huge_memory.c 63 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #include <linux/mm.h>
  8. #include <linux/sched.h>
  9. #include <linux/highmem.h>
  10. #include <linux/hugetlb.h>
  11. #include <linux/mmu_notifier.h>
  12. #include <linux/rmap.h>
  13. #include <linux/swap.h>
  14. #include <linux/mm_inline.h>
  15. #include <linux/kthread.h>
  16. #include <linux/khugepaged.h>
  17. #include <linux/freezer.h>
  18. #include <linux/mman.h>
  19. #include <asm/tlb.h>
  20. #include <asm/pgalloc.h>
  21. #include "internal.h"
  22. /*
  23. * By default transparent hugepage support is enabled for all mappings
  24. * and khugepaged scans all mappings. Defrag is only invoked by
  25. * khugepaged hugepage allocations and by page faults inside
  26. * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
  27. * allocations.
  28. */
  29. unsigned long transparent_hugepage_flags __read_mostly =
  30. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  31. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  32. #endif
  33. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  34. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  35. #endif
  36. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  37. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  38. /* default scan 8*512 pte (or vmas) every 30 second */
  39. static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  40. static unsigned int khugepaged_pages_collapsed;
  41. static unsigned int khugepaged_full_scans;
  42. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  43. /* during fragmentation poll the hugepage allocator once every minute */
  44. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  45. static struct task_struct *khugepaged_thread __read_mostly;
  46. static DEFINE_MUTEX(khugepaged_mutex);
  47. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  48. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  49. /*
  50. * default collapse hugepages if there is at least one pte mapped like
  51. * it would have happened if the vma was large enough during page
  52. * fault.
  53. */
  54. static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  55. static int khugepaged(void *none);
  56. static int mm_slots_hash_init(void);
  57. static int khugepaged_slab_init(void);
  58. static void khugepaged_slab_free(void);
  59. #define MM_SLOTS_HASH_HEADS 1024
  60. static struct hlist_head *mm_slots_hash __read_mostly;
  61. static struct kmem_cache *mm_slot_cache __read_mostly;
  62. /**
  63. * struct mm_slot - hash lookup from mm to mm_slot
  64. * @hash: hash collision list
  65. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  66. * @mm: the mm that this information is valid for
  67. */
  68. struct mm_slot {
  69. struct hlist_node hash;
  70. struct list_head mm_node;
  71. struct mm_struct *mm;
  72. };
  73. /**
  74. * struct khugepaged_scan - cursor for scanning
  75. * @mm_head: the head of the mm list to scan
  76. * @mm_slot: the current mm_slot we are scanning
  77. * @address: the next address inside that to be scanned
  78. *
  79. * There is only the one khugepaged_scan instance of this cursor structure.
  80. */
  81. struct khugepaged_scan {
  82. struct list_head mm_head;
  83. struct mm_slot *mm_slot;
  84. unsigned long address;
  85. };
  86. static struct khugepaged_scan khugepaged_scan = {
  87. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  88. };
  89. static int set_recommended_min_free_kbytes(void)
  90. {
  91. struct zone *zone;
  92. int nr_zones = 0;
  93. unsigned long recommended_min;
  94. extern int min_free_kbytes;
  95. if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
  96. &transparent_hugepage_flags) &&
  97. !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  98. &transparent_hugepage_flags))
  99. return 0;
  100. for_each_populated_zone(zone)
  101. nr_zones++;
  102. /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
  103. recommended_min = pageblock_nr_pages * nr_zones * 2;
  104. /*
  105. * Make sure that on average at least two pageblocks are almost free
  106. * of another type, one for a migratetype to fall back to and a
  107. * second to avoid subsequent fallbacks of other types There are 3
  108. * MIGRATE_TYPES we care about.
  109. */
  110. recommended_min += pageblock_nr_pages * nr_zones *
  111. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  112. /* don't ever allow to reserve more than 5% of the lowmem */
  113. recommended_min = min(recommended_min,
  114. (unsigned long) nr_free_buffer_pages() / 20);
  115. recommended_min <<= (PAGE_SHIFT-10);
  116. if (recommended_min > min_free_kbytes)
  117. min_free_kbytes = recommended_min;
  118. setup_per_zone_wmarks();
  119. return 0;
  120. }
  121. late_initcall(set_recommended_min_free_kbytes);
  122. static int start_khugepaged(void)
  123. {
  124. int err = 0;
  125. if (khugepaged_enabled()) {
  126. int wakeup;
  127. mutex_lock(&khugepaged_mutex);
  128. if (!khugepaged_thread)
  129. khugepaged_thread = kthread_run(khugepaged, NULL,
  130. "khugepaged");
  131. if (unlikely(IS_ERR(khugepaged_thread))) {
  132. printk(KERN_ERR
  133. "khugepaged: kthread_run(khugepaged) failed\n");
  134. err = PTR_ERR(khugepaged_thread);
  135. khugepaged_thread = NULL;
  136. }
  137. wakeup = !list_empty(&khugepaged_scan.mm_head);
  138. mutex_unlock(&khugepaged_mutex);
  139. if (wakeup)
  140. wake_up_interruptible(&khugepaged_wait);
  141. set_recommended_min_free_kbytes();
  142. } else
  143. /* wakeup to exit */
  144. wake_up_interruptible(&khugepaged_wait);
  145. return err;
  146. }
  147. #ifdef CONFIG_SYSFS
  148. static ssize_t double_flag_show(struct kobject *kobj,
  149. struct kobj_attribute *attr, char *buf,
  150. enum transparent_hugepage_flag enabled,
  151. enum transparent_hugepage_flag req_madv)
  152. {
  153. if (test_bit(enabled, &transparent_hugepage_flags)) {
  154. VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
  155. return sprintf(buf, "[always] madvise never\n");
  156. } else if (test_bit(req_madv, &transparent_hugepage_flags))
  157. return sprintf(buf, "always [madvise] never\n");
  158. else
  159. return sprintf(buf, "always madvise [never]\n");
  160. }
  161. static ssize_t double_flag_store(struct kobject *kobj,
  162. struct kobj_attribute *attr,
  163. const char *buf, size_t count,
  164. enum transparent_hugepage_flag enabled,
  165. enum transparent_hugepage_flag req_madv)
  166. {
  167. if (!memcmp("always", buf,
  168. min(sizeof("always")-1, count))) {
  169. set_bit(enabled, &transparent_hugepage_flags);
  170. clear_bit(req_madv, &transparent_hugepage_flags);
  171. } else if (!memcmp("madvise", buf,
  172. min(sizeof("madvise")-1, count))) {
  173. clear_bit(enabled, &transparent_hugepage_flags);
  174. set_bit(req_madv, &transparent_hugepage_flags);
  175. } else if (!memcmp("never", buf,
  176. min(sizeof("never")-1, count))) {
  177. clear_bit(enabled, &transparent_hugepage_flags);
  178. clear_bit(req_madv, &transparent_hugepage_flags);
  179. } else
  180. return -EINVAL;
  181. return count;
  182. }
  183. static ssize_t enabled_show(struct kobject *kobj,
  184. struct kobj_attribute *attr, char *buf)
  185. {
  186. return double_flag_show(kobj, attr, buf,
  187. TRANSPARENT_HUGEPAGE_FLAG,
  188. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  189. }
  190. static ssize_t enabled_store(struct kobject *kobj,
  191. struct kobj_attribute *attr,
  192. const char *buf, size_t count)
  193. {
  194. ssize_t ret;
  195. ret = double_flag_store(kobj, attr, buf, count,
  196. TRANSPARENT_HUGEPAGE_FLAG,
  197. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  198. if (ret > 0) {
  199. int err = start_khugepaged();
  200. if (err)
  201. ret = err;
  202. }
  203. if (ret > 0 &&
  204. (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
  205. &transparent_hugepage_flags) ||
  206. test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  207. &transparent_hugepage_flags)))
  208. set_recommended_min_free_kbytes();
  209. return ret;
  210. }
  211. static struct kobj_attribute enabled_attr =
  212. __ATTR(enabled, 0644, enabled_show, enabled_store);
  213. static ssize_t single_flag_show(struct kobject *kobj,
  214. struct kobj_attribute *attr, char *buf,
  215. enum transparent_hugepage_flag flag)
  216. {
  217. return sprintf(buf, "%d\n",
  218. !!test_bit(flag, &transparent_hugepage_flags));
  219. }
  220. static ssize_t single_flag_store(struct kobject *kobj,
  221. struct kobj_attribute *attr,
  222. const char *buf, size_t count,
  223. enum transparent_hugepage_flag flag)
  224. {
  225. unsigned long value;
  226. int ret;
  227. ret = kstrtoul(buf, 10, &value);
  228. if (ret < 0)
  229. return ret;
  230. if (value > 1)
  231. return -EINVAL;
  232. if (value)
  233. set_bit(flag, &transparent_hugepage_flags);
  234. else
  235. clear_bit(flag, &transparent_hugepage_flags);
  236. return count;
  237. }
  238. /*
  239. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  240. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  241. * memory just to allocate one more hugepage.
