page_alloc.c 107 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/bootmem.h>
  22. #include <linux/compiler.h>
  23. #include <linux/kernel.h>
  24. #include <linux/module.h>
  25. #include <linux/suspend.h>
  26. #include <linux/pagevec.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/slab.h>
  29. #include <linux/notifier.h>
  30. #include <linux/topology.h>
  31. #include <linux/sysctl.h>
  32. #include <linux/cpu.h>
  33. #include <linux/cpuset.h>
  34. #include <linux/memory_hotplug.h>
  35. #include <linux/nodemask.h>
  36. #include <linux/vmalloc.h>
  37. #include <linux/mempolicy.h>
  38. #include <linux/stop_machine.h>
  39. #include <linux/sort.h>
  40. #include <linux/pfn.h>
  41. #include <linux/backing-dev.h>
  42. #include <linux/fault-inject.h>
  43. #include <asm/tlbflush.h>
  44. #include <asm/div64.h>
  45. #include "internal.h"
  46. /*
  47. * Array of node states.
  48. */
  49. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  50. [N_POSSIBLE] = NODE_MASK_ALL,
  51. [N_ONLINE] = { { [0] = 1UL } },
  52. #ifndef CONFIG_NUMA
  53. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  54. #ifdef CONFIG_HIGHMEM
  55. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  56. #endif
  57. [N_CPU] = { { [0] = 1UL } },
  58. #endif /* NUMA */
  59. };
  60. EXPORT_SYMBOL(node_states);
  61. unsigned long totalram_pages __read_mostly;
  62. unsigned long totalreserve_pages __read_mostly;
  63. long nr_swap_pages;
  64. int percpu_pagelist_fraction;
  65. static void __free_pages_ok(struct page *page, unsigned int order);
  66. /*
  67. * results with 256, 32 in the lowmem_reserve sysctl:
  68. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  69. * 1G machine -> (16M dma, 784M normal, 224M high)
  70. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  71. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  72. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  73. *
  74. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  75. * don't need any ZONE_NORMAL reservation
  76. */
  77. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  78. #ifdef CONFIG_ZONE_DMA
  79. 256,
  80. #endif
  81. #ifdef CONFIG_ZONE_DMA32
  82. 256,
  83. #endif
  84. #ifdef CONFIG_HIGHMEM
  85. 32,
  86. #endif
  87. 32,
  88. };
  89. EXPORT_SYMBOL(totalram_pages);
  90. static char * const zone_names[MAX_NR_ZONES] = {
  91. #ifdef CONFIG_ZONE_DMA
  92. "DMA",
  93. #endif
  94. #ifdef CONFIG_ZONE_DMA32
  95. "DMA32",
  96. #endif
  97. "Normal",
  98. #ifdef CONFIG_HIGHMEM
  99. "HighMem",
  100. #endif
  101. "Movable",
  102. };
  103. int min_free_kbytes = 1024;
  104. unsigned long __meminitdata nr_kernel_pages;
  105. unsigned long __meminitdata nr_all_pages;
  106. static unsigned long __meminitdata dma_reserve;
  107. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  108. /*
  109. * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
  110. * ranges of memory (RAM) that may be registered with add_active_range().
  111. * Ranges passed to add_active_range() will be merged if possible
  112. * so the number of times add_active_range() can be called is
  113. * related to the number of nodes and the number of holes
  114. */
  115. #ifdef CONFIG_MAX_ACTIVE_REGIONS
  116. /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
  117. #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
  118. #else
  119. #if MAX_NUMNODES >= 32
  120. /* If there can be many nodes, allow up to 50 holes per node */
  121. #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
  122. #else
  123. /* By default, allow up to 256 distinct regions */
  124. #define MAX_ACTIVE_REGIONS 256
  125. #endif
  126. #endif
  127. static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
  128. static int __meminitdata nr_nodemap_entries;
  129. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  130. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  131. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  132. static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
  133. static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
  134. #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
  135. unsigned long __initdata required_kernelcore;
  136. unsigned long __initdata required_movablecore;
  137. unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  138. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  139. int movable_zone;
  140. EXPORT_SYMBOL(movable_zone);
  141. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  142. #if MAX_NUMNODES > 1
  143. int nr_node_ids __read_mostly = MAX_NUMNODES;
  144. EXPORT_SYMBOL(nr_node_ids);
  145. #endif
  146. #ifdef CONFIG_DEBUG_VM
  147. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  148. {
  149. int ret = 0;
  150. unsigned seq;
  151. unsigned long pfn = page_to_pfn(page);
  152. do {
  153. seq = zone_span_seqbegin(zone);
  154. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  155. ret = 1;
  156. else if (pfn < zone->zone_start_pfn)
  157. ret = 1;
  158. } while (zone_span_seqretry(zone, seq));
  159. return ret;
  160. }
  161. static int page_is_consistent(struct zone *zone, struct page *page)
  162. {
  163. if (!pfn_valid_within(page_to_pfn(page)))
  164. return 0;
  165. if (zone != page_zone(page))
  166. return 0;
  167. return 1;
  168. }
  169. /*
  170. * Temporary debugging check for pages not lying within a given zone.
  171. */
  172. static int bad_range(struct zone *zone, struct page *page)
  173. {
  174. if (page_outside_zone_boundaries(zone, page))
  175. return 1;
  176. if (!page_is_consistent(zone, page))
  177. return 1;
  178. return 0;
  179. }
  180. #else
  181. static inline int bad_range(struct zone *zone, struct page *page)
  182. {
  183. return 0;
  184. }
  185. #endif
  186. static void bad_page(struct page *page)
  187. {
  188. printk(KERN_EMERG "Bad page state in process '%s'\n"
  189. KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
  190. KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
  191. KERN_EMERG "Backtrace:\n",
  192. current->comm, page, (int)(2*sizeof(unsigned long)),
  193. (unsigned long)page->flags, page->mapping,
  194. page_mapcount(page), page_count(page));
  195. dump_stack();
  196. page->flags &= ~(1 << PG_lru |
  197. 1 << PG_private |
  198. 1 << PG_locked |
  199. 1 << PG_active |
  200. 1 << PG_dirty |
  201. 1 << PG_reclaim |
  202. 1 << PG_slab |
  203. 1 << PG_swapcache |
  204. 1 << PG_writeback |
  205. 1 << PG_buddy );
  206. set_page_count(page, 0);
  207. reset_page_mapcount(page);
  208. page->mapping = NULL;
  209. add_taint(TAINT_BAD_PAGE);
  210. }
  211. /*
  212. * Higher-order pages are called "compound pages". They are structured thusly:
  213. *
  214. * The first PAGE_SIZE page is called the "head page".
  215. *
  216. * The remaining PAGE_SIZE pages are called "tail pages".
  217. *
  218. * All pages have PG_compound set. All pages have their ->private pointing at
  219. * the head page (even the head page has this).
  220. *
  221. * The first tail page's ->lru.next holds the address of the compound page's
  222. * put_page() function. Its ->lru.prev holds the order of allocation.
  223. * This usage means that zero-order pages may not be compound.
  224. */
  225. static void free_compound_page(struct page *page)
  226. {
  227. __free_pages_ok(page, compound_order(page));
  228. }
  229. static void prep_compound_page(struct page *page, unsigned long order)
  230. {
  231. int i;
  232. int nr_pages = 1 << order;
  233. set_compound_page_dtor(page, free_compound_page);
  234. set_compound_order(page, order);
  235. __SetPageHead(page);
  236. for (i = 1; i < nr_pages; i++) {
  237. struct page *p = page + i;
  238. __SetPageTail(p);
  239. p->first_page = page;
  240. }
  241. }
  242. static void destroy_compound_page(struct page *page, unsigned long order)
  243. {
  244. int i;
  245. int nr_pages = 1 << order;
  246. if (unlikely(compound_order(page) != order))
  247. bad_page(page);
  248. if (unlikely(!PageHead(page)))
  249. bad_page(page);
  250. __ClearPageHead(page);
  251. for (i = 1; i < nr_pages; i++) {
  252. struct page *p = page + i;
  253. if (unlikely(!PageTail(p) |
  254. (p->first_page != page)))
  255. bad_page(page);
  256. __ClearPageTail(p);
  257. }
  258. }
  259. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  260. {
  261. int i;
  262. VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
  263. /*
  264. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  265. * and __GFP_HIGHMEM from hard or soft interrupt context.
  266. */
  267. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  268. for (i = 0; i < (1 << order); i++)
  269. clear_highpage(page + i);
  270. }
  271. /*
  272. * function for dealing with page's order in buddy system.
  273. * zone->lock is already acquired when we use these.
  274. * So, we don't need atomic page->flags operations here.
  275. */
  276. static inline unsigned long page_order(struct page *page)
  277. {
  278. return page_private(page);
  279. }
  280. static inline void set_page_order(struct page *page, int order)
  281. {
  282. set_page_private(page, order);
  283. __SetPageBuddy(page);
  284. }
  285. static inline void rmv_page_order(struct page *page)
  286. {
  287. __ClearPageBuddy(page);
  288. set_page_private(page, 0);
  289. }
  290. /*
  291. * Locate the struct page for both the matching buddy in our
  292. * pair (buddy1) and the combined O(n+1) page they form (page).
  293. *
  294. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  295. * the following equation:
  296. * B2 = B1 ^ (1 << O)
  297. * For example, if the starting buddy (buddy2) is #8 its order
  298. * 1 buddy is #10:
  299. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  300. *
  301. * 2) Any buddy B will have an order O+1 parent P which
  302. * satisfies the following equation:
  303. * P = B & ~(1 << O)
  304. *
  305. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  306. */
  307. static inline struct page *
  308. __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
  309. {
  310. unsigned long buddy_idx = page_idx ^ (1 << order);
  311. return page + (buddy_idx - page_idx);
  312. }
  313. static inline unsigned long
  314. __find_combined_index(unsigned long page_idx, unsigned int order)
  315. {
  316. return (page_idx & ~(1 << order));
  317. }
  318. /*
  319. * This function checks whether a page is free && is the buddy
  320. * we can do coalesce a page and its buddy if
  321. * (a) the buddy is not in a hole &&
  322. * (b) the buddy is in the buddy system &&
  323. * (c) a page and its buddy have the same order &&
  324. * (d) a page and its buddy are in the same zone.
  325. *
  326. * For recording whether a page is in the buddy system, we use PG_buddy.
  327. * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
  328. *
  329. * For recording page's order, we use page_private(page).
  330. */
  331. static inline int page_is_buddy(struct page *page, struct page *buddy,
  332. int order)
  333. {
  334. if (!pfn_valid_within(page_to_pfn(buddy)))
  335. return 0;
  336. if (page_zone_id(page) != page_zone_id(buddy))
  337. return 0;
  338. if (PageBuddy(buddy) && page_order(buddy) == order) {
  339. BUG_ON(page_count(buddy) != 0);
  340. return 1;
  341. }
  342. return 0;
  343. }
  344. /*
  345. * Freeing function for a buddy system allocator.
  346. *
  347. * The concept of a buddy system is to maintain direct-mapped table
  348. * (containing bit values) for memory blocks of various "orders".
  349. * The bottom level table contains the map for the smallest allocatable
  350. * units of memory (here, pages), and each level above it describes
  351. * pairs of units from the levels below, hence, "buddies".
  352. * At a high level, all that happens here is marking the table entry
  353. * at the bottom level available, and propagating the changes upward
  354. * as necessary, plus some accounting needed to play nicely with other
  355. * parts of the VM system.
  356. * At each level, we keep a list of pages, which are heads of continuous
  357. * free pages of length of (1 << order) and marked with PG_buddy. Page's
  358. * order is recorded in page_private(page) field.
  359. * So when we are allocating or freeing one, we can derive the state of the
  360. * other. That is, if we allocate a small block, and both were
  361. * free, the remainder of the region must be split into blocks.
