }
  1140. }
  1141. /***
  1142. * kick_process - kick a running thread to enter/exit the kernel
  1143. * @p: the to-be-kicked thread
  1144. *
  1145. * Cause a process which is running on another CPU to enter
  1146. * kernel-mode, without any delay. (to get signals handled.)
  1147. *
  1148. * NOTE: this function doesnt have to take the runqueue lock,
  1149. * because all it wants to ensure is that the remote task enters
  1150. * the kernel. If the IPI races and the task has been migrated
  1151. * to another CPU then no harm is done and the purpose has been
  1152. * achieved as well.
  1153. */
  1154. void kick_process(struct task_struct *p)
  1155. {
  1156. int cpu;
  1157. preempt_disable();
  1158. cpu = task_cpu(p);
  1159. if ((cpu != smp_processor_id()) && task_curr(p))
  1160. smp_send_reschedule(cpu);
  1161. preempt_enable();
  1162. }
  1163. /*
  1164. * Return a low guess at the load of a migration-source cpu weighted
  1165. * according to the scheduling class and "nice" value.
  1166. *
  1167. * We want to under-estimate the load of migration sources, to
  1168. * balance conservatively.
  1169. */
  1170. static unsigned long source_load(int cpu, int type)
  1171. {
  1172. struct rq *rq = cpu_rq(cpu);
  1173. unsigned long total = weighted_cpuload(cpu);
  1174. if (type == 0)
  1175. return total;
  1176. return min(rq->cpu_load[type-1], total);
  1177. }
  1178. /*
  1179. * Return a high guess at the load of a migration-target cpu weighted
  1180. * according to the scheduling class and "nice" value.
  1181. */
  1182. static unsigned long target_load(int cpu, int type)
  1183. {
  1184. struct rq *rq = cpu_rq(cpu);
  1185. unsigned long total = weighted_cpuload(cpu);
  1186. if (type == 0)
  1187. return total;
  1188. return max(rq->cpu_load[type-1], total);
  1189. }
  1190. /*
  1191. * Return the average load per task on the cpu's run queue
  1192. */
  1193. static unsigned long cpu_avg_load_per_task(int cpu)
  1194. {
  1195. struct rq *rq = cpu_rq(cpu);
  1196. unsigned long total = weighted_cpuload(cpu);
  1197. unsigned long n = rq->nr_running;
  1198. return n ? total / n : SCHED_LOAD_SCALE;
  1199. }
  1200. /*
  1201. * find_idlest_group finds and returns the least busy CPU group within the
  1202. * domain.
  1203. */
  1204. static struct sched_group *
  1205. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1206. {
  1207. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1208. unsigned long min_load = ULONG_MAX, this_load = 0;
  1209. int load_idx = sd->forkexec_idx;
  1210. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1211. do {
  1212. unsigned long load, avg_load;
  1213. int local_group;
  1214. int i;
  1215. /* Skip over this group if it has no CPUs allowed */
  1216. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1217. continue;
  1218. local_group = cpu_isset(this_cpu, group->cpumask);
  1219. /* Tally up the load of all CPUs in the group */
  1220. avg_load = 0;
  1221. for_each_cpu_mask(i, group->cpumask) {
  1222. /* Bias balancing toward cpus of our domain */
  1223. if (local_group)
  1224. load = source_load(i, load_idx);
  1225. else
  1226. load = target_load(i, load_idx);
  1227. avg_load += load;
  1228. }
  1229. /* Adjust by relative CPU power of the group */
  1230. avg_load = sg_div_cpu_power(group,
  1231. avg_load * SCHED_LOAD_SCALE);
  1232. if (local_group) {
  1233. this_load = avg_load;
  1234. this = group;
  1235. } else if (avg_load < min_load) {
  1236. min_load = avg_load;
  1237. idlest = group;
  1238. }
  1239. } while (group = group->next, group != sd->groups);
  1240. if (!idlest || 100*this_load < imbalance*min_load)
  1241. return NULL;
  1242. return idlest;
  1243. }
  1244. /*
  1245. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1246. */
  1247. static int
  1248. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1249. {
  1250. cpumask_t tmp;
  1251. unsigned long load, min_load = ULONG_MAX;
  1252. int idlest = -1;
  1253. int i;
  1254. /* Traverse only the allowed CPUs */
  1255. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1256. for_each_cpu_mask(i, tmp) {
  1257. load = weighted_cpuload(i);
  1258. if (load < min_load || (load == min_load && i == this_cpu)) {
  1259. min_load = load;
  1260. idlest = i;
  1261. }
  1262. }
  1263. return idlest;
  1264. }
  1265. /*
  1266. * sched_balance_self: balance the current task (running on cpu) in domains
  1267. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1268. * SD_BALANCE_EXEC.
  1269. *
  1270. * Balance, ie. select the least loaded group.
  1271. *
  1272. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1273. *
  1274. * preempt must be disabled.
  1275. */
  1276. static int sched_balance_self(int cpu, int flag)
  1277. {
  1278. struct task_struct *t = current;
  1279. struct sched_domain *tmp, *sd = NULL;
  1280. for_each_domain(cpu, tmp) {
  1281. /*
  1282. * If power savings logic is enabled for a domain, stop there.
  1283. */
  1284. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1285. break;
  1286. if (tmp->flags & flag)
  1287. sd = tmp;
  1288. }
  1289. while (sd) {
  1290. cpumask_t span;
  1291. struct sched_group *group;
  1292. int new_cpu, weight;
  1293. if (!(sd->flags & flag)) {
  1294. sd = sd->child;
  1295. continue;
  1296. }
  1297. span = sd->span;
  1298. group = find_idlest_group(sd, t, cpu);
  1299. if (!group) {
  1300. sd = sd->child;
  1301. continue;
  1302. }
  1303. new_cpu = find_idlest_cpu(group, t, cpu);
  1304. if (new_cpu == -1 || new_cpu == cpu) {
  1305. /* Now try balancing at a lower domain level of cpu */
  1306. sd = sd->child;
  1307. continue;
  1308. }
  1309. /* Now try balancing at a lower domain level of new_cpu */
  1310. cpu = new_cpu;
  1311. sd = NULL;
  1312. weight = cpus_weight(span);
  1313. for_each_domain(cpu, tmp) {
  1314. if (weight <= cpus_weight(tmp->span))
  1315. break;
  1316. if (tmp->flags & flag)
  1317. sd = tmp;
  1318. }
  1319. /* while loop will break here if sd == NULL */
  1320. }
  1321. return cpu;
  1322. }
  1323. #endif /* CONFIG_SMP */
  1324. /***
  1325. * try_to_wake_up - wake up a thread
  1326. * @p: the to-be-woken-up thread
  1327. * @state: the mask of task states that can be woken
  1328. * @sync: do a synchronous wakeup?
  1329. *
  1330. * Put it on the run-queue if it's not already there. The "current"
  1331. * thread is always on the run-queue (except when the actual
  1332. * re-schedule is in progress), and as such you're allowed to do
  1333. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1334. * runnable without the overhead of this.
  1335. *
  1336. * returns failure only if the task is already active.
  1337. */
  1338. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1339. {
  1340. int cpu, orig_cpu, this_cpu, success = 0;
  1341. unsigned long flags;
  1342. long old_state;
  1343. struct rq *rq;
  1344. #ifdef CONFIG_SMP
  1345. int new_cpu;
  1346. #endif
  1347. rq = task_rq_lock(p, &flags);
  1348. old_state = p->state;
  1349. if (!(old_state & state))
  1350. goto out;
  1351. if (p->se.on_rq)
  1352. goto out_running;
  1353. cpu = task_cpu(p);
  1354. orig_cpu = cpu;
  1355. this_cpu = smp_processor_id();
  1356. #ifdef CONFIG_SMP
  1357. if (unlikely(task_running(rq, p)))
  1358. goto out_activate;
  1359. new_cpu = p->sched_class->select_task_rq(p, sync);
  1360. if (new_cpu != cpu) {
  1361. set_task_cpu(p, new_cpu);
  1362. task_rq_unlock(rq, &flags);
  1363. /* might preempt at this point */
  1364. rq = task_rq_lock(p, &flags);
  1365. old_state = p->state;
  1366. if (!(old_state & state))
  1367. goto out;
  1368. if (p->se.on_rq)
  1369. goto out_running;
  1370. this_cpu = smp_processor_id();
  1371. cpu = task_cpu(p);
  1372. }
  1373. #ifdef CONFIG_SCHEDSTATS
  1374. schedstat_inc(rq, ttwu_count);
  1375. if (cpu == this_cpu)
  1376. schedstat_inc(rq, ttwu_local);
  1377. else {
  1378. struct sched_domain *sd;
  1379. for_each_domain(this_cpu, sd) {
  1380. if (cpu_isset(cpu, sd->span)) {
  1381. schedstat_inc(sd, ttwu_wake_remote);
  1382. break;
  1383. }
  1384. }
  1385. }
  1386. #endif
  1387. out_activate:
  1388. #endif /* CONFIG_SMP */
  1389. schedstat_inc(p, se.nr_wakeups);
  1390. if (sync)
  1391. schedstat_inc(p, se.nr_wakeups_sync);
  1392. if (orig_cpu != cpu)
  1393. schedstat_inc(p, se.nr_wakeups_migrate);
  1394. if (cpu == this_cpu)
  1395. schedstat_inc(p, se.nr_wakeups_local);
  1396. else
  1397. schedstat_inc(p, se.nr_wakeups_remote);
  1398. update_rq_clock(rq);
  1399. activate_task(rq, p, 1);
  1400. check_preempt_curr(rq, p);
  1401. success = 1;
  1402. out_running:
  1403. p->state = TASK_RUNNING;
  1404. wakeup_balance_rt(rq, p);
  1405. out:
  1406. task_rq_unlock(rq, &flags);
  1407. return success;
  1408. }
  1409. int fastcall wake_up_process(struct task_struct *p)
  1410. {
  1411. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1412. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1413. }
  1414. EXPORT_SYMBOL(wake_up_process);
  1415. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1416. {
  1417. return try_to_wake_up(p, state, 0);
  1418. }
  1419. /*
  1420. * Perform scheduler related setup for a newly forked process p.
  1421. * p is forked by current.
  1422. *
  1423. * __sched_fork() is basic setup used by init_idle() too:
  1424. */
  1425. static void __sched_fork(struct task_struct *p)
  1426. {
  1427. p->se.exec_start = 0;
  1428. p->se.sum_exec_runtime = 0;
  1429. p->se.prev_sum_exec_runtime = 0;
  1430. #ifdef CONFIG_SCHEDSTATS
  1431. p->se.wait_start = 0;
  1432. p->se.sum_sleep_runtime = 0;
  1433. p->se.sleep_start = 0;
  1434. p->se.block_start = 0;
  1435. p->se.sleep_max = 0;
  1436. p->se.block_max = 0;
  1437. p->se.exec_max = 0;
  1438. p->se.slice_max = 0;
  1439. p->se.wait_max = 0;
  1440. #endif
  1441. INIT_LIST_HEAD(&p->run_list);
  1442. p->se.on_rq = 0;
  1443. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1444. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1445. #endif
  1446. /*
  1447. * We mark the process as running here, but have not actually
  1448. * inserted it onto the runqueue yet. This guarantees that
  1449. * nobody will actually run it, and a signal or other external
  1450. * event cannot wake it up and insert it on the runqueue either.
  1451. */
  1452. p->state = TASK_RUNNING;
  1453. }
  1454. /*
  1455. * fork()/clone()-time setup:
  1456. */
  1457. void sched_fork(struct task_struct *p, int clone_flags)
  1458. {
  1459. int cpu = get_cpu();
  1460. __sched_fork(p);
  1461. #ifdef CONFIG_SMP
  1462. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1463. #endif
  1464. set_task_cpu(p, cpu);
  1465. /*
  1466. * Make sure we do not leak PI boosting priority to the child:
  1467. */
  1468. p->prio = current->normal_prio;
  1469. if (!rt_prio(p->prio))
  1470. p->sched_class = &fair_sched_class;
  1471. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1472. if (likely(sched_info_on()))
  1473. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1474. #endif
  1475. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1476. p->oncpu = 0;
  1477. #endif
  1478. #ifdef CONFIG_PREEMPT
  1479. /* Want to start with kernel preemption disabled. */
  1480. task_thread_info(p)->preempt_count = 1;
  1481. #endif
  1482. put_cpu();
  1483. }
  1484. /*
  1485. * wake_up_new_task - wake up a newly created task for the first time.
  1486. *
  1487. * This function will do some initial scheduler statistics housekeeping
  1488. * that must be done for every newly created context, then puts the task
  1489. * on the runqueue and wakes it.
  1490. */
  1491. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1492. {
  1493. unsigned long flags;
  1494. struct rq *rq;
  1495. rq = task_rq_lock(p, &flags);
  1496. BUG_ON(p->state != TASK_RUNNING);
  1497. update_rq_clock(rq);
  1498. p->prio = effective_prio(p);
  1499. if (!p->sched_class->task_new || !current->se.on_rq) {
  1500. activate_task(rq, p, 0);
  1501. } else {
  1502. /*
  1503. * Let the scheduling class do new task startup
  1504. * management (if any):
  1505. */
  1506. p->sched_class->task_new(rq, p);
  1507. inc_nr_running(p, rq);
  1508. }
  1509. check_preempt_curr(rq, p);
  1510. wakeup_balance_rt(rq, p);
  1511. task_rq_unlock(rq, &flags);
  1512. }
  1513. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1514. /**
  1515. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1516. * @notifier: notifier struct to register
  1517. */
  1518. void preempt_notifier_register(struct preempt_notifier *notifier)
  1519. {
  1520. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1521. }
  1522. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1523. /**
  1524. * preempt_notifier_unregister - no longer interested in preemption notifications
  1525. * @notifier: notifier struct to unregister
  1526. *
  1527. * This is safe to call from within a preemption notifier.
  1528. */
  1529. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1530. {
  1531. hlist_del(&notifier->link);
  1532. }
  1533. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1534. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1535. {
  1536. struct preempt_notifier *notifier;
  1537. struct hlist_node *node;
  1538. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1539. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1540. }
  1541. static void
  1542. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1543. struct task_struct *next)
  1544. {
  1545. struct preempt_notifier *notifier;
  1546. struct hlist_node *node;
  1547. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1548. notifier->ops->sched_out(notifier, next);
  1549. }
  1550. #else
  1551. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1552. {
  1553. }
  1554. static void
  1555. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1556. struct task_struct *next)
  1557. {
  1558. }
  1559. #endif
  1560. /**
  1561. * prepare_task_switch - prepare to switch tasks
  1562. * @rq: the runqueue preparing to switch
  1563. * @prev: the current task that is being switched out
  1564. * @next: the task we are going to switch to.
  1565. *
  1566. * This is called with the rq lock held and interrupts off. It must
  1567. * be paired with a subsequent finish_task_switch after the context
  1568. * switch.
  1569. *
  1570. * prepare_task_switch sets up locking and calls architecture specific
  1571. * hooks.
  1572. */
  1573. static inline void
  1574. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1575. struct task_struct *next)
  1576. {
  1577. fire_sched_out_preempt_notifiers(prev, next);
  1578. prepare_lock_switch(rq, next);
  1579. prepare_arch_switch(next);
  1580. }
  1581. /**
  1582. * finish_task_switch - clean up after a task-switch
  1583. * @rq: runqueue associated with task-switch
  1584. * @prev: the thread we just switched away from.
  1585. *
  1586. * finish_task_switch must be called after the context switch, paired
  1587. * with a prepare_task_switch call before the context switch.
  1588. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1589. * and do any other architecture-specific cleanup actions.
  1590. *
  1591. * Note that we may have delayed dropping an mm in context_switch(). If
  1592. * so, we finish that here outside of the runqueue lock. (Doing it
  1593. * with the lock held can cause deadlocks; see schedule() for
  1594. * details.)
  1595. */
  1596. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1597. __releases(rq->lock)
  1598. {
  1599. struct mm_struct *mm = rq->prev_mm;
  1600. long prev_state;
  1601. rq->prev_mm = NULL;
  1602. /*
  1603. * A task struct has one reference for the use as "current".
  1604. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1605. * schedule one last time. The schedule call will never return, and
  1606. * the scheduled task must drop that reference.
  1607. * The test for TASK_DEAD must occur while the runqueue locks are
  1608. * still held, otherwise prev could be scheduled on another cpu, die
  1609. * there before we look at prev->state, and then the reference would
  1610. * be dropped twice.
  1611. * Manfred Spraul <manfred@colorfullife.com>
  1612. */
  1613. prev_state = prev->state;
  1614. finish_arch_switch(prev);
  1615. finish_lock_switch(rq, prev);
  1616. schedule_tail_balance_rt(rq);
  1617. fire_sched_in_preempt_notifiers(current);
  1618. if (mm)
  1619. mmdrop(mm);
  1620. if (unlikely(prev_state == TASK_DEAD)) {
  1621. /*
  1622. * Remove function-return probe instances associated with this
  1623. * task and put them back on the free list.
  1624. */
  1625. kprobe_flush_task(prev);
  1626. put_task_struct(prev);
  1627. }
  1628. }
  1629. /**
  1630. * schedule_tail - first thing a freshly forked thread must call.
  1631. * @prev: the thread we just switched away from.
  1632. */
  1633. asmlinkage void schedule_tail(struct task_struct *prev)
  1634. __releases(rq->lock)
  1635. {
  1636. struct rq *rq = this_rq();
  1637. finish_task_switch(rq, prev);
  1638. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1639. /* In this case, finish_task_switch does not reenable preemption */
  1640. preempt_enable();
  1641. #endif
  1642. if (current->set_child_tid)
  1643. put_user(task_pid_vnr(current), current->set_child_tid);
  1644. }
  1645. /*
  1646. * context_switch - switch to the new MM and the new
  1647. * thread's register state.
  1648. */
  1649. static inline void
  1650. context_switch(struct rq *rq, struct task_struct *prev,
  1651. struct task_struct *next)
  1652. {
  1653. struct mm_struct *mm, *oldmm;
  1654. prepare_task_switch(rq, prev, next);
  1655. mm = next->mm;
  1656. oldmm = prev->active_mm;
  1657. /*
  1658. * For paravirt, this is coupled with an exit in switch_to to
  1659. * combine the page table reload and the switch backend into
  1660. * one hypercall.
  1661. */
  1662. arch_enter_lazy_cpu_mode();
  1663. if (unlikely(!mm)) {
  1664. next->active_mm = oldmm;
  1665. atomic_inc(&oldmm->mm_count);
  1666. enter_lazy_tlb(oldmm, next);
  1667. } else
  1668. switch_mm(oldmm, mm, next);
  1669. if (unlikely(!prev->mm)) {
  1670. prev->active_mm = NULL;
  1671. rq->prev_mm = oldmm;
  1672. }
  1673. /*
  1674. * Since the runqueue lock will be released by the next
  1675. * task (which is an invalid locking op but in the case
  1676. * of the scheduler it's an obvious special-case), so we
  1677. * do an early lockdep release here:
  1678. */
  1679. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1680. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1681. #endif
  1682. /* Here we just switch the register state and the stack. */
  1683. switch_to(prev, next, prev);
  1684. barrier();
  1685. /*
  1686. * this_rq must be evaluated again because prev may have moved
  1687. * CPUs since it called schedule(), thus the 'rq' on its stack
  1688. * frame will be invalid.
  1689. */
  1690. finish_task_switch(this_rq(), prev);
  1691. }
  1692. /*
  1693. * nr_running, nr_uninterruptible and nr_context_switches:
  1694. *
  1695. * externally visible scheduler statistics: current number of runnable
  1696. * threads, current number of uninterruptible-sleeping threads, total
  1697. * number of context switches performed since bootup.
  1698. */
  1699. unsigned long nr_running(void)
  1700. {
  1701. unsigned long i, sum = 0;
  1702. for_each_online_cpu(i)
  1703. sum += cpu_rq(i)->nr_running;
  1704. return sum;
  1705. }
  1706. unsigned long nr_uninterruptible(void)
  1707. {
  1708. unsigned long i, sum = 0;
  1709. for_each_possible_cpu(i)
  1710. sum += cpu_rq(i)->nr_uninterruptible;
  1711. /*
  1712. * Since we read the counters lockless, it might be slightly
  1713. * inaccurate. Do not allow it to go below zero though:
  1714. */
  1715. if (unlikely((long)sum < 0))
  1716. sum = 0;
  1717. return sum;
  1718. }
  1719. unsigned long long nr_context_switches(void)
  1720. {
  1721. int i;
  1722. unsigned long long sum = 0;
  1723. for_each_possible_cpu(i)
  1724. sum += cpu_rq(i)->nr_switches;
  1725. return sum;
  1726. }
  1727. unsigned long nr_iowait(void)
  1728. {
  1729. unsigned long i, sum = 0;
  1730. for_each_possible_cpu(i)
  1731. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1732. return sum;
  1733. }
  1734. unsigned long nr_active(void)
  1735. {
  1736. unsigned long i, running = 0, uninterruptible = 0;
  1737. for_each_online_cpu(i) {
  1738. running += cpu_rq(i)->nr_running;
  1739. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1740. }
  1741. if (unlikely((long)uninterruptible < 0))
  1742. uninterruptible = 0;
  1743. return running + uninterruptible;
  1744. }
  1745. /*
  1746. * Update rq->cpu_load[] statistics. This function is usually called every
  1747. * scheduler tick (TICK_NSEC).
  1748. */
  1749. static void update_cpu_load(struct rq *this_rq)
  1750. {
  1751. unsigned long this_load = this_rq->load.weight;
  1752. int i, scale;
  1753. this_rq->nr_load_updates++;
  1754. /* Update our load: */
  1755. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  1756. unsigned long old_load, new_load;
  1757. /* scale is effectively 1 << i now, and >> i divides by scale */
  1758. old_load = this_rq->cpu_load[i];
  1759. new_load = this_load;
  1760. /*
  1761. * Round up the averaging division if load is increasing. This
  1762. * prevents us from getting stuck on 9 if the load is 10, for
  1763. * example.
  1764. */
  1765. if (new_load > old_load)
  1766. new_load += scale-1;
  1767. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  1768. }
  1769. }
  1770. #ifdef CONFIG_SMP
  1771. /*
  1772. * double_rq_lock - safely lock two runqueues
  1773. *
  1774. * Note this does not disable interrupts like task_rq_lock,
  1775. * you need to do so manually before calling.
  1776. */
  1777. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1778. __acquires(rq1->lock)
  1779. __acquires(rq2->lock)
  1780. {
  1781. BUG_ON(!irqs_disabled());
  1782. if (rq1 == rq2) {
  1783. spin_lock(&rq1->lock);
  1784. __acquire(rq2->lock); /* Fake it out ;) */
  1785. } else {
  1786. if (rq1 < rq2) {
  1787. spin_lock(&rq1->lock);
  1788. spin_lock(&rq2->lock);
  1789. } else {
  1790. spin_lock(&rq2->lock);
  1791. spin_lock(&rq1->lock);
  1792. }
  1793. }
  1794. update_rq_clock(rq1);
  1795. update_rq_clock(rq2);
  1796. }
  1797. /*
  1798. * double_rq_unlock - safely unlock two runqueues
  1799. *
  1800. * Note this does not restore interrupts like task_rq_unlock,
  1801. * you need to do so manually after calling.
  1802. */
  1803. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1804. __releases(rq1->lock)
  1805. __releases(rq2->lock)
  1806. {
  1807. spin_unlock(&rq1->lock);
  1808. if (rq1 != rq2)
  1809. spin_unlock(&rq2->lock);
  1810. else
  1811. __release(rq2->lock);
  1812. }
  1813. /*
  1814. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1815. */
  1816. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1817. __releases(this_rq->lock)
  1818. __acquires(busiest->lock)
  1819. __acquires(this_rq->lock)
  1820. {
  1821. int ret = 0;
  1822. if (unlikely(!irqs_disabled())) {
  1823. /* printk() doesn't work good under rq->lock */
  1824. spin_unlock(&this_rq->lock);
  1825. BUG_ON(1);
  1826. }
  1827. if (unlikely(!spin_trylock(&busiest->lock))) {
  1828. if (busiest < this_rq) {
  1829. spin_unlock(&this_rq->lock);
  1830. spin_lock(&busiest->lock);
  1831. spin_lock(&this_rq->lock);
  1832. ret = 1;
  1833. } else
  1834. spin_lock(&busiest->lock);
  1835. }
  1836. return ret;
  1837. }
  1838. /*
  1839. * If dest_cpu is allowed for this process, migrate the task to it.