  242. */
  243. static ssize_t defrag_show(struct kobject *kobj,
  244. struct kobj_attribute *attr, char *buf)
  245. {
  246. return double_flag_show(kobj, attr, buf,
  247. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  248. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  249. }
  250. static ssize_t defrag_store(struct kobject *kobj,
  251. struct kobj_attribute *attr,
  252. const char *buf, size_t count)
  253. {
  254. return double_flag_store(kobj, attr, buf, count,
  255. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  256. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  257. }
  258. static struct kobj_attribute defrag_attr =
  259. __ATTR(defrag, 0644, defrag_show, defrag_store);
  260. #ifdef CONFIG_DEBUG_VM
  261. static ssize_t debug_cow_show(struct kobject *kobj,
  262. struct kobj_attribute *attr, char *buf)
  263. {
  264. return single_flag_show(kobj, attr, buf,
  265. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  266. }
  267. static ssize_t debug_cow_store(struct kobject *kobj,
  268. struct kobj_attribute *attr,
  269. const char *buf, size_t count)
  270. {
  271. return single_flag_store(kobj, attr, buf, count,
  272. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  273. }
  274. static struct kobj_attribute debug_cow_attr =
  275. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  276. #endif /* CONFIG_DEBUG_VM */
  277. static struct attribute *hugepage_attr[] = {
  278. &enabled_attr.attr,
  279. &defrag_attr.attr,
  280. #ifdef CONFIG_DEBUG_VM
  281. &debug_cow_attr.attr,
  282. #endif
  283. NULL,
  284. };
  285. static struct attribute_group hugepage_attr_group = {
  286. .attrs = hugepage_attr,
  287. };
  288. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  289. struct kobj_attribute *attr,
  290. char *buf)
  291. {
  292. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  293. }
  294. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  295. struct kobj_attribute *attr,
  296. const char *buf, size_t count)
  297. {
  298. unsigned long msecs;
  299. int err;
  300. err = strict_strtoul(buf, 10, &msecs);
  301. if (err || msecs > UINT_MAX)
  302. return -EINVAL;
  303. khugepaged_scan_sleep_millisecs = msecs;
  304. wake_up_interruptible(&khugepaged_wait);
  305. return count;
  306. }
  307. static struct kobj_attribute scan_sleep_millisecs_attr =
  308. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  309. scan_sleep_millisecs_store);
  310. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  311. struct kobj_attribute *attr,
  312. char *buf)
  313. {
  314. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  315. }
  316. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  317. struct kobj_attribute *attr,
  318. const char *buf, size_t count)
  319. {
  320. unsigned long msecs;
  321. int err;
  322. err = strict_strtoul(buf, 10, &msecs);
  323. if (err || msecs > UINT_MAX)
  324. return -EINVAL;
  325. khugepaged_alloc_sleep_millisecs = msecs;
  326. wake_up_interruptible(&khugepaged_wait);
  327. return count;
  328. }
  329. static struct kobj_attribute alloc_sleep_millisecs_attr =
  330. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  331. alloc_sleep_millisecs_store);
  332. static ssize_t pages_to_scan_show(struct kobject *kobj,
  333. struct kobj_attribute *attr,
  334. char *buf)
  335. {
  336. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  337. }
  338. static ssize_t pages_to_scan_store(struct kobject *kobj,
  339. struct kobj_attribute *attr,
  340. const char *buf, size_t count)
  341. {
  342. int err;
  343. unsigned long pages;
  344. err = strict_strtoul(buf, 10, &pages);
  345. if (err || !pages || pages > UINT_MAX)
  346. return -EINVAL;
  347. khugepaged_pages_to_scan = pages;
  348. return count;
  349. }
  350. static struct kobj_attribute pages_to_scan_attr =
  351. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  352. pages_to_scan_store);
  353. static ssize_t pages_collapsed_show(struct kobject *kobj,
  354. struct kobj_attribute *attr,
  355. char *buf)
  356. {
  357. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  358. }
  359. static struct kobj_attribute pages_collapsed_attr =
  360. __ATTR_RO(pages_collapsed);
  361. static ssize_t full_scans_show(struct kobject *kobj,
  362. struct kobj_attribute *attr,
  363. char *buf)
  364. {
  365. return sprintf(buf, "%u\n", khugepaged_full_scans);
  366. }
  367. static struct kobj_attribute full_scans_attr =
  368. __ATTR_RO(full_scans);
  369. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  370. struct kobj_attribute *attr, char *buf)
  371. {
  372. return single_flag_show(kobj, attr, buf,
  373. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  374. }
  375. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  376. struct kobj_attribute *attr,
  377. const char *buf, size_t count)
  378. {
  379. return single_flag_store(kobj, attr, buf, count,
  380. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  381. }
  382. static struct kobj_attribute khugepaged_defrag_attr =
  383. __ATTR(defrag, 0644, khugepaged_defrag_show,
  384. khugepaged_defrag_store);
  385. /*
  386. * max_ptes_none controls if khugepaged should collapse hugepages over
  387. * any unmapped ptes in turn potentially increasing the memory
  388. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  389. * reduce the available free memory in the system as it
  390. * runs. Increasing max_ptes_none will instead potentially reduce the
  391. * free memory in the system during the khugepaged scan.
  392. */
  393. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  394. struct kobj_attribute *attr,
  395. char *buf)
  396. {
  397. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  398. }
  399. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  400. struct kobj_attribute *attr,
  401. const char *buf, size_t count)
  402. {
  403. int err;
  404. unsigned long max_ptes_none;
  405. err = strict_strtoul(buf, 10, &max_ptes_none);
  406. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  407. return -EINVAL;
  408. khugepaged_max_ptes_none = max_ptes_none;
  409. return count;
  410. }
  411. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  412. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  413. khugepaged_max_ptes_none_store);
  414. static struct attribute *khugepaged_attr[] = {
  415. &khugepaged_defrag_attr.attr,
  416. &khugepaged_max_ptes_none_attr.attr,
  417. &pages_to_scan_attr.attr,
  418. &pages_collapsed_attr.attr,
  419. &full_scans_attr.attr,
  420. &scan_sleep_millisecs_attr.attr,
  421. &alloc_sleep_millisecs_attr.attr,
  422. NULL,
  423. };
  424. static struct attribute_group khugepaged_attr_group = {
  425. .attrs = khugepaged_attr,
  426. .name = "khugepaged",
  427. };
  428. static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
  429. {
  430. int err;
  431. *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  432. if (unlikely(!*hugepage_kobj)) {
  433. printk(KERN_ERR "hugepage: failed kobject create\n");
  434. return -ENOMEM;
  435. }
  436. err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
  437. if (err) {
  438. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  439. goto delete_obj;
  440. }
  441. err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
  442. if (err) {
  443. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  444. goto remove_hp_group;
  445. }
  446. return 0;
  447. remove_hp_group:
  448. sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
  449. delete_obj:
  450. kobject_put(*hugepage_kobj);
  451. return err;
  452. }
  453. static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  454. {
  455. sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
  456. sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
  457. kobject_put(hugepage_kobj);
  458. }
  459. #else
  460. static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
  461. {
  462. return 0;
  463. }
  464. static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  465. {
  466. }
  467. #endif /* CONFIG_SYSFS */
  468. static int __init hugepage_init(void)
  469. {
  470. int err;
  471. struct kobject *hugepage_kobj;
  472. if (!has_transparent_hugepage()) {
  473. transparent_hugepage_flags = 0;
  474. return -EINVAL;
  475. }
  476. err = hugepage_init_sysfs(&hugepage_kobj);
  477. if (err)
  478. return err;
  479. err = khugepaged_slab_init();
  480. if (err)
  481. goto out;
  482. err = mm_slots_hash_init();
  483. if (err) {
  484. khugepaged_slab_free();
  485. goto out;
  486. }
  487. /*
  488. * By default disable transparent hugepages on smaller systems,
  489. * where the extra memory used could hurt more than TLB overhead
  490. * is likely to save. The admin can still enable it through /sys.
  491. */
  492. if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
  493. transparent_hugepage_flags = 0;
  494. start_khugepaged();
  495. set_recommended_min_free_kbytes();
  496. return 0;
  497. out:
  498. hugepage_exit_sysfs(hugepage_kobj);
  499. return err;
  500. }
  501. module_init(hugepage_init)
  502. static int __init setup_transparent_hugepage(char *str)
  503. {
  504. int ret = 0;
  505. if (!str)
  506. goto out;
  507. if (!strcmp(str, "always")) {
  508. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  509. &transparent_hugepage_flags);
  510. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  511. &transparent_hugepage_flags);
  512. ret = 1;
  513. } else if (!strcmp(str, "madvise")) {
  514. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  515. &transparent_hugepage_flags);
  516. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  517. &transparent_hugepage_flags);
  518. ret = 1;
  519. } else if (!strcmp(str, "never")) {
  520. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  521. &transparent_hugepage_flags);
  522. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  523. &transparent_hugepage_flags);
  524. ret = 1;
  525. }
  526. out:
  527. if (!ret)
  528. printk(KERN_WARNING
  529. "transparent_hugepage= cannot parse, ignored\n");
  530. return ret;
  531. }
  532. __setup("transparent_hugepage=", setup_transparent_hugepage);
  533. static void prepare_pmd_huge_pte(pgtable_t pgtable,
  534. struct mm_struct *mm)
  535. {
  536. assert_spin_locked(&mm->page_table_lock);
  537. /* FIFO */
  538. if (!mm->pmd_huge_pte)
  539. INIT_LIST_HEAD(&pgtable->lru);
  540. else
  541. list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
  542. mm->pmd_huge_pte = pgtable;
  543. }
  544. static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  545. {
  546. if (likely(vma->vm_flags & VM_WRITE))
  547. pmd = pmd_mkwrite(pmd);
  548. return pmd;
  549. }
  550. static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
  551. struct vm_area_struct *vma,
  552. unsigned long haddr, pmd_t *pmd,
  553. struct page *page)
  554. {
  555. pgtable_t pgtable;
  556. VM_BUG_ON(!PageCompound(page));
  557. pgtable = pte_alloc_one(mm, haddr);
  558. if (unlikely(!pgtable))
  559. return VM_FAULT_OOM;
  560. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  561. __SetPageUptodate(page);
  562. spin_lock(&mm->page_table_lock);
  563. if (unlikely(!pmd_none(*pmd))) {
  564. spin_unlock(&mm->page_table_lock);
  565. mem_cgroup_uncharge_page(page);
  566. put_page(page);
  567. pte_free(mm, pgtable);
  568. } else {
  569. pmd_t entry;
  570. entry = mk_pmd(page, vma->vm_page_prot);
  571. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  572. entry = pmd_mkhuge(entry);
  573. /*
  574. * The spinlocking to take the lru_lock inside
  575. * page_add_new_anon_rmap() acts as a full memory
  576. * barrier to be sure clear_huge_page writes become
  577. * visible after the set_pmd_at() write.