  362. * If a block is freed, and its buddy is also free, then this
  363. * triggers coalescing into a block of larger size.
  364. *
  365. * -- wli
  366. */
  367. static inline void __free_one_page(struct page *page,
  368. struct zone *zone, unsigned int order)
  369. {
  370. unsigned long page_idx;
  371. int order_size = 1 << order;
  372. if (unlikely(PageCompound(page)))
  373. destroy_compound_page(page, order);
  374. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  375. VM_BUG_ON(page_idx & (order_size - 1));
  376. VM_BUG_ON(bad_range(zone, page));
  377. __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
  378. while (order < MAX_ORDER-1) {
  379. unsigned long combined_idx;
  380. struct free_area *area;
  381. struct page *buddy;
  382. buddy = __page_find_buddy(page, page_idx, order);
  383. if (!page_is_buddy(page, buddy, order))
  384. break; /* Move the buddy up one level. */
  385. list_del(&buddy->lru);
  386. area = zone->free_area + order;
  387. area->nr_free--;
  388. rmv_page_order(buddy);
  389. combined_idx = __find_combined_index(page_idx, order);
  390. page = page + (combined_idx - page_idx);
  391. page_idx = combined_idx;
  392. order++;
  393. }
  394. set_page_order(page, order);
  395. list_add(&page->lru, &zone->free_area[order].free_list);
  396. zone->free_area[order].nr_free++;
  397. }
  398. static inline int free_pages_check(struct page *page)
  399. {
  400. if (unlikely(page_mapcount(page) |
  401. (page->mapping != NULL) |
  402. (page_count(page) != 0) |
  403. (page->flags & (
  404. 1 << PG_lru |
  405. 1 << PG_private |
  406. 1 << PG_locked |
  407. 1 << PG_active |
  408. 1 << PG_slab |
  409. 1 << PG_swapcache |
  410. 1 << PG_writeback |
  411. 1 << PG_reserved |
  412. 1 << PG_buddy ))))
  413. bad_page(page);
  414. if (PageDirty(page))
  415. __ClearPageDirty(page);
  416. /*
  417. * For now, we report if PG_reserved was found set, but do not
  418. * clear it, and do not free the page. But we shall soon need
  419. * to do more, for when the ZERO_PAGE count wraps negative.
  420. */
  421. return PageReserved(page);
  422. }
  423. /*
  424. * Frees a list of pages.
  425. * Assumes all pages on list are in same zone, and of same order.
  426. * count is the number of pages to free.
  427. *
  428. * If the zone was previously in an "all pages pinned" state then look to
  429. * see if this freeing clears that state.
  430. *
  431. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  432. * pinned" detection logic.
  433. */
  434. static void free_pages_bulk(struct zone *zone, int count,
  435. struct list_head *list, int order)
  436. {
  437. spin_lock(&zone->lock);
  438. zone->all_unreclaimable = 0;
  439. zone->pages_scanned = 0;
  440. while (count--) {
  441. struct page *page;
  442. VM_BUG_ON(list_empty(list));
  443. page = list_entry(list->prev, struct page, lru);
  444. /* have to delete it as __free_one_page list manipulates */
  445. list_del(&page->lru);
  446. __free_one_page(page, zone, order);
  447. }
  448. spin_unlock(&zone->lock);
  449. }
  450. static void free_one_page(struct zone *zone, struct page *page, int order)
  451. {
  452. spin_lock(&zone->lock);
  453. zone->all_unreclaimable = 0;
  454. zone->pages_scanned = 0;
  455. __free_one_page(page, zone, order);
  456. spin_unlock(&zone->lock);
  457. }
  458. static void __free_pages_ok(struct page *page, unsigned int order)
  459. {
  460. unsigned long flags;
  461. int i;
  462. int reserved = 0;
  463. for (i = 0 ; i < (1 << order) ; ++i)
  464. reserved += free_pages_check(page + i);
  465. if (reserved)
  466. return;
  467. if (!PageHighMem(page))
  468. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  469. arch_free_page(page, order);
  470. kernel_map_pages(page, 1 << order, 0);
  471. local_irq_save(flags);
  472. __count_vm_events(PGFREE, 1 << order);
  473. free_one_page(page_zone(page), page, order);
  474. local_irq_restore(flags);
  475. }
  476. /*
  477. * permit the bootmem allocator to evade page validation on high-order frees
  478. */
  479. void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
  480. {
  481. if (order == 0) {
  482. __ClearPageReserved(page);
  483. set_page_count(page, 0);
  484. set_page_refcounted(page);
  485. __free_page(page);
  486. } else {
  487. int loop;
  488. prefetchw(page);
  489. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  490. struct page *p = &page[loop];
  491. if (loop + 1 < BITS_PER_LONG)
  492. prefetchw(p + 1);
  493. __ClearPageReserved(p);
  494. set_page_count(p, 0);
  495. }
  496. set_page_refcounted(page);
  497. __free_pages(page, order);
  498. }
  499. }
  500. /*
  501. * The order of subdivision here is critical for the IO subsystem.
  502. * Please do not alter this order without good reasons and regression
  503. * testing. Specifically, as large blocks of memory are subdivided,
  504. * the order in which smaller blocks are delivered depends on the order
  505. * they're subdivided in this function. This is the primary factor
  506. * influencing the order in which pages are delivered to the IO
  507. * subsystem according to empirical testing, and this is also justified
  508. * by considering the behavior of a buddy system containing a single
  509. * large block of memory acted on by a series of small allocations.
  510. * This behavior is a critical factor in sglist merging's success.
  511. *
  512. * -- wli
  513. */
  514. static inline void expand(struct zone *zone, struct page *page,
  515. int low, int high, struct free_area *area)
  516. {
  517. unsigned long size = 1 << high;
  518. while (high > low) {
  519. area--;
  520. high--;
  521. size >>= 1;
  522. VM_BUG_ON(bad_range(zone, &page[size]));
  523. list_add(&page[size].lru, &area->free_list);
  524. area->nr_free++;
  525. set_page_order(&page[size], high);
  526. }
  527. }
  528. /*
  529. * This page is about to be returned from the page allocator
  530. */
  531. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  532. {
  533. if (unlikely(page_mapcount(page) |
  534. (page->mapping != NULL) |
  535. (page_count(page) != 0) |
  536. (page->flags & (
  537. 1 << PG_lru |
  538. 1 << PG_private |
  539. 1 << PG_locked |
  540. 1 << PG_active |
  541. 1 << PG_dirty |
  542. 1 << PG_slab |
  543. 1 << PG_swapcache |
  544. 1 << PG_writeback |
  545. 1 << PG_reserved |
  546. 1 << PG_buddy ))))
  547. bad_page(page);
  548. /*
  549. * For now, we report if PG_reserved was found set, but do not
  550. * clear it, and do not allocate the page: as a safety net.
  551. */
  552. if (PageReserved(page))
  553. return 1;
  554. page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_readahead |
  555. 1 << PG_referenced | 1 << PG_arch_1 |
  556. 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
  557. set_page_private(page, 0);
  558. set_page_refcounted(page);
  559. arch_alloc_page(page, order);
  560. kernel_map_pages(page, 1 << order, 1);
  561. if (gfp_flags & __GFP_ZERO)
  562. prep_zero_page(page, order, gfp_flags);
  563. if (order && (gfp_flags & __GFP_COMP))
  564. prep_compound_page(page, order);
  565. return 0;
  566. }
  567. /*
  568. * Do the hard work of removing an element from the buddy allocator.
  569. * Call me with the zone->lock already held.
  570. */
  571. static struct page *__rmqueue(struct zone *zone, unsigned int order)
  572. {
  573. struct free_area * area;
  574. unsigned int current_order;
  575. struct page *page;
  576. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  577. area = zone->free_area + current_order;
  578. if (list_empty(&area->free_list))
  579. continue;
  580. page = list_entry(area->free_list.next, struct page, lru);
  581. list_del(&page->lru);
  582. rmv_page_order(page);
  583. area->nr_free--;
  584. __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
  585. expand(zone, page, order, current_order, area);
  586. return page;
  587. }
  588. return NULL;
  589. }
  590. /*
  591. * Obtain a specified number of elements from the buddy allocator, all under
  592. * a single hold of the lock, for efficiency. Add them to the supplied list.
  593. * Returns the number of new pages which were placed at *list.
  594. */
  595. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  596. unsigned long count, struct list_head *list)
  597. {
  598. int i;
  599. spin_lock(&zone->lock);
  600. for (i = 0; i < count; ++i) {
  601. struct page *page = __rmqueue(zone, order);
  602. if (unlikely(page == NULL))
  603. break;
  604. list_add_tail(&page->lru, list);
  605. }
  606. spin_unlock(&zone->lock);
  607. return i;
  608. }
  609. #ifdef CONFIG_NUMA
  610. /*
  611. * Called from the vmstat counter updater to drain pagesets of this
  612. * currently executing processor on remote nodes after they have
  613. * expired.
  614. *
  615. * Note that this function must be called with the thread pinned to
  616. * a single processor.
  617. */
  618. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  619. {
  620. unsigned long flags;
  621. int to_drain;
  622. local_irq_save(flags);
  623. if (pcp->count >= pcp->batch)
  624. to_drain = pcp->batch;
  625. else
  626. to_drain = pcp->count;
  627. free_pages_bulk(zone, to_drain, &pcp->list, 0);
  628. pcp->count -= to_drain;
  629. local_irq_restore(flags);
  630. }
  631. #endif
  632. static void __drain_pages(unsigned int cpu)
  633. {
  634. unsigned long flags;
  635. struct zone *zone;
  636. int i;
  637. for_each_zone(zone) {
  638. struct per_cpu_pageset *pset;
  639. if (!populated_zone(zone))
  640. continue;
  641. pset = zone_pcp(zone, cpu);
  642. for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
  643. struct per_cpu_pages *pcp;
  644. pcp = &pset->pcp[i];
  645. local_irq_save(flags);
  646. free_pages_bulk(zone, pcp->count, &pcp->list, 0);
  647. pcp->count = 0;
  648. local_irq_restore(flags);
  649. }
  650. }
  651. }
  652. #ifdef CONFIG_HIBERNATION
  653. void mark_free_pages(struct zone *zone)
  654. {
  655. unsigned long pfn, max_zone_pfn;
  656. unsigned long flags;
  657. int order;
  658. struct list_head *curr;
  659. if (!zone->spanned_pages)
  660. return;
  661. spin_lock_irqsave(&zone->lock, flags);
  662. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  663. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  664. if (pfn_valid(pfn)) {
  665. struct page *page = pfn_to_page(pfn);
  666. if (!swsusp_page_is_forbidden(page))
  667. swsusp_unset_page_free(page);
  668. }
  669. for (order = MAX_ORDER - 1; order >= 0; --order)
  670. list_for_each(curr, &zone->free_area[order].free_list) {
  671. unsigned long i;
  672. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  673. for (i = 0; i < (1UL << order); i++)
  674. swsusp_set_page_free(pfn_to_page(pfn + i));
  675. }
  676. spin_unlock_irqrestore(&zone->lock, flags);
  677. }
  678. /*
  679. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  680. */
  681. void drain_local_pages(void)
  682. {
  683. unsigned long flags;
  684. local_irq_save(flags);
  685. __drain_pages(smp_processor_id());
  686. local_irq_restore(flags);
  687. }
  688. #endif /* CONFIG_HIBERNATION */
  689. /*
  690. * Free a 0-order page
  691. */
  692. static void fastcall free_hot_cold_page(struct page *page, int cold)
  693. {
  694. struct zone *zone = page_zone(page);
  695. struct per_cpu_pages *pcp;
  696. unsigned long flags;
  697. if (PageAnon(page))
  698. page->mapping = NULL;
  699. if (free_pages_check(page))
  700. return;
  701. if (!PageHighMem(page))
  702. debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
  703. arch_free_page(page, 0);
  704. kernel_map_pages(page, 1, 0);
  705. pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
  706. local_irq_save(flags);
  707. __count_vm_event(PGFREE);
  708. list_add(&page->lru, &pcp->list);
  709. pcp->count++;
  710. if (pcp->count >= pcp->high) {
  711. free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
  712. pcp->count -= pcp->batch;
  713. }
  714. local_irq_restore(flags);
  715. put_cpu();
  716. }
  717. void fastcall free_hot_page(struct page *page)
  718. {
  719. free_hot_cold_page(page, 0);
  720. }
  721. void fastcall free_cold_page(struct page *page)
  722. {
  723. free_hot_cold_page(page, 1);
  724. }
  725. /*
  726. * split_page takes a non-compound higher-order page, and splits it into
  727. * n (1<<order) sub-pages: page[0..n]
  728. * Each sub-page must be freed individually.
