t4_hw.c 103 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395
  1. /*
  2. * This file is part of the Chelsio T4 Ethernet driver for Linux.
  3. *
  4. * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
  5. *
  6. * This software is available to you under a choice of one of two
  7. * licenses. You may choose to be licensed under the terms of the GNU
  8. * General Public License (GPL) Version 2, available from the file
  9. * COPYING in the main directory of this source tree, or the
  10. * OpenIB.org BSD license below:
  11. *
  12. * Redistribution and use in source and binary forms, with or
  13. * without modification, are permitted provided that the following
  14. * conditions are met:
  15. *
  16. * - Redistributions of source code must retain the above
  17. * copyright notice, this list of conditions and the following
  18. * disclaimer.
  19. *
  20. * - Redistributions in binary form must reproduce the above
  21. * copyright notice, this list of conditions and the following
  22. * disclaimer in the documentation and/or other materials
  23. * provided with the distribution.
  24. *
  25. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  26. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  27. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  28. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  29. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  30. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  31. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  32. * SOFTWARE.
  33. */
  34. #include <linux/init.h>
  35. #include <linux/delay.h>
  36. #include "cxgb4.h"
  37. #include "t4_regs.h"
  38. #include "t4fw_api.h"
  39. /**
  40. * t4_wait_op_done_val - wait until an operation is completed
  41. * @adapter: the adapter performing the operation
  42. * @reg: the register to check for completion
  43. * @mask: a single-bit field within @reg that indicates completion
  44. * @polarity: the value of the field when the operation is completed
  45. * @attempts: number of check iterations
  46. * @delay: delay in usecs between iterations
  47. * @valp: where to store the value of the register at completion time
  48. *
  49. * Wait until an operation is completed by checking a bit in a register
  50. * up to @attempts times. If @valp is not NULL the value of the register
  51. * at the time it indicated completion is stored there. Returns 0 if the
  52. * operation completes and -EAGAIN otherwise.
  53. */
  54. static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
  55. int polarity, int attempts, int delay, u32 *valp)
  56. {
  57. while (1) {
  58. u32 val = t4_read_reg(adapter, reg);
  59. if (!!(val & mask) == polarity) {
  60. if (valp)
  61. *valp = val;
  62. return 0;
  63. }
  64. if (--attempts == 0)
  65. return -EAGAIN;
  66. if (delay)
  67. udelay(delay);
  68. }
  69. }
  70. static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
  71. int polarity, int attempts, int delay)
  72. {
  73. return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
  74. delay, NULL);
  75. }
  76. /**
  77. * t4_set_reg_field - set a register field to a value
  78. * @adapter: the adapter to program
  79. * @addr: the register address
  80. * @mask: specifies the portion of the register to modify
  81. * @val: the new value for the register field
  82. *
  83. * Sets a register field specified by the supplied mask to the
  84. * given value.
  85. */
  86. void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
  87. u32 val)
  88. {
  89. u32 v = t4_read_reg(adapter, addr) & ~mask;
  90. t4_write_reg(adapter, addr, v | val);
  91. (void) t4_read_reg(adapter, addr); /* flush */
  92. }
  93. /**
  94. * t4_read_indirect - read indirectly addressed registers
  95. * @adap: the adapter
  96. * @addr_reg: register holding the indirect address
  97. * @data_reg: register holding the value of the indirect register
  98. * @vals: where the read register values are stored
  99. * @nregs: how many indirect registers to read
  100. * @start_idx: index of first indirect register to read
  101. *
  102. * Reads registers that are accessed indirectly through an address/data
  103. * register pair.
  104. */
  105. static void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
  106. unsigned int data_reg, u32 *vals,
  107. unsigned int nregs, unsigned int start_idx)
  108. {
  109. while (nregs--) {
  110. t4_write_reg(adap, addr_reg, start_idx);
  111. *vals++ = t4_read_reg(adap, data_reg);
  112. start_idx++;
  113. }
  114. }
  115. /*
  116. * Get the reply to a mailbox command and store it in @rpl in big-endian order.
  117. */
  118. static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
  119. u32 mbox_addr)
  120. {
  121. for ( ; nflit; nflit--, mbox_addr += 8)
  122. *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
  123. }
  124. /*
  125. * Handle a FW assertion reported in a mailbox.
  126. */
  127. static void fw_asrt(struct adapter *adap, u32 mbox_addr)
  128. {
  129. struct fw_debug_cmd asrt;
  130. get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
  131. dev_alert(adap->pdev_dev,
  132. "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
  133. asrt.u.assert.filename_0_7, ntohl(asrt.u.assert.line),
  134. ntohl(asrt.u.assert.x), ntohl(asrt.u.assert.y));
  135. }
  136. static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg)
  137. {
  138. dev_err(adap->pdev_dev,
  139. "mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
  140. (unsigned long long)t4_read_reg64(adap, data_reg),
  141. (unsigned long long)t4_read_reg64(adap, data_reg + 8),
  142. (unsigned long long)t4_read_reg64(adap, data_reg + 16),
  143. (unsigned long long)t4_read_reg64(adap, data_reg + 24),
  144. (unsigned long long)t4_read_reg64(adap, data_reg + 32),
  145. (unsigned long long)t4_read_reg64(adap, data_reg + 40),
  146. (unsigned long long)t4_read_reg64(adap, data_reg + 48),
  147. (unsigned long long)t4_read_reg64(adap, data_reg + 56));
  148. }
  149. /**
  150. * t4_wr_mbox_meat - send a command to FW through the given mailbox
  151. * @adap: the adapter
  152. * @mbox: index of the mailbox to use
  153. * @cmd: the command to write
  154. * @size: command length in bytes
  155. * @rpl: where to optionally store the reply
  156. * @sleep_ok: if true we may sleep while awaiting command completion
  157. *
  158. * Sends the given command to FW through the selected mailbox and waits
  159. * for the FW to execute the command. If @rpl is not %NULL it is used to
  160. * store the FW's reply to the command. The command and its optional
  161. * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms
  162. * to respond. @sleep_ok determines whether we may sleep while awaiting
  163. * the response. If sleeping is allowed we use progressive backoff
  164. * otherwise we spin.
  165. *
  166. * The return value is 0 on success or a negative errno on failure. A
  167. * failure can happen either because we are not able to execute the
  168. * command or FW executes it but signals an error. In the latter case
  169. * the return value is the error code indicated by FW (negated).
  170. */
  171. int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
  172. void *rpl, bool sleep_ok)
  173. {
  174. static const int delay[] = {
  175. 1, 1, 3, 5, 10, 10, 20, 50, 100, 200
  176. };
  177. u32 v;
  178. u64 res;
  179. int i, ms, delay_idx;
  180. const __be64 *p = cmd;
  181. u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA);
  182. u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL);
  183. if ((size & 15) || size > MBOX_LEN)
  184. return -EINVAL;
  185. /*
  186. * If the device is off-line, as in EEH, commands will time out.
  187. * Fail them early so we don't waste time waiting.
  188. */
  189. if (adap->pdev->error_state != pci_channel_io_normal)
  190. return -EIO;
  191. v = MBOWNER_GET(t4_read_reg(adap, ctl_reg));
  192. for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
  193. v = MBOWNER_GET(t4_read_reg(adap, ctl_reg));
  194. if (v != MBOX_OWNER_DRV)
  195. return v ? -EBUSY : -ETIMEDOUT;
  196. for (i = 0; i < size; i += 8)
  197. t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
  198. t4_write_reg(adap, ctl_reg, MBMSGVALID | MBOWNER(MBOX_OWNER_FW));
  199. t4_read_reg(adap, ctl_reg); /* flush write */
  200. delay_idx = 0;
  201. ms = delay[0];
  202. for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
  203. if (sleep_ok) {
  204. ms = delay[delay_idx]; /* last element may repeat */
  205. if (delay_idx < ARRAY_SIZE(delay) - 1)
  206. delay_idx++;
  207. msleep(ms);
  208. } else
  209. mdelay(ms);
  210. v = t4_read_reg(adap, ctl_reg);
  211. if (MBOWNER_GET(v) == MBOX_OWNER_DRV) {
  212. if (!(v & MBMSGVALID)) {
  213. t4_write_reg(adap, ctl_reg, 0);
  214. continue;
  215. }
  216. res = t4_read_reg64(adap, data_reg);
  217. if (FW_CMD_OP_GET(res >> 32) == FW_DEBUG_CMD) {
  218. fw_asrt(adap, data_reg);
  219. res = FW_CMD_RETVAL(EIO);
  220. } else if (rpl)
  221. get_mbox_rpl(adap, rpl, size / 8, data_reg);
  222. if (FW_CMD_RETVAL_GET((int)res))
  223. dump_mbox(adap, mbox, data_reg);
  224. t4_write_reg(adap, ctl_reg, 0);
  225. return -FW_CMD_RETVAL_GET((int)res);
  226. }
  227. }
  228. dump_mbox(adap, mbox, data_reg);
  229. dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
  230. *(const u8 *)cmd, mbox);
  231. return -ETIMEDOUT;
  232. }
  233. /**
  234. * t4_mc_read - read from MC through backdoor accesses
  235. * @adap: the adapter
  236. * @addr: address of first byte requested
  237. * @data: 64 bytes of data containing the requested address
  238. * @ecc: where to store the corresponding 64-bit ECC word
  239. *
  240. * Read 64 bytes of data from MC starting at a 64-byte-aligned address
  241. * that covers the requested address @addr. If @parity is not %NULL it
  242. * is assigned the 64-bit ECC word for the read data.
  243. */
  244. int t4_mc_read(struct adapter *adap, u32 addr, __be32 *data, u64 *ecc)
  245. {
  246. int i;
  247. if (t4_read_reg(adap, MC_BIST_CMD) & START_BIST)
  248. return -EBUSY;
  249. t4_write_reg(adap, MC_BIST_CMD_ADDR, addr & ~0x3fU);
  250. t4_write_reg(adap, MC_BIST_CMD_LEN, 64);
  251. t4_write_reg(adap, MC_BIST_DATA_PATTERN, 0xc);
  252. t4_write_reg(adap, MC_BIST_CMD, BIST_OPCODE(1) | START_BIST |
  253. BIST_CMD_GAP(1));
  254. i = t4_wait_op_done(adap, MC_BIST_CMD, START_BIST, 0, 10, 1);
  255. if (i)
  256. return i;
  257. #define MC_DATA(i) MC_BIST_STATUS_REG(MC_BIST_STATUS_RDATA, i)
  258. for (i = 15; i >= 0; i--)
  259. *data++ = htonl(t4_read_reg(adap, MC_DATA(i)));
  260. if (ecc)
  261. *ecc = t4_read_reg64(adap, MC_DATA(16));
  262. #undef MC_DATA
  263. return 0;
  264. }
  265. /**
  266. * t4_edc_read - read from EDC through backdoor accesses
  267. * @adap: the adapter
  268. * @idx: which EDC to access
  269. * @addr: address of first byte requested
  270. * @data: 64 bytes of data containing the requested address
  271. * @ecc: where to store the corresponding 64-bit ECC word
  272. *
  273. * Read 64 bytes of data from EDC starting at a 64-byte-aligned address
  274. * that covers the requested address @addr. If @parity is not %NULL it
  275. * is assigned the 64-bit ECC word for the read data.
  276. */
  277. int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
  278. {
  279. int i;
  280. idx *= EDC_STRIDE;
  281. if (t4_read_reg(adap, EDC_BIST_CMD + idx) & START_BIST)
  282. return -EBUSY;
  283. t4_write_reg(adap, EDC_BIST_CMD_ADDR + idx, addr & ~0x3fU);
  284. t4_write_reg(adap, EDC_BIST_CMD_LEN + idx, 64);
  285. t4_write_reg(adap, EDC_BIST_DATA_PATTERN + idx, 0xc);
  286. t4_write_reg(adap, EDC_BIST_CMD + idx,
  287. BIST_OPCODE(1) | BIST_CMD_GAP(1) | START_BIST);
  288. i = t4_wait_op_done(adap, EDC_BIST_CMD + idx, START_BIST, 0, 10, 1);
  289. if (i)
  290. return i;
  291. #define EDC_DATA(i) (EDC_BIST_STATUS_REG(EDC_BIST_STATUS_RDATA, i) + idx)
  292. for (i = 15; i >= 0; i--)
  293. *data++ = htonl(t4_read_reg(adap, EDC_DATA(i)));
  294. if (ecc)
  295. *ecc = t4_read_reg64(adap, EDC_DATA(16));
  296. #undef EDC_DATA
  297. return 0;
  298. }
  299. /*
  300. * t4_mem_win_rw - read/write memory through PCIE memory window
  301. * @adap: the adapter
  302. * @addr: address of first byte requested
  303. * @data: MEMWIN0_APERTURE bytes of data containing the requested address
  304. * @dir: direction of transfer 1 => read, 0 => write
  305. *
  306. * Read/write MEMWIN0_APERTURE bytes of data from MC starting at a
  307. * MEMWIN0_APERTURE-byte-aligned address that covers the requested
  308. * address @addr.
  309. */
  310. static int t4_mem_win_rw(struct adapter *adap, u32 addr, __be32 *data, int dir)
  311. {
  312. int i;
  313. /*
  314. * Setup offset into PCIE memory window. Address must be a
  315. * MEMWIN0_APERTURE-byte-aligned address. (Read back MA register to
  316. * ensure that changes propagate before we attempt to use the new
  317. * values.)
  318. */
  319. t4_write_reg(adap, PCIE_MEM_ACCESS_OFFSET,
  320. addr & ~(MEMWIN0_APERTURE - 1));
  321. t4_read_reg(adap, PCIE_MEM_ACCESS_OFFSET);
  322. /* Collecting data 4 bytes at a time upto MEMWIN0_APERTURE */
  323. for (i = 0; i < MEMWIN0_APERTURE; i = i+0x4) {
  324. if (dir)
  325. *data++ = t4_read_reg(adap, (MEMWIN0_BASE + i));
  326. else
  327. t4_write_reg(adap, (MEMWIN0_BASE + i), *data++);
  328. }
  329. return 0;
  330. }
  331. /**
  332. * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
  333. * @adap: the adapter
  334. * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
  335. * @addr: address within indicated memory type
  336. * @len: amount of memory to transfer
  337. * @buf: host memory buffer
  338. * @dir: direction of transfer 1 => read, 0 => write
  339. *
  340. * Reads/writes an [almost] arbitrary memory region in the firmware: the
  341. * firmware memory address, length and host buffer must be aligned on
  342. * 32-bit boudaries. The memory is transferred as a raw byte sequence
  343. * from/to the firmware's memory. If this memory contains data
  344. * structures which contain multi-byte integers, it's the callers
  345. * responsibility to perform appropriate byte order conversions.
  346. */
  347. static int t4_memory_rw(struct adapter *adap, int mtype, u32 addr, u32 len,
  348. __be32 *buf, int dir)
  349. {
  350. u32 pos, start, end, offset, memoffset;
  351. int ret;
  352. /*
  353. * Argument sanity checks ...
  354. */
  355. if ((addr & 0x3) || (len & 0x3))
  356. return -EINVAL;
  357. /*
  358. * Offset into the region of memory which is being accessed
  359. * MEM_EDC0 = 0
  360. * MEM_EDC1 = 1
  361. * MEM_MC = 2
  362. */
  363. memoffset = (mtype * (5 * 1024 * 1024));
  364. /* Determine the PCIE_MEM_ACCESS_OFFSET */
  365. addr = addr + memoffset;
  366. /*
  367. * The underlaying EDC/MC read routines read MEMWIN0_APERTURE bytes
  368. * at a time so we need to round down the start and round up the end.
  369. * We'll start copying out of the first line at (addr - start) a word
  370. * at a time.
  371. */
  372. start = addr & ~(MEMWIN0_APERTURE-1);
  373. end = (addr + len + MEMWIN0_APERTURE-1) & ~(MEMWIN0_APERTURE-1);
  374. offset = (addr - start)/sizeof(__be32);
  375. for (pos = start; pos < end; pos += MEMWIN0_APERTURE, offset = 0) {
  376. __be32 data[MEMWIN0_APERTURE/sizeof(__be32)];
  377. /*
  378. * If we're writing, copy the data from the caller's memory
  379. * buffer
  380. */
  381. if (!dir) {
  382. /*
  383. * If we're doing a partial write, then we need to do
  384. * a read-modify-write ...