  578. */
  579. page_add_new_anon_rmap(page, vma, haddr);
  580. set_pmd_at(mm, haddr, pmd, entry);
  581. prepare_pmd_huge_pte(pgtable, mm);
  582. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  583. mm->nr_ptes++;
  584. spin_unlock(&mm->page_table_lock);
  585. }
  586. return 0;
  587. }
  588. static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
  589. {
  590. return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
  591. }
  592. static inline struct page *alloc_hugepage_vma(int defrag,
  593. struct vm_area_struct *vma,
  594. unsigned long haddr, int nd,
  595. gfp_t extra_gfp)
  596. {
  597. return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
  598. HPAGE_PMD_ORDER, vma, haddr, nd);
  599. }
  600. #ifndef CONFIG_NUMA
  601. static inline struct page *alloc_hugepage(int defrag)
  602. {
  603. return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
  604. HPAGE_PMD_ORDER);
  605. }
  606. #endif
  607. int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  608. unsigned long address, pmd_t *pmd,
  609. unsigned int flags)
  610. {
  611. struct page *page;
  612. unsigned long haddr = address & HPAGE_PMD_MASK;
  613. pte_t *pte;
  614. if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
  615. if (unlikely(anon_vma_prepare(vma)))
  616. return VM_FAULT_OOM;
  617. if (unlikely(khugepaged_enter(vma)))
  618. return VM_FAULT_OOM;
  619. page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  620. vma, haddr, numa_node_id(), 0);
  621. if (unlikely(!page)) {
  622. count_vm_event(THP_FAULT_FALLBACK);
  623. goto out;
  624. }
  625. count_vm_event(THP_FAULT_ALLOC);
  626. if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
  627. put_page(page);
  628. goto out;
  629. }
  630. if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
  631. page))) {
  632. mem_cgroup_uncharge_page(page);
  633. put_page(page);
  634. goto out;
  635. }
  636. return 0;
  637. }
  638. out:
  639. /*
  640. * Use __pte_alloc instead of pte_alloc_map, because we can't
  641. * run pte_offset_map on the pmd, if an huge pmd could
  642. * materialize from under us from a different thread.
  643. */
  644. if (unlikely(__pte_alloc(mm, vma, pmd, address)))
  645. return VM_FAULT_OOM;
  646. /* if an huge pmd materialized from under us just retry later */
  647. if (unlikely(pmd_trans_huge(*pmd)))
  648. return 0;
  649. /*
  650. * A regular pmd is established and it can't morph into a huge pmd
  651. * from under us anymore at this point because we hold the mmap_sem
  652. * read mode and khugepaged takes it in write mode. So now it's
  653. * safe to run pte_offset_map().
  654. */
  655. pte = pte_offset_map(pmd, address);
  656. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  657. }
  658. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  659. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  660. struct vm_area_struct *vma)
  661. {
  662. struct page *src_page;
  663. pmd_t pmd;
  664. pgtable_t pgtable;
  665. int ret;
  666. ret = -ENOMEM;
  667. pgtable = pte_alloc_one(dst_mm, addr);
  668. if (unlikely(!pgtable))
  669. goto out;
  670. spin_lock(&dst_mm->page_table_lock);
  671. spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
  672. ret = -EAGAIN;
  673. pmd = *src_pmd;
  674. if (unlikely(!pmd_trans_huge(pmd))) {
  675. pte_free(dst_mm, pgtable);
  676. goto out_unlock;
  677. }
  678. if (unlikely(pmd_trans_splitting(pmd))) {
  679. /* split huge page running from under us */
  680. spin_unlock(&src_mm->page_table_lock);
  681. spin_unlock(&dst_mm->page_table_lock);
  682. pte_free(dst_mm, pgtable);
  683. wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
  684. goto out;
  685. }
  686. src_page = pmd_page(pmd);
  687. VM_BUG_ON(!PageHead(src_page));
  688. get_page(src_page);
  689. page_dup_rmap(src_page);
  690. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  691. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  692. pmd = pmd_mkold(pmd_wrprotect(pmd));
  693. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  694. prepare_pmd_huge_pte(pgtable, dst_mm);
  695. dst_mm->nr_ptes++;
  696. ret = 0;
  697. out_unlock:
  698. spin_unlock(&src_mm->page_table_lock);
  699. spin_unlock(&dst_mm->page_table_lock);
  700. out:
  701. return ret;
  702. }
  703. /* no "address" argument so destroys page coloring of some arch */
  704. pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
  705. {
  706. pgtable_t pgtable;
  707. assert_spin_locked(&mm->page_table_lock);
  708. /* FIFO */
  709. pgtable = mm->pmd_huge_pte;
  710. if (list_empty(&pgtable->lru))
  711. mm->pmd_huge_pte = NULL;
  712. else {
  713. mm->pmd_huge_pte = list_entry(pgtable->lru.next,
  714. struct page, lru);
  715. list_del(&pgtable->lru);
  716. }
  717. return pgtable;
  718. }
  719. static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
  720. struct vm_area_struct *vma,
  721. unsigned long address,
  722. pmd_t *pmd, pmd_t orig_pmd,
  723. struct page *page,
  724. unsigned long haddr)
  725. {
  726. pgtable_t pgtable;
  727. pmd_t _pmd;
  728. int ret = 0, i;
  729. struct page **pages;
  730. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  731. GFP_KERNEL);
  732. if (unlikely(!pages)) {
  733. ret |= VM_FAULT_OOM;
  734. goto out;
  735. }
  736. for (i = 0; i < HPAGE_PMD_NR; i++) {
  737. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
  738. __GFP_OTHER_NODE,
  739. vma, address, page_to_nid(page));
  740. if (unlikely(!pages[i] ||
  741. mem_cgroup_newpage_charge(pages[i], mm,
  742. GFP_KERNEL))) {
  743. if (pages[i])
  744. put_page(pages[i]);
  745. mem_cgroup_uncharge_start();
  746. while (--i >= 0) {
  747. mem_cgroup_uncharge_page(pages[i]);
  748. put_page(pages[i]);
  749. }
  750. mem_cgroup_uncharge_end();
  751. kfree(pages);
  752. ret |= VM_FAULT_OOM;
  753. goto out;
  754. }
  755. }
  756. for (i = 0; i < HPAGE_PMD_NR; i++) {
  757. copy_user_highpage(pages[i], page + i,
  758. haddr + PAGE_SIZE * i, vma);
  759. __SetPageUptodate(pages[i]);
  760. cond_resched();
  761. }
  762. spin_lock(&mm->page_table_lock);
  763. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  764. goto out_free_pages;
  765. VM_BUG_ON(!PageHead(page));
  766. pmdp_clear_flush_notify(vma, haddr, pmd);
  767. /* leave pmd empty until pte is filled */
  768. pgtable = get_pmd_huge_pte(mm);
  769. pmd_populate(mm, &_pmd, pgtable);
  770. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  771. pte_t *pte, entry;
  772. entry = mk_pte(pages[i], vma->vm_page_prot);
  773. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  774. page_add_new_anon_rmap(pages[i], vma, haddr);
  775. pte = pte_offset_map(&_pmd, haddr);
  776. VM_BUG_ON(!pte_none(*pte));
  777. set_pte_at(mm, haddr, pte, entry);
  778. pte_unmap(pte);
  779. }
  780. kfree(pages);
  781. smp_wmb(); /* make pte visible before pmd */
  782. pmd_populate(mm, pmd, pgtable);
  783. page_remove_rmap(page);
  784. spin_unlock(&mm->page_table_lock);
  785. ret |= VM_FAULT_WRITE;
  786. put_page(page);
  787. out:
  788. return ret;
  789. out_free_pages:
  790. spin_unlock(&mm->page_table_lock);
  791. mem_cgroup_uncharge_start();
  792. for (i = 0; i < HPAGE_PMD_NR; i++) {
  793. mem_cgroup_uncharge_page(pages[i]);
  794. put_page(pages[i]);
  795. }
  796. mem_cgroup_uncharge_end();
  797. kfree(pages);
  798. goto out;
  799. }
  800. int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  801. unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
  802. {
  803. int ret = 0;
  804. struct page *page, *new_page;
  805. unsigned long haddr;
  806. VM_BUG_ON(!vma->anon_vma);
  807. spin_lock(&mm->page_table_lock);
  808. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  809. goto out_unlock;
  810. page = pmd_page(orig_pmd);
  811. VM_BUG_ON(!PageCompound(page) || !PageHead(page));
  812. haddr = address & HPAGE_PMD_MASK;
  813. if (page_mapcount(page) == 1) {
  814. pmd_t entry;
  815. entry = pmd_mkyoung(orig_pmd);
  816. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  817. if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
  818. update_mmu_cache(vma, address, entry);
  819. ret |= VM_FAULT_WRITE;
  820. goto out_unlock;
  821. }
  822. get_page(page);
  823. spin_unlock(&mm->page_table_lock);
  824. if (transparent_hugepage_enabled(vma) &&
  825. !transparent_hugepage_debug_cow())
  826. new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  827. vma, haddr, numa_node_id(), 0);
  828. else
  829. new_page = NULL;
  830. if (unlikely(!new_page)) {
  831. count_vm_event(THP_FAULT_FALLBACK);
  832. ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
  833. pmd, orig_pmd, page, haddr);
  834. if (ret & VM_FAULT_OOM)
  835. split_huge_page(page);
  836. put_page(page);
  837. goto out;
  838. }
  839. count_vm_event(THP_FAULT_ALLOC);
  840. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  841. put_page(new_page);
  842. split_huge_page(page);
  843. put_page(page);
  844. ret |= VM_FAULT_OOM;
  845. goto out;
  846. }
  847. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  848. __SetPageUptodate(new_page);
  849. spin_lock(&mm->page_table_lock);
  850. put_page(page);
  851. if (unlikely(!pmd_same(*pmd, orig_pmd))) {
  852. spin_unlock(&mm->page_table_lock);
  853. mem_cgroup_uncharge_page(new_page);
  854. put_page(new_page);
  855. goto out;
  856. } else {
  857. pmd_t entry;
  858. VM_BUG_ON(!PageHead(page));
  859. entry = mk_pmd(new_page, vma->vm_page_prot);
  860. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  861. entry = pmd_mkhuge(entry);
  862. pmdp_clear_flush_notify(vma, haddr, pmd);
  863. page_add_new_anon_rmap(new_page, vma, haddr);
  864. set_pmd_at(mm, haddr, pmd, entry);
  865. update_mmu_cache(vma, address, entry);
  866. page_remove_rmap(page);
  867. put_page(page);
  868. ret |= VM_FAULT_WRITE;
  869. }
  870. out_unlock:
  871. spin_unlock(&mm->page_table_lock);
  872. out:
  873. return ret;
  874. }
  875. struct page *follow_trans_huge_pmd(struct mm_struct *mm,
  876. unsigned long addr,
  877. pmd_t *pmd,
  878. unsigned int flags)
  879. {
  880. struct page *page = NULL;
  881. assert_spin_locked(&mm->page_table_lock);
  882. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  883. goto out;
  884. page = pmd_page(*pmd);
  885. VM_BUG_ON(!PageHead(page));
  886. if (flags & FOLL_TOUCH) {
  887. pmd_t _pmd;
  888. /*
  889. * We should set the dirty bit only for FOLL_WRITE but
  890. * for now the dirty bit in the pmd is meaningless.