  729. *
  730. * Note: this is probably too low level an operation for use in drivers.
  731. * Please consult with lkml before using this in your driver.
  732. */
  733. void split_page(struct page *page, unsigned int order)
  734. {
  735. int i;
  736. VM_BUG_ON(PageCompound(page));
  737. VM_BUG_ON(!page_count(page));
  738. for (i = 1; i < (1 << order); i++)
  739. set_page_refcounted(page + i);
  740. }
  741. /*
  742. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  743. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  744. * or two.
  745. */
  746. static struct page *buffered_rmqueue(struct zonelist *zonelist,
  747. struct zone *zone, int order, gfp_t gfp_flags)
  748. {
  749. unsigned long flags;
  750. struct page *page;
  751. int cold = !!(gfp_flags & __GFP_COLD);
  752. int cpu;
  753. again:
  754. cpu = get_cpu();
  755. if (likely(order == 0)) {
  756. struct per_cpu_pages *pcp;
  757. pcp = &zone_pcp(zone, cpu)->pcp[cold];
  758. local_irq_save(flags);
  759. if (!pcp->count) {
  760. pcp->count = rmqueue_bulk(zone, 0,
  761. pcp->batch, &pcp->list);
  762. if (unlikely(!pcp->count))
  763. goto failed;
  764. }
  765. page = list_entry(pcp->list.next, struct page, lru);
  766. list_del(&page->lru);
  767. pcp->count--;
  768. } else {
  769. spin_lock_irqsave(&zone->lock, flags);
  770. page = __rmqueue(zone, order);
  771. spin_unlock(&zone->lock);
  772. if (!page)
  773. goto failed;
  774. }
  775. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  776. zone_statistics(zonelist, zone);
  777. local_irq_restore(flags);
  778. put_cpu();
  779. VM_BUG_ON(bad_range(zone, page));
  780. if (prep_new_page(page, order, gfp_flags))
  781. goto again;
  782. return page;
  783. failed:
  784. local_irq_restore(flags);
  785. put_cpu();
  786. return NULL;
  787. }
  788. #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
  789. #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
  790. #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
  791. #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
  792. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  793. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  794. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  795. #ifdef CONFIG_FAIL_PAGE_ALLOC
  796. static struct fail_page_alloc_attr {
  797. struct fault_attr attr;
  798. u32 ignore_gfp_highmem;
  799. u32 ignore_gfp_wait;
  800. u32 min_order;
  801. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  802. struct dentry *ignore_gfp_highmem_file;
  803. struct dentry *ignore_gfp_wait_file;
  804. struct dentry *min_order_file;
  805. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  806. } fail_page_alloc = {
  807. .attr = FAULT_ATTR_INITIALIZER,
  808. .ignore_gfp_wait = 1,
  809. .ignore_gfp_highmem = 1,
  810. .min_order = 1,
  811. };
  812. static int __init setup_fail_page_alloc(char *str)
  813. {
  814. return setup_fault_attr(&fail_page_alloc.attr, str);
  815. }
  816. __setup("fail_page_alloc=", setup_fail_page_alloc);
  817. static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  818. {
  819. if (order < fail_page_alloc.min_order)
  820. return 0;
  821. if (gfp_mask & __GFP_NOFAIL)
  822. return 0;
  823. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  824. return 0;
  825. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  826. return 0;
  827. return should_fail(&fail_page_alloc.attr, 1 << order);
  828. }
  829. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  830. static int __init fail_page_alloc_debugfs(void)
  831. {
  832. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  833. struct dentry *dir;
  834. int err;
  835. err = init_fault_attr_dentries(&fail_page_alloc.attr,
  836. "fail_page_alloc");
  837. if (err)
  838. return err;
  839. dir = fail_page_alloc.attr.dentries.dir;
  840. fail_page_alloc.ignore_gfp_wait_file =
  841. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  842. &fail_page_alloc.ignore_gfp_wait);
  843. fail_page_alloc.ignore_gfp_highmem_file =
  844. debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  845. &fail_page_alloc.ignore_gfp_highmem);
  846. fail_page_alloc.min_order_file =
  847. debugfs_create_u32("min-order", mode, dir,
  848. &fail_page_alloc.min_order);
  849. if (!fail_page_alloc.ignore_gfp_wait_file ||
  850. !fail_page_alloc.ignore_gfp_highmem_file ||
  851. !fail_page_alloc.min_order_file) {
  852. err = -ENOMEM;
  853. debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
  854. debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
  855. debugfs_remove(fail_page_alloc.min_order_file);
  856. cleanup_fault_attr_dentries(&fail_page_alloc.attr);
  857. }
  858. return err;
  859. }
  860. late_initcall(fail_page_alloc_debugfs);
  861. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  862. #else /* CONFIG_FAIL_PAGE_ALLOC */
  863. static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  864. {
  865. return 0;
  866. }
  867. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  868. /*
  869. * Return 1 if free pages are above 'mark'. This takes into account the order
  870. * of the allocation.
  871. */
  872. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  873. int classzone_idx, int alloc_flags)
  874. {
  875. /* free_pages my go negative - that's OK */
  876. long min = mark;
  877. long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
  878. int o;
  879. if (alloc_flags & ALLOC_HIGH)
  880. min -= min / 2;
  881. if (alloc_flags & ALLOC_HARDER)
  882. min -= min / 4;
  883. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  884. return 0;
  885. for (o = 0; o < order; o++) {
  886. /* At the next order, this order's pages become unavailable */
  887. free_pages -= z->free_area[o].nr_free << o;
  888. /* Require fewer higher order pages to be free */
  889. min >>= 1;
  890. if (free_pages <= min)
  891. return 0;
  892. }
  893. return 1;
  894. }
  895. #ifdef CONFIG_NUMA
  896. /*
  897. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  898. * skip over zones that are not allowed by the cpuset, or that have
  899. * been recently (in last second) found to be nearly full. See further
  900. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  901. * that have to skip over alot of full or unallowed zones.
  902. *
  903. * If the zonelist cache is present in the passed in zonelist, then
  904. * returns a pointer to the allowed node mask (either the current
  905. * tasks mems_allowed, or node_online_map.)
  906. *
  907. * If the zonelist cache is not available for this zonelist, does
  908. * nothing and returns NULL.
  909. *
  910. * If the fullzones BITMAP in the zonelist cache is stale (more than
  911. * a second since last zap'd) then we zap it out (clear its bits.)
  912. *
  913. * We hold off even calling zlc_setup, until after we've checked the
  914. * first zone in the zonelist, on the theory that most allocations will
  915. * be satisfied from that first zone, so best to examine that zone as
  916. * quickly as we can.
  917. */
  918. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  919. {
  920. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  921. nodemask_t *allowednodes; /* zonelist_cache approximation */
  922. zlc = zonelist->zlcache_ptr;
  923. if (!zlc)
  924. return NULL;
  925. if (jiffies - zlc->last_full_zap > 1 * HZ) {
  926. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  927. zlc->last_full_zap = jiffies;
  928. }
  929. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  930. &cpuset_current_mems_allowed :
  931. &node_online_map;
  932. return allowednodes;
  933. }
  934. /*
  935. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  936. * if it is worth looking at further for free memory:
  937. * 1) Check that the zone isn't thought to be full (doesn't have its
  938. * bit set in the zonelist_cache fullzones BITMAP).
  939. * 2) Check that the zones node (obtained from the zonelist_cache
  940. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  941. * Return true (non-zero) if zone is worth looking at further, or
  942. * else return false (zero) if it is not.
  943. *
  944. * This check -ignores- the distinction between various watermarks,
  945. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  946. * found to be full for any variation of these watermarks, it will
  947. * be considered full for up to one second by all requests, unless
  948. * we are so low on memory on all allowed nodes that we are forced
  949. * into the second scan of the zonelist.
  950. *
  951. * In the second scan we ignore this zonelist cache and exactly
  952. * apply the watermarks to all zones, even it is slower to do so.
  953. * We are low on memory in the second scan, and should leave no stone
  954. * unturned looking for a free page.
  955. */
  956. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
  957. nodemask_t *allowednodes)
  958. {
  959. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  960. int i; /* index of *z in zonelist zones */
  961. int n; /* node that zone *z is on */
  962. zlc = zonelist->zlcache_ptr;
  963. if (!zlc)
  964. return 1;
  965. i = z - zonelist->zones;
  966. n = zlc->z_to_n[i];
  967. /* This zone is worth trying if it is allowed but not full */
  968. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  969. }
  970. /*
  971. * Given 'z' scanning a zonelist, set the corresponding bit in
  972. * zlc->fullzones, so that subsequent attempts to allocate a page
  973. * from that zone don't waste time re-examining it.
  974. */
  975. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
  976. {
  977. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  978. int i; /* index of *z in zonelist zones */
  979. zlc = zonelist->zlcache_ptr;
  980. if (!zlc)
  981. return;
  982. i = z - zonelist->zones;
  983. set_bit(i, zlc->fullzones);
  984. }
  985. #else /* CONFIG_NUMA */
  986. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  987. {
  988. return NULL;
  989. }
  990. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
  991. nodemask_t *allowednodes)
  992. {
  993. return 1;
  994. }
  995. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
  996. {
  997. }
  998. #endif /* CONFIG_NUMA */
  999. /*
  1000. * get_page_from_freelist goes through the zonelist trying to allocate
  1001. * a page.
  1002. */
  1003. static struct page *
  1004. get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
  1005. struct zonelist *zonelist, int alloc_flags)
  1006. {
  1007. struct zone **z;
  1008. struct page *page = NULL;
  1009. int classzone_idx = zone_idx(zonelist->zones[0]);
  1010. struct zone *zone;
  1011. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1012. int zlc_active = 0; /* set if using zonelist_cache */
  1013. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1014. enum zone_type highest_zoneidx = -1; /* Gets set for policy zonelists */
  1015. zonelist_scan:
  1016. /*
  1017. * Scan zonelist, looking for a zone with enough free.
  1018. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1019. */
  1020. z = zonelist->zones;
  1021. do {
  1022. /*
  1023. * In NUMA, this could be a policy zonelist which contains
  1024. * zones that may not be allowed by the current gfp_mask.