  385. */
  386. if (offset || len < MEMWIN0_APERTURE) {
  387. ret = t4_mem_win_rw(adap, pos, data, 1);
  388. if (ret)
  389. return ret;
  390. }
  391. while (offset < (MEMWIN0_APERTURE/sizeof(__be32)) &&
  392. len > 0) {
  393. data[offset++] = *buf++;
  394. len -= sizeof(__be32);
  395. }
  396. }
  397. /*
  398. * Transfer a block of memory and bail if there's an error.
  399. */
  400. ret = t4_mem_win_rw(adap, pos, data, dir);
  401. if (ret)
  402. return ret;
  403. /*
  404. * If we're reading, copy the data into the caller's memory
  405. * buffer.
  406. */
  407. if (dir)
  408. while (offset < (MEMWIN0_APERTURE/sizeof(__be32)) &&
  409. len > 0) {
  410. *buf++ = data[offset++];
  411. len -= sizeof(__be32);
  412. }
  413. }
  414. return 0;
  415. }
  416. int t4_memory_write(struct adapter *adap, int mtype, u32 addr, u32 len,
  417. __be32 *buf)
  418. {
  419. return t4_memory_rw(adap, mtype, addr, len, buf, 0);
  420. }
  421. #define EEPROM_STAT_ADDR 0x7bfc
  422. #define VPD_BASE 0
  423. #define VPD_LEN 512
  424. /**
  425. * t4_seeprom_wp - enable/disable EEPROM write protection
  426. * @adapter: the adapter
  427. * @enable: whether to enable or disable write protection
  428. *
  429. * Enables or disables write protection on the serial EEPROM.
  430. */
  431. int t4_seeprom_wp(struct adapter *adapter, bool enable)
  432. {
  433. unsigned int v = enable ? 0xc : 0;
  434. int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
  435. return ret < 0 ? ret : 0;
  436. }
  437. /**
  438. * get_vpd_params - read VPD parameters from VPD EEPROM
  439. * @adapter: adapter to read
  440. * @p: where to store the parameters
  441. *
  442. * Reads card parameters stored in VPD EEPROM.
  443. */
  444. int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
  445. {
  446. u32 cclk_param, cclk_val;
  447. int i, ret;
  448. int ec, sn;
  449. u8 vpd[VPD_LEN], csum;
  450. unsigned int vpdr_len, kw_offset, id_len;
  451. ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(vpd), vpd);
  452. if (ret < 0)
  453. return ret;
  454. if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
  455. dev_err(adapter->pdev_dev, "missing VPD ID string\n");
  456. return -EINVAL;
  457. }
  458. id_len = pci_vpd_lrdt_size(vpd);
  459. if (id_len > ID_LEN)
  460. id_len = ID_LEN;
  461. i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
  462. if (i < 0) {
  463. dev_err(adapter->pdev_dev, "missing VPD-R section\n");
  464. return -EINVAL;
  465. }
  466. vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
  467. kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
  468. if (vpdr_len + kw_offset > VPD_LEN) {
  469. dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
  470. return -EINVAL;
  471. }
  472. #define FIND_VPD_KW(var, name) do { \
  473. var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
  474. if (var < 0) { \
  475. dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
  476. return -EINVAL; \
  477. } \
  478. var += PCI_VPD_INFO_FLD_HDR_SIZE; \
  479. } while (0)
  480. FIND_VPD_KW(i, "RV");
  481. for (csum = 0; i >= 0; i--)
  482. csum += vpd[i];
  483. if (csum) {
  484. dev_err(adapter->pdev_dev,
  485. "corrupted VPD EEPROM, actual csum %u\n", csum);
  486. return -EINVAL;
  487. }
  488. FIND_VPD_KW(ec, "EC");
  489. FIND_VPD_KW(sn, "SN");
  490. #undef FIND_VPD_KW
  491. memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
  492. strim(p->id);
  493. memcpy(p->ec, vpd + ec, EC_LEN);
  494. strim(p->ec);
  495. i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
  496. memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
  497. strim(p->sn);
  498. /*
  499. * Ask firmware for the Core Clock since it knows how to translate the
  500. * Reference Clock ('V2') VPD field into a Core Clock value ...
  501. */
  502. cclk_param = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
  503. FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CCLK));
  504. ret = t4_query_params(adapter, adapter->mbox, 0, 0,
  505. 1, &cclk_param, &cclk_val);
  506. if (ret)
  507. return ret;
  508. p->cclk = cclk_val;
  509. return 0;
  510. }
  511. /* serial flash and firmware constants */
  512. enum {
  513. SF_ATTEMPTS = 10, /* max retries for SF operations */
  514. /* flash command opcodes */
  515. SF_PROG_PAGE = 2, /* program page */
  516. SF_WR_DISABLE = 4, /* disable writes */
  517. SF_RD_STATUS = 5, /* read status register */
  518. SF_WR_ENABLE = 6, /* enable writes */
  519. SF_RD_DATA_FAST = 0xb, /* read flash */
  520. SF_RD_ID = 0x9f, /* read ID */
  521. SF_ERASE_SECTOR = 0xd8, /* erase sector */
  522. FW_MAX_SIZE = 512 * 1024,
  523. };
  524. /**
  525. * sf1_read - read data from the serial flash
  526. * @adapter: the adapter
  527. * @byte_cnt: number of bytes to read
  528. * @cont: whether another operation will be chained
  529. * @lock: whether to lock SF for PL access only
  530. * @valp: where to store the read data
  531. *
  532. * Reads up to 4 bytes of data from the serial flash. The location of
  533. * the read needs to be specified prior to calling this by issuing the
  534. * appropriate commands to the serial flash.
  535. */
  536. static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
  537. int lock, u32 *valp)
  538. {
  539. int ret;
  540. if (!byte_cnt || byte_cnt > 4)
  541. return -EINVAL;
  542. if (t4_read_reg(adapter, SF_OP) & BUSY)
  543. return -EBUSY;
  544. cont = cont ? SF_CONT : 0;
  545. lock = lock ? SF_LOCK : 0;
  546. t4_write_reg(adapter, SF_OP, lock | cont | BYTECNT(byte_cnt - 1));
  547. ret = t4_wait_op_done(adapter, SF_OP, BUSY, 0, SF_ATTEMPTS, 5);
  548. if (!ret)
  549. *valp = t4_read_reg(adapter, SF_DATA);
  550. return ret;
  551. }
  552. /**
  553. * sf1_write - write data to the serial flash
  554. * @adapter: the adapter
  555. * @byte_cnt: number of bytes to write
  556. * @cont: whether another operation will be chained
  557. * @lock: whether to lock SF for PL access only
  558. * @val: value to write
  559. *
  560. * Writes up to 4 bytes of data to the serial flash. The location of
  561. * the write needs to be specified prior to calling this by issuing the
  562. * appropriate commands to the serial flash.
  563. */
  564. static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
  565. int lock, u32 val)
  566. {
  567. if (!byte_cnt || byte_cnt > 4)
  568. return -EINVAL;
  569. if (t4_read_reg(adapter, SF_OP) & BUSY)
  570. return -EBUSY;
  571. cont = cont ? SF_CONT : 0;
  572. lock = lock ? SF_LOCK : 0;
  573. t4_write_reg(adapter, SF_DATA, val);
  574. t4_write_reg(adapter, SF_OP, lock |
  575. cont | BYTECNT(byte_cnt - 1) | OP_WR);
  576. return t4_wait_op_done(adapter, SF_OP, BUSY, 0, SF_ATTEMPTS, 5);
  577. }
  578. /**
  579. * flash_wait_op - wait for a flash operation to complete
  580. * @adapter: the adapter
  581. * @attempts: max number of polls of the status register
  582. * @delay: delay between polls in ms
  583. *
  584. * Wait for a flash operation to complete by polling the status register.
  585. */
  586. static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
  587. {
  588. int ret;
  589. u32 status;
  590. while (1) {
  591. if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
  592. (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
  593. return ret;
  594. if (!(status & 1))
  595. return 0;
  596. if (--attempts == 0)
  597. return -EAGAIN;
  598. if (delay)
  599. msleep(delay);
  600. }
  601. }
  602. /**
  603. * t4_read_flash - read words from serial flash
  604. * @adapter: the adapter
  605. * @addr: the start address for the read
  606. * @nwords: how many 32-bit words to read
  607. * @data: where to store the read data
  608. * @byte_oriented: whether to store data as bytes or as words
  609. *
  610. * Read the specified number of 32-bit words from the serial flash.
  611. * If @byte_oriented is set the read data is stored as a byte array
  612. * (i.e., big-endian), otherwise as 32-bit words in the platform's
  613. * natural endianess.
  614. */
  615. static int t4_read_flash(struct adapter *adapter, unsigned int addr,
  616. unsigned int nwords, u32 *data, int byte_oriented)
  617. {
  618. int ret;
  619. if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
  620. return -EINVAL;
  621. addr = swab32(addr) | SF_RD_DATA_FAST;
  622. if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
  623. (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
  624. return ret;
  625. for ( ; nwords; nwords--, data++) {
  626. ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
  627. if (nwords == 1)
  628. t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
  629. if (ret)
  630. return ret;
  631. if (byte_oriented)
  632. *data = htonl(*data);
  633. }
  634. return 0;
  635. }
  636. /**
  637. * t4_write_flash - write up to a page of data to the serial flash
  638. * @adapter: the adapter
  639. * @addr: the start address to write
  640. * @n: length of data to write in bytes
  641. * @data: the data to write
  642. *
  643. * Writes up to a page of data (256 bytes) to the serial flash starting
  644. * at the given address. All the data must be written to the same page.
  645. */
  646. static int t4_write_flash(struct adapter *adapter, unsigned int addr,
  647. unsigned int n, const u8 *data)
  648. {
  649. int ret;
  650. u32 buf[64];
  651. unsigned int i, c, left, val, offset = addr & 0xff;
  652. if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
  653. return -EINVAL;
  654. val = swab32(addr) | SF_PROG_PAGE;
  655. if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
  656. (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
  657. goto unlock;
  658. for (left = n; left; left -= c) {
  659. c = min(left, 4U);
  660. for (val = 0, i = 0; i < c; ++i)
  661. val = (val << 8) + *data++;
  662. ret = sf1_write(adapter, c, c != left, 1, val);
  663. if (ret)
  664. goto unlock;
  665. }
  666. ret = flash_wait_op(adapter, 8, 1);
  667. if (ret)
  668. goto unlock;
  669. t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
  670. /* Read the page to verify the write succeeded */
  671. ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
  672. if (ret)
  673. return ret;
  674. if (memcmp(data - n, (u8 *)buf + offset, n)) {
  675. dev_err(adapter->pdev_dev,
  676. "failed to correctly write the flash page at %#x\n",
  677. addr);
  678. return -EIO;
  679. }
  680. return 0;
  681. unlock:
  682. t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
  683. return ret;
  684. }
  685. /**
  686. * get_fw_version - read the firmware version
  687. * @adapter: the adapter
  688. * @vers: where to place the version
  689. *
  690. * Reads the FW version from flash.
  691. */
  692. static int get_fw_version(struct adapter *adapter, u32 *vers)
  693. {
  694. return t4_read_flash(adapter, adapter->params.sf_fw_start +
  695. offsetof(struct fw_hdr, fw_ver), 1, vers, 0);
  696. }
  697. /**
  698. * get_tp_version - read the TP microcode version
  699. * @adapter: the adapter
  700. * @vers: where to place the version
  701. *
  702. * Reads the TP microcode version from flash.
  703. */
  704. static int get_tp_version(struct adapter *adapter, u32 *vers)
  705. {
  706. return t4_read_flash(adapter, adapter->params.sf_fw_start +
  707. offsetof(struct fw_hdr, tp_microcode_ver),
  708. 1, vers, 0);
  709. }
  710. /**
  711. * t4_check_fw_version - check if the FW is compatible with this driver
  712. * @adapter: the adapter
  713. *
  714. * Checks if an adapter's FW is compatible with the driver. Returns 0
  715. * if there's exact match, a negative error if the version could not be
  716. * read or there's a major version mismatch, and a positive value if the
  717. * expected major version is found but there's a minor version mismatch.
  718. */
  719. int t4_check_fw_version(struct adapter *adapter)
  720. {
  721. u32 api_vers[2];
  722. int ret, major, minor, micro;
  723. ret = get_fw_version(adapter, &adapter->params.fw_vers);
  724. if (!ret)
  725. ret = get_tp_version(adapter, &adapter->params.tp_vers);
  726. if (!ret)
  727. ret = t4_read_flash(adapter, adapter->params.sf_fw_start +
  728. offsetof(struct fw_hdr, intfver_nic),
  729. 2, api_vers, 1);
  730. if (ret)
  731. return ret;
  732. major = FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers);
  733. minor = FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers);
  734. micro = FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers);
  735. memcpy(adapter->params.api_vers, api_vers,
  736. sizeof(adapter->params.api_vers));
  737. if (major != FW_VERSION_MAJOR) { /* major mismatch - fail */
  738. dev_err(adapter->pdev_dev,
  739. "card FW has major version %u, driver wants %u\n",
  740. major, FW_VERSION_MAJOR);
  741. return -EINVAL;
  742. }
  743. if (minor == FW_VERSION_MINOR && micro == FW_VERSION_MICRO)
  744. return 0; /* perfect match */
  745. /* Minor/micro version mismatch. Report it but often it's OK. */
  746. return 1;
  747. }
  748. /**
  749. * t4_flash_erase_sectors - erase a range of flash sectors
  750. * @adapter: the adapter
  751. * @start: the first sector to erase
  752. * @end: the last sector to erase
  753. *
  754. * Erases the sectors in the given inclusive range.
  755. */
  756. static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
  757. {
  758. int ret = 0;
  759. while (start <= end) {
  760. if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
  761. (ret = sf1_write(adapter, 4, 0, 1,
  762. SF_ERASE_SECTOR | (start << 8))) != 0 ||
  763. (ret = flash_wait_op(adapter, 14, 500)) != 0) {
  764. dev_err(adapter->pdev_dev,
  765. "erase of flash sector %d failed, error %d\n",
  766. start, ret);
  767. break;
  768. }
  769. start++;
  770. }
  771. t4_write_reg(adapter, SF_OP, 0); /* unlock SF */
  772. return ret;
  773. }
  774. /**
  775. * t4_flash_cfg_addr - return the address of the flash configuration file
  776. * @adapter: the adapter
  777. *
  778. * Return the address within the flash where the Firmware Configuration
  779. * File is stored.
  780. */
  781. unsigned int t4_flash_cfg_addr(struct adapter *adapter)
  782. {
  783. if (adapter->params.sf_size == 0x100000)
  784. return FLASH_FPGA_CFG_START;
  785. else
  786. return FLASH_CFG_START;
  787. }
  788. /**
  789. * t4_load_cfg - download config file
  790. * @adap: the adapter
  791. * @cfg_data: the cfg text file to write
  792. * @size: text file size
  793. *
  794. * Write the supplied config text file to the card's serial flash.
  795. */
  796. int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
  797. {
  798. int ret, i, n;
  799. unsigned int addr;
  800. unsigned int flash_cfg_start_sec;
  801. unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
  802. addr = t4_flash_cfg_addr(adap);
  803. flash_cfg_start_sec = addr / SF_SEC_SIZE;
  804. if (size > FLASH_CFG_MAX_SIZE) {
  805. dev_err(adap->pdev_dev, "cfg file too large, max is %u bytes\n",
  806. FLASH_CFG_MAX_SIZE);
  807. return -EFBIG;
  808. }
  809. i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE, /* # of sectors spanned */
  810. sf_sec_size);
  811. ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
  812. flash_cfg_start_sec + i - 1);
  813. /*
  814. * If size == 0 then we're simply erasing the FLASH sectors associated
  815. * with the on-adapter Firmware Configuration File.