  891. * And if the dirty bit will become meaningful and
  892. * we'll only set it with FOLL_WRITE, an atomic
  893. * set_bit will be required on the pmd to set the
  894. * young bit, instead of the current set_pmd_at.
  895. */
  896. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  897. set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
  898. }
  899. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  900. VM_BUG_ON(!PageCompound(page));
  901. if (flags & FOLL_GET)
  902. get_page_foll(page);
  903. out:
  904. return page;
  905. }
  906. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  907. pmd_t *pmd, unsigned long addr)
  908. {
  909. int ret = 0;
  910. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  911. struct page *page;
  912. pgtable_t pgtable;
  913. pgtable = get_pmd_huge_pte(tlb->mm);
  914. page = pmd_page(*pmd);
  915. pmd_clear(pmd);
  916. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  917. page_remove_rmap(page);
  918. VM_BUG_ON(page_mapcount(page) < 0);
  919. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  920. VM_BUG_ON(!PageHead(page));
  921. tlb->mm->nr_ptes--;
  922. spin_unlock(&tlb->mm->page_table_lock);
  923. tlb_remove_page(tlb, page);
  924. pte_free(tlb->mm, pgtable);
  925. ret = 1;
  926. }
  927. return ret;
  928. }
  929. int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  930. unsigned long addr, unsigned long end,
  931. unsigned char *vec)
  932. {
  933. int ret = 0;
  934. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  935. /*
  936. * All logical pages in the range are present
  937. * if backed by a huge page.
  938. */
  939. spin_unlock(&vma->vm_mm->page_table_lock);
  940. memset(vec, 1, (end - addr) >> PAGE_SHIFT);
  941. ret = 1;
  942. }
  943. return ret;
  944. }
  945. int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
  946. unsigned long old_addr,
  947. unsigned long new_addr, unsigned long old_end,
  948. pmd_t *old_pmd, pmd_t *new_pmd)
  949. {
  950. int ret = 0;
  951. pmd_t pmd;
  952. struct mm_struct *mm = vma->vm_mm;
  953. if ((old_addr & ~HPAGE_PMD_MASK) ||
  954. (new_addr & ~HPAGE_PMD_MASK) ||
  955. old_end - old_addr < HPAGE_PMD_SIZE ||
  956. (new_vma->vm_flags & VM_NOHUGEPAGE))
  957. goto out;
  958. /*
  959. * The destination pmd shouldn't be established, free_pgtables()
  960. * should have release it.
  961. */
  962. if (WARN_ON(!pmd_none(*new_pmd))) {
  963. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  964. goto out;
  965. }
  966. ret = __pmd_trans_huge_lock(old_pmd, vma);
  967. if (ret == 1) {
  968. pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
  969. VM_BUG_ON(!pmd_none(*new_pmd));
  970. set_pmd_at(mm, new_addr, new_pmd, pmd);
  971. spin_unlock(&mm->page_table_lock);
  972. }
  973. out:
  974. return ret;
  975. }
  976. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  977. unsigned long addr, pgprot_t newprot)
  978. {
  979. struct mm_struct *mm = vma->vm_mm;
  980. int ret = 0;
  981. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  982. pmd_t entry;
  983. entry = pmdp_get_and_clear(mm, addr, pmd);
  984. entry = pmd_modify(entry, newprot);
  985. set_pmd_at(mm, addr, pmd, entry);
  986. spin_unlock(&vma->vm_mm->page_table_lock);
  987. ret = 1;
  988. }
  989. return ret;
  990. }
  991. /*
  992. * Returns 1 if a given pmd maps a stable (not under splitting) thp.
  993. * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
  994. *
  995. * Note that if it returns 1, this routine returns without unlocking page
  996. * table locks. So callers must unlock them.
  997. */
  998. int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
  999. {
  1000. spin_lock(&vma->vm_mm->page_table_lock);
  1001. if (likely(pmd_trans_huge(*pmd))) {
  1002. if (unlikely(pmd_trans_splitting(*pmd))) {
  1003. spin_unlock(&vma->vm_mm->page_table_lock);
  1004. wait_split_huge_page(vma->anon_vma, pmd);
  1005. return -1;
  1006. } else {
  1007. /* Thp mapped by 'pmd' is stable, so we can
  1008. * handle it as it is. */
  1009. return 1;
  1010. }
  1011. }
  1012. spin_unlock(&vma->vm_mm->page_table_lock);
  1013. return 0;
  1014. }
  1015. pmd_t *page_check_address_pmd(struct page *page,
  1016. struct mm_struct *mm,
  1017. unsigned long address,
  1018. enum page_check_address_pmd_flag flag)
  1019. {
  1020. pgd_t *pgd;
  1021. pud_t *pud;
  1022. pmd_t *pmd, *ret = NULL;
  1023. if (address & ~HPAGE_PMD_MASK)
  1024. goto out;
  1025. pgd = pgd_offset(mm, address);
  1026. if (!pgd_present(*pgd))
  1027. goto out;
  1028. pud = pud_offset(pgd, address);
  1029. if (!pud_present(*pud))
  1030. goto out;
  1031. pmd = pmd_offset(pud, address);
  1032. if (pmd_none(*pmd))
  1033. goto out;
  1034. if (pmd_page(*pmd) != page)
  1035. goto out;
  1036. /*
  1037. * split_vma() may create temporary aliased mappings. There is
  1038. * no risk as long as all huge pmd are found and have their
  1039. * splitting bit set before __split_huge_page_refcount
  1040. * runs. Finding the same huge pmd more than once during the
  1041. * same rmap walk is not a problem.
  1042. */
  1043. if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
  1044. pmd_trans_splitting(*pmd))
  1045. goto out;
  1046. if (pmd_trans_huge(*pmd)) {
  1047. VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
  1048. !pmd_trans_splitting(*pmd));
  1049. ret = pmd;
  1050. }
  1051. out:
  1052. return ret;
  1053. }
  1054. static int __split_huge_page_splitting(struct page *page,
  1055. struct vm_area_struct *vma,
  1056. unsigned long address)
  1057. {
  1058. struct mm_struct *mm = vma->vm_mm;
  1059. pmd_t *pmd;
  1060. int ret = 0;
  1061. spin_lock(&mm->page_table_lock);
  1062. pmd = page_check_address_pmd(page, mm, address,
  1063. PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
  1064. if (pmd) {
  1065. /*
  1066. * We can't temporarily set the pmd to null in order
  1067. * to split it, the pmd must remain marked huge at all
  1068. * times or the VM won't take the pmd_trans_huge paths
  1069. * and it won't wait on the anon_vma->root->mutex to
  1070. * serialize against split_huge_page*.
  1071. */
  1072. pmdp_splitting_flush_notify(vma, address, pmd);
  1073. ret = 1;
  1074. }
  1075. spin_unlock(&mm->page_table_lock);
  1076. return ret;
  1077. }
  1078. static void __split_huge_page_refcount(struct page *page)
  1079. {
  1080. int i;
  1081. struct zone *zone = page_zone(page);
  1082. struct lruvec *lruvec;
  1083. int tail_count = 0;
  1084. /* prevent PageLRU to go away from under us, and freeze lru stats */
  1085. spin_lock_irq(&zone->lru_lock);
  1086. lruvec = mem_cgroup_page_lruvec(page, zone);
  1087. compound_lock(page);
  1088. /* complete memcg works before add pages to LRU */
  1089. mem_cgroup_split_huge_fixup(page);
  1090. for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
  1091. struct page *page_tail = page + i;
  1092. /* tail_page->_mapcount cannot change */
  1093. BUG_ON(page_mapcount(page_tail) < 0);
  1094. tail_count += page_mapcount(page_tail);
  1095. /* check for overflow */
  1096. BUG_ON(tail_count < 0);
  1097. BUG_ON(atomic_read(&page_tail->_count) != 0);
  1098. /*
  1099. * tail_page->_count is zero and not changing from
  1100. * under us. But get_page_unless_zero() may be running
  1101. * from under us on the tail_page. If we used
  1102. * atomic_set() below instead of atomic_add(), we
  1103. * would then run atomic_set() concurrently with
  1104. * get_page_unless_zero(), and atomic_set() is
  1105. * implemented in C not using locked ops. spin_unlock
  1106. * on x86 sometime uses locked ops because of PPro
  1107. * errata 66, 92, so unless somebody can guarantee
  1108. * atomic_set() here would be safe on all archs (and
  1109. * not only on x86), it's safer to use atomic_add().
  1110. */
  1111. atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
  1112. &page_tail->_count);
  1113. /* after clearing PageTail the gup refcount can be released */
  1114. smp_mb();
  1115. /*
  1116. * retain hwpoison flag of the poisoned tail page:
  1117. * fix for the unsuitable process killed on Guest Machine(KVM)
  1118. * by the memory-failure.