  1025. * Check the zone is allowed by the current flags
  1026. */
  1027. if (unlikely(alloc_should_filter_zonelist(zonelist))) {
  1028. if (highest_zoneidx == -1)
  1029. highest_zoneidx = gfp_zone(gfp_mask);
  1030. if (zone_idx(*z) > highest_zoneidx)
  1031. continue;
  1032. }
  1033. if (NUMA_BUILD && zlc_active &&
  1034. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1035. continue;
  1036. zone = *z;
  1037. if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) &&
  1038. zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
  1039. break;
  1040. if ((alloc_flags & ALLOC_CPUSET) &&
  1041. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1042. goto try_next_zone;
  1043. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1044. unsigned long mark;
  1045. if (alloc_flags & ALLOC_WMARK_MIN)
  1046. mark = zone->pages_min;
  1047. else if (alloc_flags & ALLOC_WMARK_LOW)
  1048. mark = zone->pages_low;
  1049. else
  1050. mark = zone->pages_high;
  1051. if (!zone_watermark_ok(zone, order, mark,
  1052. classzone_idx, alloc_flags)) {
  1053. if (!zone_reclaim_mode ||
  1054. !zone_reclaim(zone, gfp_mask, order))
  1055. goto this_zone_full;
  1056. }
  1057. }
  1058. page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
  1059. if (page)
  1060. break;
  1061. this_zone_full:
  1062. if (NUMA_BUILD)
  1063. zlc_mark_zone_full(zonelist, z);
  1064. try_next_zone:
  1065. if (NUMA_BUILD && !did_zlc_setup) {
  1066. /* we do zlc_setup after the first zone is tried */
  1067. allowednodes = zlc_setup(zonelist, alloc_flags);
  1068. zlc_active = 1;
  1069. did_zlc_setup = 1;
  1070. }
  1071. } while (*(++z) != NULL);
  1072. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1073. /* Disable zlc cache for second zonelist scan */
  1074. zlc_active = 0;
  1075. goto zonelist_scan;
  1076. }
  1077. return page;
  1078. }
  1079. /*
  1080. * This is the 'heart' of the zoned buddy allocator.
  1081. */
  1082. struct page * fastcall
  1083. __alloc_pages(gfp_t gfp_mask, unsigned int order,
  1084. struct zonelist *zonelist)
  1085. {
  1086. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1087. struct zone **z;
  1088. struct page *page;
  1089. struct reclaim_state reclaim_state;
  1090. struct task_struct *p = current;
  1091. int do_retry;
  1092. int alloc_flags;
  1093. int did_some_progress;
  1094. might_sleep_if(wait);
  1095. if (should_fail_alloc_page(gfp_mask, order))
  1096. return NULL;
  1097. restart:
  1098. z = zonelist->zones; /* the list of zones suitable for gfp_mask */
  1099. if (unlikely(*z == NULL)) {
  1100. /* Should this ever happen?? */
  1101. return NULL;
  1102. }
  1103. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
  1104. zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
  1105. if (page)
  1106. goto got_pg;
  1107. /*
  1108. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  1109. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  1110. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  1111. * using a larger set of nodes after it has established that the
  1112. * allowed per node queues are empty and that nodes are
  1113. * over allocated.
  1114. */
  1115. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  1116. goto nopage;
  1117. for (z = zonelist->zones; *z; z++)
  1118. wakeup_kswapd(*z, order);
  1119. /*
  1120. * OK, we're below the kswapd watermark and have kicked background
  1121. * reclaim. Now things get more complex, so set up alloc_flags according
  1122. * to how we want to proceed.
  1123. *
  1124. * The caller may dip into page reserves a bit more if the caller
  1125. * cannot run direct reclaim, or if the caller has realtime scheduling
  1126. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  1127. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  1128. */
  1129. alloc_flags = ALLOC_WMARK_MIN;
  1130. if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
  1131. alloc_flags |= ALLOC_HARDER;
  1132. if (gfp_mask & __GFP_HIGH)
  1133. alloc_flags |= ALLOC_HIGH;
  1134. if (wait)
  1135. alloc_flags |= ALLOC_CPUSET;
  1136. /*
  1137. * Go through the zonelist again. Let __GFP_HIGH and allocations
  1138. * coming from realtime tasks go deeper into reserves.
  1139. *
  1140. * This is the last chance, in general, before the goto nopage.
  1141. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  1142. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1143. */
  1144. page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
  1145. if (page)
  1146. goto got_pg;
  1147. /* This allocation should allow future memory freeing. */
  1148. rebalance:
  1149. if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
  1150. && !in_interrupt()) {
  1151. if (!(gfp_mask & __GFP_NOMEMALLOC)) {
  1152. nofail_alloc:
  1153. /* go through the zonelist yet again, ignoring mins */
  1154. page = get_page_from_freelist(gfp_mask, order,
  1155. zonelist, ALLOC_NO_WATERMARKS);
  1156. if (page)
  1157. goto got_pg;
  1158. if (gfp_mask & __GFP_NOFAIL) {
  1159. congestion_wait(WRITE, HZ/50);
  1160. goto nofail_alloc;
  1161. }
  1162. }
  1163. goto nopage;
  1164. }
  1165. /* Atomic allocations - we can't balance anything */
  1166. if (!wait)
  1167. goto nopage;
  1168. cond_resched();
  1169. /* We now go into synchronous reclaim */
  1170. cpuset_memory_pressure_bump();
  1171. p->flags |= PF_MEMALLOC;
  1172. reclaim_state.reclaimed_slab = 0;
  1173. p->reclaim_state = &reclaim_state;
  1174. did_some_progress = try_to_free_pages(zonelist->zones, order, gfp_mask);
  1175. p->reclaim_state = NULL;
  1176. p->flags &= ~PF_MEMALLOC;
  1177. cond_resched();
  1178. if (likely(did_some_progress)) {
  1179. page = get_page_from_freelist(gfp_mask, order,
  1180. zonelist, alloc_flags);
  1181. if (page)
  1182. goto got_pg;
  1183. } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  1184. /*
  1185. * Go through the zonelist yet one more time, keep
  1186. * very high watermark here, this is only to catch
  1187. * a parallel oom killing, we must fail if we're still
  1188. * under heavy pressure.
  1189. */
  1190. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
  1191. zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
  1192. if (page)
  1193. goto got_pg;
  1194. /* The OOM killer will not help higher order allocs so fail */
  1195. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1196. goto nopage;
  1197. out_of_memory(zonelist, gfp_mask, order);
  1198. goto restart;
  1199. }
  1200. /*
  1201. * Don't let big-order allocations loop unless the caller explicitly
  1202. * requests that. Wait for some write requests to complete then retry.
  1203. *
  1204. * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
  1205. * <= 3, but that may not be true in other implementations.
  1206. */
  1207. do_retry = 0;
  1208. if (!(gfp_mask & __GFP_NORETRY)) {
  1209. if ((order <= PAGE_ALLOC_COSTLY_ORDER) ||
  1210. (gfp_mask & __GFP_REPEAT))
  1211. do_retry = 1;
  1212. if (gfp_mask & __GFP_NOFAIL)
  1213. do_retry = 1;
  1214. }
  1215. if (do_retry) {
  1216. congestion_wait(WRITE, HZ/50);
  1217. goto rebalance;
  1218. }
  1219. nopage:
  1220. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  1221. printk(KERN_WARNING "%s: page allocation failure."
  1222. " order:%d, mode:0x%x\n",
  1223. p->comm, order, gfp_mask);
  1224. dump_stack();
  1225. show_mem();
  1226. }
  1227. got_pg:
  1228. return page;
  1229. }
  1230. EXPORT_SYMBOL(__alloc_pages);
  1231. /*
  1232. * Common helper functions.
  1233. */
  1234. fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  1235. {
  1236. struct page * page;
  1237. page = alloc_pages(gfp_mask, order);
  1238. if (!page)
  1239. return 0;
  1240. return (unsigned long) page_address(page);
  1241. }
  1242. EXPORT_SYMBOL(__get_free_pages);
  1243. fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
  1244. {
  1245. struct page * page;
  1246. /*
  1247. * get_zeroed_page() returns a 32-bit address, which cannot represent
  1248. * a highmem page
  1249. */
  1250. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  1251. page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
  1252. if (page)
  1253. return (unsigned long) page_address(page);
  1254. return 0;
  1255. }
  1256. EXPORT_SYMBOL(get_zeroed_page);
  1257. void __pagevec_free(struct pagevec *pvec)
  1258. {
  1259. int i = pagevec_count(pvec);
  1260. while (--i >= 0)
  1261. free_hot_cold_page(pvec->pages[i], pvec->cold);
  1262. }
  1263. fastcall void __free_pages(struct page *page, unsigned int order)
  1264. {
  1265. if (put_page_testzero(page)) {
  1266. if (order == 0)
  1267. free_hot_page(page);
  1268. else
  1269. __free_pages_ok(page, order);
  1270. }
  1271. }
  1272. EXPORT_SYMBOL(__free_pages);
  1273. fastcall void free_pages(unsigned long addr, unsigned int order)
  1274. {
  1275. if (addr != 0) {
  1276. VM_BUG_ON(!virt_addr_valid((void *)addr));
  1277. __free_pages(virt_to_page((void *)addr), order);
  1278. }
  1279. }
  1280. EXPORT_SYMBOL(free_pages);
  1281. static unsigned int nr_free_zone_pages(int offset)
  1282. {
  1283. /* Just pick one node, since fallback list is circular */
  1284. pg_data_t *pgdat = NODE_DATA(numa_node_id());
  1285. unsigned int sum = 0;
  1286. struct zonelist *zonelist = pgdat->node_zonelists + offset;
  1287. struct zone **zonep = zonelist->zones;
  1288. struct zone *zone;
  1289. for (zone = *zonep++; zone; zone = *zonep++) {
  1290. unsigned long size = zone->present_pages;
  1291. unsigned long high = zone->pages_high;
  1292. if (size > high)
  1293. sum += size - high;
  1294. }
  1295. return sum;
  1296. }
  1297. /*
  1298. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  1299. */
  1300. unsigned int nr_free_buffer_pages(void)
  1301. {
  1302. return nr_free_zone_pages(gfp_zone(GFP_USER));
  1303. }
  1304. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  1305. /*
  1306. * Amount of free RAM allocatable within all zones
  1307. */
  1308. unsigned int nr_free_pagecache_pages(void)
  1309. {
  1310. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  1311. }
  1312. static inline void show_node(struct zone *zone)
  1313. {
  1314. if (NUMA_BUILD)
  1315. printk("Node %d ", zone_to_nid(zone));
  1316. }
  1317. void si_meminfo(struct sysinfo *val)
  1318. {
  1319. val->totalram = totalram_pages;
  1320. val->sharedram = 0;
  1321. val->freeram = global_page_state(NR_FREE_PAGES);
  1322. val->bufferram = nr_blockdev_pages();
  1323. val->totalhigh = totalhigh_pages;
  1324. val->freehigh = nr_free_highpages();
  1325. val->mem_unit = PAGE_SIZE;
  1326. }
  1327. EXPORT_SYMBOL(si_meminfo);
  1328. #ifdef CONFIG_NUMA
  1329. void si_meminfo_node(struct sysinfo *val, int nid)
  1330. {
  1331. pg_data_t *pgdat = NODE_DATA(nid);
  1332. val->totalram = pgdat->node_present_pages;
  1333. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  1334. #ifdef CONFIG_HIGHMEM
  1335. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  1336. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  1337. NR_FREE_PAGES);
  1338. #else
  1339. val->totalhigh = 0;
  1340. val->freehigh = 0;
  1341. #endif
  1342. val->mem_unit = PAGE_SIZE;
  1343. }
  1344. #endif
  1345. #define K(x) ((x) << (PAGE_SHIFT-10))
  1346. /*
  1347. * Show free area list (used inside shift_scroll-lock stuff)
  1348. * We also calculate the percentage fragmentation. We do this by counting the
  1349. * memory on each free list with the exception of the first item on the list.