  816. */
  817. if (ret || size == 0)
  818. goto out;
  819. /* this will write to the flash up to SF_PAGE_SIZE at a time */
  820. for (i = 0; i < size; i += SF_PAGE_SIZE) {
  821. if ((size - i) < SF_PAGE_SIZE)
  822. n = size - i;
  823. else
  824. n = SF_PAGE_SIZE;
  825. ret = t4_write_flash(adap, addr, n, cfg_data);
  826. if (ret)
  827. goto out;
  828. addr += SF_PAGE_SIZE;
  829. cfg_data += SF_PAGE_SIZE;
  830. }
  831. out:
  832. if (ret)
  833. dev_err(adap->pdev_dev, "config file %s failed %d\n",
  834. (size == 0 ? "clear" : "download"), ret);
  835. return ret;
  836. }
  837. /**
  838. * t4_load_fw - download firmware
  839. * @adap: the adapter
  840. * @fw_data: the firmware image to write
  841. * @size: image size
  842. *
  843. * Write the supplied firmware image to the card's serial flash.
  844. */
  845. int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
  846. {
  847. u32 csum;
  848. int ret, addr;
  849. unsigned int i;
  850. u8 first_page[SF_PAGE_SIZE];
  851. const u32 *p = (const u32 *)fw_data;
  852. const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
  853. unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
  854. unsigned int fw_img_start = adap->params.sf_fw_start;
  855. unsigned int fw_start_sec = fw_img_start / sf_sec_size;
  856. if (!size) {
  857. dev_err(adap->pdev_dev, "FW image has no data\n");
  858. return -EINVAL;
  859. }
  860. if (size & 511) {
  861. dev_err(adap->pdev_dev,
  862. "FW image size not multiple of 512 bytes\n");
  863. return -EINVAL;
  864. }
  865. if (ntohs(hdr->len512) * 512 != size) {
  866. dev_err(adap->pdev_dev,
  867. "FW image size differs from size in FW header\n");
  868. return -EINVAL;
  869. }
  870. if (size > FW_MAX_SIZE) {
  871. dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
  872. FW_MAX_SIZE);
  873. return -EFBIG;
  874. }
  875. for (csum = 0, i = 0; i < size / sizeof(csum); i++)
  876. csum += ntohl(p[i]);
  877. if (csum != 0xffffffff) {
  878. dev_err(adap->pdev_dev,
  879. "corrupted firmware image, checksum %#x\n", csum);
  880. return -EINVAL;
  881. }
  882. i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */
  883. ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
  884. if (ret)
  885. goto out;
  886. /*
  887. * We write the correct version at the end so the driver can see a bad
  888. * version if the FW write fails. Start by writing a copy of the
  889. * first page with a bad version.
  890. */
  891. memcpy(first_page, fw_data, SF_PAGE_SIZE);
  892. ((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
  893. ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
  894. if (ret)
  895. goto out;
  896. addr = fw_img_start;
  897. for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
  898. addr += SF_PAGE_SIZE;
  899. fw_data += SF_PAGE_SIZE;
  900. ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
  901. if (ret)
  902. goto out;
  903. }
  904. ret = t4_write_flash(adap,
  905. fw_img_start + offsetof(struct fw_hdr, fw_ver),
  906. sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
  907. out:
  908. if (ret)
  909. dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
  910. ret);
  911. return ret;
  912. }
  913. #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
  914. FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_ANEG)
  915. /**
  916. * t4_link_start - apply link configuration to MAC/PHY
  917. * @phy: the PHY to setup
  918. * @mac: the MAC to setup
  919. * @lc: the requested link configuration
  920. *
  921. * Set up a port's MAC and PHY according to a desired link configuration.
  922. * - If the PHY can auto-negotiate first decide what to advertise, then
  923. * enable/disable auto-negotiation as desired, and reset.
  924. * - If the PHY does not auto-negotiate just reset it.
  925. * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
  926. * otherwise do it later based on the outcome of auto-negotiation.
  927. */
  928. int t4_link_start(struct adapter *adap, unsigned int mbox, unsigned int port,
  929. struct link_config *lc)
  930. {
  931. struct fw_port_cmd c;
  932. unsigned int fc = 0, mdi = FW_PORT_MDI(FW_PORT_MDI_AUTO);
  933. lc->link_ok = 0;
  934. if (lc->requested_fc & PAUSE_RX)
  935. fc |= FW_PORT_CAP_FC_RX;
  936. if (lc->requested_fc & PAUSE_TX)
  937. fc |= FW_PORT_CAP_FC_TX;
  938. memset(&c, 0, sizeof(c));
  939. c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) | FW_CMD_REQUEST |
  940. FW_CMD_EXEC | FW_PORT_CMD_PORTID(port));
  941. c.action_to_len16 = htonl(FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
  942. FW_LEN16(c));
  943. if (!(lc->supported & FW_PORT_CAP_ANEG)) {
  944. c.u.l1cfg.rcap = htonl((lc->supported & ADVERT_MASK) | fc);
  945. lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  946. } else if (lc->autoneg == AUTONEG_DISABLE) {
  947. c.u.l1cfg.rcap = htonl(lc->requested_speed | fc | mdi);
  948. lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  949. } else
  950. c.u.l1cfg.rcap = htonl(lc->advertising | fc | mdi);
  951. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  952. }
  953. /**
  954. * t4_restart_aneg - restart autonegotiation
  955. * @adap: the adapter
  956. * @mbox: mbox to use for the FW command
  957. * @port: the port id
  958. *
  959. * Restarts autonegotiation for the selected port.
  960. */
  961. int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
  962. {
  963. struct fw_port_cmd c;
  964. memset(&c, 0, sizeof(c));
  965. c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) | FW_CMD_REQUEST |
  966. FW_CMD_EXEC | FW_PORT_CMD_PORTID(port));
  967. c.action_to_len16 = htonl(FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
  968. FW_LEN16(c));
  969. c.u.l1cfg.rcap = htonl(FW_PORT_CAP_ANEG);
  970. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  971. }
  972. typedef void (*int_handler_t)(struct adapter *adap);
  973. struct intr_info {
  974. unsigned int mask; /* bits to check in interrupt status */
  975. const char *msg; /* message to print or NULL */
  976. short stat_idx; /* stat counter to increment or -1 */
  977. unsigned short fatal; /* whether the condition reported is fatal */
  978. int_handler_t int_handler; /* platform-specific int handler */
  979. };
  980. /**
  981. * t4_handle_intr_status - table driven interrupt handler
  982. * @adapter: the adapter that generated the interrupt
  983. * @reg: the interrupt status register to process
  984. * @acts: table of interrupt actions
  985. *
  986. * A table driven interrupt handler that applies a set of masks to an
  987. * interrupt status word and performs the corresponding actions if the
  988. * interrupts described by the mask have occurred. The actions include
  989. * optionally emitting a warning or alert message. The table is terminated
  990. * by an entry specifying mask 0. Returns the number of fatal interrupt
  991. * conditions.
  992. */
  993. static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
  994. const struct intr_info *acts)
  995. {
  996. int fatal = 0;
  997. unsigned int mask = 0;
  998. unsigned int status = t4_read_reg(adapter, reg);
  999. for ( ; acts->mask; ++acts) {
  1000. if (!(status & acts->mask))
  1001. continue;
  1002. if (acts->fatal) {
  1003. fatal++;
  1004. dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
  1005. status & acts->mask);
  1006. } else if (acts->msg && printk_ratelimit())
  1007. dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
  1008. status & acts->mask);
  1009. if (acts->int_handler)
  1010. acts->int_handler(adapter);
  1011. mask |= acts->mask;
  1012. }
  1013. status &= mask;
  1014. if (status) /* clear processed interrupts */
  1015. t4_write_reg(adapter, reg, status);
  1016. return fatal;
  1017. }
  1018. /*
  1019. * Interrupt handler for the PCIE module.
  1020. */
  1021. static void pcie_intr_handler(struct adapter *adapter)
  1022. {
  1023. static const struct intr_info sysbus_intr_info[] = {
  1024. { RNPP, "RXNP array parity error", -1, 1 },
  1025. { RPCP, "RXPC array parity error", -1, 1 },
  1026. { RCIP, "RXCIF array parity error", -1, 1 },
  1027. { RCCP, "Rx completions control array parity error", -1, 1 },
  1028. { RFTP, "RXFT array parity error", -1, 1 },
  1029. { 0 }
  1030. };
  1031. static const struct intr_info pcie_port_intr_info[] = {
  1032. { TPCP, "TXPC array parity error", -1, 1 },
  1033. { TNPP, "TXNP array parity error", -1, 1 },
  1034. { TFTP, "TXFT array parity error", -1, 1 },
  1035. { TCAP, "TXCA array parity error", -1, 1 },
  1036. { TCIP, "TXCIF array parity error", -1, 1 },
  1037. { RCAP, "RXCA array parity error", -1, 1 },
  1038. { OTDD, "outbound request TLP discarded", -1, 1 },
  1039. { RDPE, "Rx data parity error", -1, 1 },
  1040. { TDUE, "Tx uncorrectable data error", -1, 1 },
  1041. { 0 }
  1042. };
  1043. static const struct intr_info pcie_intr_info[] = {
  1044. { MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
  1045. { MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
  1046. { MSIDATAPERR, "MSI data parity error", -1, 1 },
  1047. { MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
  1048. { MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
  1049. { MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
  1050. { MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
  1051. { PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
  1052. { PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
  1053. { TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
  1054. { CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
  1055. { CREQPERR, "PCI CMD channel request parity error", -1, 1 },
  1056. { CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
  1057. { DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
  1058. { DREQPERR, "PCI DMA channel request parity error", -1, 1 },
  1059. { DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
  1060. { HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
  1061. { HREQPERR, "PCI HMA channel request parity error", -1, 1 },
  1062. { HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
  1063. { CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
  1064. { FIDPERR, "PCI FID parity error", -1, 1 },
  1065. { INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
  1066. { MATAGPERR, "PCI MA tag parity error", -1, 1 },
  1067. { PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
  1068. { RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
  1069. { RXWRPERR, "PCI Rx write parity error", -1, 1 },
  1070. { RPLPERR, "PCI replay buffer parity error", -1, 1 },
  1071. { PCIESINT, "PCI core secondary fault", -1, 1 },
  1072. { PCIEPINT, "PCI core primary fault", -1, 1 },
  1073. { UNXSPLCPLERR, "PCI unexpected split completion error", -1, 0 },
  1074. { 0 }
  1075. };
  1076. int fat;
  1077. fat = t4_handle_intr_status(adapter,
  1078. PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
  1079. sysbus_intr_info) +
  1080. t4_handle_intr_status(adapter,
  1081. PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
  1082. pcie_port_intr_info) +
  1083. t4_handle_intr_status(adapter, PCIE_INT_CAUSE, pcie_intr_info);
  1084. if (fat)
  1085. t4_fatal_err(adapter);
  1086. }
  1087. /*
  1088. * TP interrupt handler.
  1089. */
  1090. static void tp_intr_handler(struct adapter *adapter)
  1091. {
  1092. static const struct intr_info tp_intr_info[] = {
  1093. { 0x3fffffff, "TP parity error", -1, 1 },
  1094. { FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
  1095. { 0 }
  1096. };
  1097. if (t4_handle_intr_status(adapter, TP_INT_CAUSE, tp_intr_info))
  1098. t4_fatal_err(adapter);
  1099. }
  1100. /*
  1101. * SGE interrupt handler.
  1102. */
  1103. static void sge_intr_handler(struct adapter *adapter)
  1104. {
  1105. u64 v;
  1106. static const struct intr_info sge_intr_info[] = {
  1107. { ERR_CPL_EXCEED_IQE_SIZE,
  1108. "SGE received CPL exceeding IQE size", -1, 1 },
  1109. { ERR_INVALID_CIDX_INC,
  1110. "SGE GTS CIDX increment too large", -1, 0 },
  1111. { ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
  1112. { DBFIFO_LP_INT, NULL, -1, 0, t4_db_full },
  1113. { DBFIFO_HP_INT, NULL, -1, 0, t4_db_full },
  1114. { ERR_DROPPED_DB, NULL, -1, 0, t4_db_dropped },
  1115. { ERR_DATA_CPL_ON_HIGH_QID1 | ERR_DATA_CPL_ON_HIGH_QID0,
  1116. "SGE IQID > 1023 received CPL for FL", -1, 0 },
  1117. { ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
  1118. 0 },
  1119. { ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
  1120. 0 },
  1121. { ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
  1122. 0 },
  1123. { ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
  1124. 0 },
  1125. { ERR_ING_CTXT_PRIO,
  1126. "SGE too many priority ingress contexts", -1, 0 },
  1127. { ERR_EGR_CTXT_PRIO,
  1128. "SGE too many priority egress contexts", -1, 0 },
  1129. { INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
  1130. { EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
  1131. { 0 }
  1132. };
  1133. v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1) |
  1134. ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2) << 32);
  1135. if (v) {
  1136. dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
  1137. (unsigned long long)v);
  1138. t4_write_reg(adapter, SGE_INT_CAUSE1, v);
  1139. t4_write_reg(adapter, SGE_INT_CAUSE2, v >> 32);
  1140. }
  1141. if (t4_handle_intr_status(adapter, SGE_INT_CAUSE3, sge_intr_info) ||
  1142. v != 0)
  1143. t4_fatal_err(adapter);
  1144. }
  1145. /*
  1146. * CIM interrupt handler.
  1147. */
  1148. static void cim_intr_handler(struct adapter *adapter)
  1149. {
  1150. static const struct intr_info cim_intr_info[] = {
  1151. { PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
  1152. { OBQPARERR, "CIM OBQ parity error", -1, 1 },
  1153. { IBQPARERR, "CIM IBQ parity error", -1, 1 },
  1154. { MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
  1155. { MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
  1156. { TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
  1157. { TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
  1158. { 0 }
  1159. };
  1160. static const struct intr_info cim_upintr_info[] = {
  1161. { RSVDSPACEINT, "CIM reserved space access", -1, 1 },
  1162. { ILLTRANSINT, "CIM illegal transaction", -1, 1 },
  1163. { ILLWRINT, "CIM illegal write", -1, 1 },
  1164. { ILLRDINT, "CIM illegal read", -1, 1 },
  1165. { ILLRDBEINT, "CIM illegal read BE", -1, 1 },
  1166. { ILLWRBEINT, "CIM illegal write BE", -1, 1 },
  1167. { SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
  1168. { SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
  1169. { BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
  1170. { SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
  1171. { SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
  1172. { BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
  1173. { SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
  1174. { SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
  1175. { BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
  1176. { BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
  1177. { SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
  1178. { SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
  1179. { BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
  1180. { BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
  1181. { SGLRDPLINT , "CIM single read from PL space", -1, 1 },
  1182. { SGLWRPLINT , "CIM single write to PL space", -1, 1 },
  1183. { BLKRDPLINT , "CIM block read from PL space", -1, 1 },
  1184. { BLKWRPLINT , "CIM block write to PL space", -1, 1 },
  1185. { REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
  1186. { RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
  1187. { TIMEOUTINT , "CIM PIF timeout", -1, 1 },
  1188. { TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
  1189. { 0 }
  1190. };
  1191. int fat;
  1192. fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE,
  1193. cim_intr_info) +
  1194. t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE,
  1195. cim_upintr_info);
  1196. if (fat)
  1197. t4_fatal_err(adapter);
  1198. }
  1199. /*
  1200. * ULP RX interrupt handler.
  1201. */
  1202. static void ulprx_intr_handler(struct adapter *adapter)
  1203. {
  1204. static const struct intr_info ulprx_intr_info[] = {
  1205. { 0x1800000, "ULPRX context error", -1, 1 },
  1206. { 0x7fffff, "ULPRX parity error", -1, 1 },
  1207. { 0 }
  1208. };
  1209. if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE, ulprx_intr_info))
  1210. t4_fatal_err(adapter);
  1211. }
  1212. /*
  1213. * ULP TX interrupt handler.