  1119. */
  1120. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
  1121. page_tail->flags |= (page->flags &
  1122. ((1L << PG_referenced) |
  1123. (1L << PG_swapbacked) |
  1124. (1L << PG_mlocked) |
  1125. (1L << PG_uptodate)));
  1126. page_tail->flags |= (1L << PG_dirty);
  1127. /* clear PageTail before overwriting first_page */
  1128. smp_wmb();
  1129. /*
  1130. * __split_huge_page_splitting() already set the
  1131. * splitting bit in all pmd that could map this
  1132. * hugepage, that will ensure no CPU can alter the
  1133. * mapcount on the head page. The mapcount is only
  1134. * accounted in the head page and it has to be
  1135. * transferred to all tail pages in the below code. So
  1136. * for this code to be safe, the split the mapcount
  1137. * can't change. But that doesn't mean userland can't
  1138. * keep changing and reading the page contents while
  1139. * we transfer the mapcount, so the pmd splitting
  1140. * status is achieved setting a reserved bit in the
  1141. * pmd, not by clearing the present bit.
  1142. */
  1143. page_tail->_mapcount = page->_mapcount;
  1144. BUG_ON(page_tail->mapping);
  1145. page_tail->mapping = page->mapping;
  1146. page_tail->index = page->index + i;
  1147. BUG_ON(!PageAnon(page_tail));
  1148. BUG_ON(!PageUptodate(page_tail));
  1149. BUG_ON(!PageDirty(page_tail));
  1150. BUG_ON(!PageSwapBacked(page_tail));
  1151. lru_add_page_tail(page, page_tail, lruvec);
  1152. }
  1153. atomic_sub(tail_count, &page->_count);
  1154. BUG_ON(atomic_read(&page->_count) <= 0);
  1155. __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
  1156. __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
  1157. ClearPageCompound(page);
  1158. compound_unlock(page);
  1159. spin_unlock_irq(&zone->lru_lock);
  1160. for (i = 1; i < HPAGE_PMD_NR; i++) {
  1161. struct page *page_tail = page + i;
  1162. BUG_ON(page_count(page_tail) <= 0);
  1163. /*
  1164. * Tail pages may be freed if there wasn't any mapping
  1165. * like if add_to_swap() is running on a lru page that
  1166. * had its mapping zapped. And freeing these pages
  1167. * requires taking the lru_lock so we do the put_page
  1168. * of the tail pages after the split is complete.
  1169. */
  1170. put_page(page_tail);
  1171. }
  1172. /*
  1173. * Only the head page (now become a regular page) is required
  1174. * to be pinned by the caller.
  1175. */
  1176. BUG_ON(page_count(page) <= 0);
  1177. }
  1178. static int __split_huge_page_map(struct page *page,
  1179. struct vm_area_struct *vma,
  1180. unsigned long address)
  1181. {
  1182. struct mm_struct *mm = vma->vm_mm;
  1183. pmd_t *pmd, _pmd;
  1184. int ret = 0, i;
  1185. pgtable_t pgtable;
  1186. unsigned long haddr;
  1187. spin_lock(&mm->page_table_lock);
  1188. pmd = page_check_address_pmd(page, mm, address,
  1189. PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
  1190. if (pmd) {
  1191. pgtable = get_pmd_huge_pte(mm);
  1192. pmd_populate(mm, &_pmd, pgtable);
  1193. for (i = 0, haddr = address; i < HPAGE_PMD_NR;
  1194. i++, haddr += PAGE_SIZE) {
  1195. pte_t *pte, entry;
  1196. BUG_ON(PageCompound(page+i));
  1197. entry = mk_pte(page + i, vma->vm_page_prot);
  1198. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1199. if (!pmd_write(*pmd))
  1200. entry = pte_wrprotect(entry);
  1201. else
  1202. BUG_ON(page_mapcount(page) != 1);
  1203. if (!pmd_young(*pmd))
  1204. entry = pte_mkold(entry);
  1205. pte = pte_offset_map(&_pmd, haddr);
  1206. BUG_ON(!pte_none(*pte));
  1207. set_pte_at(mm, haddr, pte, entry);
  1208. pte_unmap(pte);
  1209. }
  1210. smp_wmb(); /* make pte visible before pmd */
  1211. /*
  1212. * Up to this point the pmd is present and huge and
  1213. * userland has the whole access to the hugepage
  1214. * during the split (which happens in place). If we
  1215. * overwrite the pmd with the not-huge version
  1216. * pointing to the pte here (which of course we could
  1217. * if all CPUs were bug free), userland could trigger
  1218. * a small page size TLB miss on the small sized TLB
  1219. * while the hugepage TLB entry is still established
  1220. * in the huge TLB. Some CPU doesn't like that. See
  1221. * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
  1222. * Erratum 383 on page 93. Intel should be safe but is
  1223. * also warns that it's only safe if the permission
  1224. * and cache attributes of the two entries loaded in
  1225. * the two TLB is identical (which should be the case
  1226. * here). But it is generally safer to never allow
  1227. * small and huge TLB entries for the same virtual
  1228. * address to be loaded simultaneously. So instead of
  1229. * doing "pmd_populate(); flush_tlb_range();" we first
  1230. * mark the current pmd notpresent (atomically because
  1231. * here the pmd_trans_huge and pmd_trans_splitting
  1232. * must remain set at all times on the pmd until the
  1233. * split is complete for this pmd), then we flush the
  1234. * SMP TLB and finally we write the non-huge version
  1235. * of the pmd entry with pmd_populate.
  1236. */
  1237. set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
  1238. flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
  1239. pmd_populate(mm, pmd, pgtable);
  1240. ret = 1;
  1241. }
  1242. spin_unlock(&mm->page_table_lock);
  1243. return ret;
  1244. }
  1245. /* must be called with anon_vma->root->mutex hold */
  1246. static void __split_huge_page(struct page *page,
  1247. struct anon_vma *anon_vma)
  1248. {
  1249. int mapcount, mapcount2;
  1250. struct anon_vma_chain *avc;
  1251. BUG_ON(!PageHead(page));
  1252. BUG_ON(PageTail(page));
  1253. mapcount = 0;
  1254. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1255. struct vm_area_struct *vma = avc->vma;
  1256. unsigned long addr = vma_address(page, vma);
  1257. BUG_ON(is_vma_temporary_stack(vma));
  1258. if (addr == -EFAULT)
  1259. continue;
  1260. mapcount += __split_huge_page_splitting(page, vma, addr);
  1261. }
  1262. /*
  1263. * It is critical that new vmas are added to the tail of the
  1264. * anon_vma list. This guarantes that if copy_huge_pmd() runs
  1265. * and establishes a child pmd before
  1266. * __split_huge_page_splitting() freezes the parent pmd (so if
  1267. * we fail to prevent copy_huge_pmd() from running until the
  1268. * whole __split_huge_page() is complete), we will still see
  1269. * the newly established pmd of the child later during the
  1270. * walk, to be able to set it as pmd_trans_splitting too.
  1271. */
  1272. if (mapcount != page_mapcount(page))
  1273. printk(KERN_ERR "mapcount %d page_mapcount %d\n",
  1274. mapcount, page_mapcount(page));
  1275. BUG_ON(mapcount != page_mapcount(page));
  1276. __split_huge_page_refcount(page);
  1277. mapcount2 = 0;
  1278. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1279. struct vm_area_struct *vma = avc->vma;
  1280. unsigned long addr = vma_address(page, vma);
  1281. BUG_ON(is_vma_temporary_stack(vma));
  1282. if (addr == -EFAULT)
  1283. continue;
  1284. mapcount2 += __split_huge_page_map(page, vma, addr);
  1285. }
  1286. if (mapcount != mapcount2)
  1287. printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
  1288. mapcount, mapcount2, page_mapcount(page));
  1289. BUG_ON(mapcount != mapcount2);
  1290. }
  1291. int split_huge_page(struct page *page)
  1292. {
  1293. struct anon_vma *anon_vma;
  1294. int ret = 1;
  1295. BUG_ON(!PageAnon(page));
  1296. anon_vma = page_lock_anon_vma(page);
  1297. if (!anon_vma)
  1298. goto out;
  1299. ret = 0;
  1300. if (!PageCompound(page))
  1301. goto out_unlock;
  1302. BUG_ON(!PageSwapBacked(page));
  1303. __split_huge_page(page, anon_vma);
  1304. count_vm_event(THP_SPLIT);
  1305. BUG_ON(PageCompound(page));
  1306. out_unlock:
  1307. page_unlock_anon_vma(anon_vma);
  1308. out:
  1309. return ret;
  1310. }
  1311. #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
  1312. int hugepage_madvise(struct vm_area_struct *vma,
  1313. unsigned long *vm_flags, int advice)
  1314. {
  1315. switch (advice) {
  1316. case MADV_HUGEPAGE:
  1317. /*
  1318. * Be somewhat over-protective like KSM for now!
  1319. */
  1320. if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
  1321. return -EINVAL;
  1322. *vm_flags &= ~VM_NOHUGEPAGE;
  1323. *vm_flags |= VM_HUGEPAGE;
  1324. /*
  1325. * If the vma become good for khugepaged to scan,
  1326. * register it here without waiting a page fault that
  1327. * may not happen any time soon.
  1328. */
  1329. if (unlikely(khugepaged_enter_vma_merge(vma)))
  1330. return -ENOMEM;
  1331. break;
  1332. case MADV_NOHUGEPAGE:
  1333. /*
  1334. * Be somewhat over-protective like KSM for now!
  1335. */
  1336. if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
  1337. return -EINVAL;
  1338. *vm_flags &= ~VM_HUGEPAGE;
  1339. *vm_flags |= VM_NOHUGEPAGE;
  1340. /*
  1341. * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
  1342. * this vma even if we leave the mm registered in khugepaged if
  1343. * it got registered before VM_NOHUGEPAGE was set.