  1350. */
  1351. void show_free_areas(void)
  1352. {
  1353. int cpu;
  1354. struct zone *zone;
  1355. for_each_zone(zone) {
  1356. if (!populated_zone(zone))
  1357. continue;
  1358. show_node(zone);
  1359. printk("%s per-cpu:\n", zone->name);
  1360. for_each_online_cpu(cpu) {
  1361. struct per_cpu_pageset *pageset;
  1362. pageset = zone_pcp(zone, cpu);
  1363. printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
  1364. "Cold: hi:%5d, btch:%4d usd:%4d\n",
  1365. cpu, pageset->pcp[0].high,
  1366. pageset->pcp[0].batch, pageset->pcp[0].count,
  1367. pageset->pcp[1].high, pageset->pcp[1].batch,
  1368. pageset->pcp[1].count);
  1369. }
  1370. }
  1371. printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
  1372. " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
  1373. global_page_state(NR_ACTIVE),
  1374. global_page_state(NR_INACTIVE),
  1375. global_page_state(NR_FILE_DIRTY),
  1376. global_page_state(NR_WRITEBACK),
  1377. global_page_state(NR_UNSTABLE_NFS),
  1378. global_page_state(NR_FREE_PAGES),
  1379. global_page_state(NR_SLAB_RECLAIMABLE) +
  1380. global_page_state(NR_SLAB_UNRECLAIMABLE),
  1381. global_page_state(NR_FILE_MAPPED),
  1382. global_page_state(NR_PAGETABLE),
  1383. global_page_state(NR_BOUNCE));
  1384. for_each_zone(zone) {
  1385. int i;
  1386. if (!populated_zone(zone))
  1387. continue;
  1388. show_node(zone);
  1389. printk("%s"
  1390. " free:%lukB"
  1391. " min:%lukB"
  1392. " low:%lukB"
  1393. " high:%lukB"
  1394. " active:%lukB"
  1395. " inactive:%lukB"
  1396. " present:%lukB"
  1397. " pages_scanned:%lu"
  1398. " all_unreclaimable? %s"
  1399. "\n",
  1400. zone->name,
  1401. K(zone_page_state(zone, NR_FREE_PAGES)),
  1402. K(zone->pages_min),
  1403. K(zone->pages_low),
  1404. K(zone->pages_high),
  1405. K(zone_page_state(zone, NR_ACTIVE)),
  1406. K(zone_page_state(zone, NR_INACTIVE)),
  1407. K(zone->present_pages),
  1408. zone->pages_scanned,
  1409. (zone->all_unreclaimable ? "yes" : "no")
  1410. );
  1411. printk("lowmem_reserve[]:");
  1412. for (i = 0; i < MAX_NR_ZONES; i++)
  1413. printk(" %lu", zone->lowmem_reserve[i]);
  1414. printk("\n");
  1415. }
  1416. for_each_zone(zone) {
  1417. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  1418. if (!populated_zone(zone))
  1419. continue;
  1420. show_node(zone);
  1421. printk("%s: ", zone->name);
  1422. spin_lock_irqsave(&zone->lock, flags);
  1423. for (order = 0; order < MAX_ORDER; order++) {
  1424. nr[order] = zone->free_area[order].nr_free;
  1425. total += nr[order] << order;
  1426. }
  1427. spin_unlock_irqrestore(&zone->lock, flags);
  1428. for (order = 0; order < MAX_ORDER; order++)
  1429. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  1430. printk("= %lukB\n", K(total));
  1431. }
  1432. show_swap_cache_info();
  1433. }
  1434. /*
  1435. * Builds allocation fallback zone lists.
  1436. *
  1437. * Add all populated zones of a node to the zonelist.
  1438. */
  1439. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  1440. int nr_zones, enum zone_type zone_type)
  1441. {
  1442. struct zone *zone;
  1443. BUG_ON(zone_type >= MAX_NR_ZONES);
  1444. zone_type++;
  1445. do {
  1446. zone_type--;
  1447. zone = pgdat->node_zones + zone_type;
  1448. if (populated_zone(zone)) {
  1449. zonelist->zones[nr_zones++] = zone;
  1450. check_highest_zone(zone_type);
  1451. }
  1452. } while (zone_type);
  1453. return nr_zones;
  1454. }
  1455. /*
  1456. * zonelist_order:
  1457. * 0 = automatic detection of better ordering.
  1458. * 1 = order by ([node] distance, -zonetype)
  1459. * 2 = order by (-zonetype, [node] distance)
  1460. *
  1461. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  1462. * the same zonelist. So only NUMA can configure this param.
  1463. */
  1464. #define ZONELIST_ORDER_DEFAULT 0
  1465. #define ZONELIST_ORDER_NODE 1
  1466. #define ZONELIST_ORDER_ZONE 2
  1467. /* zonelist order in the kernel.
  1468. * set_zonelist_order() will set this to NODE or ZONE.
  1469. */
  1470. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1471. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  1472. #ifdef CONFIG_NUMA
  1473. /* The value user specified ....changed by config */
  1474. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1475. /* string for sysctl */
  1476. #define NUMA_ZONELIST_ORDER_LEN 16
  1477. char numa_zonelist_order[16] = "default";
  1478. /*
  1479. * interface for configure zonelist ordering.
  1480. * command line option "numa_zonelist_order"
  1481. * = "[dD]efault - default, automatic configuration.
  1482. * = "[nN]ode - order by node locality, then by zone within node
  1483. * = "[zZ]one - order by zone, then by locality within zone
  1484. */
  1485. static int __parse_numa_zonelist_order(char *s)
  1486. {
  1487. if (*s == 'd' || *s == 'D') {
  1488. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1489. } else if (*s == 'n' || *s == 'N') {
  1490. user_zonelist_order = ZONELIST_ORDER_NODE;
  1491. } else if (*s == 'z' || *s == 'Z') {
  1492. user_zonelist_order = ZONELIST_ORDER_ZONE;
  1493. } else {
  1494. printk(KERN_WARNING
  1495. "Ignoring invalid numa_zonelist_order value: "
  1496. "%s\n", s);
  1497. return -EINVAL;
  1498. }
  1499. return 0;
  1500. }
  1501. static __init int setup_numa_zonelist_order(char *s)
  1502. {
  1503. if (s)
  1504. return __parse_numa_zonelist_order(s);
  1505. return 0;
  1506. }
  1507. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  1508. /*
  1509. * sysctl handler for numa_zonelist_order
  1510. */
  1511. int numa_zonelist_order_handler(ctl_table *table, int write,
  1512. struct file *file, void __user *buffer, size_t *length,
  1513. loff_t *ppos)
  1514. {
  1515. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  1516. int ret;
  1517. if (write)
  1518. strncpy(saved_string, (char*)table->data,
  1519. NUMA_ZONELIST_ORDER_LEN);
  1520. ret = proc_dostring(table, write, file, buffer, length, ppos);
  1521. if (ret)
  1522. return ret;
  1523. if (write) {
  1524. int oldval = user_zonelist_order;
  1525. if (__parse_numa_zonelist_order((char*)table->data)) {
  1526. /*
  1527. * bogus value. restore saved string
  1528. */
  1529. strncpy((char*)table->data, saved_string,
  1530. NUMA_ZONELIST_ORDER_LEN);
  1531. user_zonelist_order = oldval;
  1532. } else if (oldval != user_zonelist_order)
  1533. build_all_zonelists();
  1534. }
  1535. return 0;
  1536. }
  1537. #define MAX_NODE_LOAD (num_online_nodes())
  1538. static int node_load[MAX_NUMNODES];
  1539. /**
  1540. * find_next_best_node - find the next node that should appear in a given node's fallback list
  1541. * @node: node whose fallback list we're appending
  1542. * @used_node_mask: nodemask_t of already used nodes
  1543. *
  1544. * We use a number of factors to determine which is the next node that should
  1545. * appear on a given node's fallback list. The node should not have appeared
  1546. * already in @node's fallback list, and it should be the next closest node
  1547. * according to the distance array (which contains arbitrary distance values
  1548. * from each node to each node in the system), and should also prefer nodes
  1549. * with no CPUs, since presumably they'll have very little allocation pressure
  1550. * on them otherwise.
  1551. * It returns -1 if no node is found.
  1552. */
  1553. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  1554. {
  1555. int n, val;
  1556. int min_val = INT_MAX;
  1557. int best_node = -1;
  1558. /* Use the local node if we haven't already */
  1559. if (!node_isset(node, *used_node_mask)) {
  1560. node_set(node, *used_node_mask);
  1561. return node;
  1562. }
  1563. for_each_online_node(n) {
  1564. cpumask_t tmp;
  1565. /* Don't want a node to appear more than once */
  1566. if (node_isset(n, *used_node_mask))
  1567. continue;
  1568. /* Use the distance array to find the distance */
  1569. val = node_distance(node, n);
  1570. /* Penalize nodes under us ("prefer the next node") */
  1571. val += (n < node);
  1572. /* Give preference to headless and unused nodes */
  1573. tmp = node_to_cpumask(n);
  1574. if (!cpus_empty(tmp))
  1575. val += PENALTY_FOR_NODE_WITH_CPUS;
  1576. /* Slight preference for less loaded node */
  1577. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  1578. val += node_load[n];
  1579. if (val < min_val) {
  1580. min_val = val;
  1581. best_node = n;
  1582. }
  1583. }
  1584. if (best_node >= 0)
  1585. node_set(best_node, *used_node_mask);
  1586. return best_node;
  1587. }
  1588. /*
  1589. * Build zonelists ordered by node and zones within node.
  1590. * This results in maximum locality--normal zone overflows into local
  1591. * DMA zone, if any--but risks exhausting DMA zone.
  1592. */
  1593. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  1594. {
  1595. enum zone_type i;
  1596. int j;
  1597. struct zonelist *zonelist;
  1598. for (i = 0; i < MAX_NR_ZONES; i++) {
  1599. zonelist = pgdat->node_zonelists + i;
  1600. for (j = 0; zonelist->zones[j] != NULL; j++)
  1601. ;
  1602. j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
  1603. zonelist->zones[j] = NULL;
  1604. }
  1605. }
  1606. /*
  1607. * Build zonelists ordered by zone and nodes within zones.
  1608. * This results in conserving DMA zone[s] until all Normal memory is
  1609. * exhausted, but results in overflowing to remote node while memory
  1610. * may still exist in local DMA zone.
  1611. */
  1612. static int node_order[MAX_NUMNODES];
  1613. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  1614. {
  1615. enum zone_type i;
  1616. int pos, j, node;
  1617. int zone_type; /* needs to be signed */
  1618. struct zone *z;
  1619. struct zonelist *zonelist;
  1620. for (i = 0; i < MAX_NR_ZONES; i++) {
  1621. zonelist = pgdat->node_zonelists + i;
  1622. pos = 0;
  1623. for (zone_type = i; zone_type >= 0; zone_type--) {
  1624. for (j = 0; j < nr_nodes; j++) {
  1625. node = node_order[j];
  1626. z = &NODE_DATA(node)->node_zones[zone_type];
  1627. if (populated_zone(z)) {
  1628. zonelist->zones[pos++] = z;
  1629. check_highest_zone(zone_type);
  1630. }
  1631. }
  1632. }
  1633. zonelist->zones[pos] = NULL;
  1634. }
  1635. }
  1636. static int default_zonelist_order(void)
  1637. {
  1638. int nid, zone_type;
  1639. unsigned long low_kmem_size,total_size;
  1640. struct zone *z;
  1641. int average_size;
  1642. /*
  1643. * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
  1644. * If they are really small and used heavily, the system can fall
  1645. * into OOM very easily.
  1646. * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
  1647. */
  1648. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  1649. low_kmem_size = 0;
  1650. total_size = 0;
  1651. for_each_online_node(nid) {
  1652. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  1653. z = &NODE_DATA(nid)->node_zones[zone_type];
  1654. if (populated_zone(z)) {
  1655. if (zone_type < ZONE_NORMAL)
  1656. low_kmem_size += z->present_pages;
  1657. total_size += z->present_pages;
  1658. }
  1659. }
  1660. }
  1661. if (!low_kmem_size || /* there are no DMA area. */
  1662. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  1663. return ZONELIST_ORDER_NODE;
  1664. /*
  1665. * look into each node's config.
  1666. * If there is a node whose DMA/DMA32 memory is very big area on
  1667. * local memory, NODE_ORDER may be suitable.