  1840. * This is accomplished by forcing the cpu_allowed mask to only
  1841. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1842. * the cpu_allowed mask is restored.
  1843. */
  1844. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  1845. {
  1846. struct migration_req req;
  1847. unsigned long flags;
  1848. struct rq *rq;
  1849. rq = task_rq_lock(p, &flags);
  1850. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1851. || unlikely(cpu_is_offline(dest_cpu)))
  1852. goto out;
  1853. /* force the process onto the specified CPU */
  1854. if (migrate_task(p, dest_cpu, &req)) {
  1855. /* Need to wait for migration thread (might exit: take ref). */
  1856. struct task_struct *mt = rq->migration_thread;
  1857. get_task_struct(mt);
  1858. task_rq_unlock(rq, &flags);
  1859. wake_up_process(mt);
  1860. put_task_struct(mt);
  1861. wait_for_completion(&req.done);
  1862. return;
  1863. }
  1864. out:
  1865. task_rq_unlock(rq, &flags);
  1866. }
  1867. /*
  1868. * sched_exec - execve() is a valuable balancing opportunity, because at
  1869. * this point the task has the smallest effective memory and cache footprint.
  1870. */
  1871. void sched_exec(void)
  1872. {
  1873. int new_cpu, this_cpu = get_cpu();
  1874. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1875. put_cpu();
  1876. if (new_cpu != this_cpu)
  1877. sched_migrate_task(current, new_cpu);
  1878. }
  1879. /*
  1880. * pull_task - move a task from a remote runqueue to the local runqueue.
  1881. * Both runqueues must be locked.
  1882. */
  1883. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1884. struct rq *this_rq, int this_cpu)
  1885. {
  1886. deactivate_task(src_rq, p, 0);
  1887. set_task_cpu(p, this_cpu);
  1888. activate_task(this_rq, p, 0);
  1889. /*
  1890. * Note that idle threads have a prio of MAX_PRIO, for this test
  1891. * to be always true for them.
  1892. */
  1893. check_preempt_curr(this_rq, p);
  1894. }
  1895. /*
  1896. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1897. */
  1898. static
  1899. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1900. struct sched_domain *sd, enum cpu_idle_type idle,
  1901. int *all_pinned)
  1902. {
  1903. /*
  1904. * We do not migrate tasks that are:
  1905. * 1) running (obviously), or
  1906. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1907. * 3) are cache-hot on their current CPU.
  1908. */
  1909. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  1910. schedstat_inc(p, se.nr_failed_migrations_affine);
  1911. return 0;
  1912. }
  1913. *all_pinned = 0;
  1914. if (task_running(rq, p)) {
  1915. schedstat_inc(p, se.nr_failed_migrations_running);
  1916. return 0;
  1917. }
  1918. /*
  1919. * Aggressive migration if:
  1920. * 1) task is cache cold, or
  1921. * 2) too many balance attempts have failed.
  1922. */
  1923. if (!task_hot(p, rq->clock, sd) ||
  1924. sd->nr_balance_failed > sd->cache_nice_tries) {
  1925. #ifdef CONFIG_SCHEDSTATS
  1926. if (task_hot(p, rq->clock, sd)) {
  1927. schedstat_inc(sd, lb_hot_gained[idle]);
  1928. schedstat_inc(p, se.nr_forced_migrations);
  1929. }
  1930. #endif
  1931. return 1;
  1932. }
  1933. if (task_hot(p, rq->clock, sd)) {
  1934. schedstat_inc(p, se.nr_failed_migrations_hot);
  1935. return 0;
  1936. }
  1937. return 1;
  1938. }
  1939. static unsigned long
  1940. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1941. unsigned long max_load_move, struct sched_domain *sd,
  1942. enum cpu_idle_type idle, int *all_pinned,
  1943. int *this_best_prio, struct rq_iterator *iterator)
  1944. {
  1945. int loops = 0, pulled = 0, pinned = 0, skip_for_load;
  1946. struct task_struct *p;
  1947. long rem_load_move = max_load_move;
  1948. if (max_load_move == 0)
  1949. goto out;
  1950. pinned = 1;
  1951. /*
  1952. * Start the load-balancing iterator:
  1953. */
  1954. p = iterator->start(iterator->arg);
  1955. next:
  1956. if (!p || loops++ > sysctl_sched_nr_migrate)
  1957. goto out;
  1958. /*
  1959. * To help distribute high priority tasks across CPUs we don't
  1960. * skip a task if it will be the highest priority task (i.e. smallest
  1961. * prio value) on its new queue regardless of its load weight
  1962. */
  1963. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  1964. SCHED_LOAD_SCALE_FUZZ;
  1965. if ((skip_for_load && p->prio >= *this_best_prio) ||
  1966. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  1967. p = iterator->next(iterator->arg);
  1968. goto next;
  1969. }
  1970. pull_task(busiest, p, this_rq, this_cpu);
  1971. pulled++;
  1972. rem_load_move -= p->se.load.weight;
  1973. /*
  1974. * We only want to steal up to the prescribed amount of weighted load.
  1975. */
  1976. if (rem_load_move > 0) {
  1977. if (p->prio < *this_best_prio)
  1978. *this_best_prio = p->prio;
  1979. p = iterator->next(iterator->arg);
  1980. goto next;
  1981. }
  1982. out:
  1983. /*
  1984. * Right now, this is one of only two places pull_task() is called,
  1985. * so we can safely collect pull_task() stats here rather than
  1986. * inside pull_task().
  1987. */
  1988. schedstat_add(sd, lb_gained[idle], pulled);
  1989. if (all_pinned)
  1990. *all_pinned = pinned;
  1991. return max_load_move - rem_load_move;
  1992. }
  1993. /*
  1994. * move_tasks tries to move up to max_load_move weighted load from busiest to
  1995. * this_rq, as part of a balancing operation within domain "sd".
  1996. * Returns 1 if successful and 0 otherwise.
  1997. *
  1998. * Called with both runqueues locked.
  1999. */
  2000. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2001. unsigned long max_load_move,
  2002. struct sched_domain *sd, enum cpu_idle_type idle,
  2003. int *all_pinned)
  2004. {
  2005. const struct sched_class *class = sched_class_highest;
  2006. unsigned long total_load_moved = 0;
  2007. int this_best_prio = this_rq->curr->prio;
  2008. do {
  2009. total_load_moved +=
  2010. class->load_balance(this_rq, this_cpu, busiest,
  2011. max_load_move - total_load_moved,
  2012. sd, idle, all_pinned, &this_best_prio);
  2013. class = class->next;
  2014. } while (class && max_load_move > total_load_moved);
  2015. return total_load_moved > 0;
  2016. }
  2017. static int
  2018. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2019. struct sched_domain *sd, enum cpu_idle_type idle,
  2020. struct rq_iterator *iterator)
  2021. {
  2022. struct task_struct *p = iterator->start(iterator->arg);
  2023. int pinned = 0;
  2024. while (p) {
  2025. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2026. pull_task(busiest, p, this_rq, this_cpu);
  2027. /*
  2028. * Right now, this is only the second place pull_task()
  2029. * is called, so we can safely collect pull_task()
  2030. * stats here rather than inside pull_task().
  2031. */
  2032. schedstat_inc(sd, lb_gained[idle]);
  2033. return 1;
  2034. }
  2035. p = iterator->next(iterator->arg);
  2036. }
  2037. return 0;
  2038. }
  2039. /*
  2040. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2041. * part of active balancing operations within "domain".
  2042. * Returns 1 if successful and 0 otherwise.
  2043. *
  2044. * Called with both runqueues locked.
  2045. */
  2046. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2047. struct sched_domain *sd, enum cpu_idle_type idle)
  2048. {
  2049. const struct sched_class *class;
  2050. for (class = sched_class_highest; class; class = class->next)
  2051. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2052. return 1;
  2053. return 0;
  2054. }
  2055. /*
  2056. * find_busiest_group finds and returns the busiest CPU group within the
  2057. * domain. It calculates and returns the amount of weighted load which
  2058. * should be moved to restore balance via the imbalance parameter.
  2059. */
  2060. static struct sched_group *
  2061. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2062. unsigned long *imbalance, enum cpu_idle_type idle,
  2063. int *sd_idle, cpumask_t *cpus, int *balance)
  2064. {
  2065. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2066. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2067. unsigned long max_pull;
  2068. unsigned long busiest_load_per_task, busiest_nr_running;
  2069. unsigned long this_load_per_task, this_nr_running;
  2070. int load_idx, group_imb = 0;
  2071. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2072. int power_savings_balance = 1;
  2073. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2074. unsigned long min_nr_running = ULONG_MAX;
  2075. struct sched_group *group_min = NULL, *group_leader = NULL;
  2076. #endif
  2077. max_load = this_load = total_load = total_pwr = 0;
  2078. busiest_load_per_task = busiest_nr_running = 0;
  2079. this_load_per_task = this_nr_running = 0;
  2080. if (idle == CPU_NOT_IDLE)
  2081. load_idx = sd->busy_idx;
  2082. else if (idle == CPU_NEWLY_IDLE)
  2083. load_idx = sd->newidle_idx;
  2084. else
  2085. load_idx = sd->idle_idx;
  2086. do {
  2087. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2088. int local_group;
  2089. int i;
  2090. int __group_imb = 0;
  2091. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2092. unsigned long sum_nr_running, sum_weighted_load;
  2093. local_group = cpu_isset(this_cpu, group->cpumask);
  2094. if (local_group)
  2095. balance_cpu = first_cpu(group->cpumask);
  2096. /* Tally up the load of all CPUs in the group */
  2097. sum_weighted_load = sum_nr_running = avg_load = 0;
  2098. max_cpu_load = 0;
  2099. min_cpu_load = ~0UL;
  2100. for_each_cpu_mask(i, group->cpumask) {
  2101. struct rq *rq;
  2102. if (!cpu_isset(i, *cpus))
  2103. continue;
  2104. rq = cpu_rq(i);
  2105. if (*sd_idle && rq->nr_running)
  2106. *sd_idle = 0;
  2107. /* Bias balancing toward cpus of our domain */
  2108. if (local_group) {
  2109. if (idle_cpu(i) && !first_idle_cpu) {
  2110. first_idle_cpu = 1;
  2111. balance_cpu = i;
  2112. }
  2113. load = target_load(i, load_idx);
  2114. } else {
  2115. load = source_load(i, load_idx);
  2116. if (load > max_cpu_load)
  2117. max_cpu_load = load;
  2118. if (min_cpu_load > load)
  2119. min_cpu_load = load;
  2120. }
  2121. avg_load += load;
  2122. sum_nr_running += rq->nr_running;
  2123. sum_weighted_load += weighted_cpuload(i);
  2124. }
  2125. /*
  2126. * First idle cpu or the first cpu(busiest) in this sched group
  2127. * is eligible for doing load balancing at this and above
  2128. * domains. In the newly idle case, we will allow all the cpu's
  2129. * to do the newly idle load balance.
  2130. */
  2131. if (idle != CPU_NEWLY_IDLE && local_group &&
  2132. balance_cpu != this_cpu && balance) {
  2133. *balance = 0;
  2134. goto ret;
  2135. }
  2136. total_load += avg_load;
  2137. total_pwr += group->__cpu_power;
  2138. /* Adjust by relative CPU power of the group */
  2139. avg_load = sg_div_cpu_power(group,
  2140. avg_load * SCHED_LOAD_SCALE);
  2141. if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
  2142. __group_imb = 1;
  2143. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2144. if (local_group) {
  2145. this_load = avg_load;
  2146. this = group;
  2147. this_nr_running = sum_nr_running;
  2148. this_load_per_task = sum_weighted_load;
  2149. } else if (avg_load > max_load &&
  2150. (sum_nr_running > group_capacity || __group_imb)) {
  2151. max_load = avg_load;
  2152. busiest = group;
  2153. busiest_nr_running = sum_nr_running;
  2154. busiest_load_per_task = sum_weighted_load;
  2155. group_imb = __group_imb;
  2156. }
  2157. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2158. /*
  2159. * Busy processors will not participate in power savings
  2160. * balance.
  2161. */
  2162. if (idle == CPU_NOT_IDLE ||
  2163. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2164. goto group_next;
  2165. /*
  2166. * If the local group is idle or completely loaded
  2167. * no need to do power savings balance at this domain
  2168. */
  2169. if (local_group && (this_nr_running >= group_capacity ||
  2170. !this_nr_running))
  2171. power_savings_balance = 0;
  2172. /*
  2173. * If a group is already running at full capacity or idle,
  2174. * don't include that group in power savings calculations
  2175. */
  2176. if (!power_savings_balance || sum_nr_running >= group_capacity
  2177. || !sum_nr_running)
  2178. goto group_next;
  2179. /*
  2180. * Calculate the group which has the least non-idle load.
  2181. * This is the group from where we need to pick up the load
  2182. * for saving power
  2183. */
  2184. if ((sum_nr_running < min_nr_running) ||
  2185. (sum_nr_running == min_nr_running &&
  2186. first_cpu(group->cpumask) <
  2187. first_cpu(group_min->cpumask))) {
  2188. group_min = group;
  2189. min_nr_running = sum_nr_running;
  2190. min_load_per_task = sum_weighted_load /
  2191. sum_nr_running;
  2192. }
  2193. /*
  2194. * Calculate the group which is almost near its
  2195. * capacity but still has some space to pick up some load
  2196. * from other group and save more power
  2197. */
  2198. if (sum_nr_running <= group_capacity - 1) {
  2199. if (sum_nr_running > leader_nr_running ||
  2200. (sum_nr_running == leader_nr_running &&
  2201. first_cpu(group->cpumask) >
  2202. first_cpu(group_leader->cpumask))) {
  2203. group_leader = group;
  2204. leader_nr_running = sum_nr_running;
  2205. }
  2206. }
  2207. group_next:
  2208. #endif
  2209. group = group->next;
  2210. } while (group != sd->groups);
  2211. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2212. goto out_balanced;
  2213. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2214. if (this_load >= avg_load ||
  2215. 100*max_load <= sd->imbalance_pct*this_load)
  2216. goto out_balanced;
  2217. busiest_load_per_task /= busiest_nr_running;
  2218. if (group_imb)
  2219. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2220. /*
  2221. * We're trying to get all the cpus to the average_load, so we don't
  2222. * want to push ourselves above the average load, nor do we wish to
  2223. * reduce the max loaded cpu below the average load, as either of these
  2224. * actions would just result in more rebalancing later, and ping-pong
  2225. * tasks around. Thus we look for the minimum possible imbalance.
  2226. * Negative imbalances (*we* are more loaded than anyone else) will
  2227. * be counted as no imbalance for these purposes -- we can't fix that
  2228. * by pulling tasks to us. Be careful of negative numbers as they'll
  2229. * appear as very large values with unsigned longs.
  2230. */
  2231. if (max_load <= busiest_load_per_task)
  2232. goto out_balanced;
  2233. /*
  2234. * In the presence of smp nice balancing, certain scenarios can have
  2235. * max load less than avg load(as we skip the groups at or below
  2236. * its cpu_power, while calculating max_load..)
  2237. */
  2238. if (max_load < avg_load) {
  2239. *imbalance = 0;
  2240. goto small_imbalance;
  2241. }
  2242. /* Don't want to pull so many tasks that a group would go idle */
  2243. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2244. /* How much load to actually move to equalise the imbalance */
  2245. *imbalance = min(max_pull * busiest->__cpu_power,
  2246. (avg_load - this_load) * this->__cpu_power)
  2247. / SCHED_LOAD_SCALE;
  2248. /*
  2249. * if *imbalance is less than the average load per runnable task
  2250. * there is no gaurantee that any tasks will be moved so we'll have
  2251. * a think about bumping its value to force at least one task to be
  2252. * moved
  2253. */
  2254. if (*imbalance < busiest_load_per_task) {
  2255. unsigned long tmp, pwr_now, pwr_move;
  2256. unsigned int imbn;
  2257. small_imbalance:
  2258. pwr_move = pwr_now = 0;
  2259. imbn = 2;
  2260. if (this_nr_running) {
  2261. this_load_per_task /= this_nr_running;
  2262. if (busiest_load_per_task > this_load_per_task)
  2263. imbn = 1;
  2264. } else
  2265. this_load_per_task = SCHED_LOAD_SCALE;
  2266. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2267. busiest_load_per_task * imbn) {
  2268. *imbalance = busiest_load_per_task;
  2269. return busiest;
  2270. }
  2271. /*
  2272. * OK, we don't have enough imbalance to justify moving tasks,
  2273. * however we may be able to increase total CPU power used by
  2274. * moving them.
  2275. */
  2276. pwr_now += busiest->__cpu_power *
  2277. min(busiest_load_per_task, max_load);
  2278. pwr_now += this->__cpu_power *
  2279. min(this_load_per_task, this_load);
  2280. pwr_now /= SCHED_LOAD_SCALE;
  2281. /* Amount of load we'd subtract */
  2282. tmp = sg_div_cpu_power(busiest,
  2283. busiest_load_per_task * SCHED_LOAD_SCALE);
  2284. if (max_load > tmp)
  2285. pwr_move += busiest->__cpu_power *
  2286. min(busiest_load_per_task, max_load - tmp);
  2287. /* Amount of load we'd add */
  2288. if (max_load * busiest->__cpu_power <
  2289. busiest_load_per_task * SCHED_LOAD_SCALE)
  2290. tmp = sg_div_cpu_power(this,
  2291. max_load * busiest->__cpu_power);
  2292. else
  2293. tmp = sg_div_cpu_power(this,
  2294. busiest_load_per_task * SCHED_LOAD_SCALE);
  2295. pwr_move += this->__cpu_power *
  2296. min(this_load_per_task, this_load + tmp);
  2297. pwr_move /= SCHED_LOAD_SCALE;
  2298. /* Move if we gain throughput */
  2299. if (pwr_move > pwr_now)
  2300. *imbalance = busiest_load_per_task;
  2301. }
  2302. return busiest;
  2303. out_balanced:
  2304. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2305. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2306. goto ret;
  2307. if (this == group_leader && group_leader != group_min) {
  2308. *imbalance = min_load_per_task;
  2309. return group_min;
  2310. }
  2311. #endif
  2312. ret:
  2313. *imbalance = 0;
  2314. return NULL;
  2315. }
  2316. /*
  2317. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2318. */
  2319. static struct rq *
  2320. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2321. unsigned long imbalance, cpumask_t *cpus)
  2322. {
  2323. struct rq *busiest = NULL, *rq;
  2324. unsigned long max_load = 0;
  2325. int i;
  2326. for_each_cpu_mask(i, group->cpumask) {
  2327. unsigned long wl;
  2328. if (!cpu_isset(i, *cpus))
  2329. continue;
  2330. rq = cpu_rq(i);
  2331. wl = weighted_cpuload(i);
  2332. if (rq->nr_running == 1 && wl > imbalance)
  2333. continue;
  2334. if (wl > max_load) {
  2335. max_load = wl;
  2336. busiest = rq;
  2337. }
  2338. }
  2339. return busiest;
  2340. }
  2341. /*
  2342. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2343. * so long as it is large enough.
  2344. */
  2345. #define MAX_PINNED_INTERVAL 512
  2346. /*
  2347. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2348. * tasks if there is an imbalance.
  2349. */
  2350. static int load_balance(int this_cpu, struct rq *this_rq,
  2351. struct sched_domain *sd, enum cpu_idle_type idle,
  2352. int *balance)
  2353. {
  2354. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2355. struct sched_group *group;
  2356. unsigned long imbalance;
  2357. struct rq *busiest;
  2358. cpumask_t cpus = CPU_MASK_ALL;
  2359. unsigned long flags;
  2360. /*
  2361. * When power savings policy is enabled for the parent domain, idle
  2362. * sibling can pick up load irrespective of busy siblings. In this case,
  2363. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2364. * portraying it as CPU_NOT_IDLE.
  2365. */
  2366. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2367. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2368. sd_idle = 1;
  2369. schedstat_inc(sd, lb_count[idle]);
  2370. redo:
  2371. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2372. &cpus, balance);
  2373. if (*balance == 0)
  2374. goto out_balanced;
  2375. if (!group) {
  2376. schedstat_inc(sd, lb_nobusyg[idle]);
  2377. goto out_balanced;
  2378. }
  2379. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2380. if (!busiest) {
  2381. schedstat_inc(sd, lb_nobusyq[idle]);
  2382. goto out_balanced;
  2383. }
  2384. BUG_ON(busiest == this_rq);
  2385. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2386. ld_moved = 0;
  2387. if (busiest->nr_running > 1) {
  2388. /*
  2389. * Attempt to move tasks. If find_busiest_group has found
  2390. * an imbalance but busiest->nr_running <= 1, the group is
  2391. * still unbalanced. ld_moved simply stays zero, so it is
  2392. * correctly treated as an imbalance.
  2393. */
  2394. local_irq_save(flags);
  2395. double_rq_lock(this_rq, busiest);
  2396. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2397. imbalance, sd, idle, &all_pinned);
  2398. double_rq_unlock(this_rq, busiest);
  2399. local_irq_restore(flags);
  2400. /*
  2401. * some other cpu did the load balance for us.
  2402. */
  2403. if (ld_moved && this_cpu != smp_processor_id())
  2404. resched_cpu(this_cpu);
  2405. /* All tasks on this runqueue were pinned by CPU affinity */
  2406. if (unlikely(all_pinned)) {
  2407. cpu_clear(cpu_of(busiest), cpus);
  2408. if (!cpus_empty(cpus))
  2409. goto redo;
  2410. goto out_balanced;
  2411. }
  2412. }
  2413. if (!ld_moved) {
  2414. schedstat_inc(sd, lb_failed[idle]);
  2415. sd->nr_balance_failed++;
  2416. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2417. spin_lock_irqsave(&busiest->lock, flags);
  2418. /* don't kick the migration_thread, if the curr
  2419. * task on busiest cpu can't be moved to this_cpu
  2420. */
  2421. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2422. spin_unlock_irqrestore(&busiest->lock, flags);
  2423. all_pinned = 1;
  2424. goto out_one_pinned;
  2425. }
  2426. if (!busiest->active_balance) {
  2427. busiest->active_balance = 1;
  2428. busiest->push_cpu = this_cpu;
  2429. active_balance = 1;
  2430. }
  2431. spin_unlock_irqrestore(&busiest->lock, flags);
  2432. if (active_balance)
  2433. wake_up_process(busiest->migration_thread);
  2434. /*
  2435. * We've kicked active balancing, reset the failure
  2436. * counter.
  2437. */
  2438. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2439. }
  2440. } else
  2441. sd->nr_balance_failed = 0;
  2442. if (likely(!active_balance)) {
  2443. /* We were unbalanced, so reset the balancing interval */
  2444. sd->balance_interval = sd->min_interval;
  2445. } else {
  2446. /*
  2447. * If we've begun active balancing, start to back off. This
  2448. * case may not be covered by the all_pinned logic if there
  2449. * is only 1 task on the busy runqueue (because we don't call
  2450. * move_tasks).
  2451. */
  2452. if (sd->balance_interval < sd->max_interval)
  2453. sd->balance_interval *= 2;
  2454. }
  2455. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2456. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2457. return -1;
  2458. return ld_moved;
  2459. out_balanced:
  2460. schedstat_inc(sd, lb_balanced[idle]);
  2461. sd->nr_balance_failed = 0;
  2462. out_one_pinned:
  2463. /* tune up the balancing interval */
  2464. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2465. (sd->balance_interval < sd->max_interval))
  2466. sd->balance_interval *= 2;
  2467. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2468. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2469. return -1;
  2470. return 0;
  2471. }
  2472. /*
  2473. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2474. * tasks if there is an imbalance.
  2475. *
  2476. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2477. * this_rq is locked.
  2478. */
  2479. static int
  2480. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2481. {
  2482. struct sched_group *group;
  2483. struct rq *busiest = NULL;
  2484. unsigned long imbalance;
  2485. int ld_moved = 0;
  2486. int sd_idle = 0;
  2487. int all_pinned = 0;
  2488. cpumask_t cpus = CPU_MASK_ALL;
  2489. /*
  2490. * When power savings policy is enabled for the parent domain, idle
  2491. * sibling can pick up load irrespective of busy siblings. In this case,
  2492. * let the state of idle sibling percolate up as IDLE, instead of
  2493. * portraying it as CPU_NOT_IDLE.