  1214. */
  1215. static void ulptx_intr_handler(struct adapter *adapter)
  1216. {
  1217. static const struct intr_info ulptx_intr_info[] = {
  1218. { PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
  1219. 0 },
  1220. { PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
  1221. 0 },
  1222. { PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
  1223. 0 },
  1224. { PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
  1225. 0 },
  1226. { 0xfffffff, "ULPTX parity error", -1, 1 },
  1227. { 0 }
  1228. };
  1229. if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE, ulptx_intr_info))
  1230. t4_fatal_err(adapter);
  1231. }
  1232. /*
  1233. * PM TX interrupt handler.
  1234. */
  1235. static void pmtx_intr_handler(struct adapter *adapter)
  1236. {
  1237. static const struct intr_info pmtx_intr_info[] = {
  1238. { PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
  1239. { PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
  1240. { PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
  1241. { ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
  1242. { PMTX_FRAMING_ERROR, "PMTX framing error", -1, 1 },
  1243. { OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
  1244. { DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1, 1 },
  1245. { ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
  1246. { C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
  1247. { 0 }
  1248. };
  1249. if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE, pmtx_intr_info))
  1250. t4_fatal_err(adapter);
  1251. }
  1252. /*
  1253. * PM RX interrupt handler.
  1254. */
  1255. static void pmrx_intr_handler(struct adapter *adapter)
  1256. {
  1257. static const struct intr_info pmrx_intr_info[] = {
  1258. { ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
  1259. { PMRX_FRAMING_ERROR, "PMRX framing error", -1, 1 },
  1260. { OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
  1261. { DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1, 1 },
  1262. { IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
  1263. { E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
  1264. { 0 }
  1265. };
  1266. if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE, pmrx_intr_info))
  1267. t4_fatal_err(adapter);
  1268. }
  1269. /*
  1270. * CPL switch interrupt handler.
  1271. */
  1272. static void cplsw_intr_handler(struct adapter *adapter)
  1273. {
  1274. static const struct intr_info cplsw_intr_info[] = {
  1275. { CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
  1276. { CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
  1277. { TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
  1278. { SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
  1279. { CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
  1280. { ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
  1281. { 0 }
  1282. };
  1283. if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE, cplsw_intr_info))
  1284. t4_fatal_err(adapter);
  1285. }
  1286. /*
  1287. * LE interrupt handler.
  1288. */
  1289. static void le_intr_handler(struct adapter *adap)
  1290. {
  1291. static const struct intr_info le_intr_info[] = {
  1292. { LIPMISS, "LE LIP miss", -1, 0 },
  1293. { LIP0, "LE 0 LIP error", -1, 0 },
  1294. { PARITYERR, "LE parity error", -1, 1 },
  1295. { UNKNOWNCMD, "LE unknown command", -1, 1 },
  1296. { REQQPARERR, "LE request queue parity error", -1, 1 },
  1297. { 0 }
  1298. };
  1299. if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE, le_intr_info))
  1300. t4_fatal_err(adap);
  1301. }
  1302. /*
  1303. * MPS interrupt handler.
  1304. */
  1305. static void mps_intr_handler(struct adapter *adapter)
  1306. {
  1307. static const struct intr_info mps_rx_intr_info[] = {
  1308. { 0xffffff, "MPS Rx parity error", -1, 1 },
  1309. { 0 }
  1310. };
  1311. static const struct intr_info mps_tx_intr_info[] = {
  1312. { TPFIFO, "MPS Tx TP FIFO parity error", -1, 1 },
  1313. { NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
  1314. { TXDATAFIFO, "MPS Tx data FIFO parity error", -1, 1 },
  1315. { TXDESCFIFO, "MPS Tx desc FIFO parity error", -1, 1 },
  1316. { BUBBLE, "MPS Tx underflow", -1, 1 },
  1317. { SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
  1318. { FRMERR, "MPS Tx framing error", -1, 1 },
  1319. { 0 }
  1320. };
  1321. static const struct intr_info mps_trc_intr_info[] = {
  1322. { FILTMEM, "MPS TRC filter parity error", -1, 1 },
  1323. { PKTFIFO, "MPS TRC packet FIFO parity error", -1, 1 },
  1324. { MISCPERR, "MPS TRC misc parity error", -1, 1 },
  1325. { 0 }
  1326. };
  1327. static const struct intr_info mps_stat_sram_intr_info[] = {
  1328. { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
  1329. { 0 }
  1330. };
  1331. static const struct intr_info mps_stat_tx_intr_info[] = {
  1332. { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
  1333. { 0 }
  1334. };
  1335. static const struct intr_info mps_stat_rx_intr_info[] = {
  1336. { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
  1337. { 0 }
  1338. };
  1339. static const struct intr_info mps_cls_intr_info[] = {
  1340. { MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
  1341. { MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
  1342. { HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
  1343. { 0 }
  1344. };
  1345. int fat;
  1346. fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE,
  1347. mps_rx_intr_info) +
  1348. t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE,
  1349. mps_tx_intr_info) +
  1350. t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE,
  1351. mps_trc_intr_info) +
  1352. t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM,
  1353. mps_stat_sram_intr_info) +
  1354. t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
  1355. mps_stat_tx_intr_info) +
  1356. t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
  1357. mps_stat_rx_intr_info) +
  1358. t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE,
  1359. mps_cls_intr_info);
  1360. t4_write_reg(adapter, MPS_INT_CAUSE, CLSINT | TRCINT |
  1361. RXINT | TXINT | STATINT);
  1362. t4_read_reg(adapter, MPS_INT_CAUSE); /* flush */
  1363. if (fat)
  1364. t4_fatal_err(adapter);
  1365. }
  1366. #define MEM_INT_MASK (PERR_INT_CAUSE | ECC_CE_INT_CAUSE | ECC_UE_INT_CAUSE)
  1367. /*
  1368. * EDC/MC interrupt handler.
  1369. */
  1370. static void mem_intr_handler(struct adapter *adapter, int idx)
  1371. {
  1372. static const char name[3][5] = { "EDC0", "EDC1", "MC" };
  1373. unsigned int addr, cnt_addr, v;
  1374. if (idx <= MEM_EDC1) {
  1375. addr = EDC_REG(EDC_INT_CAUSE, idx);
  1376. cnt_addr = EDC_REG(EDC_ECC_STATUS, idx);
  1377. } else {
  1378. addr = MC_INT_CAUSE;
  1379. cnt_addr = MC_ECC_STATUS;
  1380. }
  1381. v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
  1382. if (v & PERR_INT_CAUSE)
  1383. dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
  1384. name[idx]);
  1385. if (v & ECC_CE_INT_CAUSE) {
  1386. u32 cnt = ECC_CECNT_GET(t4_read_reg(adapter, cnt_addr));
  1387. t4_write_reg(adapter, cnt_addr, ECC_CECNT_MASK);
  1388. if (printk_ratelimit())
  1389. dev_warn(adapter->pdev_dev,
  1390. "%u %s correctable ECC data error%s\n",
  1391. cnt, name[idx], cnt > 1 ? "s" : "");
  1392. }
  1393. if (v & ECC_UE_INT_CAUSE)
  1394. dev_alert(adapter->pdev_dev,
  1395. "%s uncorrectable ECC data error\n", name[idx]);
  1396. t4_write_reg(adapter, addr, v);
  1397. if (v & (PERR_INT_CAUSE | ECC_UE_INT_CAUSE))
  1398. t4_fatal_err(adapter);
  1399. }
  1400. /*
  1401. * MA interrupt handler.
  1402. */
  1403. static void ma_intr_handler(struct adapter *adap)
  1404. {
  1405. u32 v, status = t4_read_reg(adap, MA_INT_CAUSE);
  1406. if (status & MEM_PERR_INT_CAUSE)
  1407. dev_alert(adap->pdev_dev,
  1408. "MA parity error, parity status %#x\n",
  1409. t4_read_reg(adap, MA_PARITY_ERROR_STATUS));
  1410. if (status & MEM_WRAP_INT_CAUSE) {
  1411. v = t4_read_reg(adap, MA_INT_WRAP_STATUS);
  1412. dev_alert(adap->pdev_dev, "MA address wrap-around error by "
  1413. "client %u to address %#x\n",
  1414. MEM_WRAP_CLIENT_NUM_GET(v),
  1415. MEM_WRAP_ADDRESS_GET(v) << 4);
  1416. }
  1417. t4_write_reg(adap, MA_INT_CAUSE, status);
  1418. t4_fatal_err(adap);
  1419. }
  1420. /*
  1421. * SMB interrupt handler.
  1422. */
  1423. static void smb_intr_handler(struct adapter *adap)
  1424. {
  1425. static const struct intr_info smb_intr_info[] = {
  1426. { MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
  1427. { MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
  1428. { SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
  1429. { 0 }
  1430. };
  1431. if (t4_handle_intr_status(adap, SMB_INT_CAUSE, smb_intr_info))
  1432. t4_fatal_err(adap);
  1433. }
  1434. /*
  1435. * NC-SI interrupt handler.
  1436. */
  1437. static void ncsi_intr_handler(struct adapter *adap)
  1438. {
  1439. static const struct intr_info ncsi_intr_info[] = {
  1440. { CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
  1441. { MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
  1442. { TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
  1443. { RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
  1444. { 0 }
  1445. };
  1446. if (t4_handle_intr_status(adap, NCSI_INT_CAUSE, ncsi_intr_info))
  1447. t4_fatal_err(adap);
  1448. }
  1449. /*
  1450. * XGMAC interrupt handler.
  1451. */
  1452. static void xgmac_intr_handler(struct adapter *adap, int port)
  1453. {
  1454. u32 v = t4_read_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE));
  1455. v &= TXFIFO_PRTY_ERR | RXFIFO_PRTY_ERR;
  1456. if (!v)
  1457. return;
  1458. if (v & TXFIFO_PRTY_ERR)
  1459. dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
  1460. port);
  1461. if (v & RXFIFO_PRTY_ERR)
  1462. dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
  1463. port);
  1464. t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE), v);
  1465. t4_fatal_err(adap);
  1466. }
  1467. /*
  1468. * PL interrupt handler.
  1469. */
  1470. static void pl_intr_handler(struct adapter *adap)
  1471. {
  1472. static const struct intr_info pl_intr_info[] = {
  1473. { FATALPERR, "T4 fatal parity error", -1, 1 },
  1474. { PERRVFID, "PL VFID_MAP parity error", -1, 1 },
  1475. { 0 }
  1476. };
  1477. if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE, pl_intr_info))
  1478. t4_fatal_err(adap);
  1479. }
  1480. #define PF_INTR_MASK (PFSW)
  1481. #define GLBL_INTR_MASK (CIM | MPS | PL | PCIE | MC | EDC0 | \
  1482. EDC1 | LE | TP | MA | PM_TX | PM_RX | ULP_RX | \
  1483. CPL_SWITCH | SGE | ULP_TX)
  1484. /**
  1485. * t4_slow_intr_handler - control path interrupt handler
  1486. * @adapter: the adapter
  1487. *
  1488. * T4 interrupt handler for non-data global interrupt events, e.g., errors.
  1489. * The designation 'slow' is because it involves register reads, while
  1490. * data interrupts typically don't involve any MMIOs.
  1491. */
  1492. int t4_slow_intr_handler(struct adapter *adapter)
  1493. {
  1494. u32 cause = t4_read_reg(adapter, PL_INT_CAUSE);
  1495. if (!(cause & GLBL_INTR_MASK))
  1496. return 0;
  1497. if (cause & CIM)
  1498. cim_intr_handler(adapter);
  1499. if (cause & MPS)
  1500. mps_intr_handler(adapter);
  1501. if (cause & NCSI)
  1502. ncsi_intr_handler(adapter);
  1503. if (cause & PL)
  1504. pl_intr_handler(adapter);
  1505. if (cause & SMB)
  1506. smb_intr_handler(adapter);
  1507. if (cause & XGMAC0)
  1508. xgmac_intr_handler(adapter, 0);
  1509. if (cause & XGMAC1)
  1510. xgmac_intr_handler(adapter, 1);
  1511. if (cause & XGMAC_KR0)
  1512. xgmac_intr_handler(adapter, 2);
  1513. if (cause & XGMAC_KR1)
  1514. xgmac_intr_handler(adapter, 3);
  1515. if (cause & PCIE)
  1516. pcie_intr_handler(adapter);
  1517. if (cause & MC)
  1518. mem_intr_handler(adapter, MEM_MC);
  1519. if (cause & EDC0)
  1520. mem_intr_handler(adapter, MEM_EDC0);
  1521. if (cause & EDC1)
  1522. mem_intr_handler(adapter, MEM_EDC1);
  1523. if (cause & LE)
  1524. le_intr_handler(adapter);
  1525. if (cause & TP)
  1526. tp_intr_handler(adapter);
  1527. if (cause & MA)
  1528. ma_intr_handler(adapter);
  1529. if (cause & PM_TX)
  1530. pmtx_intr_handler(adapter);
  1531. if (cause & PM_RX)
  1532. pmrx_intr_handler(adapter);
  1533. if (cause & ULP_RX)
  1534. ulprx_intr_handler(adapter);
  1535. if (cause & CPL_SWITCH)
  1536. cplsw_intr_handler(adapter);
  1537. if (cause & SGE)
  1538. sge_intr_handler(adapter);
  1539. if (cause & ULP_TX)
  1540. ulptx_intr_handler(adapter);
  1541. /* Clear the interrupts just processed for which we are the master. */
  1542. t4_write_reg(adapter, PL_INT_CAUSE, cause & GLBL_INTR_MASK);
  1543. (void) t4_read_reg(adapter, PL_INT_CAUSE); /* flush */
  1544. return 1;
  1545. }
  1546. /**
  1547. * t4_intr_enable - enable interrupts
  1548. * @adapter: the adapter whose interrupts should be enabled
  1549. *
  1550. * Enable PF-specific interrupts for the calling function and the top-level
  1551. * interrupt concentrator for global interrupts. Interrupts are already
  1552. * enabled at each module, here we just enable the roots of the interrupt
  1553. * hierarchies.
  1554. *
  1555. * Note: this function should be called only when the driver manages
  1556. * non PF-specific interrupts from the various HW modules. Only one PCI
  1557. * function at a time should be doing this.
  1558. */
  1559. void t4_intr_enable(struct adapter *adapter)
  1560. {
  1561. u32 pf = SOURCEPF_GET(t4_read_reg(adapter, PL_WHOAMI));
  1562. t4_write_reg(adapter, SGE_INT_ENABLE3, ERR_CPL_EXCEED_IQE_SIZE |
  1563. ERR_INVALID_CIDX_INC | ERR_CPL_OPCODE_0 |
  1564. ERR_DROPPED_DB | ERR_DATA_CPL_ON_HIGH_QID1 |
  1565. ERR_DATA_CPL_ON_HIGH_QID0 | ERR_BAD_DB_PIDX3 |
  1566. ERR_BAD_DB_PIDX2 | ERR_BAD_DB_PIDX1 |
  1567. ERR_BAD_DB_PIDX0 | ERR_ING_CTXT_PRIO |
  1568. ERR_EGR_CTXT_PRIO | INGRESS_SIZE_ERR |
  1569. DBFIFO_HP_INT | DBFIFO_LP_INT |
  1570. EGRESS_SIZE_ERR);
  1571. t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE), PF_INTR_MASK);
  1572. t4_set_reg_field(adapter, PL_INT_MAP0, 0, 1 << pf);
  1573. }
  1574. /**
  1575. * t4_intr_disable - disable interrupts
  1576. * @adapter: the adapter whose interrupts should be disabled
  1577. *
  1578. * Disable interrupts. We only disable the top-level interrupt
  1579. * concentrators. The caller must be a PCI function managing global
  1580. * interrupts.
  1581. */
  1582. void t4_intr_disable(struct adapter *adapter)
  1583. {
  1584. u32 pf = SOURCEPF_GET(t4_read_reg(adapter, PL_WHOAMI));
  1585. t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE), 0);
  1586. t4_set_reg_field(adapter, PL_INT_MAP0, 1 << pf, 0);
  1587. }
  1588. /**
  1589. * hash_mac_addr - return the hash value of a MAC address
  1590. * @addr: the 48-bit Ethernet MAC address
  1591. *
  1592. * Hashes a MAC address according to the hash function used by HW inexact
  1593. * (hash) address matching.