  1668. */
  1669. average_size = total_size / (num_online_nodes() + 1);
  1670. for_each_online_node(nid) {
  1671. low_kmem_size = 0;
  1672. total_size = 0;
  1673. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  1674. z = &NODE_DATA(nid)->node_zones[zone_type];
  1675. if (populated_zone(z)) {
  1676. if (zone_type < ZONE_NORMAL)
  1677. low_kmem_size += z->present_pages;
  1678. total_size += z->present_pages;
  1679. }
  1680. }
  1681. if (low_kmem_size &&
  1682. total_size > average_size && /* ignore small node */
  1683. low_kmem_size > total_size * 70/100)
  1684. return ZONELIST_ORDER_NODE;
  1685. }
  1686. return ZONELIST_ORDER_ZONE;
  1687. }
  1688. static void set_zonelist_order(void)
  1689. {
  1690. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  1691. current_zonelist_order = default_zonelist_order();
  1692. else
  1693. current_zonelist_order = user_zonelist_order;
  1694. }
  1695. static void build_zonelists(pg_data_t *pgdat)
  1696. {
  1697. int j, node, load;
  1698. enum zone_type i;
  1699. nodemask_t used_mask;
  1700. int local_node, prev_node;
  1701. struct zonelist *zonelist;
  1702. int order = current_zonelist_order;
  1703. /* initialize zonelists */
  1704. for (i = 0; i < MAX_NR_ZONES; i++) {
  1705. zonelist = pgdat->node_zonelists + i;
  1706. zonelist->zones[0] = NULL;
  1707. }
  1708. /* NUMA-aware ordering of nodes */
  1709. local_node = pgdat->node_id;
  1710. load = num_online_nodes();
  1711. prev_node = local_node;
  1712. nodes_clear(used_mask);
  1713. memset(node_load, 0, sizeof(node_load));
  1714. memset(node_order, 0, sizeof(node_order));
  1715. j = 0;
  1716. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  1717. int distance = node_distance(local_node, node);
  1718. /*
  1719. * If another node is sufficiently far away then it is better
  1720. * to reclaim pages in a zone before going off node.
  1721. */
  1722. if (distance > RECLAIM_DISTANCE)
  1723. zone_reclaim_mode = 1;
  1724. /*
  1725. * We don't want to pressure a particular node.
  1726. * So adding penalty to the first node in same
  1727. * distance group to make it round-robin.
  1728. */
  1729. if (distance != node_distance(local_node, prev_node))
  1730. node_load[node] = load;
  1731. prev_node = node;
  1732. load--;
  1733. if (order == ZONELIST_ORDER_NODE)
  1734. build_zonelists_in_node_order(pgdat, node);
  1735. else
  1736. node_order[j++] = node; /* remember order */
  1737. }
  1738. if (order == ZONELIST_ORDER_ZONE) {
  1739. /* calculate node order -- i.e., DMA last! */
  1740. build_zonelists_in_zone_order(pgdat, j);
  1741. }
  1742. }
  1743. /* Construct the zonelist performance cache - see further mmzone.h */
  1744. static void build_zonelist_cache(pg_data_t *pgdat)
  1745. {
  1746. int i;
  1747. for (i = 0; i < MAX_NR_ZONES; i++) {
  1748. struct zonelist *zonelist;
  1749. struct zonelist_cache *zlc;
  1750. struct zone **z;
  1751. zonelist = pgdat->node_zonelists + i;
  1752. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  1753. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1754. for (z = zonelist->zones; *z; z++)
  1755. zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
  1756. }
  1757. }
  1758. #else /* CONFIG_NUMA */
  1759. static void set_zonelist_order(void)
  1760. {
  1761. current_zonelist_order = ZONELIST_ORDER_ZONE;
  1762. }
  1763. static void build_zonelists(pg_data_t *pgdat)
  1764. {
  1765. int node, local_node;
  1766. enum zone_type i,j;
  1767. local_node = pgdat->node_id;
  1768. for (i = 0; i < MAX_NR_ZONES; i++) {
  1769. struct zonelist *zonelist;
  1770. zonelist = pgdat->node_zonelists + i;
  1771. j = build_zonelists_node(pgdat, zonelist, 0, i);
  1772. /*
  1773. * Now we build the zonelist so that it contains the zones
  1774. * of all the other nodes.
  1775. * We don't want to pressure a particular node, so when
  1776. * building the zones for node N, we make sure that the
  1777. * zones coming right after the local ones are those from
  1778. * node N+1 (modulo N)
  1779. */
  1780. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  1781. if (!node_online(node))
  1782. continue;
  1783. j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
  1784. }
  1785. for (node = 0; node < local_node; node++) {
  1786. if (!node_online(node))
  1787. continue;
  1788. j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
  1789. }
  1790. zonelist->zones[j] = NULL;
  1791. }
  1792. }
  1793. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  1794. static void build_zonelist_cache(pg_data_t *pgdat)
  1795. {
  1796. int i;
  1797. for (i = 0; i < MAX_NR_ZONES; i++)
  1798. pgdat->node_zonelists[i].zlcache_ptr = NULL;
  1799. }
  1800. #endif /* CONFIG_NUMA */
  1801. /* Any regular memory on that node ? */
  1802. static void check_for_regular_memory(pg_data_t *pgdat)
  1803. {
  1804. #ifdef CONFIG_HIGHMEM
  1805. enum zone_type zone_type;
  1806. for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
  1807. struct zone *zone = &pgdat->node_zones[zone_type];
  1808. if (zone->present_pages)
  1809. node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
  1810. }
  1811. #endif
  1812. }
  1813. /* return values int ....just for stop_machine_run() */
  1814. static int __build_all_zonelists(void *dummy)
  1815. {
  1816. int nid;
  1817. for_each_online_node(nid) {
  1818. pg_data_t *pgdat = NODE_DATA(nid);
  1819. build_zonelists(pgdat);
  1820. build_zonelist_cache(pgdat);
  1821. /* Any memory on that node */
  1822. if (pgdat->node_present_pages)
  1823. node_set_state(nid, N_HIGH_MEMORY);
  1824. check_for_regular_memory(pgdat);
  1825. }
  1826. return 0;
  1827. }
  1828. void build_all_zonelists(void)
  1829. {
  1830. set_zonelist_order();
  1831. if (system_state == SYSTEM_BOOTING) {
  1832. __build_all_zonelists(NULL);
  1833. cpuset_init_current_mems_allowed();
  1834. } else {
  1835. /* we have to stop all cpus to guaranntee there is no user
  1836. of zonelist */
  1837. stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
  1838. /* cpuset refresh routine should be here */
  1839. }
  1840. vm_total_pages = nr_free_pagecache_pages();
  1841. printk("Built %i zonelists in %s order. Total pages: %ld\n",
  1842. num_online_nodes(),
  1843. zonelist_order_name[current_zonelist_order],
  1844. vm_total_pages);
  1845. #ifdef CONFIG_NUMA
  1846. printk("Policy zone: %s\n", zone_names[policy_zone]);
  1847. #endif
  1848. }
  1849. /*
  1850. * Helper functions to size the waitqueue hash table.
  1851. * Essentially these want to choose hash table sizes sufficiently
  1852. * large so that collisions trying to wait on pages are rare.
  1853. * But in fact, the number of active page waitqueues on typical
  1854. * systems is ridiculously low, less than 200. So this is even
  1855. * conservative, even though it seems large.
  1856. *
  1857. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  1858. * waitqueues, i.e. the size of the waitq table given the number of pages.
  1859. */
  1860. #define PAGES_PER_WAITQUEUE 256
  1861. #ifndef CONFIG_MEMORY_HOTPLUG
  1862. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  1863. {
  1864. unsigned long size = 1;
  1865. pages /= PAGES_PER_WAITQUEUE;
  1866. while (size < pages)
  1867. size <<= 1;
  1868. /*
  1869. * Once we have dozens or even hundreds of threads sleeping
  1870. * on IO we've got bigger problems than wait queue collision.
  1871. * Limit the size of the wait table to a reasonable size.
  1872. */
  1873. size = min(size, 4096UL);
  1874. return max(size, 4UL);
  1875. }
  1876. #else
  1877. /*
  1878. * A zone's size might be changed by hot-add, so it is not possible to determine
  1879. * a suitable size for its wait_table. So we use the maximum size now.
  1880. *
  1881. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  1882. *
  1883. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  1884. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  1885. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  1886. *
  1887. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  1888. * or more by the traditional way. (See above). It equals:
  1889. *
  1890. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  1891. * ia64(16K page size) : = ( 8G + 4M)byte.
  1892. * powerpc (64K page size) : = (32G +16M)byte.
  1893. */
  1894. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  1895. {
  1896. return 4096UL;
  1897. }
  1898. #endif
  1899. /*
  1900. * This is an integer logarithm so that shifts can be used later
  1901. * to extract the more random high bits from the multiplicative
  1902. * hash function before the remainder is taken.
  1903. */
  1904. static inline unsigned long wait_table_bits(unsigned long size)
  1905. {
  1906. return ffz(~size);
  1907. }
  1908. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  1909. /*
  1910. * Initially all pages are reserved - free ones are freed
  1911. * up by free_all_bootmem() once the early boot process is
  1912. * done. Non-atomic initialization, single-pass.
  1913. */
  1914. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  1915. unsigned long start_pfn, enum memmap_context context)
  1916. {
  1917. struct page *page;
  1918. unsigned long end_pfn = start_pfn + size;
  1919. unsigned long pfn;
  1920. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  1921. /*
  1922. * There can be holes in boot-time mem_map[]s
  1923. * handed to this function. They do not
  1924. * exist on hotplugged memory.
  1925. */
  1926. if (context == MEMMAP_EARLY) {
  1927. if (!early_pfn_valid(pfn))
  1928. continue;
  1929. if (!early_pfn_in_nid(pfn, nid))
  1930. continue;
  1931. }
  1932. page = pfn_to_page(pfn);
  1933. set_page_links(page, zone, nid, pfn);
  1934. init_page_count(page);
  1935. reset_page_mapcount(page);
  1936. SetPageReserved(page);
  1937. INIT_LIST_HEAD(&page->lru);
  1938. #ifdef WANT_PAGE_VIRTUAL
  1939. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  1940. if (!is_highmem_idx(zone))
  1941. set_page_address(page, __va(pfn << PAGE_SHIFT));
  1942. #endif
  1943. }
  1944. }
  1945. static void __meminit zone_init_free_lists(struct pglist_data *pgdat,
  1946. struct zone *zone, unsigned long size)
  1947. {
  1948. int order;
  1949. for (order = 0; order < MAX_ORDER ; order++) {
  1950. INIT_LIST_HEAD(&zone->free_area[order].free_list);
  1951. zone->free_area[order].nr_free = 0;
  1952. }
  1953. }
  1954. #ifndef __HAVE_ARCH_MEMMAP_INIT
  1955. #define memmap_init(size, nid, zone, start_pfn) \
  1956. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  1957. #endif
  1958. static int __devinit zone_batchsize(struct zone *zone)
  1959. {
  1960. int batch;
  1961. /*
  1962. * The per-cpu-pages pools are set to around 1000th of the
  1963. * size of the zone. But no more than 1/2 of a meg.
  1964. *
  1965. * OK, so we don't know how big the cache is. So guess.
  1966. */
  1967. batch = zone->present_pages / 1024;
  1968. if (batch * PAGE_SIZE > 512 * 1024)
  1969. batch = (512 * 1024) / PAGE_SIZE;
  1970. batch /= 4; /* We effectively *= 4 below */
  1971. if (batch < 1)
  1972. batch = 1;
  1973. /*
  1974. * Clamp the batch to a 2^n - 1 value. Having a power
  1975. * of 2 value was found to be more likely to have
  1976. * suboptimal cache aliasing properties in some cases.