  2494. */
  2495. if (sd->flags & SD_SHARE_CPUPOWER &&
  2496. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2497. sd_idle = 1;
  2498. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  2499. redo:
  2500. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2501. &sd_idle, &cpus, NULL);
  2502. if (!group) {
  2503. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2504. goto out_balanced;
  2505. }
  2506. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2507. &cpus);
  2508. if (!busiest) {
  2509. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2510. goto out_balanced;
  2511. }
  2512. BUG_ON(busiest == this_rq);
  2513. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2514. ld_moved = 0;
  2515. if (busiest->nr_running > 1) {
  2516. /* Attempt to move tasks */
  2517. double_lock_balance(this_rq, busiest);
  2518. /* this_rq->clock is already updated */
  2519. update_rq_clock(busiest);
  2520. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2521. imbalance, sd, CPU_NEWLY_IDLE,
  2522. &all_pinned);
  2523. spin_unlock(&busiest->lock);
  2524. if (unlikely(all_pinned)) {
  2525. cpu_clear(cpu_of(busiest), cpus);
  2526. if (!cpus_empty(cpus))
  2527. goto redo;
  2528. }
  2529. }
  2530. if (!ld_moved) {
  2531. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2532. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2533. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2534. return -1;
  2535. } else
  2536. sd->nr_balance_failed = 0;
  2537. return ld_moved;
  2538. out_balanced:
  2539. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2540. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2541. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2542. return -1;
  2543. sd->nr_balance_failed = 0;
  2544. return 0;
  2545. }
  2546. /*
  2547. * idle_balance is called by schedule() if this_cpu is about to become
  2548. * idle. Attempts to pull tasks from other CPUs.
  2549. */
  2550. static void idle_balance(int this_cpu, struct rq *this_rq)
  2551. {
  2552. struct sched_domain *sd;
  2553. int pulled_task = -1;
  2554. unsigned long next_balance = jiffies + HZ;
  2555. for_each_domain(this_cpu, sd) {
  2556. unsigned long interval;
  2557. if (!(sd->flags & SD_LOAD_BALANCE))
  2558. continue;
  2559. if (sd->flags & SD_BALANCE_NEWIDLE)
  2560. /* If we've pulled tasks over stop searching: */
  2561. pulled_task = load_balance_newidle(this_cpu,
  2562. this_rq, sd);
  2563. interval = msecs_to_jiffies(sd->balance_interval);
  2564. if (time_after(next_balance, sd->last_balance + interval))
  2565. next_balance = sd->last_balance + interval;
  2566. if (pulled_task)
  2567. break;
  2568. }
  2569. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2570. /*
  2571. * We are going idle. next_balance may be set based on
  2572. * a busy processor. So reset next_balance.
  2573. */
  2574. this_rq->next_balance = next_balance;
  2575. }
  2576. }
  2577. /*
  2578. * active_load_balance is run by migration threads. It pushes running tasks
  2579. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2580. * running on each physical CPU where possible, and avoids physical /
  2581. * logical imbalances.
  2582. *
  2583. * Called with busiest_rq locked.
  2584. */
  2585. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2586. {
  2587. int target_cpu = busiest_rq->push_cpu;
  2588. struct sched_domain *sd;
  2589. struct rq *target_rq;
  2590. /* Is there any task to move? */
  2591. if (busiest_rq->nr_running <= 1)
  2592. return;
  2593. target_rq = cpu_rq(target_cpu);
  2594. /*
  2595. * This condition is "impossible", if it occurs
  2596. * we need to fix it. Originally reported by
  2597. * Bjorn Helgaas on a 128-cpu setup.
  2598. */
  2599. BUG_ON(busiest_rq == target_rq);
  2600. /* move a task from busiest_rq to target_rq */
  2601. double_lock_balance(busiest_rq, target_rq);
  2602. update_rq_clock(busiest_rq);
  2603. update_rq_clock(target_rq);
  2604. /* Search for an sd spanning us and the target CPU. */
  2605. for_each_domain(target_cpu, sd) {
  2606. if ((sd->flags & SD_LOAD_BALANCE) &&
  2607. cpu_isset(busiest_cpu, sd->span))
  2608. break;
  2609. }
  2610. if (likely(sd)) {
  2611. schedstat_inc(sd, alb_count);
  2612. if (move_one_task(target_rq, target_cpu, busiest_rq,
  2613. sd, CPU_IDLE))
  2614. schedstat_inc(sd, alb_pushed);
  2615. else
  2616. schedstat_inc(sd, alb_failed);
  2617. }
  2618. spin_unlock(&target_rq->lock);
  2619. }
  2620. #ifdef CONFIG_NO_HZ
  2621. static struct {
  2622. atomic_t load_balancer;
  2623. cpumask_t cpu_mask;
  2624. } nohz ____cacheline_aligned = {
  2625. .load_balancer = ATOMIC_INIT(-1),
  2626. .cpu_mask = CPU_MASK_NONE,
  2627. };
  2628. /*
  2629. * This routine will try to nominate the ilb (idle load balancing)
  2630. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2631. * load balancing on behalf of all those cpus. If all the cpus in the system
  2632. * go into this tickless mode, then there will be no ilb owner (as there is
  2633. * no need for one) and all the cpus will sleep till the next wakeup event
  2634. * arrives...
  2635. *
  2636. * For the ilb owner, tick is not stopped. And this tick will be used
  2637. * for idle load balancing. ilb owner will still be part of
  2638. * nohz.cpu_mask..
  2639. *
  2640. * While stopping the tick, this cpu will become the ilb owner if there
  2641. * is no other owner. And will be the owner till that cpu becomes busy
  2642. * or if all cpus in the system stop their ticks at which point
  2643. * there is no need for ilb owner.
  2644. *
  2645. * When the ilb owner becomes busy, it nominates another owner, during the
  2646. * next busy scheduler_tick()
  2647. */
  2648. int select_nohz_load_balancer(int stop_tick)
  2649. {
  2650. int cpu = smp_processor_id();
  2651. if (stop_tick) {
  2652. cpu_set(cpu, nohz.cpu_mask);
  2653. cpu_rq(cpu)->in_nohz_recently = 1;
  2654. /*
  2655. * If we are going offline and still the leader, give up!
  2656. */
  2657. if (cpu_is_offline(cpu) &&
  2658. atomic_read(&nohz.load_balancer) == cpu) {
  2659. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2660. BUG();
  2661. return 0;
  2662. }
  2663. /* time for ilb owner also to sleep */
  2664. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2665. if (atomic_read(&nohz.load_balancer) == cpu)
  2666. atomic_set(&nohz.load_balancer, -1);
  2667. return 0;
  2668. }
  2669. if (atomic_read(&nohz.load_balancer) == -1) {
  2670. /* make me the ilb owner */
  2671. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2672. return 1;
  2673. } else if (atomic_read(&nohz.load_balancer) == cpu)
  2674. return 1;
  2675. } else {
  2676. if (!cpu_isset(cpu, nohz.cpu_mask))
  2677. return 0;
  2678. cpu_clear(cpu, nohz.cpu_mask);
  2679. if (atomic_read(&nohz.load_balancer) == cpu)
  2680. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2681. BUG();
  2682. }
  2683. return 0;
  2684. }
  2685. #endif
  2686. static DEFINE_SPINLOCK(balancing);
  2687. /*
  2688. * It checks each scheduling domain to see if it is due to be balanced,
  2689. * and initiates a balancing operation if so.
  2690. *
  2691. * Balancing parameters are set up in arch_init_sched_domains.
  2692. */
  2693. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2694. {
  2695. int balance = 1;
  2696. struct rq *rq = cpu_rq(cpu);
  2697. unsigned long interval;
  2698. struct sched_domain *sd;
  2699. /* Earliest time when we have to do rebalance again */
  2700. unsigned long next_balance = jiffies + 60*HZ;
  2701. int update_next_balance = 0;
  2702. for_each_domain(cpu, sd) {
  2703. if (!(sd->flags & SD_LOAD_BALANCE))
  2704. continue;
  2705. interval = sd->balance_interval;
  2706. if (idle != CPU_IDLE)
  2707. interval *= sd->busy_factor;
  2708. /* scale ms to jiffies */
  2709. interval = msecs_to_jiffies(interval);
  2710. if (unlikely(!interval))
  2711. interval = 1;
  2712. if (interval > HZ*NR_CPUS/10)
  2713. interval = HZ*NR_CPUS/10;
  2714. if (sd->flags & SD_SERIALIZE) {
  2715. if (!spin_trylock(&balancing))
  2716. goto out;
  2717. }
  2718. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2719. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2720. /*
  2721. * We've pulled tasks over so either we're no
  2722. * longer idle, or one of our SMT siblings is
  2723. * not idle.
  2724. */
  2725. idle = CPU_NOT_IDLE;
  2726. }
  2727. sd->last_balance = jiffies;
  2728. }
  2729. if (sd->flags & SD_SERIALIZE)
  2730. spin_unlock(&balancing);
  2731. out:
  2732. if (time_after(next_balance, sd->last_balance + interval)) {
  2733. next_balance = sd->last_balance + interval;
  2734. update_next_balance = 1;
  2735. }
  2736. /*
  2737. * Stop the load balance at this level. There is another
  2738. * CPU in our sched group which is doing load balancing more
  2739. * actively.
  2740. */
  2741. if (!balance)
  2742. break;
  2743. }
  2744. /*
  2745. * next_balance will be updated only when there is a need.
  2746. * When the cpu is attached to null domain for ex, it will not be
  2747. * updated.
  2748. */
  2749. if (likely(update_next_balance))
  2750. rq->next_balance = next_balance;
  2751. }
  2752. /*
  2753. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2754. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2755. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2756. */
  2757. static void run_rebalance_domains(struct softirq_action *h)
  2758. {
  2759. int this_cpu = smp_processor_id();
  2760. struct rq *this_rq = cpu_rq(this_cpu);
  2761. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  2762. CPU_IDLE : CPU_NOT_IDLE;
  2763. rebalance_domains(this_cpu, idle);
  2764. #ifdef CONFIG_NO_HZ
  2765. /*
  2766. * If this cpu is the owner for idle load balancing, then do the
  2767. * balancing on behalf of the other idle cpus whose ticks are
  2768. * stopped.
  2769. */
  2770. if (this_rq->idle_at_tick &&
  2771. atomic_read(&nohz.load_balancer) == this_cpu) {
  2772. cpumask_t cpus = nohz.cpu_mask;
  2773. struct rq *rq;
  2774. int balance_cpu;
  2775. cpu_clear(this_cpu, cpus);
  2776. for_each_cpu_mask(balance_cpu, cpus) {
  2777. /*
  2778. * If this cpu gets work to do, stop the load balancing
  2779. * work being done for other cpus. Next load
  2780. * balancing owner will pick it up.
  2781. */
  2782. if (need_resched())
  2783. break;
  2784. rebalance_domains(balance_cpu, CPU_IDLE);
  2785. rq = cpu_rq(balance_cpu);
  2786. if (time_after(this_rq->next_balance, rq->next_balance))
  2787. this_rq->next_balance = rq->next_balance;
  2788. }
  2789. }
  2790. #endif
  2791. }
  2792. /*
  2793. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  2794. *
  2795. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  2796. * idle load balancing owner or decide to stop the periodic load balancing,
  2797. * if the whole system is idle.
  2798. */
  2799. static inline void trigger_load_balance(struct rq *rq, int cpu)
  2800. {
  2801. #ifdef CONFIG_NO_HZ
  2802. /*
  2803. * If we were in the nohz mode recently and busy at the current
  2804. * scheduler tick, then check if we need to nominate new idle
  2805. * load balancer.
  2806. */
  2807. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  2808. rq->in_nohz_recently = 0;
  2809. if (atomic_read(&nohz.load_balancer) == cpu) {
  2810. cpu_clear(cpu, nohz.cpu_mask);
  2811. atomic_set(&nohz.load_balancer, -1);
  2812. }
  2813. if (atomic_read(&nohz.load_balancer) == -1) {
  2814. /*
  2815. * simple selection for now: Nominate the
  2816. * first cpu in the nohz list to be the next
  2817. * ilb owner.
  2818. *
  2819. * TBD: Traverse the sched domains and nominate
  2820. * the nearest cpu in the nohz.cpu_mask.
  2821. */
  2822. int ilb = first_cpu(nohz.cpu_mask);
  2823. if (ilb != NR_CPUS)
  2824. resched_cpu(ilb);
  2825. }
  2826. }
  2827. /*
  2828. * If this cpu is idle and doing idle load balancing for all the
  2829. * cpus with ticks stopped, is it time for that to stop?
  2830. */
  2831. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  2832. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2833. resched_cpu(cpu);
  2834. return;
  2835. }
  2836. /*
  2837. * If this cpu is idle and the idle load balancing is done by
  2838. * someone else, then no need raise the SCHED_SOFTIRQ
  2839. */
  2840. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  2841. cpu_isset(cpu, nohz.cpu_mask))
  2842. return;
  2843. #endif
  2844. if (time_after_eq(jiffies, rq->next_balance))
  2845. raise_softirq(SCHED_SOFTIRQ);
  2846. }
  2847. #else /* CONFIG_SMP */
  2848. /*
  2849. * on UP we do not need to balance between CPUs:
  2850. */
  2851. static inline void idle_balance(int cpu, struct rq *rq)
  2852. {
  2853. }
  2854. #endif
  2855. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2856. EXPORT_PER_CPU_SYMBOL(kstat);
  2857. /*
  2858. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  2859. * that have not yet been banked in case the task is currently running.
  2860. */
  2861. unsigned long long task_sched_runtime(struct task_struct *p)
  2862. {
  2863. unsigned long flags;
  2864. u64 ns, delta_exec;
  2865. struct rq *rq;
  2866. rq = task_rq_lock(p, &flags);
  2867. ns = p->se.sum_exec_runtime;
  2868. if (task_current(rq, p)) {
  2869. update_rq_clock(rq);
  2870. delta_exec = rq->clock - p->se.exec_start;
  2871. if ((s64)delta_exec > 0)
  2872. ns += delta_exec;
  2873. }
  2874. task_rq_unlock(rq, &flags);
  2875. return ns;
  2876. }
  2877. /*
  2878. * Account user cpu time to a process.
  2879. * @p: the process that the cpu time gets accounted to
  2880. * @cputime: the cpu time spent in user space since the last update
  2881. */
  2882. void account_user_time(struct task_struct *p, cputime_t cputime)
  2883. {
  2884. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2885. cputime64_t tmp;
  2886. p->utime = cputime_add(p->utime, cputime);
  2887. /* Add user time to cpustat. */
  2888. tmp = cputime_to_cputime64(cputime);
  2889. if (TASK_NICE(p) > 0)
  2890. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2891. else
  2892. cpustat->user = cputime64_add(cpustat->user, tmp);
  2893. }
  2894. /*
  2895. * Account guest cpu time to a process.
  2896. * @p: the process that the cpu time gets accounted to
  2897. * @cputime: the cpu time spent in virtual machine since the last update
  2898. */
  2899. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  2900. {
  2901. cputime64_t tmp;
  2902. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2903. tmp = cputime_to_cputime64(cputime);
  2904. p->utime = cputime_add(p->utime, cputime);
  2905. p->gtime = cputime_add(p->gtime, cputime);
  2906. cpustat->user = cputime64_add(cpustat->user, tmp);
  2907. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  2908. }
  2909. /*
  2910. * Account scaled user cpu time to a process.
  2911. * @p: the process that the cpu time gets accounted to
  2912. * @cputime: the cpu time spent in user space since the last update
  2913. */
  2914. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  2915. {
  2916. p->utimescaled = cputime_add(p->utimescaled, cputime);
  2917. }
  2918. /*
  2919. * Account system cpu time to a process.
  2920. * @p: the process that the cpu time gets accounted to
  2921. * @hardirq_offset: the offset to subtract from hardirq_count()
  2922. * @cputime: the cpu time spent in kernel space since the last update
  2923. */
  2924. void account_system_time(struct task_struct *p, int hardirq_offset,
  2925. cputime_t cputime)
  2926. {
  2927. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2928. struct rq *rq = this_rq();
  2929. cputime64_t tmp;
  2930. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
  2931. return account_guest_time(p, cputime);
  2932. p->stime = cputime_add(p->stime, cputime);
  2933. /* Add system time to cpustat. */
  2934. tmp = cputime_to_cputime64(cputime);
  2935. if (hardirq_count() - hardirq_offset)
  2936. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2937. else if (softirq_count())
  2938. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2939. else if (p != rq->idle)
  2940. cpustat->system = cputime64_add(cpustat->system, tmp);
  2941. else if (atomic_read(&rq->nr_iowait) > 0)
  2942. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2943. else
  2944. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2945. /* Account for system time used */
  2946. acct_update_integrals(p);
  2947. }
  2948. /*
  2949. * Account scaled system cpu time to a process.
  2950. * @p: the process that the cpu time gets accounted to
  2951. * @hardirq_offset: the offset to subtract from hardirq_count()
  2952. * @cputime: the cpu time spent in kernel space since the last update
  2953. */
  2954. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  2955. {
  2956. p->stimescaled = cputime_add(p->stimescaled, cputime);
  2957. }
  2958. /*
  2959. * Account for involuntary wait time.
  2960. * @p: the process from which the cpu time has been stolen
  2961. * @steal: the cpu time spent in involuntary wait
  2962. */
  2963. void account_steal_time(struct task_struct *p, cputime_t steal)
  2964. {
  2965. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2966. cputime64_t tmp = cputime_to_cputime64(steal);
  2967. struct rq *rq = this_rq();
  2968. if (p == rq->idle) {
  2969. p->stime = cputime_add(p->stime, steal);
  2970. if (atomic_read(&rq->nr_iowait) > 0)
  2971. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2972. else
  2973. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2974. } else
  2975. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2976. }
  2977. /*
  2978. * This function gets called by the timer code, with HZ frequency.
  2979. * We call it with interrupts disabled.
  2980. *
  2981. * It also gets called by the fork code, when changing the parent's
  2982. * timeslices.
  2983. */
  2984. void scheduler_tick(void)
  2985. {
  2986. int cpu = smp_processor_id();
  2987. struct rq *rq = cpu_rq(cpu);
  2988. struct task_struct *curr = rq->curr;
  2989. u64 next_tick = rq->tick_timestamp + TICK_NSEC;
  2990. spin_lock(&rq->lock);
  2991. __update_rq_clock(rq);
  2992. /*
  2993. * Let rq->clock advance by at least TICK_NSEC:
  2994. */
  2995. if (unlikely(rq->clock < next_tick))
  2996. rq->clock = next_tick;
  2997. rq->tick_timestamp = rq->clock;
  2998. update_cpu_load(rq);
  2999. if (curr != rq->idle) /* FIXME: needed? */
  3000. curr->sched_class->task_tick(rq, curr);
  3001. spin_unlock(&rq->lock);
  3002. #ifdef CONFIG_SMP
  3003. rq->idle_at_tick = idle_cpu(cpu);
  3004. trigger_load_balance(rq, cpu);
  3005. #endif
  3006. }
  3007. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  3008. void fastcall add_preempt_count(int val)
  3009. {
  3010. /*
  3011. * Underflow?
  3012. */
  3013. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3014. return;
  3015. preempt_count() += val;
  3016. /*
  3017. * Spinlock count overflowing soon?
  3018. */
  3019. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3020. PREEMPT_MASK - 10);
  3021. }
  3022. EXPORT_SYMBOL(add_preempt_count);
  3023. void fastcall sub_preempt_count(int val)
  3024. {
  3025. /*
  3026. * Underflow?
  3027. */
  3028. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3029. return;
  3030. /*
  3031. * Is the spinlock portion underflowing?
  3032. */
  3033. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3034. !(preempt_count() & PREEMPT_MASK)))
  3035. return;
  3036. preempt_count() -= val;
  3037. }
  3038. EXPORT_SYMBOL(sub_preempt_count);
  3039. #endif
  3040. /*
  3041. * Print scheduling while atomic bug:
  3042. */
  3043. static noinline void __schedule_bug(struct task_struct *prev)
  3044. {
  3045. struct pt_regs *regs = get_irq_regs();
  3046. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3047. prev->comm, prev->pid, preempt_count());
  3048. debug_show_held_locks(prev);
  3049. if (irqs_disabled())
  3050. print_irqtrace_events(prev);
  3051. if (regs)
  3052. show_regs(regs);
  3053. else
  3054. dump_stack();
  3055. }
  3056. /*
  3057. * Various schedule()-time debugging checks and statistics:
  3058. */
  3059. static inline void schedule_debug(struct task_struct *prev)
  3060. {
  3061. /*
  3062. * Test if we are atomic. Since do_exit() needs to call into
  3063. * schedule() atomically, we ignore that path for now.
  3064. * Otherwise, whine if we are scheduling when we should not be.
  3065. */
  3066. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  3067. __schedule_bug(prev);
  3068. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3069. schedstat_inc(this_rq(), sched_count);
  3070. #ifdef CONFIG_SCHEDSTATS
  3071. if (unlikely(prev->lock_depth >= 0)) {
  3072. schedstat_inc(this_rq(), bkl_count);
  3073. schedstat_inc(prev, sched_info.bkl_count);
  3074. }
  3075. #endif
  3076. }
  3077. /*
  3078. * Pick up the highest-prio task:
  3079. */
  3080. static inline struct task_struct *
  3081. pick_next_task(struct rq *rq, struct task_struct *prev)
  3082. {
  3083. const struct sched_class *class;
  3084. struct task_struct *p;
  3085. /*
  3086. * Optimization: we know that if all tasks are in
  3087. * the fair class we can call that function directly:
  3088. */
  3089. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3090. p = fair_sched_class.pick_next_task(rq);
  3091. if (likely(p))
  3092. return p;
  3093. }
  3094. class = sched_class_highest;
  3095. for ( ; ; ) {
  3096. p = class->pick_next_task(rq);
  3097. if (p)
  3098. return p;
  3099. /*
  3100. * Will never be NULL as the idle class always
  3101. * returns a non-NULL p:
  3102. */
  3103. class = class->next;
  3104. }
  3105. }
  3106. /*
  3107. * schedule() is the main scheduler function.
  3108. */
  3109. asmlinkage void __sched schedule(void)
  3110. {
  3111. struct task_struct *prev, *next;
  3112. long *switch_count;
  3113. struct rq *rq;
  3114. int cpu;
  3115. need_resched:
  3116. preempt_disable();
  3117. cpu = smp_processor_id();
  3118. rq = cpu_rq(cpu);
  3119. rcu_qsctr_inc(cpu);
  3120. prev = rq->curr;
  3121. switch_count = &prev->nivcsw;
  3122. release_kernel_lock(prev);
  3123. need_resched_nonpreemptible:
  3124. schedule_debug(prev);
  3125. /*
  3126. * Do the rq-clock update outside the rq lock:
  3127. */
  3128. local_irq_disable();
  3129. __update_rq_clock(rq);
  3130. spin_lock(&rq->lock);
  3131. clear_tsk_need_resched(prev);
  3132. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3133. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  3134. unlikely(signal_pending(prev)))) {
  3135. prev->state = TASK_RUNNING;
  3136. } else {
  3137. deactivate_task(rq, prev, 1);
  3138. }
  3139. switch_count = &prev->nvcsw;
  3140. }
  3141. schedule_balance_rt(rq, prev);
  3142. if (unlikely(!rq->nr_running))
  3143. idle_balance(cpu, rq);
  3144. prev->sched_class->put_prev_task(rq, prev);
  3145. next = pick_next_task(rq, prev);
  3146. sched_info_switch(prev, next);
  3147. if (likely(prev != next)) {
  3148. rq->nr_switches++;
  3149. rq->curr = next;
  3150. ++*switch_count;
  3151. context_switch(rq, prev, next); /* unlocks the rq */
  3152. } else
  3153. spin_unlock_irq(&rq->lock);
  3154. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  3155. cpu = smp_processor_id();
  3156. rq = cpu_rq(cpu);
  3157. goto need_resched_nonpreemptible;
  3158. }
  3159. preempt_enable_no_resched();
  3160. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3161. goto need_resched;
  3162. }
  3163. EXPORT_SYMBOL(schedule);
  3164. #ifdef CONFIG_PREEMPT
  3165. /*
  3166. * this is the entry point to schedule() from in-kernel preemption
  3167. * off of preempt_enable. Kernel preemptions off return from interrupt
  3168. * occur there and call schedule directly.
  3169. */
  3170. asmlinkage void __sched preempt_schedule(void)
  3171. {
  3172. struct thread_info *ti = current_thread_info();
  3173. #ifdef CONFIG_PREEMPT_BKL
  3174. struct task_struct *task = current;
  3175. int saved_lock_depth;
  3176. #endif
  3177. /*
  3178. * If there is a non-zero preempt_count or interrupts are disabled,
  3179. * we do not want to preempt the current task. Just return..