  1594. */
  1595. static int hash_mac_addr(const u8 *addr)
  1596. {
  1597. u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
  1598. u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
  1599. a ^= b;
  1600. a ^= (a >> 12);
  1601. a ^= (a >> 6);
  1602. return a & 0x3f;
  1603. }
  1604. /**
  1605. * t4_config_rss_range - configure a portion of the RSS mapping table
  1606. * @adapter: the adapter
  1607. * @mbox: mbox to use for the FW command
  1608. * @viid: virtual interface whose RSS subtable is to be written
  1609. * @start: start entry in the table to write
  1610. * @n: how many table entries to write
  1611. * @rspq: values for the response queue lookup table
  1612. * @nrspq: number of values in @rspq
  1613. *
  1614. * Programs the selected part of the VI's RSS mapping table with the
  1615. * provided values. If @nrspq < @n the supplied values are used repeatedly
  1616. * until the full table range is populated.
  1617. *
  1618. * The caller must ensure the values in @rspq are in the range allowed for
  1619. * @viid.
  1620. */
  1621. int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
  1622. int start, int n, const u16 *rspq, unsigned int nrspq)
  1623. {
  1624. int ret;
  1625. const u16 *rsp = rspq;
  1626. const u16 *rsp_end = rspq + nrspq;
  1627. struct fw_rss_ind_tbl_cmd cmd;
  1628. memset(&cmd, 0, sizeof(cmd));
  1629. cmd.op_to_viid = htonl(FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
  1630. FW_CMD_REQUEST | FW_CMD_WRITE |
  1631. FW_RSS_IND_TBL_CMD_VIID(viid));
  1632. cmd.retval_len16 = htonl(FW_LEN16(cmd));
  1633. /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
  1634. while (n > 0) {
  1635. int nq = min(n, 32);
  1636. __be32 *qp = &cmd.iq0_to_iq2;
  1637. cmd.niqid = htons(nq);
  1638. cmd.startidx = htons(start);
  1639. start += nq;
  1640. n -= nq;
  1641. while (nq > 0) {
  1642. unsigned int v;
  1643. v = FW_RSS_IND_TBL_CMD_IQ0(*rsp);
  1644. if (++rsp >= rsp_end)
  1645. rsp = rspq;
  1646. v |= FW_RSS_IND_TBL_CMD_IQ1(*rsp);
  1647. if (++rsp >= rsp_end)
  1648. rsp = rspq;
  1649. v |= FW_RSS_IND_TBL_CMD_IQ2(*rsp);
  1650. if (++rsp >= rsp_end)
  1651. rsp = rspq;
  1652. *qp++ = htonl(v);
  1653. nq -= 3;
  1654. }
  1655. ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
  1656. if (ret)
  1657. return ret;
  1658. }
  1659. return 0;
  1660. }
  1661. /**
  1662. * t4_config_glbl_rss - configure the global RSS mode
  1663. * @adapter: the adapter
  1664. * @mbox: mbox to use for the FW command
  1665. * @mode: global RSS mode
  1666. * @flags: mode-specific flags
  1667. *
  1668. * Sets the global RSS mode.
  1669. */
  1670. int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
  1671. unsigned int flags)
  1672. {
  1673. struct fw_rss_glb_config_cmd c;
  1674. memset(&c, 0, sizeof(c));
  1675. c.op_to_write = htonl(FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
  1676. FW_CMD_REQUEST | FW_CMD_WRITE);
  1677. c.retval_len16 = htonl(FW_LEN16(c));
  1678. if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
  1679. c.u.manual.mode_pkd = htonl(FW_RSS_GLB_CONFIG_CMD_MODE(mode));
  1680. } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
  1681. c.u.basicvirtual.mode_pkd =
  1682. htonl(FW_RSS_GLB_CONFIG_CMD_MODE(mode));
  1683. c.u.basicvirtual.synmapen_to_hashtoeplitz = htonl(flags);
  1684. } else
  1685. return -EINVAL;
  1686. return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
  1687. }
  1688. /**
  1689. * t4_tp_get_tcp_stats - read TP's TCP MIB counters
  1690. * @adap: the adapter
  1691. * @v4: holds the TCP/IP counter values
  1692. * @v6: holds the TCP/IPv6 counter values
  1693. *
  1694. * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
  1695. * Either @v4 or @v6 may be %NULL to skip the corresponding stats.
  1696. */
  1697. void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
  1698. struct tp_tcp_stats *v6)
  1699. {
  1700. u32 val[TP_MIB_TCP_RXT_SEG_LO - TP_MIB_TCP_OUT_RST + 1];
  1701. #define STAT_IDX(x) ((TP_MIB_TCP_##x) - TP_MIB_TCP_OUT_RST)
  1702. #define STAT(x) val[STAT_IDX(x)]
  1703. #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
  1704. if (v4) {
  1705. t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, val,
  1706. ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST);
  1707. v4->tcpOutRsts = STAT(OUT_RST);
  1708. v4->tcpInSegs = STAT64(IN_SEG);
  1709. v4->tcpOutSegs = STAT64(OUT_SEG);
  1710. v4->tcpRetransSegs = STAT64(RXT_SEG);
  1711. }
  1712. if (v6) {
  1713. t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, val,
  1714. ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST);
  1715. v6->tcpOutRsts = STAT(OUT_RST);
  1716. v6->tcpInSegs = STAT64(IN_SEG);
  1717. v6->tcpOutSegs = STAT64(OUT_SEG);
  1718. v6->tcpRetransSegs = STAT64(RXT_SEG);
  1719. }
  1720. #undef STAT64
  1721. #undef STAT
  1722. #undef STAT_IDX
  1723. }
  1724. /**
  1725. * t4_read_mtu_tbl - returns the values in the HW path MTU table
  1726. * @adap: the adapter
  1727. * @mtus: where to store the MTU values
  1728. * @mtu_log: where to store the MTU base-2 log (may be %NULL)
  1729. *
  1730. * Reads the HW path MTU table.
  1731. */
  1732. void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
  1733. {
  1734. u32 v;
  1735. int i;
  1736. for (i = 0; i < NMTUS; ++i) {
  1737. t4_write_reg(adap, TP_MTU_TABLE,
  1738. MTUINDEX(0xff) | MTUVALUE(i));
  1739. v = t4_read_reg(adap, TP_MTU_TABLE);
  1740. mtus[i] = MTUVALUE_GET(v);
  1741. if (mtu_log)
  1742. mtu_log[i] = MTUWIDTH_GET(v);
  1743. }
  1744. }
  1745. /**
  1746. * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
  1747. * @adap: the adapter
  1748. * @addr: the indirect TP register address
  1749. * @mask: specifies the field within the register to modify
  1750. * @val: new value for the field
  1751. *
  1752. * Sets a field of an indirect TP register to the given value.
  1753. */
  1754. void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
  1755. unsigned int mask, unsigned int val)
  1756. {
  1757. t4_write_reg(adap, TP_PIO_ADDR, addr);
  1758. val |= t4_read_reg(adap, TP_PIO_DATA) & ~mask;
  1759. t4_write_reg(adap, TP_PIO_DATA, val);
  1760. }
  1761. /**
  1762. * init_cong_ctrl - initialize congestion control parameters
  1763. * @a: the alpha values for congestion control
  1764. * @b: the beta values for congestion control
  1765. *
  1766. * Initialize the congestion control parameters.
  1767. */
  1768. static void __devinit init_cong_ctrl(unsigned short *a, unsigned short *b)
  1769. {
  1770. a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
  1771. a[9] = 2;
  1772. a[10] = 3;
  1773. a[11] = 4;
  1774. a[12] = 5;
  1775. a[13] = 6;
  1776. a[14] = 7;
  1777. a[15] = 8;
  1778. a[16] = 9;
  1779. a[17] = 10;
  1780. a[18] = 14;
  1781. a[19] = 17;
  1782. a[20] = 21;
  1783. a[21] = 25;
  1784. a[22] = 30;
  1785. a[23] = 35;
  1786. a[24] = 45;
  1787. a[25] = 60;
  1788. a[26] = 80;
  1789. a[27] = 100;
  1790. a[28] = 200;
  1791. a[29] = 300;
  1792. a[30] = 400;
  1793. a[31] = 500;
  1794. b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
  1795. b[9] = b[10] = 1;
  1796. b[11] = b[12] = 2;
  1797. b[13] = b[14] = b[15] = b[16] = 3;
  1798. b[17] = b[18] = b[19] = b[20] = b[21] = 4;
  1799. b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
  1800. b[28] = b[29] = 6;
  1801. b[30] = b[31] = 7;
  1802. }
  1803. /* The minimum additive increment value for the congestion control table */
  1804. #define CC_MIN_INCR 2U
  1805. /**
  1806. * t4_load_mtus - write the MTU and congestion control HW tables
  1807. * @adap: the adapter
  1808. * @mtus: the values for the MTU table
  1809. * @alpha: the values for the congestion control alpha parameter
  1810. * @beta: the values for the congestion control beta parameter
  1811. *
  1812. * Write the HW MTU table with the supplied MTUs and the high-speed
  1813. * congestion control table with the supplied alpha, beta, and MTUs.
  1814. * We write the two tables together because the additive increments
  1815. * depend on the MTUs.
  1816. */
  1817. void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
  1818. const unsigned short *alpha, const unsigned short *beta)
  1819. {
  1820. static const unsigned int avg_pkts[NCCTRL_WIN] = {
  1821. 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
  1822. 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
  1823. 28672, 40960, 57344, 81920, 114688, 163840, 229376
  1824. };
  1825. unsigned int i, w;
  1826. for (i = 0; i < NMTUS; ++i) {
  1827. unsigned int mtu = mtus[i];
  1828. unsigned int log2 = fls(mtu);
  1829. if (!(mtu & ((1 << log2) >> 2))) /* round */
  1830. log2--;
  1831. t4_write_reg(adap, TP_MTU_TABLE, MTUINDEX(i) |
  1832. MTUWIDTH(log2) | MTUVALUE(mtu));
  1833. for (w = 0; w < NCCTRL_WIN; ++w) {
  1834. unsigned int inc;
  1835. inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
  1836. CC_MIN_INCR);
  1837. t4_write_reg(adap, TP_CCTRL_TABLE, (i << 21) |
  1838. (w << 16) | (beta[w] << 13) | inc);
  1839. }
  1840. }
  1841. }
  1842. /**
  1843. * get_mps_bg_map - return the buffer groups associated with a port
  1844. * @adap: the adapter
  1845. * @idx: the port index
  1846. *
  1847. * Returns a bitmap indicating which MPS buffer groups are associated
  1848. * with the given port. Bit i is set if buffer group i is used by the
  1849. * port.
  1850. */
  1851. static unsigned int get_mps_bg_map(struct adapter *adap, int idx)
  1852. {
  1853. u32 n = NUMPORTS_GET(t4_read_reg(adap, MPS_CMN_CTL));
  1854. if (n == 0)
  1855. return idx == 0 ? 0xf : 0;
  1856. if (n == 1)
  1857. return idx < 2 ? (3 << (2 * idx)) : 0;
  1858. return 1 << idx;
  1859. }
  1860. /**
  1861. * t4_get_port_stats - collect port statistics
  1862. * @adap: the adapter
  1863. * @idx: the port index
  1864. * @p: the stats structure to fill
  1865. *
  1866. * Collect statistics related to the given port from HW.
  1867. */
  1868. void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
  1869. {
  1870. u32 bgmap = get_mps_bg_map(adap, idx);
  1871. #define GET_STAT(name) \
  1872. t4_read_reg64(adap, PORT_REG(idx, MPS_PORT_STAT_##name##_L))
  1873. #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
  1874. p->tx_octets = GET_STAT(TX_PORT_BYTES);
  1875. p->tx_frames = GET_STAT(TX_PORT_FRAMES);
  1876. p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST);
  1877. p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST);
  1878. p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST);
  1879. p->tx_error_frames = GET_STAT(TX_PORT_ERROR);
  1880. p->tx_frames_64 = GET_STAT(TX_PORT_64B);
  1881. p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B);
  1882. p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B);
  1883. p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B);
  1884. p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B);
  1885. p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
  1886. p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX);
  1887. p->tx_drop = GET_STAT(TX_PORT_DROP);
  1888. p->tx_pause = GET_STAT(TX_PORT_PAUSE);
  1889. p->tx_ppp0 = GET_STAT(TX_PORT_PPP0);
  1890. p->tx_ppp1 = GET_STAT(TX_PORT_PPP1);
  1891. p->tx_ppp2 = GET_STAT(TX_PORT_PPP2);
  1892. p->tx_ppp3 = GET_STAT(TX_PORT_PPP3);
  1893. p->tx_ppp4 = GET_STAT(TX_PORT_PPP4);
  1894. p->tx_ppp5 = GET_STAT(TX_PORT_PPP5);
  1895. p->tx_ppp6 = GET_STAT(TX_PORT_PPP6);
  1896. p->tx_ppp7 = GET_STAT(TX_PORT_PPP7);
  1897. p->rx_octets = GET_STAT(RX_PORT_BYTES);
  1898. p->rx_frames = GET_STAT(RX_PORT_FRAMES);
  1899. p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST);
  1900. p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST);
  1901. p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST);
  1902. p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR);
  1903. p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR);
  1904. p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR);
  1905. p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR);
  1906. p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR);
  1907. p->rx_runt = GET_STAT(RX_PORT_LESS_64B);
  1908. p->rx_frames_64 = GET_STAT(RX_PORT_64B);
  1909. p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B);
  1910. p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B);
  1911. p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B);
  1912. p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B);
  1913. p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
  1914. p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX);
  1915. p->rx_pause = GET_STAT(RX_PORT_PAUSE);
  1916. p->rx_ppp0 = GET_STAT(RX_PORT_PPP0);
  1917. p->rx_ppp1 = GET_STAT(RX_PORT_PPP1);
  1918. p->rx_ppp2 = GET_STAT(RX_PORT_PPP2);
  1919. p->rx_ppp3 = GET_STAT(RX_PORT_PPP3);
  1920. p->rx_ppp4 = GET_STAT(RX_PORT_PPP4);
  1921. p->rx_ppp5 = GET_STAT(RX_PORT_PPP5);
  1922. p->rx_ppp6 = GET_STAT(RX_PORT_PPP6);
  1923. p->rx_ppp7 = GET_STAT(RX_PORT_PPP7);
  1924. p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
  1925. p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
  1926. p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
  1927. p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
  1928. p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
  1929. p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
  1930. p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
  1931. p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
  1932. #undef GET_STAT
  1933. #undef GET_STAT_COM
  1934. }
  1935. /**
  1936. * t4_wol_magic_enable - enable/disable magic packet WoL
  1937. * @adap: the adapter
  1938. * @port: the physical port index
  1939. * @addr: MAC address expected in magic packets, %NULL to disable
  1940. *
  1941. * Enables/disables magic packet wake-on-LAN for the selected port.
  1942. */
  1943. void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
  1944. const u8 *addr)
  1945. {
  1946. if (addr) {
  1947. t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_MAGIC_MACID_LO),
  1948. (addr[2] << 24) | (addr[3] << 16) |
  1949. (addr[4] << 8) | addr[5]);
  1950. t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_MAGIC_MACID_HI),
  1951. (addr[0] << 8) | addr[1]);
  1952. }
  1953. t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2), MAGICEN,
  1954. addr ? MAGICEN : 0);
  1955. }
  1956. /**
  1957. * t4_wol_pat_enable - enable/disable pattern-based WoL
  1958. * @adap: the adapter
  1959. * @port: the physical port index
  1960. * @map: bitmap of which HW pattern filters to set
  1961. * @mask0: byte mask for bytes 0-63 of a packet
  1962. * @mask1: byte mask for bytes 64-127 of a packet
  1963. * @crc: Ethernet CRC for selected bytes
  1964. * @enable: enable/disable switch
  1965. *
  1966. * Sets the pattern filters indicated in @map to mask out the bytes
  1967. * specified in @mask0/@mask1 in received packets and compare the CRC of
  1968. * the resulting packet against @crc. If @enable is %true pattern-based
  1969. * WoL is enabled, otherwise disabled.