  1977. *
  1978. * For example if 2 tasks are alternately allocating
  1979. * batches of pages, one task can end up with a lot
  1980. * of pages of one half of the possible page colors
  1981. * and the other with pages of the other colors.
  1982. */
  1983. batch = (1 << (fls(batch + batch/2)-1)) - 1;
  1984. return batch;
  1985. }
  1986. inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  1987. {
  1988. struct per_cpu_pages *pcp;
  1989. memset(p, 0, sizeof(*p));
  1990. pcp = &p->pcp[0]; /* hot */
  1991. pcp->count = 0;
  1992. pcp->high = 6 * batch;
  1993. pcp->batch = max(1UL, 1 * batch);
  1994. INIT_LIST_HEAD(&pcp->list);
  1995. pcp = &p->pcp[1]; /* cold*/
  1996. pcp->count = 0;
  1997. pcp->high = 2 * batch;
  1998. pcp->batch = max(1UL, batch/2);
  1999. INIT_LIST_HEAD(&pcp->list);
  2000. }
  2001. /*
  2002. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  2003. * to the value high for the pageset p.
  2004. */
  2005. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  2006. unsigned long high)
  2007. {
  2008. struct per_cpu_pages *pcp;
  2009. pcp = &p->pcp[0]; /* hot list */
  2010. pcp->high = high;
  2011. pcp->batch = max(1UL, high/4);
  2012. if ((high/4) > (PAGE_SHIFT * 8))
  2013. pcp->batch = PAGE_SHIFT * 8;
  2014. }
  2015. #ifdef CONFIG_NUMA
  2016. /*
  2017. * Boot pageset table. One per cpu which is going to be used for all
  2018. * zones and all nodes. The parameters will be set in such a way
  2019. * that an item put on a list will immediately be handed over to
  2020. * the buddy list. This is safe since pageset manipulation is done
  2021. * with interrupts disabled.
  2022. *
  2023. * Some NUMA counter updates may also be caught by the boot pagesets.
  2024. *
  2025. * The boot_pagesets must be kept even after bootup is complete for
  2026. * unused processors and/or zones. They do play a role for bootstrapping
  2027. * hotplugged processors.
  2028. *
  2029. * zoneinfo_show() and maybe other functions do
  2030. * not check if the processor is online before following the pageset pointer.
  2031. * Other parts of the kernel may not check if the zone is available.
  2032. */
  2033. static struct per_cpu_pageset boot_pageset[NR_CPUS];
  2034. /*
  2035. * Dynamically allocate memory for the
  2036. * per cpu pageset array in struct zone.
  2037. */
  2038. static int __cpuinit process_zones(int cpu)
  2039. {
  2040. struct zone *zone, *dzone;
  2041. int node = cpu_to_node(cpu);
  2042. node_set_state(node, N_CPU); /* this node has a cpu */
  2043. for_each_zone(zone) {
  2044. if (!populated_zone(zone))
  2045. continue;
  2046. zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
  2047. GFP_KERNEL, node);
  2048. if (!zone_pcp(zone, cpu))
  2049. goto bad;
  2050. setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
  2051. if (percpu_pagelist_fraction)
  2052. setup_pagelist_highmark(zone_pcp(zone, cpu),
  2053. (zone->present_pages / percpu_pagelist_fraction));
  2054. }
  2055. return 0;
  2056. bad:
  2057. for_each_zone(dzone) {
  2058. if (!populated_zone(dzone))
  2059. continue;
  2060. if (dzone == zone)
  2061. break;
  2062. kfree(zone_pcp(dzone, cpu));
  2063. zone_pcp(dzone, cpu) = NULL;
  2064. }
  2065. return -ENOMEM;
  2066. }
  2067. static inline void free_zone_pagesets(int cpu)
  2068. {
  2069. struct zone *zone;
  2070. for_each_zone(zone) {
  2071. struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
  2072. /* Free per_cpu_pageset if it is slab allocated */
  2073. if (pset != &boot_pageset[cpu])
  2074. kfree(pset);
  2075. zone_pcp(zone, cpu) = NULL;
  2076. }
  2077. }
  2078. static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
  2079. unsigned long action,
  2080. void *hcpu)
  2081. {
  2082. int cpu = (long)hcpu;
  2083. int ret = NOTIFY_OK;
  2084. switch (action) {
  2085. case CPU_UP_PREPARE:
  2086. case CPU_UP_PREPARE_FROZEN:
  2087. if (process_zones(cpu))
  2088. ret = NOTIFY_BAD;
  2089. break;
  2090. case CPU_UP_CANCELED:
  2091. case CPU_UP_CANCELED_FROZEN:
  2092. case CPU_DEAD:
  2093. case CPU_DEAD_FROZEN:
  2094. free_zone_pagesets(cpu);
  2095. break;
  2096. default:
  2097. break;
  2098. }
  2099. return ret;
  2100. }
  2101. static struct notifier_block __cpuinitdata pageset_notifier =
  2102. { &pageset_cpuup_callback, NULL, 0 };
  2103. void __init setup_per_cpu_pageset(void)
  2104. {
  2105. int err;
  2106. /* Initialize per_cpu_pageset for cpu 0.
  2107. * A cpuup callback will do this for every cpu
  2108. * as it comes online
  2109. */
  2110. err = process_zones(smp_processor_id());
  2111. BUG_ON(err);
  2112. register_cpu_notifier(&pageset_notifier);
  2113. }
  2114. #endif
  2115. static noinline __init_refok
  2116. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  2117. {
  2118. int i;
  2119. struct pglist_data *pgdat = zone->zone_pgdat;
  2120. size_t alloc_size;
  2121. /*
  2122. * The per-page waitqueue mechanism uses hashed waitqueues
  2123. * per zone.
  2124. */
  2125. zone->wait_table_hash_nr_entries =
  2126. wait_table_hash_nr_entries(zone_size_pages);
  2127. zone->wait_table_bits =
  2128. wait_table_bits(zone->wait_table_hash_nr_entries);
  2129. alloc_size = zone->wait_table_hash_nr_entries
  2130. * sizeof(wait_queue_head_t);
  2131. if (system_state == SYSTEM_BOOTING) {
  2132. zone->wait_table = (wait_queue_head_t *)
  2133. alloc_bootmem_node(pgdat, alloc_size);
  2134. } else {
  2135. /*
  2136. * This case means that a zone whose size was 0 gets new memory
  2137. * via memory hot-add.
  2138. * But it may be the case that a new node was hot-added. In
  2139. * this case vmalloc() will not be able to use this new node's
  2140. * memory - this wait_table must be initialized to use this new
  2141. * node itself as well.
  2142. * To use this new node's memory, further consideration will be
  2143. * necessary.
  2144. */
  2145. zone->wait_table = vmalloc(alloc_size);
  2146. }
  2147. if (!zone->wait_table)
  2148. return -ENOMEM;
  2149. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  2150. init_waitqueue_head(zone->wait_table + i);
  2151. return 0;
  2152. }
  2153. static __meminit void zone_pcp_init(struct zone *zone)
  2154. {
  2155. int cpu;
  2156. unsigned long batch = zone_batchsize(zone);
  2157. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  2158. #ifdef CONFIG_NUMA
  2159. /* Early boot. Slab allocator not functional yet */
  2160. zone_pcp(zone, cpu) = &boot_pageset[cpu];
  2161. setup_pageset(&boot_pageset[cpu],0);
  2162. #else
  2163. setup_pageset(zone_pcp(zone,cpu), batch);
  2164. #endif
  2165. }
  2166. if (zone->present_pages)
  2167. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
  2168. zone->name, zone->present_pages, batch);
  2169. }
  2170. __meminit int init_currently_empty_zone(struct zone *zone,
  2171. unsigned long zone_start_pfn,
  2172. unsigned long size,
  2173. enum memmap_context context)
  2174. {
  2175. struct pglist_data *pgdat = zone->zone_pgdat;
  2176. int ret;
  2177. ret = zone_wait_table_init(zone, size);
  2178. if (ret)
  2179. return ret;
  2180. pgdat->nr_zones = zone_idx(zone) + 1;
  2181. zone->zone_start_pfn = zone_start_pfn;
  2182. memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
  2183. zone_init_free_lists(pgdat, zone, zone->spanned_pages);
  2184. return 0;
  2185. }
  2186. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2187. /*
  2188. * Basic iterator support. Return the first range of PFNs for a node
  2189. * Note: nid == MAX_NUMNODES returns first region regardless of node
  2190. */
  2191. static int __meminit first_active_region_index_in_nid(int nid)
  2192. {
  2193. int i;
  2194. for (i = 0; i < nr_nodemap_entries; i++)
  2195. if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
  2196. return i;
  2197. return -1;
  2198. }
  2199. /*
  2200. * Basic iterator support. Return the next active range of PFNs for a node
  2201. * Note: nid == MAX_NUMNODES returns next region regardles of node
  2202. */
  2203. static int __meminit next_active_region_index_in_nid(int index, int nid)
  2204. {
  2205. for (index = index + 1; index < nr_nodemap_entries; index++)
  2206. if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
  2207. return index;
  2208. return -1;
  2209. }
  2210. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  2211. /*
  2212. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  2213. * Architectures may implement their own version but if add_active_range()
  2214. * was used and there are no special requirements, this is a convenient
  2215. * alternative
  2216. */
  2217. int __meminit early_pfn_to_nid(unsigned long pfn)
  2218. {
  2219. int i;
  2220. for (i = 0; i < nr_nodemap_entries; i++) {
  2221. unsigned long start_pfn = early_node_map[i].start_pfn;
  2222. unsigned long end_pfn = early_node_map[i].end_pfn;
  2223. if (start_pfn <= pfn && pfn < end_pfn)
  2224. return early_node_map[i].nid;
  2225. }
  2226. return 0;
  2227. }
  2228. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  2229. /* Basic iterator support to walk early_node_map[] */
  2230. #define for_each_active_range_index_in_nid(i, nid) \
  2231. for (i = first_active_region_index_in_nid(nid); i != -1; \
  2232. i = next_active_region_index_in_nid(i, nid))
  2233. /**
  2234. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  2235. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  2236. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  2237. *
  2238. * If an architecture guarantees that all ranges registered with
  2239. * add_active_ranges() contain no holes and may be freed, this
  2240. * this function may be used instead of calling free_bootmem() manually.
  2241. */
  2242. void __init free_bootmem_with_active_regions(int nid,
  2243. unsigned long max_low_pfn)
  2244. {
  2245. int i;
  2246. for_each_active_range_index_in_nid(i, nid) {
  2247. unsigned long size_pages = 0;
  2248. unsigned long end_pfn = early_node_map[i].end_pfn;
  2249. if (early_node_map[i].start_pfn >= max_low_pfn)
  2250. continue;
  2251. if (end_pfn > max_low_pfn)
  2252. end_pfn = max_low_pfn;
  2253. size_pages = end_pfn - early_node_map[i].start_pfn;
  2254. free_bootmem_node(NODE_DATA(early_node_map[i].nid),
  2255. PFN_PHYS(early_node_map[i].start_pfn),
  2256. size_pages << PAGE_SHIFT);
  2257. }
  2258. }
  2259. /**
  2260. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  2261. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  2262. *
  2263. * If an architecture guarantees that all ranges registered with
  2264. * add_active_ranges() contain no holes and may be freed, this
  2265. * function may be used instead of calling memory_present() manually.
  2266. */
  2267. void __init sparse_memory_present_with_active_regions(int nid)
  2268. {
  2269. int i;
  2270. for_each_active_range_index_in_nid(i, nid)
  2271. memory_present(early_node_map[i].nid,
  2272. early_node_map[i].start_pfn,
  2273. early_node_map[i].end_pfn);
  2274. }
  2275. /**
  2276. * push_node_boundaries - Push node boundaries to at least the requested boundary
  2277. * @nid: The nid of the node to push the boundary for
  2278. * @start_pfn: The start pfn of the node
  2279. * @end_pfn: The end pfn of the node
  2280. *
  2281. * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
  2282. * time. Specifically, on x86_64, SRAT will report ranges that can potentially
  2283. * be hotplugged even though no physical memory exists. This function allows
  2284. * an arch to push out the node boundaries so mem_map is allocated that can
  2285. * be used later.