  3180. */
  3181. if (likely(ti->preempt_count || irqs_disabled()))
  3182. return;
  3183. do {
  3184. add_preempt_count(PREEMPT_ACTIVE);
  3185. /*
  3186. * We keep the big kernel semaphore locked, but we
  3187. * clear ->lock_depth so that schedule() doesnt
  3188. * auto-release the semaphore:
  3189. */
  3190. #ifdef CONFIG_PREEMPT_BKL
  3191. saved_lock_depth = task->lock_depth;
  3192. task->lock_depth = -1;
  3193. #endif
  3194. schedule();
  3195. #ifdef CONFIG_PREEMPT_BKL
  3196. task->lock_depth = saved_lock_depth;
  3197. #endif
  3198. sub_preempt_count(PREEMPT_ACTIVE);
  3199. /*
  3200. * Check again in case we missed a preemption opportunity
  3201. * between schedule and now.
  3202. */
  3203. barrier();
  3204. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3205. }
  3206. EXPORT_SYMBOL(preempt_schedule);
  3207. /*
  3208. * this is the entry point to schedule() from kernel preemption
  3209. * off of irq context.
  3210. * Note, that this is called and return with irqs disabled. This will
  3211. * protect us against recursive calling from irq.
  3212. */
  3213. asmlinkage void __sched preempt_schedule_irq(void)
  3214. {
  3215. struct thread_info *ti = current_thread_info();
  3216. #ifdef CONFIG_PREEMPT_BKL
  3217. struct task_struct *task = current;
  3218. int saved_lock_depth;
  3219. #endif
  3220. /* Catch callers which need to be fixed */
  3221. BUG_ON(ti->preempt_count || !irqs_disabled());
  3222. do {
  3223. add_preempt_count(PREEMPT_ACTIVE);
  3224. /*
  3225. * We keep the big kernel semaphore locked, but we
  3226. * clear ->lock_depth so that schedule() doesnt
  3227. * auto-release the semaphore:
  3228. */
  3229. #ifdef CONFIG_PREEMPT_BKL
  3230. saved_lock_depth = task->lock_depth;
  3231. task->lock_depth = -1;
  3232. #endif
  3233. local_irq_enable();
  3234. schedule();
  3235. local_irq_disable();
  3236. #ifdef CONFIG_PREEMPT_BKL
  3237. task->lock_depth = saved_lock_depth;
  3238. #endif
  3239. sub_preempt_count(PREEMPT_ACTIVE);
  3240. /*
  3241. * Check again in case we missed a preemption opportunity
  3242. * between schedule and now.
  3243. */
  3244. barrier();
  3245. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3246. }
  3247. #endif /* CONFIG_PREEMPT */
  3248. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3249. void *key)
  3250. {
  3251. return try_to_wake_up(curr->private, mode, sync);
  3252. }
  3253. EXPORT_SYMBOL(default_wake_function);
  3254. /*
  3255. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3256. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3257. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3258. *
  3259. * There are circumstances in which we can try to wake a task which has already
  3260. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3261. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3262. */
  3263. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3264. int nr_exclusive, int sync, void *key)
  3265. {
  3266. wait_queue_t *curr, *next;
  3267. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3268. unsigned flags = curr->flags;
  3269. if (curr->func(curr, mode, sync, key) &&
  3270. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3271. break;
  3272. }
  3273. }
  3274. /**
  3275. * __wake_up - wake up threads blocked on a waitqueue.
  3276. * @q: the waitqueue
  3277. * @mode: which threads
  3278. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3279. * @key: is directly passed to the wakeup function
  3280. */
  3281. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3282. int nr_exclusive, void *key)
  3283. {
  3284. unsigned long flags;
  3285. spin_lock_irqsave(&q->lock, flags);
  3286. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3287. spin_unlock_irqrestore(&q->lock, flags);
  3288. }
  3289. EXPORT_SYMBOL(__wake_up);
  3290. /*
  3291. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3292. */
  3293. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3294. {
  3295. __wake_up_common(q, mode, 1, 0, NULL);
  3296. }
  3297. /**
  3298. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3299. * @q: the waitqueue
  3300. * @mode: which threads
  3301. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3302. *
  3303. * The sync wakeup differs that the waker knows that it will schedule
  3304. * away soon, so while the target thread will be woken up, it will not
  3305. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3306. * with each other. This can prevent needless bouncing between CPUs.
  3307. *
  3308. * On UP it can prevent extra preemption.
  3309. */
  3310. void fastcall
  3311. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3312. {
  3313. unsigned long flags;
  3314. int sync = 1;
  3315. if (unlikely(!q))
  3316. return;
  3317. if (unlikely(!nr_exclusive))
  3318. sync = 0;
  3319. spin_lock_irqsave(&q->lock, flags);
  3320. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3321. spin_unlock_irqrestore(&q->lock, flags);
  3322. }
  3323. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3324. void complete(struct completion *x)
  3325. {
  3326. unsigned long flags;
  3327. spin_lock_irqsave(&x->wait.lock, flags);
  3328. x->done++;
  3329. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3330. 1, 0, NULL);
  3331. spin_unlock_irqrestore(&x->wait.lock, flags);
  3332. }
  3333. EXPORT_SYMBOL(complete);
  3334. void complete_all(struct completion *x)
  3335. {
  3336. unsigned long flags;
  3337. spin_lock_irqsave(&x->wait.lock, flags);
  3338. x->done += UINT_MAX/2;
  3339. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3340. 0, 0, NULL);
  3341. spin_unlock_irqrestore(&x->wait.lock, flags);
  3342. }
  3343. EXPORT_SYMBOL(complete_all);
  3344. static inline long __sched
  3345. do_wait_for_common(struct completion *x, long timeout, int state)
  3346. {
  3347. if (!x->done) {
  3348. DECLARE_WAITQUEUE(wait, current);
  3349. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3350. __add_wait_queue_tail(&x->wait, &wait);
  3351. do {
  3352. if (state == TASK_INTERRUPTIBLE &&
  3353. signal_pending(current)) {
  3354. __remove_wait_queue(&x->wait, &wait);
  3355. return -ERESTARTSYS;
  3356. }
  3357. __set_current_state(state);
  3358. spin_unlock_irq(&x->wait.lock);
  3359. timeout = schedule_timeout(timeout);
  3360. spin_lock_irq(&x->wait.lock);
  3361. if (!timeout) {
  3362. __remove_wait_queue(&x->wait, &wait);
  3363. return timeout;
  3364. }
  3365. } while (!x->done);
  3366. __remove_wait_queue(&x->wait, &wait);
  3367. }
  3368. x->done--;
  3369. return timeout;
  3370. }
  3371. static long __sched
  3372. wait_for_common(struct completion *x, long timeout, int state)
  3373. {
  3374. might_sleep();
  3375. spin_lock_irq(&x->wait.lock);
  3376. timeout = do_wait_for_common(x, timeout, state);
  3377. spin_unlock_irq(&x->wait.lock);
  3378. return timeout;
  3379. }
  3380. void __sched wait_for_completion(struct completion *x)
  3381. {
  3382. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3383. }
  3384. EXPORT_SYMBOL(wait_for_completion);
  3385. unsigned long __sched
  3386. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3387. {
  3388. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3389. }
  3390. EXPORT_SYMBOL(wait_for_completion_timeout);
  3391. int __sched wait_for_completion_interruptible(struct completion *x)
  3392. {
  3393. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3394. if (t == -ERESTARTSYS)
  3395. return t;
  3396. return 0;
  3397. }
  3398. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3399. unsigned long __sched
  3400. wait_for_completion_interruptible_timeout(struct completion *x,
  3401. unsigned long timeout)
  3402. {
  3403. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3404. }
  3405. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3406. static long __sched
  3407. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3408. {
  3409. unsigned long flags;
  3410. wait_queue_t wait;
  3411. init_waitqueue_entry(&wait, current);
  3412. __set_current_state(state);
  3413. spin_lock_irqsave(&q->lock, flags);
  3414. __add_wait_queue(q, &wait);
  3415. spin_unlock(&q->lock);
  3416. timeout = schedule_timeout(timeout);
  3417. spin_lock_irq(&q->lock);
  3418. __remove_wait_queue(q, &wait);
  3419. spin_unlock_irqrestore(&q->lock, flags);
  3420. return timeout;
  3421. }
  3422. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3423. {
  3424. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3425. }
  3426. EXPORT_SYMBOL(interruptible_sleep_on);
  3427. long __sched
  3428. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3429. {
  3430. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3431. }
  3432. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3433. void __sched sleep_on(wait_queue_head_t *q)
  3434. {
  3435. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3436. }
  3437. EXPORT_SYMBOL(sleep_on);
  3438. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3439. {
  3440. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3441. }
  3442. EXPORT_SYMBOL(sleep_on_timeout);
  3443. #ifdef CONFIG_RT_MUTEXES
  3444. /*
  3445. * rt_mutex_setprio - set the current priority of a task
  3446. * @p: task
  3447. * @prio: prio value (kernel-internal form)
  3448. *
  3449. * This function changes the 'effective' priority of a task. It does
  3450. * not touch ->normal_prio like __setscheduler().
  3451. *
  3452. * Used by the rt_mutex code to implement priority inheritance logic.
  3453. */
  3454. void rt_mutex_setprio(struct task_struct *p, int prio)
  3455. {
  3456. unsigned long flags;
  3457. int oldprio, on_rq, running;
  3458. struct rq *rq;
  3459. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3460. rq = task_rq_lock(p, &flags);
  3461. update_rq_clock(rq);
  3462. oldprio = p->prio;
  3463. on_rq = p->se.on_rq;
  3464. running = task_current(rq, p);
  3465. if (on_rq) {
  3466. dequeue_task(rq, p, 0);
  3467. if (running)
  3468. p->sched_class->put_prev_task(rq, p);
  3469. }
  3470. if (rt_prio(prio))
  3471. p->sched_class = &rt_sched_class;
  3472. else
  3473. p->sched_class = &fair_sched_class;
  3474. p->prio = prio;
  3475. if (on_rq) {
  3476. if (running)
  3477. p->sched_class->set_curr_task(rq);
  3478. enqueue_task(rq, p, 0);
  3479. /*
  3480. * Reschedule if we are currently running on this runqueue and
  3481. * our priority decreased, or if we are not currently running on
  3482. * this runqueue and our priority is higher than the current's
  3483. */
  3484. if (running) {
  3485. if (p->prio > oldprio)
  3486. resched_task(rq->curr);
  3487. } else {
  3488. check_preempt_curr(rq, p);
  3489. }
  3490. }
  3491. task_rq_unlock(rq, &flags);
  3492. }
  3493. #endif
  3494. void set_user_nice(struct task_struct *p, long nice)
  3495. {
  3496. int old_prio, delta, on_rq;
  3497. unsigned long flags;
  3498. struct rq *rq;
  3499. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3500. return;
  3501. /*
  3502. * We have to be careful, if called from sys_setpriority(),
  3503. * the task might be in the middle of scheduling on another CPU.
  3504. */
  3505. rq = task_rq_lock(p, &flags);
  3506. update_rq_clock(rq);
  3507. /*
  3508. * The RT priorities are set via sched_setscheduler(), but we still
  3509. * allow the 'normal' nice value to be set - but as expected
  3510. * it wont have any effect on scheduling until the task is
  3511. * SCHED_FIFO/SCHED_RR:
  3512. */
  3513. if (task_has_rt_policy(p)) {
  3514. p->static_prio = NICE_TO_PRIO(nice);
  3515. goto out_unlock;
  3516. }
  3517. on_rq = p->se.on_rq;
  3518. if (on_rq)
  3519. dequeue_task(rq, p, 0);
  3520. p->static_prio = NICE_TO_PRIO(nice);
  3521. set_load_weight(p);
  3522. old_prio = p->prio;
  3523. p->prio = effective_prio(p);
  3524. delta = p->prio - old_prio;
  3525. if (on_rq) {
  3526. enqueue_task(rq, p, 0);
  3527. /*
  3528. * If the task increased its priority or is running and
  3529. * lowered its priority, then reschedule its CPU:
  3530. */
  3531. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3532. resched_task(rq->curr);
  3533. }
  3534. out_unlock:
  3535. task_rq_unlock(rq, &flags);
  3536. }
  3537. EXPORT_SYMBOL(set_user_nice);
  3538. /*
  3539. * can_nice - check if a task can reduce its nice value
  3540. * @p: task
  3541. * @nice: nice value
  3542. */
  3543. int can_nice(const struct task_struct *p, const int nice)
  3544. {
  3545. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3546. int nice_rlim = 20 - nice;
  3547. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3548. capable(CAP_SYS_NICE));
  3549. }
  3550. #ifdef __ARCH_WANT_SYS_NICE
  3551. /*
  3552. * sys_nice - change the priority of the current process.
  3553. * @increment: priority increment
  3554. *
  3555. * sys_setpriority is a more generic, but much slower function that
  3556. * does similar things.
  3557. */
  3558. asmlinkage long sys_nice(int increment)
  3559. {
  3560. long nice, retval;
  3561. /*
  3562. * Setpriority might change our priority at the same moment.
  3563. * We don't have to worry. Conceptually one call occurs first
  3564. * and we have a single winner.
  3565. */
  3566. if (increment < -40)
  3567. increment = -40;
  3568. if (increment > 40)
  3569. increment = 40;
  3570. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3571. if (nice < -20)
  3572. nice = -20;
  3573. if (nice > 19)
  3574. nice = 19;
  3575. if (increment < 0 && !can_nice(current, nice))
  3576. return -EPERM;
  3577. retval = security_task_setnice(current, nice);
  3578. if (retval)
  3579. return retval;
  3580. set_user_nice(current, nice);
  3581. return 0;
  3582. }
  3583. #endif
  3584. /**
  3585. * task_prio - return the priority value of a given task.
  3586. * @p: the task in question.
  3587. *
  3588. * This is the priority value as seen by users in /proc.
  3589. * RT tasks are offset by -200. Normal tasks are centered
  3590. * around 0, value goes from -16 to +15.
  3591. */
  3592. int task_prio(const struct task_struct *p)
  3593. {
  3594. return p->prio - MAX_RT_PRIO;
  3595. }
  3596. /**
  3597. * task_nice - return the nice value of a given task.
  3598. * @p: the task in question.
  3599. */
  3600. int task_nice(const struct task_struct *p)
  3601. {
  3602. return TASK_NICE(p);
  3603. }
  3604. EXPORT_SYMBOL_GPL(task_nice);
  3605. /**
  3606. * idle_cpu - is a given cpu idle currently?
  3607. * @cpu: the processor in question.
  3608. */
  3609. int idle_cpu(int cpu)
  3610. {
  3611. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3612. }
  3613. /**
  3614. * idle_task - return the idle task for a given cpu.
  3615. * @cpu: the processor in question.
  3616. */
  3617. struct task_struct *idle_task(int cpu)
  3618. {
  3619. return cpu_rq(cpu)->idle;
  3620. }
  3621. /**
  3622. * find_process_by_pid - find a process with a matching PID value.
  3623. * @pid: the pid in question.
  3624. */
  3625. static struct task_struct *find_process_by_pid(pid_t pid)
  3626. {
  3627. return pid ? find_task_by_vpid(pid) : current;
  3628. }
  3629. /* Actually do priority change: must hold rq lock. */
  3630. static void
  3631. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3632. {
  3633. BUG_ON(p->se.on_rq);
  3634. p->policy = policy;
  3635. switch (p->policy) {
  3636. case SCHED_NORMAL:
  3637. case SCHED_BATCH:
  3638. case SCHED_IDLE:
  3639. p->sched_class = &fair_sched_class;
  3640. break;
  3641. case SCHED_FIFO:
  3642. case SCHED_RR:
  3643. p->sched_class = &rt_sched_class;
  3644. break;
  3645. }
  3646. p->rt_priority = prio;
  3647. p->normal_prio = normal_prio(p);
  3648. /* we are holding p->pi_lock already */
  3649. p->prio = rt_mutex_getprio(p);
  3650. set_load_weight(p);
  3651. }
  3652. /**
  3653. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3654. * @p: the task in question.
  3655. * @policy: new policy.
  3656. * @param: structure containing the new RT priority.
  3657. *
  3658. * NOTE that the task may be already dead.
  3659. */
  3660. int sched_setscheduler(struct task_struct *p, int policy,
  3661. struct sched_param *param)
  3662. {
  3663. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3664. unsigned long flags;
  3665. struct rq *rq;
  3666. /* may grab non-irq protected spin_locks */
  3667. BUG_ON(in_interrupt());
  3668. recheck:
  3669. /* double check policy once rq lock held */
  3670. if (policy < 0)
  3671. policy = oldpolicy = p->policy;
  3672. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3673. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3674. policy != SCHED_IDLE)
  3675. return -EINVAL;
  3676. /*
  3677. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3678. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3679. * SCHED_BATCH and SCHED_IDLE is 0.
  3680. */
  3681. if (param->sched_priority < 0 ||
  3682. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3683. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3684. return -EINVAL;
  3685. if (rt_policy(policy) != (param->sched_priority != 0))
  3686. return -EINVAL;
  3687. /*
  3688. * Allow unprivileged RT tasks to decrease priority:
  3689. */
  3690. if (!capable(CAP_SYS_NICE)) {
  3691. if (rt_policy(policy)) {
  3692. unsigned long rlim_rtprio;
  3693. if (!lock_task_sighand(p, &flags))
  3694. return -ESRCH;
  3695. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3696. unlock_task_sighand(p, &flags);
  3697. /* can't set/change the rt policy */
  3698. if (policy != p->policy && !rlim_rtprio)
  3699. return -EPERM;
  3700. /* can't increase priority */
  3701. if (param->sched_priority > p->rt_priority &&
  3702. param->sched_priority > rlim_rtprio)
  3703. return -EPERM;
  3704. }
  3705. /*
  3706. * Like positive nice levels, dont allow tasks to
  3707. * move out of SCHED_IDLE either:
  3708. */
  3709. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3710. return -EPERM;
  3711. /* can't change other user's priorities */
  3712. if ((current->euid != p->euid) &&
  3713. (current->euid != p->uid))
  3714. return -EPERM;
  3715. }
  3716. retval = security_task_setscheduler(p, policy, param);
  3717. if (retval)
  3718. return retval;
  3719. /*
  3720. * make sure no PI-waiters arrive (or leave) while we are
  3721. * changing the priority of the task:
  3722. */
  3723. spin_lock_irqsave(&p->pi_lock, flags);
  3724. /*
  3725. * To be able to change p->policy safely, the apropriate
  3726. * runqueue lock must be held.
  3727. */
  3728. rq = __task_rq_lock(p);
  3729. /* recheck policy now with rq lock held */
  3730. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3731. policy = oldpolicy = -1;
  3732. __task_rq_unlock(rq);
  3733. spin_unlock_irqrestore(&p->pi_lock, flags);
  3734. goto recheck;
  3735. }
  3736. update_rq_clock(rq);
  3737. on_rq = p->se.on_rq;
  3738. running = task_current(rq, p);
  3739. if (on_rq) {
  3740. deactivate_task(rq, p, 0);
  3741. if (running)
  3742. p->sched_class->put_prev_task(rq, p);
  3743. }
  3744. oldprio = p->prio;
  3745. __setscheduler(rq, p, policy, param->sched_priority);
  3746. if (on_rq) {
  3747. if (running)
  3748. p->sched_class->set_curr_task(rq);
  3749. activate_task(rq, p, 0);
  3750. /*
  3751. * Reschedule if we are currently running on this runqueue and
  3752. * our priority decreased, or if we are not currently running on
  3753. * this runqueue and our priority is higher than the current's
  3754. */
  3755. if (running) {
  3756. if (p->prio > oldprio)
  3757. resched_task(rq->curr);
  3758. } else {
  3759. check_preempt_curr(rq, p);
  3760. }
  3761. }
  3762. __task_rq_unlock(rq);
  3763. spin_unlock_irqrestore(&p->pi_lock, flags);
  3764. rt_mutex_adjust_pi(p);
  3765. return 0;
  3766. }
  3767. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3768. static int
  3769. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3770. {
  3771. struct sched_param lparam;
  3772. struct task_struct *p;
  3773. int retval;
  3774. if (!param || pid < 0)
  3775. return -EINVAL;
  3776. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3777. return -EFAULT;
  3778. rcu_read_lock();
  3779. retval = -ESRCH;
  3780. p = find_process_by_pid(pid);
  3781. if (p != NULL)
  3782. retval = sched_setscheduler(p, policy, &lparam);
  3783. rcu_read_unlock();
  3784. return retval;
  3785. }
  3786. /**
  3787. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3788. * @pid: the pid in question.
  3789. * @policy: new policy.
  3790. * @param: structure containing the new RT priority.
  3791. */
  3792. asmlinkage long
  3793. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3794. {
  3795. /* negative values for policy are not valid */
  3796. if (policy < 0)
  3797. return -EINVAL;
  3798. return do_sched_setscheduler(pid, policy, param);
  3799. }
  3800. /**
  3801. * sys_sched_setparam - set/change the RT priority of a thread
  3802. * @pid: the pid in question.
  3803. * @param: structure containing the new RT priority.
  3804. */
  3805. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3806. {
  3807. return do_sched_setscheduler(pid, -1, param);
  3808. }
  3809. /**
  3810. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3811. * @pid: the pid in question.
  3812. */
  3813. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3814. {
  3815. struct task_struct *p;
  3816. int retval;
  3817. if (pid < 0)
  3818. return -EINVAL;
  3819. retval = -ESRCH;
  3820. read_lock(&tasklist_lock);
  3821. p = find_process_by_pid(pid);
  3822. if (p) {
  3823. retval = security_task_getscheduler(p);
  3824. if (!retval)
  3825. retval = p->policy;
  3826. }
  3827. read_unlock(&tasklist_lock);
  3828. return retval;
  3829. }
  3830. /**
  3831. * sys_sched_getscheduler - get the RT priority of a thread
  3832. * @pid: the pid in question.
  3833. * @param: structure containing the RT priority.
  3834. */
  3835. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3836. {
  3837. struct sched_param lp;
  3838. struct task_struct *p;
  3839. int retval;
  3840. if (!param || pid < 0)
  3841. return -EINVAL;
  3842. read_lock(&tasklist_lock);
  3843. p = find_process_by_pid(pid);
  3844. retval = -ESRCH;
  3845. if (!p)
  3846. goto out_unlock;
  3847. retval = security_task_getscheduler(p);
  3848. if (retval)
  3849. goto out_unlock;
  3850. lp.sched_priority = p->rt_priority;
  3851. read_unlock(&tasklist_lock);
  3852. /*
  3853. * This one might sleep, we cannot do it with a spinlock held ...
  3854. */
  3855. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3856. return retval;
  3857. out_unlock:
  3858. read_unlock(&tasklist_lock);
  3859. return retval;
  3860. }
  3861. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3862. {
  3863. cpumask_t cpus_allowed;
  3864. struct task_struct *p;
  3865. int retval;
  3866. get_online_cpus();
  3867. read_lock(&tasklist_lock);
  3868. p = find_process_by_pid(pid);
  3869. if (!p) {
  3870. read_unlock(&tasklist_lock);
  3871. put_online_cpus();
  3872. return -ESRCH;
  3873. }
  3874. /*
  3875. * It is not safe to call set_cpus_allowed with the
  3876. * tasklist_lock held. We will bump the task_struct's
  3877. * usage count and then drop tasklist_lock.
  3878. */
  3879. get_task_struct(p);
  3880. read_unlock(&tasklist_lock);
  3881. retval = -EPERM;
  3882. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3883. !capable(CAP_SYS_NICE))
  3884. goto out_unlock;
  3885. retval = security_task_setscheduler(p, 0, NULL);
  3886. if (retval)
  3887. goto out_unlock;
  3888. cpus_allowed = cpuset_cpus_allowed(p);
  3889. cpus_and(new_mask, new_mask, cpus_allowed);
  3890. again:
  3891. retval = set_cpus_allowed(p, new_mask);
  3892. if (!retval) {
  3893. cpus_allowed = cpuset_cpus_allowed(p);
  3894. if (!cpus_subset(new_mask, cpus_allowed)) {
  3895. /*
  3896. * We must have raced with a concurrent cpuset
  3897. * update. Just reset the cpus_allowed to the
  3898. * cpuset's cpus_allowed
  3899. */
  3900. new_mask = cpus_allowed;
  3901. goto again;
  3902. }
  3903. }
  3904. out_unlock:
  3905. put_task_struct(p);
  3906. put_online_cpus();
  3907. return retval;
  3908. }
  3909. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3910. cpumask_t *new_mask)
  3911. {
  3912. if (len < sizeof(cpumask_t)) {
  3913. memset(new_mask, 0, sizeof(cpumask_t));
  3914. } else if (len > sizeof(cpumask_t)) {
  3915. len = sizeof(cpumask_t);
  3916. }
  3917. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3918. }
  3919. /**
  3920. * sys_sched_setaffinity - set the cpu affinity of a process
  3921. * @pid: pid of the process
  3922. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3923. * @user_mask_ptr: user-space pointer to the new cpu mask
  3924. */
  3925. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3926. unsigned long __user *user_mask_ptr)
  3927. {
  3928. cpumask_t new_mask;
  3929. int retval;
  3930. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3931. if (retval)
  3932. return retval;
  3933. return sched_setaffinity(pid, new_mask);
  3934. }
  3935. /*
  3936. * Represents all cpu's present in the system
  3937. * In systems capable of hotplug, this map could dynamically grow
  3938. * as new cpu's are detected in the system via any platform specific
  3939. * method, such as ACPI for e.g.