  1344. */
  1345. break;
  1346. }
  1347. return 0;
  1348. }
  1349. static int __init khugepaged_slab_init(void)
  1350. {
  1351. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  1352. sizeof(struct mm_slot),
  1353. __alignof__(struct mm_slot), 0, NULL);
  1354. if (!mm_slot_cache)
  1355. return -ENOMEM;
  1356. return 0;
  1357. }
  1358. static void __init khugepaged_slab_free(void)
  1359. {
  1360. kmem_cache_destroy(mm_slot_cache);
  1361. mm_slot_cache = NULL;
  1362. }
  1363. static inline struct mm_slot *alloc_mm_slot(void)
  1364. {
  1365. if (!mm_slot_cache) /* initialization failed */
  1366. return NULL;
  1367. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  1368. }
  1369. static inline void free_mm_slot(struct mm_slot *mm_slot)
  1370. {
  1371. kmem_cache_free(mm_slot_cache, mm_slot);
  1372. }
  1373. static int __init mm_slots_hash_init(void)
  1374. {
  1375. mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
  1376. GFP_KERNEL);
  1377. if (!mm_slots_hash)
  1378. return -ENOMEM;
  1379. return 0;
  1380. }
  1381. #if 0
  1382. static void __init mm_slots_hash_free(void)
  1383. {
  1384. kfree(mm_slots_hash);
  1385. mm_slots_hash = NULL;
  1386. }
  1387. #endif
  1388. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  1389. {
  1390. struct mm_slot *mm_slot;
  1391. struct hlist_head *bucket;
  1392. struct hlist_node *node;
  1393. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1394. % MM_SLOTS_HASH_HEADS];
  1395. hlist_for_each_entry(mm_slot, node, bucket, hash) {
  1396. if (mm == mm_slot->mm)
  1397. return mm_slot;
  1398. }
  1399. return NULL;
  1400. }
  1401. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  1402. struct mm_slot *mm_slot)
  1403. {
  1404. struct hlist_head *bucket;
  1405. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1406. % MM_SLOTS_HASH_HEADS];
  1407. mm_slot->mm = mm;
  1408. hlist_add_head(&mm_slot->hash, bucket);
  1409. }
  1410. static inline int khugepaged_test_exit(struct mm_struct *mm)
  1411. {
  1412. return atomic_read(&mm->mm_users) == 0;
  1413. }
  1414. int __khugepaged_enter(struct mm_struct *mm)
  1415. {
  1416. struct mm_slot *mm_slot;
  1417. int wakeup;
  1418. mm_slot = alloc_mm_slot();
  1419. if (!mm_slot)
  1420. return -ENOMEM;
  1421. /* __khugepaged_exit() must not run from under us */
  1422. VM_BUG_ON(khugepaged_test_exit(mm));
  1423. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  1424. free_mm_slot(mm_slot);
  1425. return 0;
  1426. }
  1427. spin_lock(&khugepaged_mm_lock);
  1428. insert_to_mm_slots_hash(mm, mm_slot);
  1429. /*
  1430. * Insert just behind the scanning cursor, to let the area settle
  1431. * down a little.
  1432. */
  1433. wakeup = list_empty(&khugepaged_scan.mm_head);
  1434. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  1435. spin_unlock(&khugepaged_mm_lock);
  1436. atomic_inc(&mm->mm_count);
  1437. if (wakeup)
  1438. wake_up_interruptible(&khugepaged_wait);
  1439. return 0;
  1440. }
  1441. int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
  1442. {
  1443. unsigned long hstart, hend;
  1444. if (!vma->anon_vma)
  1445. /*
  1446. * Not yet faulted in so we will register later in the
  1447. * page fault if needed.
  1448. */
  1449. return 0;
  1450. if (vma->vm_ops)
  1451. /* khugepaged not yet working on file or special mappings */
  1452. return 0;
  1453. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1454. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1455. hend = vma->vm_end & HPAGE_PMD_MASK;
  1456. if (hstart < hend)
  1457. return khugepaged_enter(vma);
  1458. return 0;
  1459. }
  1460. void __khugepaged_exit(struct mm_struct *mm)
  1461. {
  1462. struct mm_slot *mm_slot;
  1463. int free = 0;
  1464. spin_lock(&khugepaged_mm_lock);
  1465. mm_slot = get_mm_slot(mm);
  1466. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  1467. hlist_del(&mm_slot->hash);
  1468. list_del(&mm_slot->mm_node);
  1469. free = 1;
  1470. }
  1471. spin_unlock(&khugepaged_mm_lock);
  1472. if (free) {
  1473. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1474. free_mm_slot(mm_slot);
  1475. mmdrop(mm);
  1476. } else if (mm_slot) {
  1477. /*
  1478. * This is required to serialize against
  1479. * khugepaged_test_exit() (which is guaranteed to run
  1480. * under mmap sem read mode). Stop here (after we
  1481. * return all pagetables will be destroyed) until
  1482. * khugepaged has finished working on the pagetables
  1483. * under the mmap_sem.
  1484. */
  1485. down_write(&mm->mmap_sem);
  1486. up_write(&mm->mmap_sem);
  1487. }
  1488. }
  1489. static void release_pte_page(struct page *page)
  1490. {
  1491. /* 0 stands for page_is_file_cache(page) == false */
  1492. dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1493. unlock_page(page);
  1494. putback_lru_page(page);
  1495. }
  1496. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  1497. {
  1498. while (--_pte >= pte) {
  1499. pte_t pteval = *_pte;
  1500. if (!pte_none(pteval))
  1501. release_pte_page(pte_page(pteval));
  1502. }
  1503. }
  1504. static void release_all_pte_pages(pte_t *pte)
  1505. {
  1506. release_pte_pages(pte, pte + HPAGE_PMD_NR);
  1507. }
  1508. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  1509. unsigned long address,
  1510. pte_t *pte)
  1511. {
  1512. struct page *page;
  1513. pte_t *_pte;
  1514. int referenced = 0, isolated = 0, none = 0;
  1515. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  1516. _pte++, address += PAGE_SIZE) {
  1517. pte_t pteval = *_pte;
  1518. if (pte_none(pteval)) {
  1519. if (++none <= khugepaged_max_ptes_none)
  1520. continue;
  1521. else {
  1522. release_pte_pages(pte, _pte);
  1523. goto out;
  1524. }
  1525. }
  1526. if (!pte_present(pteval) || !pte_write(pteval)) {
  1527. release_pte_pages(pte, _pte);
  1528. goto out;
  1529. }
  1530. page = vm_normal_page(vma, address, pteval);
  1531. if (unlikely(!page)) {
  1532. release_pte_pages(pte, _pte);
  1533. goto out;
  1534. }
  1535. VM_BUG_ON(PageCompound(page));
  1536. BUG_ON(!PageAnon(page));
  1537. VM_BUG_ON(!PageSwapBacked(page));
  1538. /* cannot use mapcount: can't collapse if there's a gup pin */
  1539. if (page_count(page) != 1) {
  1540. release_pte_pages(pte, _pte);
  1541. goto out;
  1542. }
  1543. /*
  1544. * We can do it before isolate_lru_page because the
  1545. * page can't be freed from under us. NOTE: PG_lock
  1546. * is needed to serialize against split_huge_page
  1547. * when invoked from the VM.
  1548. */
  1549. if (!trylock_page(page)) {
  1550. release_pte_pages(pte, _pte);
  1551. goto out;
  1552. }
  1553. /*
  1554. * Isolate the page to avoid collapsing an hugepage
  1555. * currently in use by the VM.
  1556. */
  1557. if (isolate_lru_page(page)) {
  1558. unlock_page(page);
  1559. release_pte_pages(pte, _pte);
  1560. goto out;
  1561. }
  1562. /* 0 stands for page_is_file_cache(page) == false */
  1563. inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1564. VM_BUG_ON(!PageLocked(page));
  1565. VM_BUG_ON(PageLRU(page));
  1566. /* If there is no mapped pte young don't collapse the page */
  1567. if (pte_young(pteval) || PageReferenced(page) ||
  1568. mmu_notifier_test_young(vma->vm_mm, address))
  1569. referenced = 1;
  1570. }
  1571. if (unlikely(!referenced))
  1572. release_all_pte_pages(pte);
  1573. else
  1574. isolated = 1;
  1575. out:
  1576. return isolated;
  1577. }
  1578. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  1579. struct vm_area_struct *vma,
  1580. unsigned long address,
  1581. spinlock_t *ptl)
  1582. {
  1583. pte_t *_pte;
  1584. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  1585. pte_t pteval = *_pte;
  1586. struct page *src_page;
  1587. if (pte_none(pteval)) {
  1588. clear_user_highpage(page, address);
  1589. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  1590. } else {
  1591. src_page = pte_page(pteval);
  1592. copy_user_highpage(page, src_page, address, vma);
  1593. VM_BUG_ON(page_mapcount(src_page) != 1);
  1594. release_pte_page(src_page);
  1595. /*
  1596. * ptl mostly unnecessary, but preempt has to
  1597. * be disabled to update the per-cpu stats
  1598. * inside page_remove_rmap().
  1599. */
  1600. spin_lock(ptl);
  1601. /*
  1602. * paravirt calls inside pte_clear here are
  1603. * superfluous.
  1604. */
  1605. pte_clear(vma->vm_mm, address, _pte);
  1606. page_remove_rmap(src_page);
  1607. spin_unlock(ptl);
  1608. free_page_and_swap_cache(src_page);
  1609. }
  1610. address += PAGE_SIZE;
  1611. page++;
  1612. }
  1613. }
  1614. static void collapse_huge_page(struct mm_struct *mm,
  1615. unsigned long address,
  1616. struct page **hpage,
  1617. struct vm_area_struct *vma,
  1618. int node)
  1619. {
  1620. pgd_t *pgd;
  1621. pud_t *pud;
  1622. pmd_t *pmd, _pmd;
  1623. pte_t *pte;
  1624. pgtable_t pgtable;
  1625. struct page *new_page;
  1626. spinlock_t *ptl;
  1627. int isolated;
  1628. unsigned long hstart, hend;
  1629. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1630. #ifndef CONFIG_NUMA
  1631. up_read(&mm->mmap_sem);
  1632. VM_BUG_ON(!*hpage);
  1633. new_page = *hpage;
  1634. #else
  1635. VM_BUG_ON(*hpage);
  1636. /*
  1637. * Allocate the page while the vma is still valid and under
  1638. * the mmap_sem read mode so there is no memory allocation
  1639. * later when we take the mmap_sem in write mode. This is more
  1640. * friendly behavior (OTOH it may actually hide bugs) to
  1641. * filesystems in userland with daemons allocating memory in
  1642. * the userland I/O paths. Allocating memory with the
  1643. * mmap_sem in read mode is good idea also to allow greater
  1644. * scalability.