  1970. */
  1971. int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
  1972. u64 mask0, u64 mask1, unsigned int crc, bool enable)
  1973. {
  1974. int i;
  1975. if (!enable) {
  1976. t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2),
  1977. PATEN, 0);
  1978. return 0;
  1979. }
  1980. if (map > 0xff)
  1981. return -EINVAL;
  1982. #define EPIO_REG(name) PORT_REG(port, XGMAC_PORT_EPIO_##name)
  1983. t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
  1984. t4_write_reg(adap, EPIO_REG(DATA2), mask1);
  1985. t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
  1986. for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
  1987. if (!(map & 1))
  1988. continue;
  1989. /* write byte masks */
  1990. t4_write_reg(adap, EPIO_REG(DATA0), mask0);
  1991. t4_write_reg(adap, EPIO_REG(OP), ADDRESS(i) | EPIOWR);
  1992. t4_read_reg(adap, EPIO_REG(OP)); /* flush */
  1993. if (t4_read_reg(adap, EPIO_REG(OP)) & BUSY)
  1994. return -ETIMEDOUT;
  1995. /* write CRC */
  1996. t4_write_reg(adap, EPIO_REG(DATA0), crc);
  1997. t4_write_reg(adap, EPIO_REG(OP), ADDRESS(i + 32) | EPIOWR);
  1998. t4_read_reg(adap, EPIO_REG(OP)); /* flush */
  1999. if (t4_read_reg(adap, EPIO_REG(OP)) & BUSY)
  2000. return -ETIMEDOUT;
  2001. }
  2002. #undef EPIO_REG
  2003. t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2), 0, PATEN);
  2004. return 0;
  2005. }
  2006. #define INIT_CMD(var, cmd, rd_wr) do { \
  2007. (var).op_to_write = htonl(FW_CMD_OP(FW_##cmd##_CMD) | \
  2008. FW_CMD_REQUEST | FW_CMD_##rd_wr); \
  2009. (var).retval_len16 = htonl(FW_LEN16(var)); \
  2010. } while (0)
  2011. int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
  2012. u32 addr, u32 val)
  2013. {
  2014. struct fw_ldst_cmd c;
  2015. memset(&c, 0, sizeof(c));
  2016. c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST |
  2017. FW_CMD_WRITE |
  2018. FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE));
  2019. c.cycles_to_len16 = htonl(FW_LEN16(c));
  2020. c.u.addrval.addr = htonl(addr);
  2021. c.u.addrval.val = htonl(val);
  2022. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2023. }
  2024. /**
  2025. * t4_mem_win_read_len - read memory through PCIE memory window
  2026. * @adap: the adapter
  2027. * @addr: address of first byte requested aligned on 32b.
  2028. * @data: len bytes to hold the data read
  2029. * @len: amount of data to read from window. Must be <=
  2030. * MEMWIN0_APERATURE after adjusting for 16B alignment
  2031. * requirements of the the memory window.
  2032. *
  2033. * Read len bytes of data from MC starting at @addr.
  2034. */
  2035. int t4_mem_win_read_len(struct adapter *adap, u32 addr, __be32 *data, int len)
  2036. {
  2037. int i;
  2038. int off;
  2039. /*
  2040. * Align on a 16B boundary.
  2041. */
  2042. off = addr & 15;
  2043. if ((addr & 3) || (len + off) > MEMWIN0_APERTURE)
  2044. return -EINVAL;
  2045. t4_write_reg(adap, PCIE_MEM_ACCESS_OFFSET, addr & ~15);
  2046. t4_read_reg(adap, PCIE_MEM_ACCESS_OFFSET);
  2047. for (i = 0; i < len; i += 4)
  2048. *data++ = t4_read_reg(adap, (MEMWIN0_BASE + off + i));
  2049. return 0;
  2050. }
  2051. /**
  2052. * t4_mdio_rd - read a PHY register through MDIO
  2053. * @adap: the adapter
  2054. * @mbox: mailbox to use for the FW command
  2055. * @phy_addr: the PHY address
  2056. * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
  2057. * @reg: the register to read
  2058. * @valp: where to store the value
  2059. *
  2060. * Issues a FW command through the given mailbox to read a PHY register.
  2061. */
  2062. int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
  2063. unsigned int mmd, unsigned int reg, u16 *valp)
  2064. {
  2065. int ret;
  2066. struct fw_ldst_cmd c;
  2067. memset(&c, 0, sizeof(c));
  2068. c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST |
  2069. FW_CMD_READ | FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO));
  2070. c.cycles_to_len16 = htonl(FW_LEN16(c));
  2071. c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR(phy_addr) |
  2072. FW_LDST_CMD_MMD(mmd));
  2073. c.u.mdio.raddr = htons(reg);
  2074. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2075. if (ret == 0)
  2076. *valp = ntohs(c.u.mdio.rval);
  2077. return ret;
  2078. }
  2079. /**
  2080. * t4_mdio_wr - write a PHY register through MDIO
  2081. * @adap: the adapter
  2082. * @mbox: mailbox to use for the FW command
  2083. * @phy_addr: the PHY address
  2084. * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
  2085. * @reg: the register to write
  2086. * @valp: value to write
  2087. *
  2088. * Issues a FW command through the given mailbox to write a PHY register.
  2089. */
  2090. int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
  2091. unsigned int mmd, unsigned int reg, u16 val)
  2092. {
  2093. struct fw_ldst_cmd c;
  2094. memset(&c, 0, sizeof(c));
  2095. c.op_to_addrspace = htonl(FW_CMD_OP(FW_LDST_CMD) | FW_CMD_REQUEST |
  2096. FW_CMD_WRITE | FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO));
  2097. c.cycles_to_len16 = htonl(FW_LEN16(c));
  2098. c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR(phy_addr) |
  2099. FW_LDST_CMD_MMD(mmd));
  2100. c.u.mdio.raddr = htons(reg);
  2101. c.u.mdio.rval = htons(val);
  2102. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2103. }
  2104. /**
  2105. * t4_fw_hello - establish communication with FW
  2106. * @adap: the adapter
  2107. * @mbox: mailbox to use for the FW command
  2108. * @evt_mbox: mailbox to receive async FW events
  2109. * @master: specifies the caller's willingness to be the device master
  2110. * @state: returns the current device state (if non-NULL)
  2111. *
  2112. * Issues a command to establish communication with FW. Returns either
  2113. * an error (negative integer) or the mailbox of the Master PF.
  2114. */
  2115. int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
  2116. enum dev_master master, enum dev_state *state)
  2117. {
  2118. int ret;
  2119. struct fw_hello_cmd c;
  2120. u32 v;
  2121. unsigned int master_mbox;
  2122. int retries = FW_CMD_HELLO_RETRIES;
  2123. retry:
  2124. memset(&c, 0, sizeof(c));
  2125. INIT_CMD(c, HELLO, WRITE);
  2126. c.err_to_mbasyncnot = htonl(
  2127. FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
  2128. FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
  2129. FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ? mbox :
  2130. FW_HELLO_CMD_MBMASTER_MASK) |
  2131. FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
  2132. FW_HELLO_CMD_STAGE(fw_hello_cmd_stage_os) |
  2133. FW_HELLO_CMD_CLEARINIT);
  2134. /*
  2135. * Issue the HELLO command to the firmware. If it's not successful
  2136. * but indicates that we got a "busy" or "timeout" condition, retry
  2137. * the HELLO until we exhaust our retry limit.
  2138. */
  2139. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2140. if (ret < 0) {
  2141. if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
  2142. goto retry;
  2143. return ret;
  2144. }
  2145. v = ntohl(c.err_to_mbasyncnot);
  2146. master_mbox = FW_HELLO_CMD_MBMASTER_GET(v);
  2147. if (state) {
  2148. if (v & FW_HELLO_CMD_ERR)
  2149. *state = DEV_STATE_ERR;
  2150. else if (v & FW_HELLO_CMD_INIT)
  2151. *state = DEV_STATE_INIT;
  2152. else
  2153. *state = DEV_STATE_UNINIT;
  2154. }
  2155. /*
  2156. * If we're not the Master PF then we need to wait around for the
  2157. * Master PF Driver to finish setting up the adapter.
  2158. *
  2159. * Note that we also do this wait if we're a non-Master-capable PF and
  2160. * there is no current Master PF; a Master PF may show up momentarily
  2161. * and we wouldn't want to fail pointlessly. (This can happen when an
  2162. * OS loads lots of different drivers rapidly at the same time). In
  2163. * this case, the Master PF returned by the firmware will be
  2164. * FW_PCIE_FW_MASTER_MASK so the test below will work ...
  2165. */
  2166. if ((v & (FW_HELLO_CMD_ERR|FW_HELLO_CMD_INIT)) == 0 &&
  2167. master_mbox != mbox) {
  2168. int waiting = FW_CMD_HELLO_TIMEOUT;
  2169. /*
  2170. * Wait for the firmware to either indicate an error or
  2171. * initialized state. If we see either of these we bail out
  2172. * and report the issue to the caller. If we exhaust the
  2173. * "hello timeout" and we haven't exhausted our retries, try
  2174. * again. Otherwise bail with a timeout error.
  2175. */
  2176. for (;;) {
  2177. u32 pcie_fw;
  2178. msleep(50);
  2179. waiting -= 50;
  2180. /*
  2181. * If neither Error nor Initialialized are indicated
  2182. * by the firmware keep waiting till we exaust our
  2183. * timeout ... and then retry if we haven't exhausted
  2184. * our retries ...
  2185. */
  2186. pcie_fw = t4_read_reg(adap, MA_PCIE_FW);
  2187. if (!(pcie_fw & (FW_PCIE_FW_ERR|FW_PCIE_FW_INIT))) {
  2188. if (waiting <= 0) {
  2189. if (retries-- > 0)
  2190. goto retry;
  2191. return -ETIMEDOUT;
  2192. }
  2193. continue;
  2194. }
  2195. /*
  2196. * We either have an Error or Initialized condition
  2197. * report errors preferentially.
  2198. */
  2199. if (state) {
  2200. if (pcie_fw & FW_PCIE_FW_ERR)
  2201. *state = DEV_STATE_ERR;
  2202. else if (pcie_fw & FW_PCIE_FW_INIT)
  2203. *state = DEV_STATE_INIT;
  2204. }
  2205. /*
  2206. * If we arrived before a Master PF was selected and
  2207. * there's not a valid Master PF, grab its identity
  2208. * for our caller.
  2209. */
  2210. if (master_mbox == FW_PCIE_FW_MASTER_MASK &&
  2211. (pcie_fw & FW_PCIE_FW_MASTER_VLD))
  2212. master_mbox = FW_PCIE_FW_MASTER_GET(pcie_fw);
  2213. break;
  2214. }
  2215. }
  2216. return master_mbox;
  2217. }
  2218. /**
  2219. * t4_fw_bye - end communication with FW
  2220. * @adap: the adapter
  2221. * @mbox: mailbox to use for the FW command
  2222. *
  2223. * Issues a command to terminate communication with FW.
  2224. */
  2225. int t4_fw_bye(struct adapter *adap, unsigned int mbox)
  2226. {
  2227. struct fw_bye_cmd c;
  2228. INIT_CMD(c, BYE, WRITE);
  2229. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2230. }
  2231. /**
  2232. * t4_init_cmd - ask FW to initialize the device
  2233. * @adap: the adapter
  2234. * @mbox: mailbox to use for the FW command
  2235. *
  2236. * Issues a command to FW to partially initialize the device. This
  2237. * performs initialization that generally doesn't depend on user input.
  2238. */
  2239. int t4_early_init(struct adapter *adap, unsigned int mbox)
  2240. {
  2241. struct fw_initialize_cmd c;
  2242. INIT_CMD(c, INITIALIZE, WRITE);
  2243. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2244. }
  2245. /**
  2246. * t4_fw_reset - issue a reset to FW
  2247. * @adap: the adapter
  2248. * @mbox: mailbox to use for the FW command
  2249. * @reset: specifies the type of reset to perform
  2250. *
  2251. * Issues a reset command of the specified type to FW.
  2252. */
  2253. int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
  2254. {
  2255. struct fw_reset_cmd c;
  2256. INIT_CMD(c, RESET, WRITE);
  2257. c.val = htonl(reset);
  2258. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2259. }
  2260. /**
  2261. * t4_fw_config_file - setup an adapter via a Configuration File
  2262. * @adap: the adapter
  2263. * @mbox: mailbox to use for the FW command
  2264. * @mtype: the memory type where the Configuration File is located
  2265. * @maddr: the memory address where the Configuration File is located
  2266. * @finiver: return value for CF [fini] version
  2267. * @finicsum: return value for CF [fini] checksum
  2268. * @cfcsum: return value for CF computed checksum
  2269. *
  2270. * Issue a command to get the firmware to process the Configuration
  2271. * File located at the specified mtype/maddress. If the Configuration
  2272. * File is processed successfully and return value pointers are
  2273. * provided, the Configuration File "[fini] section version and
  2274. * checksum values will be returned along with the computed checksum.
  2275. * It's up to the caller to decide how it wants to respond to the
  2276. * checksums not matching but it recommended that a prominant warning
  2277. * be emitted in order to help people rapidly identify changed or
  2278. * corrupted Configuration Files.
  2279. *
  2280. * Also note that it's possible to modify things like "niccaps",
  2281. * "toecaps",etc. between processing the Configuration File and telling
  2282. * the firmware to use the new configuration. Callers which want to
  2283. * do this will need to "hand-roll" their own CAPS_CONFIGS commands for
  2284. * Configuration Files if they want to do this.
  2285. */
  2286. int t4_fw_config_file(struct adapter *adap, unsigned int mbox,
  2287. unsigned int mtype, unsigned int maddr,
  2288. u32 *finiver, u32 *finicsum, u32 *cfcsum)
  2289. {
  2290. struct fw_caps_config_cmd caps_cmd;
  2291. int ret;
  2292. /*
  2293. * Tell the firmware to process the indicated Configuration File.
  2294. * If there are no errors and the caller has provided return value
  2295. * pointers for the [fini] section version, checksum and computed
  2296. * checksum, pass those back to the caller.
  2297. */
  2298. memset(&caps_cmd, 0, sizeof(caps_cmd));
  2299. caps_cmd.op_to_write =
  2300. htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
  2301. FW_CMD_REQUEST |
  2302. FW_CMD_READ);
  2303. caps_cmd.retval_len16 =
  2304. htonl(FW_CAPS_CONFIG_CMD_CFVALID |
  2305. FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
  2306. FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
  2307. FW_LEN16(caps_cmd));
  2308. ret = t4_wr_mbox(adap, mbox, &caps_cmd, sizeof(caps_cmd), &caps_cmd);
  2309. if (ret < 0)
  2310. return ret;
  2311. if (finiver)
  2312. *finiver = ntohl(caps_cmd.finiver);
  2313. if (finicsum)
  2314. *finicsum = ntohl(caps_cmd.finicsum);
  2315. if (cfcsum)
  2316. *cfcsum = ntohl(caps_cmd.cfcsum);
  2317. /*
  2318. * And now tell the firmware to use the configuration we just loaded.
  2319. */
  2320. caps_cmd.op_to_write =
  2321. htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
  2322. FW_CMD_REQUEST |
  2323. FW_CMD_WRITE);
  2324. caps_cmd.retval_len16 = htonl(FW_LEN16(caps_cmd));
  2325. return t4_wr_mbox(adap, mbox, &caps_cmd, sizeof(caps_cmd), NULL);
  2326. }
  2327. /**
  2328. * t4_fixup_host_params - fix up host-dependent parameters
  2329. * @adap: the adapter
  2330. * @page_size: the host's Base Page Size
  2331. * @cache_line_size: the host's Cache Line Size
  2332. *
  2333. * Various registers in T4 contain values which are dependent on the
  2334. * host's Base Page and Cache Line Sizes. This function will fix all of
  2335. * those registers with the appropriate values as passed in ...