  3940. */
  3941. cpumask_t cpu_present_map __read_mostly;
  3942. EXPORT_SYMBOL(cpu_present_map);
  3943. #ifndef CONFIG_SMP
  3944. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  3945. EXPORT_SYMBOL(cpu_online_map);
  3946. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  3947. EXPORT_SYMBOL(cpu_possible_map);
  3948. #endif
  3949. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  3950. {
  3951. struct task_struct *p;
  3952. int retval;
  3953. get_online_cpus();
  3954. read_lock(&tasklist_lock);
  3955. retval = -ESRCH;
  3956. p = find_process_by_pid(pid);
  3957. if (!p)
  3958. goto out_unlock;
  3959. retval = security_task_getscheduler(p);
  3960. if (retval)
  3961. goto out_unlock;
  3962. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  3963. out_unlock:
  3964. read_unlock(&tasklist_lock);
  3965. put_online_cpus();
  3966. return retval;
  3967. }
  3968. /**
  3969. * sys_sched_getaffinity - get the cpu affinity of a process
  3970. * @pid: pid of the process
  3971. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3972. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3973. */
  3974. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  3975. unsigned long __user *user_mask_ptr)
  3976. {
  3977. int ret;
  3978. cpumask_t mask;
  3979. if (len < sizeof(cpumask_t))
  3980. return -EINVAL;
  3981. ret = sched_getaffinity(pid, &mask);
  3982. if (ret < 0)
  3983. return ret;
  3984. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  3985. return -EFAULT;
  3986. return sizeof(cpumask_t);
  3987. }
  3988. /**
  3989. * sys_sched_yield - yield the current processor to other threads.
  3990. *
  3991. * This function yields the current CPU to other tasks. If there are no
  3992. * other threads running on this CPU then this function will return.
  3993. */
  3994. asmlinkage long sys_sched_yield(void)
  3995. {
  3996. struct rq *rq = this_rq_lock();
  3997. schedstat_inc(rq, yld_count);
  3998. current->sched_class->yield_task(rq);
  3999. /*
  4000. * Since we are going to call schedule() anyway, there's
  4001. * no need to preempt or enable interrupts:
  4002. */
  4003. __release(rq->lock);
  4004. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4005. _raw_spin_unlock(&rq->lock);
  4006. preempt_enable_no_resched();
  4007. schedule();
  4008. return 0;
  4009. }
  4010. static void __cond_resched(void)
  4011. {
  4012. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4013. __might_sleep(__FILE__, __LINE__);
  4014. #endif
  4015. /*
  4016. * The BKS might be reacquired before we have dropped
  4017. * PREEMPT_ACTIVE, which could trigger a second
  4018. * cond_resched() call.
  4019. */
  4020. do {
  4021. add_preempt_count(PREEMPT_ACTIVE);
  4022. schedule();
  4023. sub_preempt_count(PREEMPT_ACTIVE);
  4024. } while (need_resched());
  4025. }
  4026. int __sched cond_resched(void)
  4027. {
  4028. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4029. system_state == SYSTEM_RUNNING) {
  4030. __cond_resched();
  4031. return 1;
  4032. }
  4033. return 0;
  4034. }
  4035. EXPORT_SYMBOL(cond_resched);
  4036. /*
  4037. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4038. * call schedule, and on return reacquire the lock.
  4039. *
  4040. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4041. * operations here to prevent schedule() from being called twice (once via
  4042. * spin_unlock(), once by hand).
  4043. */
  4044. int cond_resched_lock(spinlock_t *lock)
  4045. {
  4046. int ret = 0;
  4047. if (need_lockbreak(lock)) {
  4048. spin_unlock(lock);
  4049. cpu_relax();
  4050. ret = 1;
  4051. spin_lock(lock);
  4052. }
  4053. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4054. spin_release(&lock->dep_map, 1, _THIS_IP_);
  4055. _raw_spin_unlock(lock);
  4056. preempt_enable_no_resched();
  4057. __cond_resched();
  4058. ret = 1;
  4059. spin_lock(lock);
  4060. }
  4061. return ret;
  4062. }
  4063. EXPORT_SYMBOL(cond_resched_lock);
  4064. int __sched cond_resched_softirq(void)
  4065. {
  4066. BUG_ON(!in_softirq());
  4067. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4068. local_bh_enable();
  4069. __cond_resched();
  4070. local_bh_disable();
  4071. return 1;
  4072. }
  4073. return 0;
  4074. }
  4075. EXPORT_SYMBOL(cond_resched_softirq);
  4076. /**
  4077. * yield - yield the current processor to other threads.
  4078. *
  4079. * This is a shortcut for kernel-space yielding - it marks the
  4080. * thread runnable and calls sys_sched_yield().
  4081. */
  4082. void __sched yield(void)
  4083. {
  4084. set_current_state(TASK_RUNNING);
  4085. sys_sched_yield();
  4086. }
  4087. EXPORT_SYMBOL(yield);
  4088. /*
  4089. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4090. * that process accounting knows that this is a task in IO wait state.
  4091. *
  4092. * But don't do that if it is a deliberate, throttling IO wait (this task
  4093. * has set its backing_dev_info: the queue against which it should throttle)
  4094. */
  4095. void __sched io_schedule(void)
  4096. {
  4097. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4098. delayacct_blkio_start();
  4099. atomic_inc(&rq->nr_iowait);
  4100. schedule();
  4101. atomic_dec(&rq->nr_iowait);
  4102. delayacct_blkio_end();
  4103. }
  4104. EXPORT_SYMBOL(io_schedule);
  4105. long __sched io_schedule_timeout(long timeout)
  4106. {
  4107. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4108. long ret;
  4109. delayacct_blkio_start();
  4110. atomic_inc(&rq->nr_iowait);
  4111. ret = schedule_timeout(timeout);
  4112. atomic_dec(&rq->nr_iowait);
  4113. delayacct_blkio_end();
  4114. return ret;
  4115. }
  4116. /**
  4117. * sys_sched_get_priority_max - return maximum RT priority.
  4118. * @policy: scheduling class.
  4119. *
  4120. * this syscall returns the maximum rt_priority that can be used
  4121. * by a given scheduling class.
  4122. */
  4123. asmlinkage long sys_sched_get_priority_max(int policy)
  4124. {
  4125. int ret = -EINVAL;
  4126. switch (policy) {
  4127. case SCHED_FIFO:
  4128. case SCHED_RR:
  4129. ret = MAX_USER_RT_PRIO-1;
  4130. break;
  4131. case SCHED_NORMAL:
  4132. case SCHED_BATCH:
  4133. case SCHED_IDLE:
  4134. ret = 0;
  4135. break;
  4136. }
  4137. return ret;
  4138. }
  4139. /**
  4140. * sys_sched_get_priority_min - return minimum RT priority.
  4141. * @policy: scheduling class.
  4142. *
  4143. * this syscall returns the minimum rt_priority that can be used
  4144. * by a given scheduling class.
  4145. */
  4146. asmlinkage long sys_sched_get_priority_min(int policy)
  4147. {
  4148. int ret = -EINVAL;
  4149. switch (policy) {
  4150. case SCHED_FIFO:
  4151. case SCHED_RR:
  4152. ret = 1;
  4153. break;
  4154. case SCHED_NORMAL:
  4155. case SCHED_BATCH:
  4156. case SCHED_IDLE:
  4157. ret = 0;
  4158. }
  4159. return ret;
  4160. }
  4161. /**
  4162. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4163. * @pid: pid of the process.
  4164. * @interval: userspace pointer to the timeslice value.
  4165. *
  4166. * this syscall writes the default timeslice value of a given process
  4167. * into the user-space timespec buffer. A value of '0' means infinity.
  4168. */
  4169. asmlinkage
  4170. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4171. {
  4172. struct task_struct *p;
  4173. unsigned int time_slice;
  4174. int retval;
  4175. struct timespec t;
  4176. if (pid < 0)
  4177. return -EINVAL;
  4178. retval = -ESRCH;
  4179. read_lock(&tasklist_lock);
  4180. p = find_process_by_pid(pid);
  4181. if (!p)
  4182. goto out_unlock;
  4183. retval = security_task_getscheduler(p);
  4184. if (retval)
  4185. goto out_unlock;
  4186. /*
  4187. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4188. * tasks that are on an otherwise idle runqueue:
  4189. */
  4190. time_slice = 0;
  4191. if (p->policy == SCHED_RR) {
  4192. time_slice = DEF_TIMESLICE;
  4193. } else {
  4194. struct sched_entity *se = &p->se;
  4195. unsigned long flags;
  4196. struct rq *rq;
  4197. rq = task_rq_lock(p, &flags);
  4198. if (rq->cfs.load.weight)
  4199. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4200. task_rq_unlock(rq, &flags);
  4201. }
  4202. read_unlock(&tasklist_lock);
  4203. jiffies_to_timespec(time_slice, &t);
  4204. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4205. return retval;
  4206. out_unlock:
  4207. read_unlock(&tasklist_lock);
  4208. return retval;
  4209. }
  4210. static const char stat_nam[] = "RSDTtZX";
  4211. void sched_show_task(struct task_struct *p)
  4212. {
  4213. unsigned long free = 0;
  4214. unsigned state;
  4215. state = p->state ? __ffs(p->state) + 1 : 0;
  4216. printk(KERN_INFO "%-13.13s %c", p->comm,
  4217. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4218. #if BITS_PER_LONG == 32
  4219. if (state == TASK_RUNNING)
  4220. printk(KERN_CONT " running ");
  4221. else
  4222. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4223. #else
  4224. if (state == TASK_RUNNING)
  4225. printk(KERN_CONT " running task ");
  4226. else
  4227. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4228. #endif
  4229. #ifdef CONFIG_DEBUG_STACK_USAGE
  4230. {
  4231. unsigned long *n = end_of_stack(p);
  4232. while (!*n)
  4233. n++;
  4234. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4235. }
  4236. #endif
  4237. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4238. task_pid_nr(p), task_pid_nr(p->real_parent));
  4239. if (state != TASK_RUNNING)
  4240. show_stack(p, NULL);
  4241. }
  4242. void show_state_filter(unsigned long state_filter)
  4243. {
  4244. struct task_struct *g, *p;
  4245. #if BITS_PER_LONG == 32
  4246. printk(KERN_INFO
  4247. " task PC stack pid father\n");
  4248. #else
  4249. printk(KERN_INFO
  4250. " task PC stack pid father\n");
  4251. #endif
  4252. read_lock(&tasklist_lock);
  4253. do_each_thread(g, p) {
  4254. /*
  4255. * reset the NMI-timeout, listing all files on a slow
  4256. * console might take alot of time:
  4257. */
  4258. touch_nmi_watchdog();
  4259. if (!state_filter || (p->state & state_filter))
  4260. sched_show_task(p);
  4261. } while_each_thread(g, p);
  4262. touch_all_softlockup_watchdogs();
  4263. #ifdef CONFIG_SCHED_DEBUG
  4264. sysrq_sched_debug_show();
  4265. #endif
  4266. read_unlock(&tasklist_lock);
  4267. /*
  4268. * Only show locks if all tasks are dumped:
  4269. */
  4270. if (state_filter == -1)
  4271. debug_show_all_locks();
  4272. }
  4273. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4274. {
  4275. idle->sched_class = &idle_sched_class;
  4276. }
  4277. /**
  4278. * init_idle - set up an idle thread for a given CPU
  4279. * @idle: task in question
  4280. * @cpu: cpu the idle task belongs to
  4281. *
  4282. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4283. * flag, to make booting more robust.
  4284. */
  4285. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4286. {
  4287. struct rq *rq = cpu_rq(cpu);
  4288. unsigned long flags;
  4289. __sched_fork(idle);
  4290. idle->se.exec_start = sched_clock();
  4291. idle->prio = idle->normal_prio = MAX_PRIO;
  4292. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4293. __set_task_cpu(idle, cpu);
  4294. spin_lock_irqsave(&rq->lock, flags);
  4295. rq->curr = rq->idle = idle;
  4296. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4297. idle->oncpu = 1;
  4298. #endif
  4299. spin_unlock_irqrestore(&rq->lock, flags);
  4300. /* Set the preempt count _outside_ the spinlocks! */
  4301. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4302. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4303. #else
  4304. task_thread_info(idle)->preempt_count = 0;
  4305. #endif
  4306. /*
  4307. * The idle tasks have their own, simple scheduling class:
  4308. */
  4309. idle->sched_class = &idle_sched_class;
  4310. }
  4311. /*
  4312. * In a system that switches off the HZ timer nohz_cpu_mask
  4313. * indicates which cpus entered this state. This is used
  4314. * in the rcu update to wait only for active cpus. For system
  4315. * which do not switch off the HZ timer nohz_cpu_mask should
  4316. * always be CPU_MASK_NONE.
  4317. */
  4318. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4319. /*
  4320. * Increase the granularity value when there are more CPUs,
  4321. * because with more CPUs the 'effective latency' as visible
  4322. * to users decreases. But the relationship is not linear,
  4323. * so pick a second-best guess by going with the log2 of the
  4324. * number of CPUs.
  4325. *
  4326. * This idea comes from the SD scheduler of Con Kolivas:
  4327. */
  4328. static inline void sched_init_granularity(void)
  4329. {
  4330. unsigned int factor = 1 + ilog2(num_online_cpus());
  4331. const unsigned long limit = 200000000;
  4332. sysctl_sched_min_granularity *= factor;
  4333. if (sysctl_sched_min_granularity > limit)
  4334. sysctl_sched_min_granularity = limit;
  4335. sysctl_sched_latency *= factor;
  4336. if (sysctl_sched_latency > limit)
  4337. sysctl_sched_latency = limit;
  4338. sysctl_sched_wakeup_granularity *= factor;
  4339. sysctl_sched_batch_wakeup_granularity *= factor;
  4340. }
  4341. #ifdef CONFIG_SMP
  4342. /*
  4343. * This is how migration works:
  4344. *
  4345. * 1) we queue a struct migration_req structure in the source CPU's
  4346. * runqueue and wake up that CPU's migration thread.
  4347. * 2) we down() the locked semaphore => thread blocks.
  4348. * 3) migration thread wakes up (implicitly it forces the migrated
  4349. * thread off the CPU)
  4350. * 4) it gets the migration request and checks whether the migrated
  4351. * task is still in the wrong runqueue.
  4352. * 5) if it's in the wrong runqueue then the migration thread removes
  4353. * it and puts it into the right queue.
  4354. * 6) migration thread up()s the semaphore.
  4355. * 7) we wake up and the migration is done.
  4356. */
  4357. /*
  4358. * Change a given task's CPU affinity. Migrate the thread to a
  4359. * proper CPU and schedule it away if the CPU it's executing on
  4360. * is removed from the allowed bitmask.
  4361. *
  4362. * NOTE: the caller must have a valid reference to the task, the
  4363. * task must not exit() & deallocate itself prematurely. The
  4364. * call is not atomic; no spinlocks may be held.
  4365. */
  4366. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4367. {
  4368. struct migration_req req;
  4369. unsigned long flags;
  4370. struct rq *rq;
  4371. int ret = 0;
  4372. rq = task_rq_lock(p, &flags);
  4373. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4374. ret = -EINVAL;
  4375. goto out;
  4376. }
  4377. if (p->sched_class->set_cpus_allowed)
  4378. p->sched_class->set_cpus_allowed(p, &new_mask);
  4379. else {
  4380. p->cpus_allowed = new_mask;
  4381. p->nr_cpus_allowed = cpus_weight(new_mask);
  4382. }
  4383. /* Can the task run on the task's current CPU? If so, we're done */
  4384. if (cpu_isset(task_cpu(p), new_mask))
  4385. goto out;
  4386. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4387. /* Need help from migration thread: drop lock and wait. */
  4388. task_rq_unlock(rq, &flags);
  4389. wake_up_process(rq->migration_thread);
  4390. wait_for_completion(&req.done);
  4391. tlb_migrate_finish(p->mm);
  4392. return 0;
  4393. }
  4394. out:
  4395. task_rq_unlock(rq, &flags);
  4396. return ret;
  4397. }
  4398. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4399. /*
  4400. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4401. * this because either it can't run here any more (set_cpus_allowed()
  4402. * away from this CPU, or CPU going down), or because we're
  4403. * attempting to rebalance this task on exec (sched_exec).
  4404. *
  4405. * So we race with normal scheduler movements, but that's OK, as long
  4406. * as the task is no longer on this CPU.
  4407. *
  4408. * Returns non-zero if task was successfully migrated.
  4409. */
  4410. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4411. {
  4412. struct rq *rq_dest, *rq_src;
  4413. int ret = 0, on_rq;
  4414. if (unlikely(cpu_is_offline(dest_cpu)))
  4415. return ret;
  4416. rq_src = cpu_rq(src_cpu);
  4417. rq_dest = cpu_rq(dest_cpu);
  4418. double_rq_lock(rq_src, rq_dest);
  4419. /* Already moved. */
  4420. if (task_cpu(p) != src_cpu)
  4421. goto out;
  4422. /* Affinity changed (again). */
  4423. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4424. goto out;
  4425. on_rq = p->se.on_rq;
  4426. if (on_rq)
  4427. deactivate_task(rq_src, p, 0);
  4428. set_task_cpu(p, dest_cpu);
  4429. if (on_rq) {
  4430. activate_task(rq_dest, p, 0);
  4431. check_preempt_curr(rq_dest, p);
  4432. }
  4433. ret = 1;
  4434. out:
  4435. double_rq_unlock(rq_src, rq_dest);
  4436. return ret;
  4437. }
  4438. /*
  4439. * migration_thread - this is a highprio system thread that performs
  4440. * thread migration by bumping thread off CPU then 'pushing' onto
  4441. * another runqueue.
  4442. */
  4443. static int migration_thread(void *data)
  4444. {
  4445. int cpu = (long)data;
  4446. struct rq *rq;
  4447. rq = cpu_rq(cpu);
  4448. BUG_ON(rq->migration_thread != current);
  4449. set_current_state(TASK_INTERRUPTIBLE);
  4450. while (!kthread_should_stop()) {
  4451. struct migration_req *req;
  4452. struct list_head *head;
  4453. spin_lock_irq(&rq->lock);
  4454. if (cpu_is_offline(cpu)) {
  4455. spin_unlock_irq(&rq->lock);
  4456. goto wait_to_die;
  4457. }
  4458. if (rq->active_balance) {
  4459. active_load_balance(rq, cpu);
  4460. rq->active_balance = 0;
  4461. }
  4462. head = &rq->migration_queue;
  4463. if (list_empty(head)) {
  4464. spin_unlock_irq(&rq->lock);
  4465. schedule();
  4466. set_current_state(TASK_INTERRUPTIBLE);
  4467. continue;
  4468. }
  4469. req = list_entry(head->next, struct migration_req, list);
  4470. list_del_init(head->next);
  4471. spin_unlock(&rq->lock);
  4472. __migrate_task(req->task, cpu, req->dest_cpu);
  4473. local_irq_enable();
  4474. complete(&req->done);
  4475. }
  4476. __set_current_state(TASK_RUNNING);
  4477. return 0;
  4478. wait_to_die:
  4479. /* Wait for kthread_stop */
  4480. set_current_state(TASK_INTERRUPTIBLE);
  4481. while (!kthread_should_stop()) {
  4482. schedule();
  4483. set_current_state(TASK_INTERRUPTIBLE);
  4484. }
  4485. __set_current_state(TASK_RUNNING);
  4486. return 0;
  4487. }
  4488. #ifdef CONFIG_HOTPLUG_CPU
  4489. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  4490. {
  4491. int ret;
  4492. local_irq_disable();
  4493. ret = __migrate_task(p, src_cpu, dest_cpu);
  4494. local_irq_enable();
  4495. return ret;
  4496. }
  4497. /*
  4498. * Figure out where task on dead CPU should go, use force if necessary.
  4499. * NOTE: interrupts should be disabled by the caller
  4500. */
  4501. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4502. {
  4503. unsigned long flags;
  4504. cpumask_t mask;
  4505. struct rq *rq;
  4506. int dest_cpu;
  4507. do {
  4508. /* On same node? */
  4509. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4510. cpus_and(mask, mask, p->cpus_allowed);
  4511. dest_cpu = any_online_cpu(mask);
  4512. /* On any allowed CPU? */
  4513. if (dest_cpu == NR_CPUS)
  4514. dest_cpu = any_online_cpu(p->cpus_allowed);
  4515. /* No more Mr. Nice Guy. */
  4516. if (dest_cpu == NR_CPUS) {
  4517. cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
  4518. /*
  4519. * Try to stay on the same cpuset, where the
  4520. * current cpuset may be a subset of all cpus.
  4521. * The cpuset_cpus_allowed_locked() variant of
  4522. * cpuset_cpus_allowed() will not block. It must be
  4523. * called within calls to cpuset_lock/cpuset_unlock.
  4524. */
  4525. rq = task_rq_lock(p, &flags);
  4526. p->cpus_allowed = cpus_allowed;
  4527. dest_cpu = any_online_cpu(p->cpus_allowed);
  4528. task_rq_unlock(rq, &flags);
  4529. /*
  4530. * Don't tell them about moving exiting tasks or
  4531. * kernel threads (both mm NULL), since they never
  4532. * leave kernel.
  4533. */
  4534. if (p->mm && printk_ratelimit()) {
  4535. printk(KERN_INFO "process %d (%s) no "
  4536. "longer affine to cpu%d\n",
  4537. task_pid_nr(p), p->comm, dead_cpu);
  4538. }
  4539. }
  4540. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  4541. }
  4542. /*
  4543. * While a dead CPU has no uninterruptible tasks queued at this point,
  4544. * it might still have a nonzero ->nr_uninterruptible counter, because
  4545. * for performance reasons the counter is not stricly tracking tasks to
  4546. * their home CPUs. So we just add the counter to another CPU's counter,
  4547. * to keep the global sum constant after CPU-down:
  4548. */
  4549. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4550. {
  4551. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4552. unsigned long flags;
  4553. local_irq_save(flags);
  4554. double_rq_lock(rq_src, rq_dest);
  4555. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4556. rq_src->nr_uninterruptible = 0;
  4557. double_rq_unlock(rq_src, rq_dest);
  4558. local_irq_restore(flags);
  4559. }
  4560. /* Run through task list and migrate tasks from the dead cpu. */
  4561. static void migrate_live_tasks(int src_cpu)
  4562. {
  4563. struct task_struct *p, *t;
  4564. read_lock(&tasklist_lock);
  4565. do_each_thread(t, p) {
  4566. if (p == current)
  4567. continue;
  4568. if (task_cpu(p) == src_cpu)
  4569. move_task_off_dead_cpu(src_cpu, p);
  4570. } while_each_thread(t, p);
  4571. read_unlock(&tasklist_lock);
  4572. }
  4573. /*
  4574. * Schedules idle task to be the next runnable task on current CPU.
  4575. * It does so by boosting its priority to highest possible.
  4576. * Used by CPU offline code.
  4577. */
  4578. void sched_idle_next(void)
  4579. {
  4580. int this_cpu = smp_processor_id();
  4581. struct rq *rq = cpu_rq(this_cpu);
  4582. struct task_struct *p = rq->idle;
  4583. unsigned long flags;
  4584. /* cpu has to be offline */
  4585. BUG_ON(cpu_online(this_cpu));
  4586. /*
  4587. * Strictly not necessary since rest of the CPUs are stopped by now
  4588. * and interrupts disabled on the current cpu.