  1645. */
  1646. new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
  1647. node, __GFP_OTHER_NODE);
  1648. /*
  1649. * After allocating the hugepage, release the mmap_sem read lock in
  1650. * preparation for taking it in write mode.
  1651. */
  1652. up_read(&mm->mmap_sem);
  1653. if (unlikely(!new_page)) {
  1654. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1655. *hpage = ERR_PTR(-ENOMEM);
  1656. return;
  1657. }
  1658. count_vm_event(THP_COLLAPSE_ALLOC);
  1659. #endif
  1660. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  1661. #ifdef CONFIG_NUMA
  1662. put_page(new_page);
  1663. #endif
  1664. return;
  1665. }
  1666. /*
  1667. * Prevent all access to pagetables with the exception of
  1668. * gup_fast later hanlded by the ptep_clear_flush and the VM
  1669. * handled by the anon_vma lock + PG_lock.
  1670. */
  1671. down_write(&mm->mmap_sem);
  1672. if (unlikely(khugepaged_test_exit(mm)))
  1673. goto out;
  1674. vma = find_vma(mm, address);
  1675. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1676. hend = vma->vm_end & HPAGE_PMD_MASK;
  1677. if (address < hstart || address + HPAGE_PMD_SIZE > hend)
  1678. goto out;
  1679. if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
  1680. (vma->vm_flags & VM_NOHUGEPAGE))
  1681. goto out;
  1682. if (!vma->anon_vma || vma->vm_ops)
  1683. goto out;
  1684. if (is_vma_temporary_stack(vma))
  1685. goto out;
  1686. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1687. pgd = pgd_offset(mm, address);
  1688. if (!pgd_present(*pgd))
  1689. goto out;
  1690. pud = pud_offset(pgd, address);
  1691. if (!pud_present(*pud))
  1692. goto out;
  1693. pmd = pmd_offset(pud, address);
  1694. /* pmd can't go away or become huge under us */
  1695. if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
  1696. goto out;
  1697. anon_vma_lock(vma->anon_vma);
  1698. pte = pte_offset_map(pmd, address);
  1699. ptl = pte_lockptr(mm, pmd);
  1700. spin_lock(&mm->page_table_lock); /* probably unnecessary */
  1701. /*
  1702. * After this gup_fast can't run anymore. This also removes
  1703. * any huge TLB entry from the CPU so we won't allow
  1704. * huge and small TLB entries for the same virtual address
  1705. * to avoid the risk of CPU bugs in that area.
  1706. */
  1707. _pmd = pmdp_clear_flush_notify(vma, address, pmd);
  1708. spin_unlock(&mm->page_table_lock);
  1709. spin_lock(ptl);
  1710. isolated = __collapse_huge_page_isolate(vma, address, pte);
  1711. spin_unlock(ptl);
  1712. if (unlikely(!isolated)) {
  1713. pte_unmap(pte);
  1714. spin_lock(&mm->page_table_lock);
  1715. BUG_ON(!pmd_none(*pmd));
  1716. set_pmd_at(mm, address, pmd, _pmd);
  1717. spin_unlock(&mm->page_table_lock);
  1718. anon_vma_unlock(vma->anon_vma);
  1719. goto out;
  1720. }
  1721. /*
  1722. * All pages are isolated and locked so anon_vma rmap
  1723. * can't run anymore.
  1724. */
  1725. anon_vma_unlock(vma->anon_vma);
  1726. __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
  1727. pte_unmap(pte);
  1728. __SetPageUptodate(new_page);
  1729. pgtable = pmd_pgtable(_pmd);
  1730. VM_BUG_ON(page_count(pgtable) != 1);
  1731. VM_BUG_ON(page_mapcount(pgtable) != 0);
  1732. _pmd = mk_pmd(new_page, vma->vm_page_prot);
  1733. _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
  1734. _pmd = pmd_mkhuge(_pmd);
  1735. /*
  1736. * spin_lock() below is not the equivalent of smp_wmb(), so
  1737. * this is needed to avoid the copy_huge_page writes to become
  1738. * visible after the set_pmd_at() write.
  1739. */
  1740. smp_wmb();
  1741. spin_lock(&mm->page_table_lock);
  1742. BUG_ON(!pmd_none(*pmd));
  1743. page_add_new_anon_rmap(new_page, vma, address);
  1744. set_pmd_at(mm, address, pmd, _pmd);
  1745. update_mmu_cache(vma, address, _pmd);
  1746. prepare_pmd_huge_pte(pgtable, mm);
  1747. spin_unlock(&mm->page_table_lock);
  1748. #ifndef CONFIG_NUMA
  1749. *hpage = NULL;
  1750. #endif
  1751. khugepaged_pages_collapsed++;
  1752. out_up_write:
  1753. up_write(&mm->mmap_sem);
  1754. return;
  1755. out:
  1756. mem_cgroup_uncharge_page(new_page);
  1757. #ifdef CONFIG_NUMA
  1758. put_page(new_page);
  1759. #endif
  1760. goto out_up_write;
  1761. }
  1762. static int khugepaged_scan_pmd(struct mm_struct *mm,
  1763. struct vm_area_struct *vma,
  1764. unsigned long address,
  1765. struct page **hpage)
  1766. {
  1767. pgd_t *pgd;
  1768. pud_t *pud;
  1769. pmd_t *pmd;
  1770. pte_t *pte, *_pte;
  1771. int ret = 0, referenced = 0, none = 0;
  1772. struct page *page;
  1773. unsigned long _address;
  1774. spinlock_t *ptl;
  1775. int node = -1;
  1776. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1777. pgd = pgd_offset(mm, address);
  1778. if (!pgd_present(*pgd))
  1779. goto out;
  1780. pud = pud_offset(pgd, address);
  1781. if (!pud_present(*pud))
  1782. goto out;
  1783. pmd = pmd_offset(pud, address);
  1784. if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
  1785. goto out;
  1786. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  1787. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  1788. _pte++, _address += PAGE_SIZE) {
  1789. pte_t pteval = *_pte;
  1790. if (pte_none(pteval)) {
  1791. if (++none <= khugepaged_max_ptes_none)
  1792. continue;
  1793. else
  1794. goto out_unmap;
  1795. }
  1796. if (!pte_present(pteval) || !pte_write(pteval))
  1797. goto out_unmap;
  1798. page = vm_normal_page(vma, _address, pteval);
  1799. if (unlikely(!page))
  1800. goto out_unmap;
  1801. /*
  1802. * Chose the node of the first page. This could
  1803. * be more sophisticated and look at more pages,
  1804. * but isn't for now.
  1805. */
  1806. if (node == -1)
  1807. node = page_to_nid(page);
  1808. VM_BUG_ON(PageCompound(page));
  1809. if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
  1810. goto out_unmap;
  1811. /* cannot use mapcount: can't collapse if there's a gup pin */
  1812. if (page_count(page) != 1)
  1813. goto out_unmap;
  1814. if (pte_young(pteval) || PageReferenced(page) ||
  1815. mmu_notifier_test_young(vma->vm_mm, address))
  1816. referenced = 1;
  1817. }
  1818. if (referenced)
  1819. ret = 1;
  1820. out_unmap:
  1821. pte_unmap_unlock(pte, ptl);
  1822. if (ret)
  1823. /* collapse_huge_page will return with the mmap_sem released */
  1824. collapse_huge_page(mm, address, hpage, vma, node);
  1825. out:
  1826. return ret;
  1827. }
  1828. static void collect_mm_slot(struct mm_slot *mm_slot)
  1829. {
  1830. struct mm_struct *mm = mm_slot->mm;
  1831. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  1832. if (khugepaged_test_exit(mm)) {
  1833. /* free mm_slot */
  1834. hlist_del(&mm_slot->hash);
  1835. list_del(&mm_slot->mm_node);
  1836. /*
  1837. * Not strictly needed because the mm exited already.
  1838. *
  1839. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1840. */
  1841. /* khugepaged_mm_lock actually not necessary for the below */
  1842. free_mm_slot(mm_slot);
  1843. mmdrop(mm);
  1844. }
  1845. }
  1846. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  1847. struct page **hpage)
  1848. __releases(&khugepaged_mm_lock)
  1849. __acquires(&khugepaged_mm_lock)
  1850. {
  1851. struct mm_slot *mm_slot;
  1852. struct mm_struct *mm;
  1853. struct vm_area_struct *vma;
  1854. int progress = 0;
  1855. VM_BUG_ON(!pages);
  1856. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  1857. if (khugepaged_scan.mm_slot)
  1858. mm_slot = khugepaged_scan.mm_slot;
  1859. else {
  1860. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  1861. struct mm_slot, mm_node);
  1862. khugepaged_scan.address = 0;
  1863. khugepaged_scan.mm_slot = mm_slot;
  1864. }
  1865. spin_unlock(&khugepaged_mm_lock);
  1866. mm = mm_slot->mm;
  1867. down_read(&mm->mmap_sem);
  1868. if (unlikely(khugepaged_test_exit(mm)))
  1869. vma = NULL;
  1870. else
  1871. vma = find_vma(mm, khugepaged_scan.address);
  1872. progress++;
  1873. for (; vma; vma = vma->vm_next) {
  1874. unsigned long hstart, hend;
  1875. cond_resched();
  1876. if (unlikely(khugepaged_test_exit(mm))) {
  1877. progress++;
  1878. break;
  1879. }
  1880. if ((!(vma->vm_flags & VM_HUGEPAGE) &&
  1881. !khugepaged_always()) ||
  1882. (vma->vm_flags & VM_NOHUGEPAGE)) {
  1883. skip:
  1884. progress++;
  1885. continue;
  1886. }
  1887. if (!vma->anon_vma || vma->vm_ops)
  1888. goto skip;
  1889. if (is_vma_temporary_stack(vma))
  1890. goto skip;
  1891. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1892. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1893. hend = vma->vm_end & HPAGE_PMD_MASK;
  1894. if (hstart >= hend)
  1895. goto skip;
  1896. if (khugepaged_scan.address > hend)
  1897. goto skip;
  1898. if (khugepaged_scan.address < hstart)
  1899. khugepaged_scan.address = hstart;
  1900. VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  1901. while (khugepaged_scan.address < hend) {
  1902. int ret;
  1903. cond_resched();
  1904. if (unlikely(khugepaged_test_exit(mm)))
  1905. goto breakouterloop;
  1906. VM_BUG_ON(khugepaged_scan.address < hstart ||
  1907. khugepaged_scan.address + HPAGE_PMD_SIZE >
  1908. hend);
  1909. ret = khugepaged_scan_pmd(mm, vma,
  1910. khugepaged_scan.address,
  1911. hpage);
  1912. /* move to next address */
  1913. khugepaged_scan.address += HPAGE_PMD_SIZE;
  1914. progress += HPAGE_PMD_NR;
  1915. if (ret)
  1916. /* we released mmap_sem so break loop */
  1917. goto breakouterloop_mmap_sem;
  1918. if (progress >= pages)
  1919. goto breakouterloop;
  1920. }
  1921. }
  1922. breakouterloop:
  1923. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  1924. breakouterloop_mmap_sem:
  1925. spin_lock(&khugepaged_mm_lock);
  1926. VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  1927. /*
  1928. * Release the current mm_slot if this mm is about to die, or
  1929. * if we scanned all vmas of this mm.