  2336. */
  2337. int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
  2338. unsigned int cache_line_size)
  2339. {
  2340. unsigned int page_shift = fls(page_size) - 1;
  2341. unsigned int sge_hps = page_shift - 10;
  2342. unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
  2343. unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
  2344. unsigned int fl_align_log = fls(fl_align) - 1;
  2345. t4_write_reg(adap, SGE_HOST_PAGE_SIZE,
  2346. HOSTPAGESIZEPF0(sge_hps) |
  2347. HOSTPAGESIZEPF1(sge_hps) |
  2348. HOSTPAGESIZEPF2(sge_hps) |
  2349. HOSTPAGESIZEPF3(sge_hps) |
  2350. HOSTPAGESIZEPF4(sge_hps) |
  2351. HOSTPAGESIZEPF5(sge_hps) |
  2352. HOSTPAGESIZEPF6(sge_hps) |
  2353. HOSTPAGESIZEPF7(sge_hps));
  2354. t4_set_reg_field(adap, SGE_CONTROL,
  2355. INGPADBOUNDARY(INGPADBOUNDARY_MASK) |
  2356. EGRSTATUSPAGESIZE_MASK,
  2357. INGPADBOUNDARY(fl_align_log - 5) |
  2358. EGRSTATUSPAGESIZE(stat_len != 64));
  2359. /*
  2360. * Adjust various SGE Free List Host Buffer Sizes.
  2361. *
  2362. * This is something of a crock since we're using fixed indices into
  2363. * the array which are also known by the sge.c code and the T4
  2364. * Firmware Configuration File. We need to come up with a much better
  2365. * approach to managing this array. For now, the first four entries
  2366. * are:
  2367. *
  2368. * 0: Host Page Size
  2369. * 1: 64KB
  2370. * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
  2371. * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
  2372. *
  2373. * For the single-MTU buffers in unpacked mode we need to include
  2374. * space for the SGE Control Packet Shift, 14 byte Ethernet header,
  2375. * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
  2376. * Padding boundry. All of these are accommodated in the Factory
  2377. * Default Firmware Configuration File but we need to adjust it for
  2378. * this host's cache line size.
  2379. */
  2380. t4_write_reg(adap, SGE_FL_BUFFER_SIZE0, page_size);
  2381. t4_write_reg(adap, SGE_FL_BUFFER_SIZE2,
  2382. (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2) + fl_align-1)
  2383. & ~(fl_align-1));
  2384. t4_write_reg(adap, SGE_FL_BUFFER_SIZE3,
  2385. (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3) + fl_align-1)
  2386. & ~(fl_align-1));
  2387. t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(page_shift - 12));
  2388. return 0;
  2389. }
  2390. /**
  2391. * t4_fw_initialize - ask FW to initialize the device
  2392. * @adap: the adapter
  2393. * @mbox: mailbox to use for the FW command
  2394. *
  2395. * Issues a command to FW to partially initialize the device. This
  2396. * performs initialization that generally doesn't depend on user input.
  2397. */
  2398. int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
  2399. {
  2400. struct fw_initialize_cmd c;
  2401. memset(&c, 0, sizeof(c));
  2402. INIT_CMD(c, INITIALIZE, WRITE);
  2403. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2404. }
  2405. /**
  2406. * t4_query_params - query FW or device parameters
  2407. * @adap: the adapter
  2408. * @mbox: mailbox to use for the FW command
  2409. * @pf: the PF
  2410. * @vf: the VF
  2411. * @nparams: the number of parameters
  2412. * @params: the parameter names
  2413. * @val: the parameter values
  2414. *
  2415. * Reads the value of FW or device parameters. Up to 7 parameters can be
  2416. * queried at once.
  2417. */
  2418. int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2419. unsigned int vf, unsigned int nparams, const u32 *params,
  2420. u32 *val)
  2421. {
  2422. int i, ret;
  2423. struct fw_params_cmd c;
  2424. __be32 *p = &c.param[0].mnem;
  2425. if (nparams > 7)
  2426. return -EINVAL;
  2427. memset(&c, 0, sizeof(c));
  2428. c.op_to_vfn = htonl(FW_CMD_OP(FW_PARAMS_CMD) | FW_CMD_REQUEST |
  2429. FW_CMD_READ | FW_PARAMS_CMD_PFN(pf) |
  2430. FW_PARAMS_CMD_VFN(vf));
  2431. c.retval_len16 = htonl(FW_LEN16(c));
  2432. for (i = 0; i < nparams; i++, p += 2)
  2433. *p = htonl(*params++);
  2434. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2435. if (ret == 0)
  2436. for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
  2437. *val++ = ntohl(*p);
  2438. return ret;
  2439. }
  2440. /**
  2441. * t4_set_params - sets FW or device parameters
  2442. * @adap: the adapter
  2443. * @mbox: mailbox to use for the FW command
  2444. * @pf: the PF
  2445. * @vf: the VF
  2446. * @nparams: the number of parameters
  2447. * @params: the parameter names
  2448. * @val: the parameter values
  2449. *
  2450. * Sets the value of FW or device parameters. Up to 7 parameters can be
  2451. * specified at once.
  2452. */
  2453. int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2454. unsigned int vf, unsigned int nparams, const u32 *params,
  2455. const u32 *val)
  2456. {
  2457. struct fw_params_cmd c;
  2458. __be32 *p = &c.param[0].mnem;
  2459. if (nparams > 7)
  2460. return -EINVAL;
  2461. memset(&c, 0, sizeof(c));
  2462. c.op_to_vfn = htonl(FW_CMD_OP(FW_PARAMS_CMD) | FW_CMD_REQUEST |
  2463. FW_CMD_WRITE | FW_PARAMS_CMD_PFN(pf) |
  2464. FW_PARAMS_CMD_VFN(vf));
  2465. c.retval_len16 = htonl(FW_LEN16(c));
  2466. while (nparams--) {
  2467. *p++ = htonl(*params++);
  2468. *p++ = htonl(*val++);
  2469. }
  2470. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2471. }
  2472. /**
  2473. * t4_cfg_pfvf - configure PF/VF resource limits
  2474. * @adap: the adapter
  2475. * @mbox: mailbox to use for the FW command
  2476. * @pf: the PF being configured
  2477. * @vf: the VF being configured
  2478. * @txq: the max number of egress queues
  2479. * @txq_eth_ctrl: the max number of egress Ethernet or control queues
  2480. * @rxqi: the max number of interrupt-capable ingress queues
  2481. * @rxq: the max number of interruptless ingress queues
  2482. * @tc: the PCI traffic class
  2483. * @vi: the max number of virtual interfaces
  2484. * @cmask: the channel access rights mask for the PF/VF
  2485. * @pmask: the port access rights mask for the PF/VF
  2486. * @nexact: the maximum number of exact MPS filters
  2487. * @rcaps: read capabilities
  2488. * @wxcaps: write/execute capabilities
  2489. *
  2490. * Configures resource limits and capabilities for a physical or virtual
  2491. * function.
  2492. */
  2493. int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2494. unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
  2495. unsigned int rxqi, unsigned int rxq, unsigned int tc,
  2496. unsigned int vi, unsigned int cmask, unsigned int pmask,
  2497. unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
  2498. {
  2499. struct fw_pfvf_cmd c;
  2500. memset(&c, 0, sizeof(c));
  2501. c.op_to_vfn = htonl(FW_CMD_OP(FW_PFVF_CMD) | FW_CMD_REQUEST |
  2502. FW_CMD_WRITE | FW_PFVF_CMD_PFN(pf) |
  2503. FW_PFVF_CMD_VFN(vf));
  2504. c.retval_len16 = htonl(FW_LEN16(c));
  2505. c.niqflint_niq = htonl(FW_PFVF_CMD_NIQFLINT(rxqi) |
  2506. FW_PFVF_CMD_NIQ(rxq));
  2507. c.type_to_neq = htonl(FW_PFVF_CMD_CMASK(cmask) |
  2508. FW_PFVF_CMD_PMASK(pmask) |
  2509. FW_PFVF_CMD_NEQ(txq));
  2510. c.tc_to_nexactf = htonl(FW_PFVF_CMD_TC(tc) | FW_PFVF_CMD_NVI(vi) |
  2511. FW_PFVF_CMD_NEXACTF(nexact));
  2512. c.r_caps_to_nethctrl = htonl(FW_PFVF_CMD_R_CAPS(rcaps) |
  2513. FW_PFVF_CMD_WX_CAPS(wxcaps) |
  2514. FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
  2515. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2516. }
  2517. /**
  2518. * t4_alloc_vi - allocate a virtual interface
  2519. * @adap: the adapter
  2520. * @mbox: mailbox to use for the FW command
  2521. * @port: physical port associated with the VI
  2522. * @pf: the PF owning the VI
  2523. * @vf: the VF owning the VI
  2524. * @nmac: number of MAC addresses needed (1 to 5)
  2525. * @mac: the MAC addresses of the VI
  2526. * @rss_size: size of RSS table slice associated with this VI
  2527. *
  2528. * Allocates a virtual interface for the given physical port. If @mac is
  2529. * not %NULL it contains the MAC addresses of the VI as assigned by FW.
  2530. * @mac should be large enough to hold @nmac Ethernet addresses, they are
  2531. * stored consecutively so the space needed is @nmac * 6 bytes.
  2532. * Returns a negative error number or the non-negative VI id.
  2533. */
  2534. int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
  2535. unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
  2536. unsigned int *rss_size)
  2537. {
  2538. int ret;
  2539. struct fw_vi_cmd c;
  2540. memset(&c, 0, sizeof(c));
  2541. c.op_to_vfn = htonl(FW_CMD_OP(FW_VI_CMD) | FW_CMD_REQUEST |
  2542. FW_CMD_WRITE | FW_CMD_EXEC |
  2543. FW_VI_CMD_PFN(pf) | FW_VI_CMD_VFN(vf));
  2544. c.alloc_to_len16 = htonl(FW_VI_CMD_ALLOC | FW_LEN16(c));
  2545. c.portid_pkd = FW_VI_CMD_PORTID(port);
  2546. c.nmac = nmac - 1;
  2547. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2548. if (ret)
  2549. return ret;
  2550. if (mac) {
  2551. memcpy(mac, c.mac, sizeof(c.mac));
  2552. switch (nmac) {
  2553. case 5:
  2554. memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
  2555. case 4:
  2556. memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
  2557. case 3:
  2558. memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
  2559. case 2:
  2560. memcpy(mac + 6, c.nmac0, sizeof(c.nmac0));
  2561. }
  2562. }
  2563. if (rss_size)
  2564. *rss_size = FW_VI_CMD_RSSSIZE_GET(ntohs(c.rsssize_pkd));
  2565. return FW_VI_CMD_VIID_GET(ntohs(c.type_viid));
  2566. }
  2567. /**
  2568. * t4_set_rxmode - set Rx properties of a virtual interface
  2569. * @adap: the adapter
  2570. * @mbox: mailbox to use for the FW command
  2571. * @viid: the VI id
  2572. * @mtu: the new MTU or -1
  2573. * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
  2574. * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
  2575. * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
  2576. * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
  2577. * @sleep_ok: if true we may sleep while awaiting command completion
  2578. *
  2579. * Sets Rx properties of a virtual interface.
  2580. */
  2581. int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
  2582. int mtu, int promisc, int all_multi, int bcast, int vlanex,
  2583. bool sleep_ok)
  2584. {
  2585. struct fw_vi_rxmode_cmd c;
  2586. /* convert to FW values */
  2587. if (mtu < 0)
  2588. mtu = FW_RXMODE_MTU_NO_CHG;
  2589. if (promisc < 0)
  2590. promisc = FW_VI_RXMODE_CMD_PROMISCEN_MASK;
  2591. if (all_multi < 0)
  2592. all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_MASK;
  2593. if (bcast < 0)
  2594. bcast = FW_VI_RXMODE_CMD_BROADCASTEN_MASK;
  2595. if (vlanex < 0)
  2596. vlanex = FW_VI_RXMODE_CMD_VLANEXEN_MASK;
  2597. memset(&c, 0, sizeof(c));
  2598. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_RXMODE_CMD) | FW_CMD_REQUEST |
  2599. FW_CMD_WRITE | FW_VI_RXMODE_CMD_VIID(viid));
  2600. c.retval_len16 = htonl(FW_LEN16(c));
  2601. c.mtu_to_vlanexen = htonl(FW_VI_RXMODE_CMD_MTU(mtu) |
  2602. FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
  2603. FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
  2604. FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
  2605. FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
  2606. return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
  2607. }
  2608. /**
  2609. * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
  2610. * @adap: the adapter
  2611. * @mbox: mailbox to use for the FW command
  2612. * @viid: the VI id
  2613. * @free: if true any existing filters for this VI id are first removed
  2614. * @naddr: the number of MAC addresses to allocate filters for (up to 7)
  2615. * @addr: the MAC address(es)
  2616. * @idx: where to store the index of each allocated filter
  2617. * @hash: pointer to hash address filter bitmap
  2618. * @sleep_ok: call is allowed to sleep
  2619. *
  2620. * Allocates an exact-match filter for each of the supplied addresses and
  2621. * sets it to the corresponding address. If @idx is not %NULL it should
  2622. * have at least @naddr entries, each of which will be set to the index of
  2623. * the filter allocated for the corresponding MAC address. If a filter
  2624. * could not be allocated for an address its index is set to 0xffff.
  2625. * If @hash is not %NULL addresses that fail to allocate an exact filter
  2626. * are hashed and update the hash filter bitmap pointed at by @hash.
  2627. *
  2628. * Returns a negative error number or the number of filters allocated.
  2629. */
  2630. int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
  2631. unsigned int viid, bool free, unsigned int naddr,
  2632. const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
  2633. {
  2634. int i, ret;
  2635. struct fw_vi_mac_cmd c;
  2636. struct fw_vi_mac_exact *p;
  2637. if (naddr > 7)
  2638. return -EINVAL;
  2639. memset(&c, 0, sizeof(c));
  2640. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
  2641. FW_CMD_WRITE | (free ? FW_CMD_EXEC : 0) |
  2642. FW_VI_MAC_CMD_VIID(viid));
  2643. c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_FREEMACS(free) |
  2644. FW_CMD_LEN16((naddr + 2) / 2));
  2645. for (i = 0, p = c.u.exact; i < naddr; i++, p++) {
  2646. p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID |
  2647. FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
  2648. memcpy(p->macaddr, addr[i], sizeof(p->macaddr));
  2649. }
  2650. ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
  2651. if (ret)
  2652. return ret;
  2653. for (i = 0, p = c.u.exact; i < naddr; i++, p++) {
  2654. u16 index = FW_VI_MAC_CMD_IDX_GET(ntohs(p->valid_to_idx));
  2655. if (idx)
  2656. idx[i] = index >= NEXACT_MAC ? 0xffff : index;
  2657. if (index < NEXACT_MAC)
  2658. ret++;
  2659. else if (hash)
  2660. *hash |= (1ULL << hash_mac_addr(addr[i]));
  2661. }
  2662. return ret;
  2663. }
  2664. /**
  2665. * t4_change_mac - modifies the exact-match filter for a MAC address
  2666. * @adap: the adapter
  2667. * @mbox: mailbox to use for the FW command
  2668. * @viid: the VI id
  2669. * @idx: index of existing filter for old value of MAC address, or -1
  2670. * @addr: the new MAC address value
  2671. * @persist: whether a new MAC allocation should be persistent
  2672. * @add_smt: if true also add the address to the HW SMT
  2673. *
  2674. * Modifies an exact-match filter and sets it to the new MAC address.
  2675. * Note that in general it is not possible to modify the value of a given
  2676. * filter so the generic way to modify an address filter is to free the one
  2677. * being used by the old address value and allocate a new filter for the
  2678. * new address value. @idx can be -1 if the address is a new addition.
  2679. *
  2680. * Returns a negative error number or the index of the filter with the new
  2681. * MAC value.