  4589. */
  4590. spin_lock_irqsave(&rq->lock, flags);
  4591. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4592. update_rq_clock(rq);
  4593. activate_task(rq, p, 0);
  4594. spin_unlock_irqrestore(&rq->lock, flags);
  4595. }
  4596. /*
  4597. * Ensures that the idle task is using init_mm right before its cpu goes
  4598. * offline.
  4599. */
  4600. void idle_task_exit(void)
  4601. {
  4602. struct mm_struct *mm = current->active_mm;
  4603. BUG_ON(cpu_online(smp_processor_id()));
  4604. if (mm != &init_mm)
  4605. switch_mm(mm, &init_mm, current);
  4606. mmdrop(mm);
  4607. }
  4608. /* called under rq->lock with disabled interrupts */
  4609. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4610. {
  4611. struct rq *rq = cpu_rq(dead_cpu);
  4612. /* Must be exiting, otherwise would be on tasklist. */
  4613. BUG_ON(!p->exit_state);
  4614. /* Cannot have done final schedule yet: would have vanished. */
  4615. BUG_ON(p->state == TASK_DEAD);
  4616. get_task_struct(p);
  4617. /*
  4618. * Drop lock around migration; if someone else moves it,
  4619. * that's OK. No task can be added to this CPU, so iteration is
  4620. * fine.
  4621. */
  4622. spin_unlock_irq(&rq->lock);
  4623. move_task_off_dead_cpu(dead_cpu, p);
  4624. spin_lock_irq(&rq->lock);
  4625. put_task_struct(p);
  4626. }
  4627. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4628. static void migrate_dead_tasks(unsigned int dead_cpu)
  4629. {
  4630. struct rq *rq = cpu_rq(dead_cpu);
  4631. struct task_struct *next;
  4632. for ( ; ; ) {
  4633. if (!rq->nr_running)
  4634. break;
  4635. update_rq_clock(rq);
  4636. next = pick_next_task(rq, rq->curr);
  4637. if (!next)
  4638. break;
  4639. migrate_dead(dead_cpu, next);
  4640. }
  4641. }
  4642. #endif /* CONFIG_HOTPLUG_CPU */
  4643. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4644. static struct ctl_table sd_ctl_dir[] = {
  4645. {
  4646. .procname = "sched_domain",
  4647. .mode = 0555,
  4648. },
  4649. {0, },
  4650. };
  4651. static struct ctl_table sd_ctl_root[] = {
  4652. {
  4653. .ctl_name = CTL_KERN,
  4654. .procname = "kernel",
  4655. .mode = 0555,
  4656. .child = sd_ctl_dir,
  4657. },
  4658. {0, },
  4659. };
  4660. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4661. {
  4662. struct ctl_table *entry =
  4663. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4664. return entry;
  4665. }
  4666. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4667. {
  4668. struct ctl_table *entry;
  4669. /*
  4670. * In the intermediate directories, both the child directory and
  4671. * procname are dynamically allocated and could fail but the mode
  4672. * will always be set. In the lowest directory the names are
  4673. * static strings and all have proc handlers.
  4674. */
  4675. for (entry = *tablep; entry->mode; entry++) {
  4676. if (entry->child)
  4677. sd_free_ctl_entry(&entry->child);
  4678. if (entry->proc_handler == NULL)
  4679. kfree(entry->procname);
  4680. }
  4681. kfree(*tablep);
  4682. *tablep = NULL;
  4683. }
  4684. static void
  4685. set_table_entry(struct ctl_table *entry,
  4686. const char *procname, void *data, int maxlen,
  4687. mode_t mode, proc_handler *proc_handler)
  4688. {
  4689. entry->procname = procname;
  4690. entry->data = data;
  4691. entry->maxlen = maxlen;
  4692. entry->mode = mode;
  4693. entry->proc_handler = proc_handler;
  4694. }
  4695. static struct ctl_table *
  4696. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4697. {
  4698. struct ctl_table *table = sd_alloc_ctl_entry(12);
  4699. if (table == NULL)
  4700. return NULL;
  4701. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4702. sizeof(long), 0644, proc_doulongvec_minmax);
  4703. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4704. sizeof(long), 0644, proc_doulongvec_minmax);
  4705. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4706. sizeof(int), 0644, proc_dointvec_minmax);
  4707. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4708. sizeof(int), 0644, proc_dointvec_minmax);
  4709. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4710. sizeof(int), 0644, proc_dointvec_minmax);
  4711. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4712. sizeof(int), 0644, proc_dointvec_minmax);
  4713. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4714. sizeof(int), 0644, proc_dointvec_minmax);
  4715. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4716. sizeof(int), 0644, proc_dointvec_minmax);
  4717. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4718. sizeof(int), 0644, proc_dointvec_minmax);
  4719. set_table_entry(&table[9], "cache_nice_tries",
  4720. &sd->cache_nice_tries,
  4721. sizeof(int), 0644, proc_dointvec_minmax);
  4722. set_table_entry(&table[10], "flags", &sd->flags,
  4723. sizeof(int), 0644, proc_dointvec_minmax);
  4724. /* &table[11] is terminator */
  4725. return table;
  4726. }
  4727. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4728. {
  4729. struct ctl_table *entry, *table;
  4730. struct sched_domain *sd;
  4731. int domain_num = 0, i;
  4732. char buf[32];
  4733. for_each_domain(cpu, sd)
  4734. domain_num++;
  4735. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4736. if (table == NULL)
  4737. return NULL;
  4738. i = 0;
  4739. for_each_domain(cpu, sd) {
  4740. snprintf(buf, 32, "domain%d", i);
  4741. entry->procname = kstrdup(buf, GFP_KERNEL);
  4742. entry->mode = 0555;
  4743. entry->child = sd_alloc_ctl_domain_table(sd);
  4744. entry++;
  4745. i++;
  4746. }
  4747. return table;
  4748. }
  4749. static struct ctl_table_header *sd_sysctl_header;
  4750. static void register_sched_domain_sysctl(void)
  4751. {
  4752. int i, cpu_num = num_online_cpus();
  4753. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4754. char buf[32];
  4755. WARN_ON(sd_ctl_dir[0].child);
  4756. sd_ctl_dir[0].child = entry;
  4757. if (entry == NULL)
  4758. return;
  4759. for_each_online_cpu(i) {
  4760. snprintf(buf, 32, "cpu%d", i);
  4761. entry->procname = kstrdup(buf, GFP_KERNEL);
  4762. entry->mode = 0555;
  4763. entry->child = sd_alloc_ctl_cpu_table(i);
  4764. entry++;
  4765. }
  4766. WARN_ON(sd_sysctl_header);
  4767. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4768. }
  4769. /* may be called multiple times per register */
  4770. static void unregister_sched_domain_sysctl(void)
  4771. {
  4772. if (sd_sysctl_header)
  4773. unregister_sysctl_table(sd_sysctl_header);
  4774. sd_sysctl_header = NULL;
  4775. if (sd_ctl_dir[0].child)
  4776. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4777. }
  4778. #else
  4779. static void register_sched_domain_sysctl(void)
  4780. {
  4781. }
  4782. static void unregister_sched_domain_sysctl(void)
  4783. {
  4784. }
  4785. #endif
  4786. /*
  4787. * migration_call - callback that gets triggered when a CPU is added.
  4788. * Here we can start up the necessary migration thread for the new CPU.
  4789. */
  4790. static int __cpuinit
  4791. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4792. {
  4793. struct task_struct *p;
  4794. int cpu = (long)hcpu;
  4795. unsigned long flags;
  4796. struct rq *rq;
  4797. switch (action) {
  4798. case CPU_UP_PREPARE:
  4799. case CPU_UP_PREPARE_FROZEN:
  4800. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  4801. if (IS_ERR(p))
  4802. return NOTIFY_BAD;
  4803. kthread_bind(p, cpu);
  4804. /* Must be high prio: stop_machine expects to yield to it. */
  4805. rq = task_rq_lock(p, &flags);
  4806. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4807. task_rq_unlock(rq, &flags);
  4808. cpu_rq(cpu)->migration_thread = p;
  4809. break;
  4810. case CPU_ONLINE:
  4811. case CPU_ONLINE_FROZEN:
  4812. /* Strictly unnecessary, as first user will wake it. */
  4813. wake_up_process(cpu_rq(cpu)->migration_thread);
  4814. /* Update our root-domain */
  4815. rq = cpu_rq(cpu);
  4816. spin_lock_irqsave(&rq->lock, flags);
  4817. if (rq->rd) {
  4818. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  4819. cpu_set(cpu, rq->rd->online);
  4820. }
  4821. spin_unlock_irqrestore(&rq->lock, flags);
  4822. break;
  4823. #ifdef CONFIG_HOTPLUG_CPU
  4824. case CPU_UP_CANCELED:
  4825. case CPU_UP_CANCELED_FROZEN:
  4826. if (!cpu_rq(cpu)->migration_thread)
  4827. break;
  4828. /* Unbind it from offline cpu so it can run. Fall thru. */
  4829. kthread_bind(cpu_rq(cpu)->migration_thread,
  4830. any_online_cpu(cpu_online_map));
  4831. kthread_stop(cpu_rq(cpu)->migration_thread);
  4832. cpu_rq(cpu)->migration_thread = NULL;
  4833. break;
  4834. case CPU_DEAD:
  4835. case CPU_DEAD_FROZEN:
  4836. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  4837. migrate_live_tasks(cpu);
  4838. rq = cpu_rq(cpu);
  4839. kthread_stop(rq->migration_thread);
  4840. rq->migration_thread = NULL;
  4841. /* Idle task back to normal (off runqueue, low prio) */
  4842. spin_lock_irq(&rq->lock);
  4843. update_rq_clock(rq);
  4844. deactivate_task(rq, rq->idle, 0);
  4845. rq->idle->static_prio = MAX_PRIO;
  4846. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  4847. rq->idle->sched_class = &idle_sched_class;
  4848. migrate_dead_tasks(cpu);
  4849. spin_unlock_irq(&rq->lock);
  4850. cpuset_unlock();
  4851. migrate_nr_uninterruptible(rq);
  4852. BUG_ON(rq->nr_running != 0);
  4853. /*
  4854. * No need to migrate the tasks: it was best-effort if
  4855. * they didn't take sched_hotcpu_mutex. Just wake up
  4856. * the requestors.
  4857. */
  4858. spin_lock_irq(&rq->lock);
  4859. while (!list_empty(&rq->migration_queue)) {
  4860. struct migration_req *req;
  4861. req = list_entry(rq->migration_queue.next,
  4862. struct migration_req, list);
  4863. list_del_init(&req->list);
  4864. complete(&req->done);
  4865. }
  4866. spin_unlock_irq(&rq->lock);
  4867. break;
  4868. case CPU_DOWN_PREPARE:
  4869. /* Update our root-domain */
  4870. rq = cpu_rq(cpu);
  4871. spin_lock_irqsave(&rq->lock, flags);
  4872. if (rq->rd) {
  4873. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  4874. cpu_clear(cpu, rq->rd->online);
  4875. }
  4876. spin_unlock_irqrestore(&rq->lock, flags);
  4877. break;
  4878. #endif
  4879. }
  4880. return NOTIFY_OK;
  4881. }
  4882. /* Register at highest priority so that task migration (migrate_all_tasks)
  4883. * happens before everything else.
  4884. */
  4885. static struct notifier_block __cpuinitdata migration_notifier = {
  4886. .notifier_call = migration_call,
  4887. .priority = 10
  4888. };
  4889. void __init migration_init(void)
  4890. {
  4891. void *cpu = (void *)(long)smp_processor_id();
  4892. int err;
  4893. /* Start one for the boot CPU: */
  4894. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4895. BUG_ON(err == NOTIFY_BAD);
  4896. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4897. register_cpu_notifier(&migration_notifier);
  4898. }
  4899. #endif
  4900. #ifdef CONFIG_SMP
  4901. /* Number of possible processor ids */
  4902. int nr_cpu_ids __read_mostly = NR_CPUS;
  4903. EXPORT_SYMBOL(nr_cpu_ids);
  4904. #ifdef CONFIG_SCHED_DEBUG
  4905. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
  4906. {
  4907. struct sched_group *group = sd->groups;
  4908. cpumask_t groupmask;
  4909. char str[NR_CPUS];
  4910. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4911. cpus_clear(groupmask);
  4912. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4913. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4914. printk("does not load-balance\n");
  4915. if (sd->parent)
  4916. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4917. " has parent");
  4918. return -1;
  4919. }
  4920. printk(KERN_CONT "span %s\n", str);
  4921. if (!cpu_isset(cpu, sd->span)) {
  4922. printk(KERN_ERR "ERROR: domain->span does not contain "
  4923. "CPU%d\n", cpu);
  4924. }
  4925. if (!cpu_isset(cpu, group->cpumask)) {
  4926. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4927. " CPU%d\n", cpu);
  4928. }
  4929. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4930. do {
  4931. if (!group) {
  4932. printk("\n");
  4933. printk(KERN_ERR "ERROR: group is NULL\n");
  4934. break;
  4935. }
  4936. if (!group->__cpu_power) {
  4937. printk(KERN_CONT "\n");
  4938. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4939. "set\n");
  4940. break;
  4941. }
  4942. if (!cpus_weight(group->cpumask)) {
  4943. printk(KERN_CONT "\n");
  4944. printk(KERN_ERR "ERROR: empty group\n");
  4945. break;
  4946. }
  4947. if (cpus_intersects(groupmask, group->cpumask)) {
  4948. printk(KERN_CONT "\n");
  4949. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4950. break;
  4951. }
  4952. cpus_or(groupmask, groupmask, group->cpumask);
  4953. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4954. printk(KERN_CONT " %s", str);
  4955. group = group->next;
  4956. } while (group != sd->groups);
  4957. printk(KERN_CONT "\n");
  4958. if (!cpus_equal(sd->span, groupmask))
  4959. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4960. if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
  4961. printk(KERN_ERR "ERROR: parent span is not a superset "
  4962. "of domain->span\n");
  4963. return 0;
  4964. }
  4965. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4966. {
  4967. int level = 0;
  4968. if (!sd) {
  4969. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4970. return;
  4971. }
  4972. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4973. for (;;) {
  4974. if (sched_domain_debug_one(sd, cpu, level))
  4975. break;
  4976. level++;
  4977. sd = sd->parent;
  4978. if (!sd)
  4979. break;
  4980. }
  4981. }
  4982. #else
  4983. # define sched_domain_debug(sd, cpu) do { } while (0)
  4984. #endif
  4985. static int sd_degenerate(struct sched_domain *sd)
  4986. {
  4987. if (cpus_weight(sd->span) == 1)
  4988. return 1;
  4989. /* Following flags need at least 2 groups */
  4990. if (sd->flags & (SD_LOAD_BALANCE |
  4991. SD_BALANCE_NEWIDLE |
  4992. SD_BALANCE_FORK |
  4993. SD_BALANCE_EXEC |
  4994. SD_SHARE_CPUPOWER |
  4995. SD_SHARE_PKG_RESOURCES)) {
  4996. if (sd->groups != sd->groups->next)
  4997. return 0;
  4998. }
  4999. /* Following flags don't use groups */
  5000. if (sd->flags & (SD_WAKE_IDLE |
  5001. SD_WAKE_AFFINE |
  5002. SD_WAKE_BALANCE))
  5003. return 0;
  5004. return 1;
  5005. }
  5006. static int
  5007. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5008. {
  5009. unsigned long cflags = sd->flags, pflags = parent->flags;
  5010. if (sd_degenerate(parent))
  5011. return 1;
  5012. if (!cpus_equal(sd->span, parent->span))
  5013. return 0;
  5014. /* Does parent contain flags not in child? */
  5015. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5016. if (cflags & SD_WAKE_AFFINE)
  5017. pflags &= ~SD_WAKE_BALANCE;
  5018. /* Flags needing groups don't count if only 1 group in parent */
  5019. if (parent->groups == parent->groups->next) {
  5020. pflags &= ~(SD_LOAD_BALANCE |
  5021. SD_BALANCE_NEWIDLE |
  5022. SD_BALANCE_FORK |
  5023. SD_BALANCE_EXEC |
  5024. SD_SHARE_CPUPOWER |
  5025. SD_SHARE_PKG_RESOURCES);
  5026. }
  5027. if (~cflags & pflags)
  5028. return 0;
  5029. return 1;
  5030. }
  5031. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5032. {
  5033. unsigned long flags;
  5034. const struct sched_class *class;
  5035. spin_lock_irqsave(&rq->lock, flags);
  5036. if (rq->rd) {
  5037. struct root_domain *old_rd = rq->rd;
  5038. for (class = sched_class_highest; class; class = class->next)
  5039. if (class->leave_domain)
  5040. class->leave_domain(rq);
  5041. if (atomic_dec_and_test(&old_rd->refcount))
  5042. kfree(old_rd);
  5043. }
  5044. atomic_inc(&rd->refcount);
  5045. rq->rd = rd;
  5046. for (class = sched_class_highest; class; class = class->next)
  5047. if (class->join_domain)
  5048. class->join_domain(rq);
  5049. spin_unlock_irqrestore(&rq->lock, flags);
  5050. }
  5051. static void init_rootdomain(struct root_domain *rd, const cpumask_t *map)
  5052. {
  5053. memset(rd, 0, sizeof(*rd));
  5054. rd->span = *map;
  5055. cpus_and(rd->online, rd->span, cpu_online_map);
  5056. }
  5057. static void init_defrootdomain(void)
  5058. {
  5059. cpumask_t cpus = CPU_MASK_ALL;
  5060. init_rootdomain(&def_root_domain, &cpus);
  5061. atomic_set(&def_root_domain.refcount, 1);
  5062. }
  5063. static struct root_domain *alloc_rootdomain(const cpumask_t *map)
  5064. {
  5065. struct root_domain *rd;
  5066. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5067. if (!rd)
  5068. return NULL;
  5069. init_rootdomain(rd, map);
  5070. return rd;
  5071. }
  5072. /*
  5073. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5074. * hold the hotplug lock.
  5075. */
  5076. static void cpu_attach_domain(struct sched_domain *sd,
  5077. struct root_domain *rd, int cpu)
  5078. {
  5079. struct rq *rq = cpu_rq(cpu);
  5080. struct sched_domain *tmp;
  5081. /* Remove the sched domains which do not contribute to scheduling. */
  5082. for (tmp = sd; tmp; tmp = tmp->parent) {
  5083. struct sched_domain *parent = tmp->parent;
  5084. if (!parent)
  5085. break;
  5086. if (sd_parent_degenerate(tmp, parent)) {
  5087. tmp->parent = parent->parent;
  5088. if (parent->parent)
  5089. parent->parent->child = tmp;
  5090. }
  5091. }
  5092. if (sd && sd_degenerate(sd)) {
  5093. sd = sd->parent;
  5094. if (sd)
  5095. sd->child = NULL;
  5096. }
  5097. sched_domain_debug(sd, cpu);
  5098. rq_attach_root(rq, rd);
  5099. rcu_assign_pointer(rq->sd, sd);
  5100. }
  5101. /* cpus with isolated domains */
  5102. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5103. /* Setup the mask of cpus configured for isolated domains */
  5104. static int __init isolated_cpu_setup(char *str)
  5105. {
  5106. int ints[NR_CPUS], i;
  5107. str = get_options(str, ARRAY_SIZE(ints), ints);
  5108. cpus_clear(cpu_isolated_map);
  5109. for (i = 1; i <= ints[0]; i++)
  5110. if (ints[i] < NR_CPUS)
  5111. cpu_set(ints[i], cpu_isolated_map);
  5112. return 1;
  5113. }
  5114. __setup("isolcpus=", isolated_cpu_setup);
  5115. /*
  5116. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5117. * to a function which identifies what group(along with sched group) a CPU
  5118. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5119. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5120. *
  5121. * init_sched_build_groups will build a circular linked list of the groups
  5122. * covered by the given span, and will set each group's ->cpumask correctly,
  5123. * and ->cpu_power to 0.
  5124. */
  5125. static void
  5126. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  5127. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5128. struct sched_group **sg))
  5129. {
  5130. struct sched_group *first = NULL, *last = NULL;
  5131. cpumask_t covered = CPU_MASK_NONE;
  5132. int i;
  5133. for_each_cpu_mask(i, span) {
  5134. struct sched_group *sg;
  5135. int group = group_fn(i, cpu_map, &sg);
  5136. int j;
  5137. if (cpu_isset(i, covered))
  5138. continue;
  5139. sg->cpumask = CPU_MASK_NONE;
  5140. sg->__cpu_power = 0;
  5141. for_each_cpu_mask(j, span) {
  5142. if (group_fn(j, cpu_map, NULL) != group)
  5143. continue;
  5144. cpu_set(j, covered);
  5145. cpu_set(j, sg->cpumask);
  5146. }
  5147. if (!first)
  5148. first = sg;
  5149. if (last)
  5150. last->next = sg;
  5151. last = sg;
  5152. }
  5153. last->next = first;
  5154. }
  5155. #define SD_NODES_PER_DOMAIN 16
  5156. #ifdef CONFIG_NUMA
  5157. /**
  5158. * find_next_best_node - find the next node to include in a sched_domain
  5159. * @node: node whose sched_domain we're building
  5160. * @used_nodes: nodes already in the sched_domain
  5161. *
  5162. * Find the next node to include in a given scheduling domain. Simply
  5163. * finds the closest node not already in the @used_nodes map.
  5164. *
  5165. * Should use nodemask_t.
  5166. */
  5167. static int find_next_best_node(int node, unsigned long *used_nodes)
  5168. {
  5169. int i, n, val, min_val, best_node = 0;
  5170. min_val = INT_MAX;
  5171. for (i = 0; i < MAX_NUMNODES; i++) {
  5172. /* Start at @node */
  5173. n = (node + i) % MAX_NUMNODES;
  5174. if (!nr_cpus_node(n))
  5175. continue;
  5176. /* Skip already used nodes */
  5177. if (test_bit(n, used_nodes))
  5178. continue;
  5179. /* Simple min distance search */
  5180. val = node_distance(node, n);
  5181. if (val < min_val) {
  5182. min_val = val;
  5183. best_node = n;
  5184. }
  5185. }
  5186. set_bit(best_node, used_nodes);
  5187. return best_node;
  5188. }
  5189. /**
  5190. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5191. * @node: node whose cpumask we're constructing
  5192. * @size: number of nodes to include in this span
  5193. *
  5194. * Given a node, construct a good cpumask for its sched_domain to span. It
  5195. * should be one that prevents unnecessary balancing, but also spreads tasks
  5196. * out optimally.
  5197. */
  5198. static cpumask_t sched_domain_node_span(int node)
  5199. {
  5200. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  5201. cpumask_t span, nodemask;
  5202. int i;
  5203. cpus_clear(span);
  5204. bitmap_zero(used_nodes, MAX_NUMNODES);
  5205. nodemask = node_to_cpumask(node);
  5206. cpus_or(span, span, nodemask);
  5207. set_bit(node, used_nodes);
  5208. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5209. int next_node = find_next_best_node(node, used_nodes);
  5210. nodemask = node_to_cpumask(next_node);
  5211. cpus_or(span, span, nodemask);
  5212. }
  5213. return span;
  5214. }
  5215. #endif
  5216. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5217. /*
  5218. * SMT sched-domains:
  5219. */
  5220. #ifdef CONFIG_SCHED_SMT
  5221. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5222. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5223. static int
  5224. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5225. {
  5226. if (sg)
  5227. *sg = &per_cpu(sched_group_cpus, cpu);
  5228. return cpu;
  5229. }
  5230. #endif
  5231. /*
  5232. * multi-core sched-domains:
  5233. */
  5234. #ifdef CONFIG_SCHED_MC
  5235. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5236. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5237. #endif
  5238. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5239. static int
  5240. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5241. {
  5242. int group;
  5243. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5244. cpus_and(mask, mask, *cpu_map);
  5245. group = first_cpu(mask);
  5246. if (sg)
  5247. *sg = &per_cpu(sched_group_core, group);
  5248. return group;
  5249. }
  5250. #elif defined(CONFIG_SCHED_MC)
  5251. static int
  5252. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5253. {
  5254. if (sg)
  5255. *sg = &per_cpu(sched_group_core, cpu);
  5256. return cpu;
  5257. }
  5258. #endif
  5259. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5260. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5261. static int
  5262. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
  5263. {
  5264. int group;
  5265. #ifdef CONFIG_SCHED_MC
  5266. cpumask_t mask = cpu_coregroup_map(cpu);
  5267. cpus_and(mask, mask, *cpu_map);
  5268. group = first_cpu(mask);
  5269. #elif defined(CONFIG_SCHED_SMT)
  5270. cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
  5271. cpus_and(mask, mask, *cpu_map);
  5272. group = first_cpu(mask);
  5273. #else
  5274. group = cpu;
  5275. #endif
  5276. if (sg)
  5277. *sg = &per_cpu(sched_group_phys, group);
  5278. return group;
  5279. }
  5280. #ifdef CONFIG_NUMA
  5281. /*
  5282. * The init_sched_build_groups can't handle what we want to do with node
  5283. * groups, so roll our own. Now each node has its own list of groups which
  5284. * gets dynamically allocated.