  1930. */
  1931. if (khugepaged_test_exit(mm) || !vma) {
  1932. /*
  1933. * Make sure that if mm_users is reaching zero while
  1934. * khugepaged runs here, khugepaged_exit will find
  1935. * mm_slot not pointing to the exiting mm.
  1936. */
  1937. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  1938. khugepaged_scan.mm_slot = list_entry(
  1939. mm_slot->mm_node.next,
  1940. struct mm_slot, mm_node);
  1941. khugepaged_scan.address = 0;
  1942. } else {
  1943. khugepaged_scan.mm_slot = NULL;
  1944. khugepaged_full_scans++;
  1945. }
  1946. collect_mm_slot(mm_slot);
  1947. }
  1948. return progress;
  1949. }
  1950. static int khugepaged_has_work(void)
  1951. {
  1952. return !list_empty(&khugepaged_scan.mm_head) &&
  1953. khugepaged_enabled();
  1954. }
  1955. static int khugepaged_wait_event(void)
  1956. {
  1957. return !list_empty(&khugepaged_scan.mm_head) ||
  1958. !khugepaged_enabled();
  1959. }
  1960. static void khugepaged_do_scan(struct page **hpage)
  1961. {
  1962. unsigned int progress = 0, pass_through_head = 0;
  1963. unsigned int pages = khugepaged_pages_to_scan;
  1964. barrier(); /* write khugepaged_pages_to_scan to local stack */
  1965. while (progress < pages) {
  1966. cond_resched();
  1967. #ifndef CONFIG_NUMA
  1968. if (!*hpage) {
  1969. *hpage = alloc_hugepage(khugepaged_defrag());
  1970. if (unlikely(!*hpage)) {
  1971. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1972. break;
  1973. }
  1974. count_vm_event(THP_COLLAPSE_ALLOC);
  1975. }
  1976. #else
  1977. if (IS_ERR(*hpage))
  1978. break;
  1979. #endif
  1980. if (unlikely(kthread_should_stop() || freezing(current)))
  1981. break;
  1982. spin_lock(&khugepaged_mm_lock);
  1983. if (!khugepaged_scan.mm_slot)
  1984. pass_through_head++;
  1985. if (khugepaged_has_work() &&
  1986. pass_through_head < 2)
  1987. progress += khugepaged_scan_mm_slot(pages - progress,
  1988. hpage);
  1989. else
  1990. progress = pages;
  1991. spin_unlock(&khugepaged_mm_lock);
  1992. }
  1993. }
  1994. static void khugepaged_alloc_sleep(void)
  1995. {
  1996. wait_event_freezable_timeout(khugepaged_wait, false,
  1997. msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
  1998. }
  1999. #ifndef CONFIG_NUMA
  2000. static struct page *khugepaged_alloc_hugepage(void)
  2001. {
  2002. struct page *hpage;
  2003. do {
  2004. hpage = alloc_hugepage(khugepaged_defrag());
  2005. if (!hpage) {
  2006. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  2007. khugepaged_alloc_sleep();
  2008. } else
  2009. count_vm_event(THP_COLLAPSE_ALLOC);
  2010. } while (unlikely(!hpage) &&
  2011. likely(khugepaged_enabled()));
  2012. return hpage;
  2013. }
  2014. #endif
  2015. static void khugepaged_loop(void)
  2016. {
  2017. struct page *hpage;
  2018. #ifdef CONFIG_NUMA
  2019. hpage = NULL;
  2020. #endif
  2021. while (likely(khugepaged_enabled())) {
  2022. #ifndef CONFIG_NUMA
  2023. hpage = khugepaged_alloc_hugepage();
  2024. if (unlikely(!hpage))
  2025. break;
  2026. #else
  2027. if (IS_ERR(hpage)) {
  2028. khugepaged_alloc_sleep();
  2029. hpage = NULL;
  2030. }
  2031. #endif
  2032. khugepaged_do_scan(&hpage);
  2033. #ifndef CONFIG_NUMA
  2034. if (hpage)
  2035. put_page(hpage);
  2036. #endif
  2037. try_to_freeze();
  2038. if (unlikely(kthread_should_stop()))
  2039. break;
  2040. if (khugepaged_has_work()) {
  2041. if (!khugepaged_scan_sleep_millisecs)
  2042. continue;
  2043. wait_event_freezable_timeout(khugepaged_wait, false,
  2044. msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
  2045. } else if (khugepaged_enabled())
  2046. wait_event_freezable(khugepaged_wait,
  2047. khugepaged_wait_event());
  2048. }
  2049. }
  2050. static int khugepaged(void *none)
  2051. {
  2052. struct mm_slot *mm_slot;
  2053. set_freezable();
  2054. set_user_nice(current, 19);
  2055. /* serialize with start_khugepaged() */
  2056. mutex_lock(&khugepaged_mutex);
  2057. for (;;) {
  2058. mutex_unlock(&khugepaged_mutex);
  2059. VM_BUG_ON(khugepaged_thread != current);
  2060. khugepaged_loop();
  2061. VM_BUG_ON(khugepaged_thread != current);
  2062. mutex_lock(&khugepaged_mutex);
  2063. if (!khugepaged_enabled())
  2064. break;
  2065. if (unlikely(kthread_should_stop()))
  2066. break;
  2067. }
  2068. spin_lock(&khugepaged_mm_lock);
  2069. mm_slot = khugepaged_scan.mm_slot;
  2070. khugepaged_scan.mm_slot = NULL;
  2071. if (mm_slot)
  2072. collect_mm_slot(mm_slot);
  2073. spin_unlock(&khugepaged_mm_lock);
  2074. khugepaged_thread = NULL;
  2075. mutex_unlock(&khugepaged_mutex);
  2076. return 0;
  2077. }
  2078. void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
  2079. {
  2080. struct page *page;
  2081. spin_lock(&mm->page_table_lock);
  2082. if (unlikely(!pmd_trans_huge(*pmd))) {
  2083. spin_unlock(&mm->page_table_lock);
  2084. return;
  2085. }
  2086. page = pmd_page(*pmd);
  2087. VM_BUG_ON(!page_count(page));
  2088. get_page(page);
  2089. spin_unlock(&mm->page_table_lock);
  2090. split_huge_page(page);
  2091. put_page(page);
  2092. BUG_ON(pmd_trans_huge(*pmd));
  2093. }
  2094. static void split_huge_page_address(struct mm_struct *mm,
  2095. unsigned long address)
  2096. {
  2097. pgd_t *pgd;
  2098. pud_t *pud;
  2099. pmd_t *pmd;
  2100. VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
  2101. pgd = pgd_offset(mm, address);
  2102. if (!pgd_present(*pgd))
  2103. return;
  2104. pud = pud_offset(pgd, address);
  2105. if (!pud_present(*pud))
  2106. return;
  2107. pmd = pmd_offset(pud, address);
  2108. if (!pmd_present(*pmd))
  2109. return;
  2110. /*
  2111. * Caller holds the mmap_sem write mode, so a huge pmd cannot
  2112. * materialize from under us.
  2113. */
  2114. split_huge_page_pmd(mm, pmd);
  2115. }
  2116. void __vma_adjust_trans_huge(struct vm_area_struct *vma,
  2117. unsigned long start,
  2118. unsigned long end,
  2119. long adjust_next)
  2120. {
  2121. /*
  2122. * If the new start address isn't hpage aligned and it could
  2123. * previously contain an hugepage: check if we need to split
  2124. * an huge pmd.
  2125. */
  2126. if (start & ~HPAGE_PMD_MASK &&
  2127. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  2128. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2129. split_huge_page_address(vma->vm_mm, start);
  2130. /*
  2131. * If the new end address isn't hpage aligned and it could
  2132. * previously contain an hugepage: check if we need to split
  2133. * an huge pmd.
  2134. */
  2135. if (end & ~HPAGE_PMD_MASK &&
  2136. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2137. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2138. split_huge_page_address(vma->vm_mm, end);
  2139. /*
  2140. * If we're also updating the vma->vm_next->vm_start, if the new
  2141. * vm_next->vm_start isn't page aligned and it could previously
  2142. * contain an hugepage: check if we need to split an huge pmd.
  2143. */
  2144. if (adjust_next > 0) {
  2145. struct vm_area_struct *next = vma->vm_next;
  2146. unsigned long nstart = next->vm_start;
  2147. nstart += adjust_next << PAGE_SHIFT;
  2148. if (nstart & ~HPAGE_PMD_MASK &&
  2149. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2150. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2151. split_huge_page_address(next->vm_mm, nstart);
  2152. }
  2153. }