  2682. */
  2683. int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
  2684. int idx, const u8 *addr, bool persist, bool add_smt)
  2685. {
  2686. int ret, mode;
  2687. struct fw_vi_mac_cmd c;
  2688. struct fw_vi_mac_exact *p = c.u.exact;
  2689. if (idx < 0) /* new allocation */
  2690. idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
  2691. mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
  2692. memset(&c, 0, sizeof(c));
  2693. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
  2694. FW_CMD_WRITE | FW_VI_MAC_CMD_VIID(viid));
  2695. c.freemacs_to_len16 = htonl(FW_CMD_LEN16(1));
  2696. p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID |
  2697. FW_VI_MAC_CMD_SMAC_RESULT(mode) |
  2698. FW_VI_MAC_CMD_IDX(idx));
  2699. memcpy(p->macaddr, addr, sizeof(p->macaddr));
  2700. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  2701. if (ret == 0) {
  2702. ret = FW_VI_MAC_CMD_IDX_GET(ntohs(p->valid_to_idx));
  2703. if (ret >= NEXACT_MAC)
  2704. ret = -ENOMEM;
  2705. }
  2706. return ret;
  2707. }
  2708. /**
  2709. * t4_set_addr_hash - program the MAC inexact-match hash filter
  2710. * @adap: the adapter
  2711. * @mbox: mailbox to use for the FW command
  2712. * @viid: the VI id
  2713. * @ucast: whether the hash filter should also match unicast addresses
  2714. * @vec: the value to be written to the hash filter
  2715. * @sleep_ok: call is allowed to sleep
  2716. *
  2717. * Sets the 64-bit inexact-match hash filter for a virtual interface.
  2718. */
  2719. int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
  2720. bool ucast, u64 vec, bool sleep_ok)
  2721. {
  2722. struct fw_vi_mac_cmd c;
  2723. memset(&c, 0, sizeof(c));
  2724. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_MAC_CMD) | FW_CMD_REQUEST |
  2725. FW_CMD_WRITE | FW_VI_ENABLE_CMD_VIID(viid));
  2726. c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_HASHVECEN |
  2727. FW_VI_MAC_CMD_HASHUNIEN(ucast) |
  2728. FW_CMD_LEN16(1));
  2729. c.u.hash.hashvec = cpu_to_be64(vec);
  2730. return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
  2731. }
  2732. /**
  2733. * t4_enable_vi - enable/disable a virtual interface
  2734. * @adap: the adapter
  2735. * @mbox: mailbox to use for the FW command
  2736. * @viid: the VI id
  2737. * @rx_en: 1=enable Rx, 0=disable Rx
  2738. * @tx_en: 1=enable Tx, 0=disable Tx
  2739. *
  2740. * Enables/disables a virtual interface.
  2741. */
  2742. int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
  2743. bool rx_en, bool tx_en)
  2744. {
  2745. struct fw_vi_enable_cmd c;
  2746. memset(&c, 0, sizeof(c));
  2747. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST |
  2748. FW_CMD_EXEC | FW_VI_ENABLE_CMD_VIID(viid));
  2749. c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_IEN(rx_en) |
  2750. FW_VI_ENABLE_CMD_EEN(tx_en) | FW_LEN16(c));
  2751. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2752. }
  2753. /**
  2754. * t4_identify_port - identify a VI's port by blinking its LED
  2755. * @adap: the adapter
  2756. * @mbox: mailbox to use for the FW command
  2757. * @viid: the VI id
  2758. * @nblinks: how many times to blink LED at 2.5 Hz
  2759. *
  2760. * Identifies a VI's port by blinking its LED.
  2761. */
  2762. int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
  2763. unsigned int nblinks)
  2764. {
  2765. struct fw_vi_enable_cmd c;
  2766. c.op_to_viid = htonl(FW_CMD_OP(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST |
  2767. FW_CMD_EXEC | FW_VI_ENABLE_CMD_VIID(viid));
  2768. c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
  2769. c.blinkdur = htons(nblinks);
  2770. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2771. }
  2772. /**
  2773. * t4_iq_free - free an ingress queue and its FLs
  2774. * @adap: the adapter
  2775. * @mbox: mailbox to use for the FW command
  2776. * @pf: the PF owning the queues
  2777. * @vf: the VF owning the queues
  2778. * @iqtype: the ingress queue type
  2779. * @iqid: ingress queue id
  2780. * @fl0id: FL0 queue id or 0xffff if no attached FL0
  2781. * @fl1id: FL1 queue id or 0xffff if no attached FL1
  2782. *
  2783. * Frees an ingress queue and its associated FLs, if any.
  2784. */
  2785. int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2786. unsigned int vf, unsigned int iqtype, unsigned int iqid,
  2787. unsigned int fl0id, unsigned int fl1id)
  2788. {
  2789. struct fw_iq_cmd c;
  2790. memset(&c, 0, sizeof(c));
  2791. c.op_to_vfn = htonl(FW_CMD_OP(FW_IQ_CMD) | FW_CMD_REQUEST |
  2792. FW_CMD_EXEC | FW_IQ_CMD_PFN(pf) |
  2793. FW_IQ_CMD_VFN(vf));
  2794. c.alloc_to_len16 = htonl(FW_IQ_CMD_FREE | FW_LEN16(c));
  2795. c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE(iqtype));
  2796. c.iqid = htons(iqid);
  2797. c.fl0id = htons(fl0id);
  2798. c.fl1id = htons(fl1id);
  2799. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2800. }
  2801. /**
  2802. * t4_eth_eq_free - free an Ethernet egress queue
  2803. * @adap: the adapter
  2804. * @mbox: mailbox to use for the FW command
  2805. * @pf: the PF owning the queue
  2806. * @vf: the VF owning the queue
  2807. * @eqid: egress queue id
  2808. *
  2809. * Frees an Ethernet egress queue.
  2810. */
  2811. int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2812. unsigned int vf, unsigned int eqid)
  2813. {
  2814. struct fw_eq_eth_cmd c;
  2815. memset(&c, 0, sizeof(c));
  2816. c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_ETH_CMD) | FW_CMD_REQUEST |
  2817. FW_CMD_EXEC | FW_EQ_ETH_CMD_PFN(pf) |
  2818. FW_EQ_ETH_CMD_VFN(vf));
  2819. c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
  2820. c.eqid_pkd = htonl(FW_EQ_ETH_CMD_EQID(eqid));
  2821. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2822. }
  2823. /**
  2824. * t4_ctrl_eq_free - free a control egress queue
  2825. * @adap: the adapter
  2826. * @mbox: mailbox to use for the FW command
  2827. * @pf: the PF owning the queue
  2828. * @vf: the VF owning the queue
  2829. * @eqid: egress queue id
  2830. *
  2831. * Frees a control egress queue.
  2832. */
  2833. int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2834. unsigned int vf, unsigned int eqid)
  2835. {
  2836. struct fw_eq_ctrl_cmd c;
  2837. memset(&c, 0, sizeof(c));
  2838. c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST |
  2839. FW_CMD_EXEC | FW_EQ_CTRL_CMD_PFN(pf) |
  2840. FW_EQ_CTRL_CMD_VFN(vf));
  2841. c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
  2842. c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_EQID(eqid));
  2843. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2844. }
  2845. /**
  2846. * t4_ofld_eq_free - free an offload egress queue
  2847. * @adap: the adapter
  2848. * @mbox: mailbox to use for the FW command
  2849. * @pf: the PF owning the queue
  2850. * @vf: the VF owning the queue
  2851. * @eqid: egress queue id
  2852. *
  2853. * Frees a control egress queue.
  2854. */
  2855. int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
  2856. unsigned int vf, unsigned int eqid)
  2857. {
  2858. struct fw_eq_ofld_cmd c;
  2859. memset(&c, 0, sizeof(c));
  2860. c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST |
  2861. FW_CMD_EXEC | FW_EQ_OFLD_CMD_PFN(pf) |
  2862. FW_EQ_OFLD_CMD_VFN(vf));
  2863. c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
  2864. c.eqid_pkd = htonl(FW_EQ_OFLD_CMD_EQID(eqid));
  2865. return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
  2866. }
  2867. /**
  2868. * t4_handle_fw_rpl - process a FW reply message
  2869. * @adap: the adapter
  2870. * @rpl: start of the FW message
  2871. *
  2872. * Processes a FW message, such as link state change messages.
  2873. */
  2874. int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
  2875. {
  2876. u8 opcode = *(const u8 *)rpl;
  2877. if (opcode == FW_PORT_CMD) { /* link/module state change message */
  2878. int speed = 0, fc = 0;
  2879. const struct fw_port_cmd *p = (void *)rpl;
  2880. int chan = FW_PORT_CMD_PORTID_GET(ntohl(p->op_to_portid));
  2881. int port = adap->chan_map[chan];
  2882. struct port_info *pi = adap2pinfo(adap, port);
  2883. struct link_config *lc = &pi->link_cfg;
  2884. u32 stat = ntohl(p->u.info.lstatus_to_modtype);
  2885. int link_ok = (stat & FW_PORT_CMD_LSTATUS) != 0;
  2886. u32 mod = FW_PORT_CMD_MODTYPE_GET(stat);
  2887. if (stat & FW_PORT_CMD_RXPAUSE)
  2888. fc |= PAUSE_RX;
  2889. if (stat & FW_PORT_CMD_TXPAUSE)
  2890. fc |= PAUSE_TX;
  2891. if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
  2892. speed = SPEED_100;
  2893. else if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
  2894. speed = SPEED_1000;
  2895. else if (stat & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
  2896. speed = SPEED_10000;
  2897. if (link_ok != lc->link_ok || speed != lc->speed ||
  2898. fc != lc->fc) { /* something changed */
  2899. lc->link_ok = link_ok;
  2900. lc->speed = speed;
  2901. lc->fc = fc;
  2902. t4_os_link_changed(adap, port, link_ok);
  2903. }
  2904. if (mod != pi->mod_type) {
  2905. pi->mod_type = mod;
  2906. t4_os_portmod_changed(adap, port);
  2907. }
  2908. }
  2909. return 0;
  2910. }
  2911. static void __devinit get_pci_mode(struct adapter *adapter,
  2912. struct pci_params *p)
  2913. {
  2914. u16 val;
  2915. u32 pcie_cap = pci_pcie_cap(adapter->pdev);
  2916. if (pcie_cap) {
  2917. pci_read_config_word(adapter->pdev, pcie_cap + PCI_EXP_LNKSTA,
  2918. &val);
  2919. p->speed = val & PCI_EXP_LNKSTA_CLS;
  2920. p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
  2921. }
  2922. }
  2923. /**
  2924. * init_link_config - initialize a link's SW state
  2925. * @lc: structure holding the link state
  2926. * @caps: link capabilities
  2927. *
  2928. * Initializes the SW state maintained for each link, including the link's
  2929. * capabilities and default speed/flow-control/autonegotiation settings.
  2930. */
  2931. static void __devinit init_link_config(struct link_config *lc,
  2932. unsigned int caps)
  2933. {
  2934. lc->supported = caps;
  2935. lc->requested_speed = 0;
  2936. lc->speed = 0;
  2937. lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
  2938. if (lc->supported & FW_PORT_CAP_ANEG) {
  2939. lc->advertising = lc->supported & ADVERT_MASK;
  2940. lc->autoneg = AUTONEG_ENABLE;
  2941. lc->requested_fc |= PAUSE_AUTONEG;
  2942. } else {
  2943. lc->advertising = 0;
  2944. lc->autoneg = AUTONEG_DISABLE;
  2945. }
  2946. }
  2947. int t4_wait_dev_ready(struct adapter *adap)
  2948. {
  2949. if (t4_read_reg(adap, PL_WHOAMI) != 0xffffffff)
  2950. return 0;
  2951. msleep(500);
  2952. return t4_read_reg(adap, PL_WHOAMI) != 0xffffffff ? 0 : -EIO;
  2953. }
  2954. static int __devinit get_flash_params(struct adapter *adap)
  2955. {
  2956. int ret;
  2957. u32 info;
  2958. ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
  2959. if (!ret)
  2960. ret = sf1_read(adap, 3, 0, 1, &info);
  2961. t4_write_reg(adap, SF_OP, 0); /* unlock SF */
  2962. if (ret)
  2963. return ret;
  2964. if ((info & 0xff) != 0x20) /* not a Numonix flash */
  2965. return -EINVAL;
  2966. info >>= 16; /* log2 of size */
  2967. if (info >= 0x14 && info < 0x18)
  2968. adap->params.sf_nsec = 1 << (info - 16);
  2969. else if (info == 0x18)
  2970. adap->params.sf_nsec = 64;
  2971. else
  2972. return -EINVAL;
  2973. adap->params.sf_size = 1 << info;
  2974. adap->params.sf_fw_start =
  2975. t4_read_reg(adap, CIM_BOOT_CFG) & BOOTADDR_MASK;
  2976. return 0;
  2977. }
  2978. /**
  2979. * t4_prep_adapter - prepare SW and HW for operation
  2980. * @adapter: the adapter
  2981. * @reset: if true perform a HW reset
  2982. *
  2983. * Initialize adapter SW state for the various HW modules, set initial
  2984. * values for some adapter tunables, take PHYs out of reset, and
  2985. * initialize the MDIO interface.
  2986. */
  2987. int __devinit t4_prep_adapter(struct adapter *adapter)
  2988. {
  2989. int ret;
  2990. ret = t4_wait_dev_ready(adapter);
  2991. if (ret < 0)
  2992. return ret;
  2993. get_pci_mode(adapter, &adapter->params.pci);
  2994. adapter->params.rev = t4_read_reg(adapter, PL_REV);
  2995. ret = get_flash_params(adapter);
  2996. if (ret < 0) {
  2997. dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
  2998. return ret;
  2999. }
  3000. init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
  3001. /*
  3002. * Default port for debugging in case we can't reach FW.
  3003. */
  3004. adapter->params.nports = 1;
  3005. adapter->params.portvec = 1;
  3006. adapter->params.vpd.cclk = 50000;
  3007. return 0;
  3008. }
  3009. int __devinit t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
  3010. {
  3011. u8 addr[6];
  3012. int ret, i, j = 0;
  3013. struct fw_port_cmd c;
  3014. struct fw_rss_vi_config_cmd rvc;
  3015. memset(&c, 0, sizeof(c));
  3016. memset(&rvc, 0, sizeof(rvc));
  3017. for_each_port(adap, i) {
  3018. unsigned int rss_size;
  3019. struct port_info *p = adap2pinfo(adap, i);
  3020. while ((adap->params.portvec & (1 << j)) == 0)
  3021. j++;
  3022. c.op_to_portid = htonl(FW_CMD_OP(FW_PORT_CMD) |
  3023. FW_CMD_REQUEST | FW_CMD_READ |
  3024. FW_PORT_CMD_PORTID(j));
  3025. c.action_to_len16 = htonl(
  3026. FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
  3027. FW_LEN16(c));
  3028. ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
  3029. if (ret)
  3030. return ret;
  3031. ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
  3032. if (ret < 0)
  3033. return ret;
  3034. p->viid = ret;
  3035. p->tx_chan = j;
  3036. p->lport = j;
  3037. p->rss_size = rss_size;
  3038. memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
  3039. memcpy(adap->port[i]->perm_addr, addr, ETH_ALEN);
  3040. adap->port[i]->dev_id = j;
  3041. ret = ntohl(c.u.info.lstatus_to_modtype);
  3042. p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP) ?
  3043. FW_PORT_CMD_MDIOADDR_GET(ret) : -1;
  3044. p->port_type = FW_PORT_CMD_PTYPE_GET(ret);
  3045. p->mod_type = FW_PORT_MOD_TYPE_NA;
  3046. rvc.op_to_viid = htonl(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
  3047. FW_CMD_REQUEST | FW_CMD_READ |
  3048. FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
  3049. rvc.retval_len16 = htonl(FW_LEN16(rvc));
  3050. ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
  3051. if (ret)
  3052. return ret;
  3053. p->rss_mode = ntohl(rvc.u.basicvirtual.defaultq_to_udpen);
  3054. init_link_config(&p->link_cfg, ntohs(c.u.info.pcap));
  3055. j++;
  3056. }
  3057. return 0;
  3058. }