  5285. */
  5286. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5287. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5288. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5289. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5290. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5291. struct sched_group **sg)
  5292. {
  5293. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  5294. int group;
  5295. cpus_and(nodemask, nodemask, *cpu_map);
  5296. group = first_cpu(nodemask);
  5297. if (sg)
  5298. *sg = &per_cpu(sched_group_allnodes, group);
  5299. return group;
  5300. }
  5301. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5302. {
  5303. struct sched_group *sg = group_head;
  5304. int j;
  5305. if (!sg)
  5306. return;
  5307. do {
  5308. for_each_cpu_mask(j, sg->cpumask) {
  5309. struct sched_domain *sd;
  5310. sd = &per_cpu(phys_domains, j);
  5311. if (j != first_cpu(sd->groups->cpumask)) {
  5312. /*
  5313. * Only add "power" once for each
  5314. * physical package.
  5315. */
  5316. continue;
  5317. }
  5318. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5319. }
  5320. sg = sg->next;
  5321. } while (sg != group_head);
  5322. }
  5323. #endif
  5324. #ifdef CONFIG_NUMA
  5325. /* Free memory allocated for various sched_group structures */
  5326. static void free_sched_groups(const cpumask_t *cpu_map)
  5327. {
  5328. int cpu, i;
  5329. for_each_cpu_mask(cpu, *cpu_map) {
  5330. struct sched_group **sched_group_nodes
  5331. = sched_group_nodes_bycpu[cpu];
  5332. if (!sched_group_nodes)
  5333. continue;
  5334. for (i = 0; i < MAX_NUMNODES; i++) {
  5335. cpumask_t nodemask = node_to_cpumask(i);
  5336. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5337. cpus_and(nodemask, nodemask, *cpu_map);
  5338. if (cpus_empty(nodemask))
  5339. continue;
  5340. if (sg == NULL)
  5341. continue;
  5342. sg = sg->next;
  5343. next_sg:
  5344. oldsg = sg;
  5345. sg = sg->next;
  5346. kfree(oldsg);
  5347. if (oldsg != sched_group_nodes[i])
  5348. goto next_sg;
  5349. }
  5350. kfree(sched_group_nodes);
  5351. sched_group_nodes_bycpu[cpu] = NULL;
  5352. }
  5353. }
  5354. #else
  5355. static void free_sched_groups(const cpumask_t *cpu_map)
  5356. {
  5357. }
  5358. #endif
  5359. /*
  5360. * Initialize sched groups cpu_power.
  5361. *
  5362. * cpu_power indicates the capacity of sched group, which is used while
  5363. * distributing the load between different sched groups in a sched domain.
  5364. * Typically cpu_power for all the groups in a sched domain will be same unless
  5365. * there are asymmetries in the topology. If there are asymmetries, group
  5366. * having more cpu_power will pickup more load compared to the group having
  5367. * less cpu_power.
  5368. *
  5369. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5370. * the maximum number of tasks a group can handle in the presence of other idle
  5371. * or lightly loaded groups in the same sched domain.
  5372. */
  5373. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5374. {
  5375. struct sched_domain *child;
  5376. struct sched_group *group;
  5377. WARN_ON(!sd || !sd->groups);
  5378. if (cpu != first_cpu(sd->groups->cpumask))
  5379. return;
  5380. child = sd->child;
  5381. sd->groups->__cpu_power = 0;
  5382. /*
  5383. * For perf policy, if the groups in child domain share resources
  5384. * (for example cores sharing some portions of the cache hierarchy
  5385. * or SMT), then set this domain groups cpu_power such that each group
  5386. * can handle only one task, when there are other idle groups in the
  5387. * same sched domain.
  5388. */
  5389. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5390. (child->flags &
  5391. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5392. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5393. return;
  5394. }
  5395. /*
  5396. * add cpu_power of each child group to this groups cpu_power
  5397. */
  5398. group = child->groups;
  5399. do {
  5400. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5401. group = group->next;
  5402. } while (group != child->groups);
  5403. }
  5404. /*
  5405. * Build sched domains for a given set of cpus and attach the sched domains
  5406. * to the individual cpus
  5407. */
  5408. static int build_sched_domains(const cpumask_t *cpu_map)
  5409. {
  5410. int i;
  5411. struct root_domain *rd;
  5412. #ifdef CONFIG_NUMA
  5413. struct sched_group **sched_group_nodes = NULL;
  5414. int sd_allnodes = 0;
  5415. /*
  5416. * Allocate the per-node list of sched groups
  5417. */
  5418. sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
  5419. GFP_KERNEL);
  5420. if (!sched_group_nodes) {
  5421. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5422. return -ENOMEM;
  5423. }
  5424. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5425. #endif
  5426. rd = alloc_rootdomain(cpu_map);
  5427. if (!rd) {
  5428. printk(KERN_WARNING "Cannot alloc root domain\n");
  5429. return -ENOMEM;
  5430. }
  5431. /*
  5432. * Set up domains for cpus specified by the cpu_map.
  5433. */
  5434. for_each_cpu_mask(i, *cpu_map) {
  5435. struct sched_domain *sd = NULL, *p;
  5436. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5437. cpus_and(nodemask, nodemask, *cpu_map);
  5438. #ifdef CONFIG_NUMA
  5439. if (cpus_weight(*cpu_map) >
  5440. SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5441. sd = &per_cpu(allnodes_domains, i);
  5442. *sd = SD_ALLNODES_INIT;
  5443. sd->span = *cpu_map;
  5444. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5445. p = sd;
  5446. sd_allnodes = 1;
  5447. } else
  5448. p = NULL;
  5449. sd = &per_cpu(node_domains, i);
  5450. *sd = SD_NODE_INIT;
  5451. sd->span = sched_domain_node_span(cpu_to_node(i));
  5452. sd->parent = p;
  5453. if (p)
  5454. p->child = sd;
  5455. cpus_and(sd->span, sd->span, *cpu_map);
  5456. #endif
  5457. p = sd;
  5458. sd = &per_cpu(phys_domains, i);
  5459. *sd = SD_CPU_INIT;
  5460. sd->span = nodemask;
  5461. sd->parent = p;
  5462. if (p)
  5463. p->child = sd;
  5464. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5465. #ifdef CONFIG_SCHED_MC
  5466. p = sd;
  5467. sd = &per_cpu(core_domains, i);
  5468. *sd = SD_MC_INIT;
  5469. sd->span = cpu_coregroup_map(i);
  5470. cpus_and(sd->span, sd->span, *cpu_map);
  5471. sd->parent = p;
  5472. p->child = sd;
  5473. cpu_to_core_group(i, cpu_map, &sd->groups);
  5474. #endif
  5475. #ifdef CONFIG_SCHED_SMT
  5476. p = sd;
  5477. sd = &per_cpu(cpu_domains, i);
  5478. *sd = SD_SIBLING_INIT;
  5479. sd->span = per_cpu(cpu_sibling_map, i);
  5480. cpus_and(sd->span, sd->span, *cpu_map);
  5481. sd->parent = p;
  5482. p->child = sd;
  5483. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5484. #endif
  5485. }
  5486. #ifdef CONFIG_SCHED_SMT
  5487. /* Set up CPU (sibling) groups */
  5488. for_each_cpu_mask(i, *cpu_map) {
  5489. cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
  5490. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5491. if (i != first_cpu(this_sibling_map))
  5492. continue;
  5493. init_sched_build_groups(this_sibling_map, cpu_map,
  5494. &cpu_to_cpu_group);
  5495. }
  5496. #endif
  5497. #ifdef CONFIG_SCHED_MC
  5498. /* Set up multi-core groups */
  5499. for_each_cpu_mask(i, *cpu_map) {
  5500. cpumask_t this_core_map = cpu_coregroup_map(i);
  5501. cpus_and(this_core_map, this_core_map, *cpu_map);
  5502. if (i != first_cpu(this_core_map))
  5503. continue;
  5504. init_sched_build_groups(this_core_map, cpu_map,
  5505. &cpu_to_core_group);
  5506. }
  5507. #endif
  5508. /* Set up physical groups */
  5509. for (i = 0; i < MAX_NUMNODES; i++) {
  5510. cpumask_t nodemask = node_to_cpumask(i);
  5511. cpus_and(nodemask, nodemask, *cpu_map);
  5512. if (cpus_empty(nodemask))
  5513. continue;
  5514. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5515. }
  5516. #ifdef CONFIG_NUMA
  5517. /* Set up node groups */
  5518. if (sd_allnodes)
  5519. init_sched_build_groups(*cpu_map, cpu_map,
  5520. &cpu_to_allnodes_group);
  5521. for (i = 0; i < MAX_NUMNODES; i++) {
  5522. /* Set up node groups */
  5523. struct sched_group *sg, *prev;
  5524. cpumask_t nodemask = node_to_cpumask(i);
  5525. cpumask_t domainspan;
  5526. cpumask_t covered = CPU_MASK_NONE;
  5527. int j;
  5528. cpus_and(nodemask, nodemask, *cpu_map);
  5529. if (cpus_empty(nodemask)) {
  5530. sched_group_nodes[i] = NULL;
  5531. continue;
  5532. }
  5533. domainspan = sched_domain_node_span(i);
  5534. cpus_and(domainspan, domainspan, *cpu_map);
  5535. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5536. if (!sg) {
  5537. printk(KERN_WARNING "Can not alloc domain group for "
  5538. "node %d\n", i);
  5539. goto error;
  5540. }
  5541. sched_group_nodes[i] = sg;
  5542. for_each_cpu_mask(j, nodemask) {
  5543. struct sched_domain *sd;
  5544. sd = &per_cpu(node_domains, j);
  5545. sd->groups = sg;
  5546. }
  5547. sg->__cpu_power = 0;
  5548. sg->cpumask = nodemask;
  5549. sg->next = sg;
  5550. cpus_or(covered, covered, nodemask);
  5551. prev = sg;
  5552. for (j = 0; j < MAX_NUMNODES; j++) {
  5553. cpumask_t tmp, notcovered;
  5554. int n = (i + j) % MAX_NUMNODES;
  5555. cpus_complement(notcovered, covered);
  5556. cpus_and(tmp, notcovered, *cpu_map);
  5557. cpus_and(tmp, tmp, domainspan);
  5558. if (cpus_empty(tmp))
  5559. break;
  5560. nodemask = node_to_cpumask(n);
  5561. cpus_and(tmp, tmp, nodemask);
  5562. if (cpus_empty(tmp))
  5563. continue;
  5564. sg = kmalloc_node(sizeof(struct sched_group),
  5565. GFP_KERNEL, i);
  5566. if (!sg) {
  5567. printk(KERN_WARNING
  5568. "Can not alloc domain group for node %d\n", j);
  5569. goto error;
  5570. }
  5571. sg->__cpu_power = 0;
  5572. sg->cpumask = tmp;
  5573. sg->next = prev->next;
  5574. cpus_or(covered, covered, tmp);
  5575. prev->next = sg;
  5576. prev = sg;
  5577. }
  5578. }
  5579. #endif
  5580. /* Calculate CPU power for physical packages and nodes */
  5581. #ifdef CONFIG_SCHED_SMT
  5582. for_each_cpu_mask(i, *cpu_map) {
  5583. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  5584. init_sched_groups_power(i, sd);
  5585. }
  5586. #endif
  5587. #ifdef CONFIG_SCHED_MC
  5588. for_each_cpu_mask(i, *cpu_map) {
  5589. struct sched_domain *sd = &per_cpu(core_domains, i);
  5590. init_sched_groups_power(i, sd);
  5591. }
  5592. #endif
  5593. for_each_cpu_mask(i, *cpu_map) {
  5594. struct sched_domain *sd = &per_cpu(phys_domains, i);
  5595. init_sched_groups_power(i, sd);
  5596. }
  5597. #ifdef CONFIG_NUMA
  5598. for (i = 0; i < MAX_NUMNODES; i++)
  5599. init_numa_sched_groups_power(sched_group_nodes[i]);
  5600. if (sd_allnodes) {
  5601. struct sched_group *sg;
  5602. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5603. init_numa_sched_groups_power(sg);
  5604. }
  5605. #endif
  5606. /* Attach the domains */
  5607. for_each_cpu_mask(i, *cpu_map) {
  5608. struct sched_domain *sd;
  5609. #ifdef CONFIG_SCHED_SMT
  5610. sd = &per_cpu(cpu_domains, i);
  5611. #elif defined(CONFIG_SCHED_MC)
  5612. sd = &per_cpu(core_domains, i);
  5613. #else
  5614. sd = &per_cpu(phys_domains, i);
  5615. #endif
  5616. cpu_attach_domain(sd, rd, i);
  5617. }
  5618. return 0;
  5619. #ifdef CONFIG_NUMA
  5620. error:
  5621. free_sched_groups(cpu_map);
  5622. return -ENOMEM;
  5623. #endif
  5624. }
  5625. static cpumask_t *doms_cur; /* current sched domains */
  5626. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5627. /*
  5628. * Special case: If a kmalloc of a doms_cur partition (array of
  5629. * cpumask_t) fails, then fallback to a single sched domain,
  5630. * as determined by the single cpumask_t fallback_doms.
  5631. */
  5632. static cpumask_t fallback_doms;
  5633. /*
  5634. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5635. * For now this just excludes isolated cpus, but could be used to
  5636. * exclude other special cases in the future.
  5637. */
  5638. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5639. {
  5640. int err;
  5641. ndoms_cur = 1;
  5642. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5643. if (!doms_cur)
  5644. doms_cur = &fallback_doms;
  5645. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  5646. err = build_sched_domains(doms_cur);
  5647. register_sched_domain_sysctl();
  5648. return err;
  5649. }
  5650. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5651. {
  5652. free_sched_groups(cpu_map);
  5653. }
  5654. /*
  5655. * Detach sched domains from a group of cpus specified in cpu_map
  5656. * These cpus will now be attached to the NULL domain
  5657. */
  5658. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5659. {
  5660. int i;
  5661. unregister_sched_domain_sysctl();
  5662. for_each_cpu_mask(i, *cpu_map)
  5663. cpu_attach_domain(NULL, &def_root_domain, i);
  5664. synchronize_sched();
  5665. arch_destroy_sched_domains(cpu_map);
  5666. }
  5667. /*
  5668. * Partition sched domains as specified by the 'ndoms_new'
  5669. * cpumasks in the array doms_new[] of cpumasks. This compares
  5670. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5671. * It destroys each deleted domain and builds each new domain.
  5672. *
  5673. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  5674. * The masks don't intersect (don't overlap.) We should setup one
  5675. * sched domain for each mask. CPUs not in any of the cpumasks will
  5676. * not be load balanced. If the same cpumask appears both in the
  5677. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5678. * it as it is.
  5679. *
  5680. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  5681. * ownership of it and will kfree it when done with it. If the caller
  5682. * failed the kmalloc call, then it can pass in doms_new == NULL,
  5683. * and partition_sched_domains() will fallback to the single partition
  5684. * 'fallback_doms'.
  5685. *
  5686. * Call with hotplug lock held
  5687. */
  5688. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
  5689. {
  5690. int i, j;
  5691. lock_doms_cur();
  5692. /* always unregister in case we don't destroy any domains */
  5693. unregister_sched_domain_sysctl();
  5694. if (doms_new == NULL) {
  5695. ndoms_new = 1;
  5696. doms_new = &fallback_doms;
  5697. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  5698. }
  5699. /* Destroy deleted domains */
  5700. for (i = 0; i < ndoms_cur; i++) {
  5701. for (j = 0; j < ndoms_new; j++) {
  5702. if (cpus_equal(doms_cur[i], doms_new[j]))
  5703. goto match1;
  5704. }
  5705. /* no match - a current sched domain not in new doms_new[] */
  5706. detach_destroy_domains(doms_cur + i);
  5707. match1:
  5708. ;
  5709. }
  5710. /* Build new domains */
  5711. for (i = 0; i < ndoms_new; i++) {
  5712. for (j = 0; j < ndoms_cur; j++) {
  5713. if (cpus_equal(doms_new[i], doms_cur[j]))
  5714. goto match2;
  5715. }
  5716. /* no match - add a new doms_new */
  5717. build_sched_domains(doms_new + i);
  5718. match2:
  5719. ;
  5720. }
  5721. /* Remember the new sched domains */
  5722. if (doms_cur != &fallback_doms)
  5723. kfree(doms_cur);
  5724. doms_cur = doms_new;
  5725. ndoms_cur = ndoms_new;
  5726. register_sched_domain_sysctl();
  5727. unlock_doms_cur();
  5728. }
  5729. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5730. static int arch_reinit_sched_domains(void)
  5731. {
  5732. int err;
  5733. get_online_cpus();
  5734. detach_destroy_domains(&cpu_online_map);
  5735. err = arch_init_sched_domains(&cpu_online_map);
  5736. put_online_cpus();
  5737. return err;
  5738. }
  5739. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5740. {
  5741. int ret;
  5742. if (buf[0] != '0' && buf[0] != '1')
  5743. return -EINVAL;
  5744. if (smt)
  5745. sched_smt_power_savings = (buf[0] == '1');
  5746. else
  5747. sched_mc_power_savings = (buf[0] == '1');
  5748. ret = arch_reinit_sched_domains();
  5749. return ret ? ret : count;
  5750. }
  5751. #ifdef CONFIG_SCHED_MC
  5752. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5753. {
  5754. return sprintf(page, "%u\n", sched_mc_power_savings);
  5755. }
  5756. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5757. const char *buf, size_t count)
  5758. {
  5759. return sched_power_savings_store(buf, count, 0);
  5760. }
  5761. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5762. sched_mc_power_savings_store);
  5763. #endif
  5764. #ifdef CONFIG_SCHED_SMT
  5765. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5766. {
  5767. return sprintf(page, "%u\n", sched_smt_power_savings);
  5768. }
  5769. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5770. const char *buf, size_t count)
  5771. {
  5772. return sched_power_savings_store(buf, count, 1);
  5773. }
  5774. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5775. sched_smt_power_savings_store);
  5776. #endif
  5777. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5778. {
  5779. int err = 0;
  5780. #ifdef CONFIG_SCHED_SMT
  5781. if (smt_capable())
  5782. err = sysfs_create_file(&cls->kset.kobj,
  5783. &attr_sched_smt_power_savings.attr);
  5784. #endif
  5785. #ifdef CONFIG_SCHED_MC
  5786. if (!err && mc_capable())
  5787. err = sysfs_create_file(&cls->kset.kobj,
  5788. &attr_sched_mc_power_savings.attr);
  5789. #endif
  5790. return err;
  5791. }
  5792. #endif
  5793. /*
  5794. * Force a reinitialization of the sched domains hierarchy. The domains
  5795. * and groups cannot be updated in place without racing with the balancing
  5796. * code, so we temporarily attach all running cpus to the NULL domain
  5797. * which will prevent rebalancing while the sched domains are recalculated.
  5798. */
  5799. static int update_sched_domains(struct notifier_block *nfb,
  5800. unsigned long action, void *hcpu)
  5801. {
  5802. switch (action) {
  5803. case CPU_UP_PREPARE:
  5804. case CPU_UP_PREPARE_FROZEN:
  5805. case CPU_DOWN_PREPARE:
  5806. case CPU_DOWN_PREPARE_FROZEN:
  5807. detach_destroy_domains(&cpu_online_map);
  5808. return NOTIFY_OK;
  5809. case CPU_UP_CANCELED:
  5810. case CPU_UP_CANCELED_FROZEN:
  5811. case CPU_DOWN_FAILED:
  5812. case CPU_DOWN_FAILED_FROZEN:
  5813. case CPU_ONLINE:
  5814. case CPU_ONLINE_FROZEN:
  5815. case CPU_DEAD:
  5816. case CPU_DEAD_FROZEN:
  5817. /*
  5818. * Fall through and re-initialise the domains.
  5819. */
  5820. break;
  5821. default:
  5822. return NOTIFY_DONE;
  5823. }
  5824. /* The hotplug lock is already held by cpu_up/cpu_down */
  5825. arch_init_sched_domains(&cpu_online_map);
  5826. return NOTIFY_OK;
  5827. }
  5828. void __init sched_init_smp(void)
  5829. {
  5830. cpumask_t non_isolated_cpus;
  5831. get_online_cpus();
  5832. arch_init_sched_domains(&cpu_online_map);
  5833. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  5834. if (cpus_empty(non_isolated_cpus))
  5835. cpu_set(smp_processor_id(), non_isolated_cpus);
  5836. put_online_cpus();
  5837. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5838. hotcpu_notifier(update_sched_domains, 0);
  5839. /* Move init over to a non-isolated CPU */
  5840. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  5841. BUG();
  5842. sched_init_granularity();
  5843. #ifdef CONFIG_FAIR_GROUP_SCHED
  5844. if (nr_cpu_ids == 1)
  5845. return;
  5846. lb_monitor_task = kthread_create(load_balance_monitor, NULL,
  5847. "group_balance");
  5848. if (!IS_ERR(lb_monitor_task)) {
  5849. lb_monitor_task->flags |= PF_NOFREEZE;
  5850. wake_up_process(lb_monitor_task);
  5851. } else {
  5852. printk(KERN_ERR "Could not create load balance monitor thread"
  5853. "(error = %ld) \n", PTR_ERR(lb_monitor_task));
  5854. }
  5855. #endif
  5856. }
  5857. #else
  5858. void __init sched_init_smp(void)
  5859. {
  5860. sched_init_granularity();
  5861. }
  5862. #endif /* CONFIG_SMP */
  5863. int in_sched_functions(unsigned long addr)
  5864. {
  5865. return in_lock_functions(addr) ||
  5866. (addr >= (unsigned long)__sched_text_start
  5867. && addr < (unsigned long)__sched_text_end);
  5868. }
  5869. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  5870. {
  5871. cfs_rq->tasks_timeline = RB_ROOT;
  5872. #ifdef CONFIG_FAIR_GROUP_SCHED
  5873. cfs_rq->rq = rq;
  5874. #endif
  5875. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  5876. }
  5877. void __init sched_init(void)
  5878. {
  5879. int highest_cpu = 0;
  5880. int i, j;
  5881. #ifdef CONFIG_SMP
  5882. init_defrootdomain();
  5883. #endif
  5884. for_each_possible_cpu(i) {
  5885. struct rt_prio_array *array;
  5886. struct rq *rq;
  5887. rq = cpu_rq(i);
  5888. spin_lock_init(&rq->lock);
  5889. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  5890. rq->nr_running = 0;
  5891. rq->clock = 1;
  5892. init_cfs_rq(&rq->cfs, rq);
  5893. #ifdef CONFIG_FAIR_GROUP_SCHED
  5894. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5895. {
  5896. struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
  5897. struct sched_entity *se =
  5898. &per_cpu(init_sched_entity, i);
  5899. init_cfs_rq_p[i] = cfs_rq;
  5900. init_cfs_rq(cfs_rq, rq);
  5901. cfs_rq->tg = &init_task_group;
  5902. list_add(&cfs_rq->leaf_cfs_rq_list,
  5903. &rq->leaf_cfs_rq_list);
  5904. init_sched_entity_p[i] = se;
  5905. se->cfs_rq = &rq->cfs;
  5906. se->my_q = cfs_rq;
  5907. se->load.weight = init_task_group_load;
  5908. se->load.inv_weight =
  5909. div64_64(1ULL<<32, init_task_group_load);
  5910. se->parent = NULL;
  5911. }
  5912. init_task_group.shares = init_task_group_load;
  5913. #endif
  5914. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5915. rq->cpu_load[j] = 0;
  5916. #ifdef CONFIG_SMP
  5917. rq->sd = NULL;
  5918. rq->rd = NULL;
  5919. rq_attach_root(rq, &def_root_domain);
  5920. rq->active_balance = 0;
  5921. rq->next_balance = jiffies;
  5922. rq->push_cpu = 0;
  5923. rq->cpu = i;
  5924. rq->migration_thread = NULL;
  5925. INIT_LIST_HEAD(&rq->migration_queue);
  5926. rq->rt.highest_prio = MAX_RT_PRIO;
  5927. rq->rt.overloaded = 0;
  5928. #endif
  5929. atomic_set(&rq->nr_iowait, 0);
  5930. array = &rq->rt.active;
  5931. for (j = 0; j < MAX_RT_PRIO; j++) {
  5932. INIT_LIST_HEAD(array->queue + j);
  5933. __clear_bit(j, array->bitmap);
  5934. }
  5935. highest_cpu = i;
  5936. /* delimiter for bitsearch: */
  5937. __set_bit(MAX_RT_PRIO, array->bitmap);
  5938. }
  5939. set_load_weight(&init_task);
  5940. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5941. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5942. #endif
  5943. #ifdef CONFIG_SMP
  5944. nr_cpu_ids = highest_cpu + 1;
  5945. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  5946. #endif
  5947. #ifdef CONFIG_RT_MUTEXES
  5948. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  5949. #endif
  5950. /*
  5951. * The boot idle thread does lazy MMU switching as well:
  5952. */
  5953. atomic_inc(&init_mm.mm_count);
  5954. enter_lazy_tlb(&init_mm, current);
  5955. /*
  5956. * Make us the idle thread. Technically, schedule() should not be
  5957. * called from this thread, however somewhere below it might be,
  5958. * but because we are the idle thread, we just pick up running again
  5959. * when this runqueue becomes "idle".
  5960. */
  5961. init_idle(current, smp_processor_id());
  5962. /*
  5963. * During early bootup we pretend to be a normal task:
  5964. */
  5965. current->sched_class = &fair_sched_class;
  5966. }
  5967. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5968. void __might_sleep(char *file, int line)
  5969. {
  5970. #ifdef in_atomic
  5971. static unsigned long prev_jiffy; /* ratelimiting */
  5972. if ((in_atomic() || irqs_disabled()) &&
  5973. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  5974. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5975. return;
  5976. prev_jiffy = jiffies;
  5977. printk(KERN_ERR "BUG: sleeping function called from invalid"
  5978. " context at %s:%d\n", file, line);
  5979. printk("in_atomic():%d, irqs_disabled():%d\n",
  5980. in_atomic(), irqs_disabled());
  5981. debug_show_held_locks(current);
  5982. if (irqs_disabled())
  5983. print_irqtrace_events(current);
  5984. dump_stack();
  5985. }
  5986. #endif
  5987. }
  5988. EXPORT_SYMBOL(__might_sleep);
  5989. #endif
  5990. #ifdef CONFIG_MAGIC_SYSRQ
  5991. static void normalize_task(struct rq *rq, struct task_struct *p)
  5992. {
  5993. int on_rq;
  5994. update_rq_clock(rq);
  5995. on_rq = p->se.on_rq;
  5996. if (on_rq)
  5997. deactivate_task(rq, p, 0);
  5998. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5999. if (on_rq) {
  6000. activate_task(rq, p, 0);
  6001. resched_task(rq->curr);
  6002. }
  6003. }
  6004. void normalize_rt_tasks(void)
  6005. {
  6006. struct task_struct *g, *p;
  6007. unsigned long flags;
  6008. struct rq *rq;
  6009. read_lock_irq(&tasklist_lock);
  6010. do_each_thread(g, p) {
  6011. /*
  6012. * Only normalize user tasks:
  6013. */
  6014. if (!p->mm)
  6015. continue;
  6016. p->se.exec_start = 0;
  6017. #ifdef CONFIG_SCHEDSTATS
  6018. p->se.wait_start = 0;
  6019. p->se.sleep_start = 0;
  6020. p->se.block_start = 0;
  6021. #endif
  6022. task_rq(p)->clock = 0;
  6023. if (!rt_task(p)) {
  6024. /*
  6025. * Renice negative nice level userspace
  6026. * tasks back to 0:
  6027. */
  6028. if (TASK_NICE(p) < 0 && p->mm)
  6029. set_user_nice(p, 0);
  6030. continue;
  6031. }
  6032. spin_lock_irqsave(&p->pi_lock, flags);
  6033. rq = __task_rq_lock(p);
  6034. normalize_task(rq, p);
  6035. __task_rq_unlock(rq);
  6036. spin_unlock_irqrestore(&p->pi_lock, flags);
  6037. } while_each_thread(g, p);
  6038. read_unlock_irq(&tasklist_lock);
  6039. }
  6040. #endif /* CONFIG_MAGIC_SYSRQ */
  6041. #ifdef CONFIG_IA64
  6042. /*
  6043. * These functions are only useful for the IA64 MCA handling.
  6044. *
  6045. * They can only be called when the whole system has been
  6046. * stopped - every CPU needs to be quiescent, and no scheduling
  6047. * activity can take place. Using them for anything else would
  6048. * be a serious bug, and as a result, they aren't even visible
  6049. * under any other configuration.
  6050. */
  6051. /**
  6052. * curr_task - return the current task for a given cpu.
  6053. * @cpu: the processor in question.
  6054. *
  6055. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6056. */
  6057. struct task_struct *curr_task(int cpu)
  6058. {
  6059. return cpu_curr(cpu);
  6060. }
  6061. /**
  6062. * set_curr_task - set the current task for a given cpu.
  6063. * @cpu: the processor in question.
  6064. * @p: the task pointer to set.
  6065. *
  6066. * Description: This function must only be used when non-maskable interrupts
  6067. * are serviced on a separate stack. It allows the architecture to switch the
  6068. * notion of the current task on a cpu in a non-blocking manner. This function
  6069. * must be called with all CPU's synchronized, and interrupts disabled, the
  6070. * and caller must save the original value of the current task (see
  6071. * curr_task() above) and restore that value before reenabling interrupts and
  6072. * re-starting the system.
  6073. *
  6074. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6075. */
  6076. void set_curr_task(int cpu, struct task_struct *p)
  6077. {
  6078. cpu_curr(cpu) = p;
  6079. }
  6080. #endif
  6081. #ifdef CONFIG_FAIR_GROUP_SCHED
  6082. #ifdef CONFIG_SMP
  6083. /*
  6084. * distribute shares of all task groups among their schedulable entities,
  6085. * to reflect load distrbution across cpus.
  6086. */
  6087. static int rebalance_shares(struct sched_domain *sd, int this_cpu)
  6088. {
  6089. struct cfs_rq *cfs_rq;
  6090. struct rq *rq = cpu_rq(this_cpu);
  6091. cpumask_t sdspan = sd->span;
  6092. int balanced = 1;
  6093. /* Walk thr' all the task groups that we have */
  6094. for_each_leaf_cfs_rq(rq, cfs_rq) {
  6095. int i;
  6096. unsigned long total_load = 0, total_shares;
  6097. struct task_group *tg = cfs_rq->tg;
  6098. /* Gather total task load of this group across cpus */
  6099. for_each_cpu_mask(i, sdspan)
  6100. total_load += tg->cfs_rq[i]->load.weight;
  6101. /* Nothing to do if this group has no load */
  6102. if (!total_load)
  6103. continue;
  6104. /*
  6105. * tg->shares represents the number of cpu shares the task group
  6106. * is eligible to hold on a single cpu. On N cpus, it is
  6107. * eligible to hold (N * tg->shares) number of cpu shares.
  6108. */
  6109. total_shares = tg->shares * cpus_weight(sdspan);
  6110. /*
  6111. * redistribute total_shares across cpus as per the task load
  6112. * distribution.
  6113. */
  6114. for_each_cpu_mask(i, sdspan) {
  6115. unsigned long local_load, local_shares;
  6116. local_load = tg->cfs_rq[i]->load.weight;
  6117. local_shares = (local_load * total_shares) / total_load;
  6118. if (!local_shares)
  6119. local_shares = MIN_GROUP_SHARES;
  6120. if (local_shares == tg->se[i]->load.weight)
  6121. continue;
  6122. spin_lock_irq(&cpu_rq(i)->lock);
  6123. set_se_shares(tg->se[i], local_shares);
  6124. spin_unlock_irq(&cpu_rq(i)->lock);
  6125. balanced = 0;
  6126. }
  6127. }
  6128. return balanced;
  6129. }
  6130. /*
  6131. * How frequently should we rebalance_shares() across cpus?
  6132. *
  6133. * The more frequently we rebalance shares, the more accurate is the fairness
  6134. * of cpu bandwidth distribution between task groups. However higher frequency
  6135. * also implies increased scheduling overhead.
  6136. *
  6137. * sysctl_sched_min_bal_int_shares represents the minimum interval between
  6138. * consecutive calls to rebalance_shares() in the same sched domain.
  6139. *
  6140. * sysctl_sched_max_bal_int_shares represents the maximum interval between
  6141. * consecutive calls to rebalance_shares() in the same sched domain.
  6142. *
  6143. * These settings allows for the appropriate tradeoff between accuracy of
  6144. * fairness and the associated overhead.
  6145. *
  6146. */
  6147. /* default: 8ms, units: milliseconds */
  6148. const_debug unsigned int sysctl_sched_min_bal_int_shares = 8;
  6149. /* default: 128ms, units: milliseconds */
  6150. const_debug unsigned int sysctl_sched_max_bal_int_shares = 128;
  6151. /* kernel thread that runs rebalance_shares() periodically */
  6152. static int load_balance_monitor(void *unused)
  6153. {
  6154. unsigned int timeout = sysctl_sched_min_bal_int_shares;
  6155. struct sched_param schedparm;
  6156. int ret;
  6157. /*
  6158. * We don't want this thread's execution to be limited by the shares
  6159. * assigned to default group (init_task_group). Hence make it run
  6160. * as a SCHED_RR RT task at the lowest priority.
  6161. */
  6162. schedparm.sched_priority = 1;
  6163. ret = sched_setscheduler(current, SCHED_RR, &schedparm);
  6164. if (ret)
  6165. printk(KERN_ERR "Couldn't set SCHED_RR policy for load balance"
  6166. " monitor thread (error = %d) \n", ret);
  6167. while (!kthread_should_stop()) {
  6168. int i, cpu, balanced = 1;
  6169. /* Prevent cpus going down or coming up */
  6170. get_online_cpus();
  6171. /* lockout changes to doms_cur[] array */
  6172. lock_doms_cur();
  6173. /*
  6174. * Enter a rcu read-side critical section to safely walk rq->sd
  6175. * chain on various cpus and to walk task group list
  6176. * (rq->leaf_cfs_rq_list) in rebalance_shares().
  6177. */
  6178. rcu_read_lock();
  6179. for (i = 0; i < ndoms_cur; i++) {
  6180. cpumask_t cpumap = doms_cur[i];
  6181. struct sched_domain *sd = NULL, *sd_prev = NULL;
  6182. cpu = first_cpu(cpumap);
  6183. /* Find the highest domain at which to balance shares */
  6184. for_each_domain(cpu, sd) {
  6185. if (!(sd->flags & SD_LOAD_BALANCE))
  6186. continue;
  6187. sd_prev = sd;
  6188. }
  6189. sd = sd_prev;
  6190. /* sd == NULL? No load balance reqd in this domain */
  6191. if (!sd)
  6192. continue;
  6193. balanced &= rebalance_shares(sd, cpu);
  6194. }
  6195. rcu_read_unlock();
  6196. unlock_doms_cur();
  6197. put_online_cpus();
  6198. if (!balanced)
  6199. timeout = sysctl_sched_min_bal_int_shares;
  6200. else if (timeout < sysctl_sched_max_bal_int_shares)
  6201. timeout *= 2;
  6202. msleep_interruptible(timeout);
  6203. }
  6204. return 0;
  6205. }
  6206. #endif /* CONFIG_SMP */
  6207. /* allocate runqueue etc for a new task group */
  6208. struct task_group *sched_create_group(void)
  6209. {
  6210. struct task_group *tg;
  6211. struct cfs_rq *cfs_rq;
  6212. struct sched_entity *se;
  6213. struct rq *rq;
  6214. int i;
  6215. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6216. if (!tg)
  6217. return ERR_PTR(-ENOMEM);
  6218. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
  6219. if (!tg->cfs_rq)
  6220. goto err;
  6221. tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
  6222. if (!tg->se)
  6223. goto err;
  6224. for_each_possible_cpu(i) {
  6225. rq = cpu_rq(i);
  6226. cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
  6227. cpu_to_node(i));
  6228. if (!cfs_rq)
  6229. goto err;
  6230. se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
  6231. cpu_to_node(i));
  6232. if (!se)
  6233. goto err;
  6234. memset(cfs_rq, 0, sizeof(struct cfs_rq));
  6235. memset(se, 0, sizeof(struct sched_entity));
  6236. tg->cfs_rq[i] = cfs_rq;
  6237. init_cfs_rq(cfs_rq, rq);
  6238. cfs_rq->tg = tg;
  6239. tg->se[i] = se;
  6240. se->cfs_rq = &rq->cfs;
  6241. se->my_q = cfs_rq;
  6242. se->load.weight = NICE_0_LOAD;
  6243. se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
  6244. se->parent = NULL;
  6245. }
  6246. tg->shares = NICE_0_LOAD;
  6247. lock_task_group_list();
  6248. for_each_possible_cpu(i) {
  6249. rq = cpu_rq(i);
  6250. cfs_rq = tg->cfs_rq[i];
  6251. list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6252. }
  6253. unlock_task_group_list();
  6254. return tg;
  6255. err:
  6256. for_each_possible_cpu(i) {
  6257. if (tg->cfs_rq)
  6258. kfree(tg->cfs_rq[i]);
  6259. if (tg->se)
  6260. kfree(tg->se[i]);
  6261. }
  6262. kfree(tg->cfs_rq);
  6263. kfree(tg->se);
  6264. kfree(tg);
  6265. return ERR_PTR(-ENOMEM);
  6266. }
  6267. /* rcu callback to free various structures associated with a task group */
  6268. static void free_sched_group(struct rcu_head *rhp)
  6269. {
  6270. struct task_group *tg = container_of(rhp, struct task_group, rcu);
  6271. struct cfs_rq *cfs_rq;
  6272. struct sched_entity *se;
  6273. int i;
  6274. /* now it should be safe to free those cfs_rqs */
  6275. for_each_possible_cpu(i) {
  6276. cfs_rq = tg->cfs_rq[i];
  6277. kfree(cfs_rq);
  6278. se = tg->se[i];
  6279. kfree(se);
  6280. }
  6281. kfree(tg->cfs_rq);
  6282. kfree(tg->se);
  6283. kfree(tg);
  6284. }
  6285. /* Destroy runqueue etc associated with a task group */
  6286. void sched_destroy_group(struct task_group *tg)
  6287. {
  6288. struct cfs_rq *cfs_rq = NULL;
  6289. int i;
  6290. lock_task_group_list();
  6291. for_each_possible_cpu(i) {
  6292. cfs_rq = tg->cfs_rq[i];
  6293. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  6294. }
  6295. unlock_task_group_list();
  6296. BUG_ON(!cfs_rq);
  6297. /* wait for possible concurrent references to cfs_rqs complete */
  6298. call_rcu(&tg->rcu, free_sched_group);
  6299. }
  6300. /* change task's runqueue when it moves between groups.
  6301. * The caller of this function should have put the task in its new group
  6302. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6303. * reflect its new group.
  6304. */
  6305. void sched_move_task(struct task_struct *tsk)
  6306. {
  6307. int on_rq, running;
  6308. unsigned long flags;
  6309. struct rq *rq;
  6310. rq = task_rq_lock(tsk, &flags);
  6311. if (tsk->sched_class != &fair_sched_class) {
  6312. set_task_cfs_rq(tsk, task_cpu(tsk));
  6313. goto done;
  6314. }
  6315. update_rq_clock(rq);
  6316. running = task_current(rq, tsk);
  6317. on_rq = tsk->se.on_rq;
  6318. if (on_rq) {
  6319. dequeue_task(rq, tsk, 0);
  6320. if (unlikely(running))
  6321. tsk->sched_class->put_prev_task(rq, tsk);
  6322. }
  6323. set_task_cfs_rq(tsk, task_cpu(tsk));
  6324. if (on_rq) {
  6325. if (unlikely(running))
  6326. tsk->sched_class->set_curr_task(rq);
  6327. enqueue_task(rq, tsk, 0);
  6328. }
  6329. done:
  6330. task_rq_unlock(rq, &flags);
  6331. }
  6332. /* rq->lock to be locked by caller */
  6333. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  6334. {
  6335. struct cfs_rq *cfs_rq = se->cfs_rq;
  6336. struct rq *rq = cfs_rq->rq;
  6337. int on_rq;
  6338. if (!shares)
  6339. shares = MIN_GROUP_SHARES;
  6340. on_rq = se->on_rq;
  6341. if (on_rq) {
  6342. dequeue_entity(cfs_rq, se, 0);
  6343. dec_cpu_load(rq, se->load.weight);
  6344. }
  6345. se->load.weight = shares;
  6346. se->load.inv_weight = div64_64((1ULL<<32), shares);
  6347. if (on_rq) {
  6348. enqueue_entity(cfs_rq, se, 0);
  6349. inc_cpu_load(rq, se->load.weight);
  6350. }
  6351. }
  6352. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  6353. {
  6354. int i;
  6355. struct cfs_rq *cfs_rq;
  6356. struct rq *rq;
  6357. lock_task_group_list();
  6358. if (tg->shares == shares)
  6359. goto done;
  6360. if (shares < MIN_GROUP_SHARES)
  6361. shares = MIN_GROUP_SHARES;
  6362. /*
  6363. * Prevent any load balance activity (rebalance_shares,
  6364. * load_balance_fair) from referring to this group first,
  6365. * by taking it off the rq->leaf_cfs_rq_list on each cpu.
  6366. */
  6367. for_each_possible_cpu(i) {
  6368. cfs_rq = tg->cfs_rq[i];
  6369. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  6370. }
  6371. /* wait for any ongoing reference to this group to finish */
  6372. synchronize_sched();
  6373. /*
  6374. * Now we are free to modify the group's share on each cpu
  6375. * w/o tripping rebalance_share or load_balance_fair.
  6376. */
  6377. tg->shares = shares;
  6378. for_each_possible_cpu(i) {
  6379. spin_lock_irq(&cpu_rq(i)->lock);
  6380. set_se_shares(tg->se[i], shares);
  6381. spin_unlock_irq(&cpu_rq(i)->lock);
  6382. }
  6383. /*
  6384. * Enable load balance activity on this group, by inserting it back on
  6385. * each cpu's rq->leaf_cfs_rq_list.
  6386. */
  6387. for_each_possible_cpu(i) {
  6388. rq = cpu_rq(i);
  6389. cfs_rq = tg->cfs_rq[i];
  6390. list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6391. }
  6392. done:
  6393. unlock_task_group_list();
  6394. return 0;
  6395. }
  6396. unsigned long sched_group_shares(struct task_group *tg)
  6397. {
  6398. return tg->shares;
  6399. }
  6400. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6401. #ifdef CONFIG_FAIR_CGROUP_SCHED
  6402. /* return corresponding task_group object of a cgroup */
  6403. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  6404. {
  6405. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  6406. struct task_group, css);
  6407. }
  6408. static struct cgroup_subsys_state *
  6409. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6410. {
  6411. struct task_group *tg;
  6412. if (!cgrp->parent) {
  6413. /* This is early initialization for the top cgroup */
  6414. init_task_group.css.cgroup = cgrp;
  6415. return &init_task_group.css;
  6416. }
  6417. /* we support only 1-level deep hierarchical scheduler atm */
  6418. if (cgrp->parent->parent)
  6419. return ERR_PTR(-EINVAL);
  6420. tg = sched_create_group();
  6421. if (IS_ERR(tg))
  6422. return ERR_PTR(-ENOMEM);
  6423. /* Bind the cgroup to task_group object we just created */
  6424. tg->css.cgroup = cgrp;
  6425. return &tg->css;
  6426. }
  6427. static void
  6428. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  6429. {
  6430. struct task_group *tg = cgroup_tg(cgrp);
  6431. sched_destroy_group(tg);
  6432. }
  6433. static int
  6434. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6435. struct task_struct *tsk)
  6436. {
  6437. /* We don't support RT-tasks being in separate groups */
  6438. if (tsk->sched_class != &fair_sched_class)
  6439. return -EINVAL;
  6440. return 0;
  6441. }
  6442. static void
  6443. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6444. struct cgroup *old_cont, struct task_struct *tsk)
  6445. {
  6446. sched_move_task(tsk);
  6447. }
  6448. static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  6449. u64 shareval)
  6450. {
  6451. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  6452. }
  6453. static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
  6454. {
  6455. struct task_group *tg = cgroup_tg(cgrp);
  6456. return (u64) tg->shares;
  6457. }
  6458. static struct cftype cpu_files[] = {
  6459. {
  6460. .name = "shares",
  6461. .read_uint = cpu_shares_read_uint,
  6462. .write_uint = cpu_shares_write_uint,
  6463. },
  6464. };
  6465. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  6466. {
  6467. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  6468. }
  6469. struct cgroup_subsys cpu_cgroup_subsys = {
  6470. .name = "cpu",
  6471. .create = cpu_cgroup_create,
  6472. .destroy = cpu_cgroup_destroy,
  6473. .can_attach = cpu_cgroup_can_attach,
  6474. .attach = cpu_cgroup_attach,
  6475. .populate = cpu_cgroup_populate,
  6476. .subsys_id = cpu_cgroup_subsys_id,
  6477. .early_init = 1,
  6478. };
  6479. #endif /* CONFIG_FAIR_CGROUP_SCHED */
  6480. #ifdef CONFIG_CGROUP_CPUACCT
  6481. /*
  6482. * CPU accounting code for task groups.
  6483. *
  6484. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  6485. * (balbir@in.ibm.com).
  6486. */
  6487. /* track cpu usage of a group of tasks */
  6488. struct cpuacct {
  6489. struct cgroup_subsys_state css;
  6490. /* cpuusage holds pointer to a u64-type object on every cpu */
  6491. u64 *cpuusage;
  6492. };
  6493. struct cgroup_subsys cpuacct_subsys;
  6494. /* return cpu accounting group corresponding to this container */
  6495. static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
  6496. {
  6497. return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
  6498. struct cpuacct, css);
  6499. }
  6500. /* return cpu accounting group to which this task belongs */
  6501. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  6502. {
  6503. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  6504. struct cpuacct, css);
  6505. }
  6506. /* create a new cpu accounting group */
  6507. static struct cgroup_subsys_state *cpuacct_create(
  6508. struct cgroup_subsys *ss, struct cgroup *cont)
  6509. {
  6510. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  6511. if (!ca)
  6512. return ERR_PTR(-ENOMEM);
  6513. ca->cpuusage = alloc_percpu(u64);
  6514. if (!ca->cpuusage) {
  6515. kfree(ca);
  6516. return ERR_PTR(-ENOMEM);
  6517. }
  6518. return &ca->css;
  6519. }
  6520. /* destroy an existing cpu accounting group */
  6521. static void
  6522. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
  6523. {
  6524. struct cpuacct *ca = cgroup_ca(cont);
  6525. free_percpu(ca->cpuusage);
  6526. kfree(ca);
  6527. }
  6528. /* return total cpu usage (in nanoseconds) of a group */
  6529. static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
  6530. {
  6531. struct cpuacct *ca = cgroup_ca(cont);
  6532. u64 totalcpuusage = 0;
  6533. int i;
  6534. for_each_possible_cpu(i) {
  6535. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  6536. /*
  6537. * Take rq->lock to make 64-bit addition safe on 32-bit
  6538. * platforms.
  6539. */
  6540. spin_lock_irq(&cpu_rq(i)->lock);
  6541. totalcpuusage += *cpuusage;
  6542. spin_unlock_irq(&cpu_rq(i)->lock);
  6543. }
  6544. return totalcpuusage;
  6545. }
  6546. static struct cftype files[] = {
  6547. {
  6548. .name = "usage",
  6549. .read_uint = cpuusage_read,
  6550. },
  6551. };
  6552. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  6553. {
  6554. return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
  6555. }
  6556. /*
  6557. * charge this task's execution time to its accounting group.
  6558. *
  6559. * called with rq->lock held.
  6560. */
  6561. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  6562. {
  6563. struct cpuacct *ca;
  6564. if (!cpuacct_subsys.active)
  6565. return;
  6566. ca = task_ca(tsk);
  6567. if (ca) {
  6568. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  6569. *cpuusage += cputime;
  6570. }
  6571. }
  6572. struct cgroup_subsys cpuacct_subsys = {
  6573. .name = "cpuacct",
  6574. .create = cpuacct_create,
  6575. .destroy = cpuacct_destroy,
  6576. .populate = cpuacct_populate,
  6577. .subsys_id = cpuacct_subsys_id,
  6578. };
  6579. #endif /* CONFIG_CGROUP_CPUACCT */