  2286. */
  2287. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  2288. void __init push_node_boundaries(unsigned int nid,
  2289. unsigned long start_pfn, unsigned long end_pfn)
  2290. {
  2291. printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
  2292. nid, start_pfn, end_pfn);
  2293. /* Initialise the boundary for this node if necessary */
  2294. if (node_boundary_end_pfn[nid] == 0)
  2295. node_boundary_start_pfn[nid] = -1UL;
  2296. /* Update the boundaries */
  2297. if (node_boundary_start_pfn[nid] > start_pfn)
  2298. node_boundary_start_pfn[nid] = start_pfn;
  2299. if (node_boundary_end_pfn[nid] < end_pfn)
  2300. node_boundary_end_pfn[nid] = end_pfn;
  2301. }
  2302. /* If necessary, push the node boundary out for reserve hotadd */
  2303. static void __meminit account_node_boundary(unsigned int nid,
  2304. unsigned long *start_pfn, unsigned long *end_pfn)
  2305. {
  2306. printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
  2307. nid, *start_pfn, *end_pfn);
  2308. /* Return if boundary information has not been provided */
  2309. if (node_boundary_end_pfn[nid] == 0)
  2310. return;
  2311. /* Check the boundaries and update if necessary */
  2312. if (node_boundary_start_pfn[nid] < *start_pfn)
  2313. *start_pfn = node_boundary_start_pfn[nid];
  2314. if (node_boundary_end_pfn[nid] > *end_pfn)
  2315. *end_pfn = node_boundary_end_pfn[nid];
  2316. }
  2317. #else
  2318. void __init push_node_boundaries(unsigned int nid,
  2319. unsigned long start_pfn, unsigned long end_pfn) {}
  2320. static void __meminit account_node_boundary(unsigned int nid,
  2321. unsigned long *start_pfn, unsigned long *end_pfn) {}
  2322. #endif
  2323. /**
  2324. * get_pfn_range_for_nid - Return the start and end page frames for a node
  2325. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  2326. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  2327. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  2328. *
  2329. * It returns the start and end page frame of a node based on information
  2330. * provided by an arch calling add_active_range(). If called for a node
  2331. * with no available memory, a warning is printed and the start and end
  2332. * PFNs will be 0.
  2333. */
  2334. void __meminit get_pfn_range_for_nid(unsigned int nid,
  2335. unsigned long *start_pfn, unsigned long *end_pfn)
  2336. {
  2337. int i;
  2338. *start_pfn = -1UL;
  2339. *end_pfn = 0;
  2340. for_each_active_range_index_in_nid(i, nid) {
  2341. *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
  2342. *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
  2343. }
  2344. if (*start_pfn == -1UL)
  2345. *start_pfn = 0;
  2346. /* Push the node boundaries out if requested */
  2347. account_node_boundary(nid, start_pfn, end_pfn);
  2348. }
  2349. /*
  2350. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  2351. * assumption is made that zones within a node are ordered in monotonic
  2352. * increasing memory addresses so that the "highest" populated zone is used
  2353. */
  2354. void __init find_usable_zone_for_movable(void)
  2355. {
  2356. int zone_index;
  2357. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  2358. if (zone_index == ZONE_MOVABLE)
  2359. continue;
  2360. if (arch_zone_highest_possible_pfn[zone_index] >
  2361. arch_zone_lowest_possible_pfn[zone_index])
  2362. break;
  2363. }
  2364. VM_BUG_ON(zone_index == -1);
  2365. movable_zone = zone_index;
  2366. }
  2367. /*
  2368. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  2369. * because it is sized independant of architecture. Unlike the other zones,
  2370. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  2371. * in each node depending on the size of each node and how evenly kernelcore
  2372. * is distributed. This helper function adjusts the zone ranges
  2373. * provided by the architecture for a given node by using the end of the
  2374. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  2375. * zones within a node are in order of monotonic increases memory addresses
  2376. */
  2377. void __meminit adjust_zone_range_for_zone_movable(int nid,
  2378. unsigned long zone_type,
  2379. unsigned long node_start_pfn,
  2380. unsigned long node_end_pfn,
  2381. unsigned long *zone_start_pfn,
  2382. unsigned long *zone_end_pfn)
  2383. {
  2384. /* Only adjust if ZONE_MOVABLE is on this node */
  2385. if (zone_movable_pfn[nid]) {
  2386. /* Size ZONE_MOVABLE */
  2387. if (zone_type == ZONE_MOVABLE) {
  2388. *zone_start_pfn = zone_movable_pfn[nid];
  2389. *zone_end_pfn = min(node_end_pfn,
  2390. arch_zone_highest_possible_pfn[movable_zone]);
  2391. /* Adjust for ZONE_MOVABLE starting within this range */
  2392. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  2393. *zone_end_pfn > zone_movable_pfn[nid]) {
  2394. *zone_end_pfn = zone_movable_pfn[nid];
  2395. /* Check if this whole range is within ZONE_MOVABLE */
  2396. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  2397. *zone_start_pfn = *zone_end_pfn;
  2398. }
  2399. }
  2400. /*
  2401. * Return the number of pages a zone spans in a node, including holes
  2402. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  2403. */
  2404. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2405. unsigned long zone_type,
  2406. unsigned long *ignored)
  2407. {
  2408. unsigned long node_start_pfn, node_end_pfn;
  2409. unsigned long zone_start_pfn, zone_end_pfn;
  2410. /* Get the start and end of the node and zone */
  2411. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2412. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  2413. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  2414. adjust_zone_range_for_zone_movable(nid, zone_type,
  2415. node_start_pfn, node_end_pfn,
  2416. &zone_start_pfn, &zone_end_pfn);
  2417. /* Check that this node has pages within the zone's required range */
  2418. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  2419. return 0;
  2420. /* Move the zone boundaries inside the node if necessary */
  2421. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  2422. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  2423. /* Return the spanned pages */
  2424. return zone_end_pfn - zone_start_pfn;
  2425. }
  2426. /*
  2427. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  2428. * then all holes in the requested range will be accounted for.
  2429. */
  2430. unsigned long __meminit __absent_pages_in_range(int nid,
  2431. unsigned long range_start_pfn,
  2432. unsigned long range_end_pfn)
  2433. {
  2434. int i = 0;
  2435. unsigned long prev_end_pfn = 0, hole_pages = 0;
  2436. unsigned long start_pfn;
  2437. /* Find the end_pfn of the first active range of pfns in the node */
  2438. i = first_active_region_index_in_nid(nid);
  2439. if (i == -1)
  2440. return 0;
  2441. prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2442. /* Account for ranges before physical memory on this node */
  2443. if (early_node_map[i].start_pfn > range_start_pfn)
  2444. hole_pages = prev_end_pfn - range_start_pfn;
  2445. /* Find all holes for the zone within the node */
  2446. for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
  2447. /* No need to continue if prev_end_pfn is outside the zone */
  2448. if (prev_end_pfn >= range_end_pfn)
  2449. break;
  2450. /* Make sure the end of the zone is not within the hole */
  2451. start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2452. prev_end_pfn = max(prev_end_pfn, range_start_pfn);
  2453. /* Update the hole size cound and move on */
  2454. if (start_pfn > range_start_pfn) {
  2455. BUG_ON(prev_end_pfn > start_pfn);
  2456. hole_pages += start_pfn - prev_end_pfn;
  2457. }
  2458. prev_end_pfn = early_node_map[i].end_pfn;
  2459. }
  2460. /* Account for ranges past physical memory on this node */
  2461. if (range_end_pfn > prev_end_pfn)
  2462. hole_pages += range_end_pfn -
  2463. max(range_start_pfn, prev_end_pfn);
  2464. return hole_pages;
  2465. }
  2466. /**
  2467. * absent_pages_in_range - Return number of page frames in holes within a range
  2468. * @start_pfn: The start PFN to start searching for holes
  2469. * @end_pfn: The end PFN to stop searching for holes
  2470. *
  2471. * It returns the number of pages frames in memory holes within a range.
  2472. */
  2473. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  2474. unsigned long end_pfn)
  2475. {
  2476. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  2477. }
  2478. /* Return the number of page frames in holes in a zone on a node */
  2479. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  2480. unsigned long zone_type,
  2481. unsigned long *ignored)
  2482. {
  2483. unsigned long node_start_pfn, node_end_pfn;
  2484. unsigned long zone_start_pfn, zone_end_pfn;
  2485. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2486. zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
  2487. node_start_pfn);
  2488. zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
  2489. node_end_pfn);
  2490. adjust_zone_range_for_zone_movable(nid, zone_type,
  2491. node_start_pfn, node_end_pfn,
  2492. &zone_start_pfn, &zone_end_pfn);
  2493. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  2494. }
  2495. #else
  2496. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2497. unsigned long zone_type,
  2498. unsigned long *zones_size)
  2499. {
  2500. return zones_size[zone_type];
  2501. }
  2502. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  2503. unsigned long zone_type,
  2504. unsigned long *zholes_size)
  2505. {
  2506. if (!zholes_size)
  2507. return 0;
  2508. return zholes_size[zone_type];
  2509. }
  2510. #endif
  2511. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  2512. unsigned long *zones_size, unsigned long *zholes_size)
  2513. {
  2514. unsigned long realtotalpages, totalpages = 0;
  2515. enum zone_type i;
  2516. for (i = 0; i < MAX_NR_ZONES; i++)
  2517. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  2518. zones_size);
  2519. pgdat->node_spanned_pages = totalpages;
  2520. realtotalpages = totalpages;
  2521. for (i = 0; i < MAX_NR_ZONES; i++)
  2522. realtotalpages -=
  2523. zone_absent_pages_in_node(pgdat->node_id, i,
  2524. zholes_size);
  2525. pgdat->node_present_pages = realtotalpages;
  2526. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  2527. realtotalpages);
  2528. }
  2529. /*
  2530. * Set up the zone data structures:
  2531. * - mark all pages reserved
  2532. * - mark all memory queues empty
  2533. * - clear the memory bitmaps
  2534. */
  2535. static void __meminit free_area_init_core(struct pglist_data *pgdat,
  2536. unsigned long *zones_size, unsigned long *zholes_size)
  2537. {
  2538. enum zone_type j;
  2539. int nid = pgdat->node_id;
  2540. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  2541. int ret;
  2542. pgdat_resize_init(pgdat);
  2543. pgdat->nr_zones = 0;
  2544. init_waitqueue_head(&pgdat->kswapd_wait);
  2545. pgdat->kswapd_max_order = 0;
  2546. for (j = 0; j < MAX_NR_ZONES; j++) {
  2547. struct zone *zone = pgdat->node_zones + j;
  2548. unsigned long size, realsize, memmap_pages;
  2549. size = zone_spanned_pages_in_node(nid, j, zones_size);
  2550. realsize = size - zone_absent_pages_in_node(nid, j,
  2551. zholes_size);
  2552. /*
  2553. * Adjust realsize so that it accounts for how much memory
  2554. * is used by this zone for memmap. This affects the watermark
  2555. * and per-cpu initialisations
  2556. */
  2557. memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
  2558. if (realsize >= memmap_pages) {
  2559. realsize -= memmap_pages;
  2560. printk(KERN_DEBUG
  2561. " %s zone: %lu pages used for memmap\n",
  2562. zone_names[j], memmap_pages);
  2563. } else
  2564. printk(KERN_WARNING
  2565. " %s zone: %lu pages exceeds realsize %lu\n",
  2566. zone_names[j], memmap_pages, realsize);
  2567. /* Account for reserved pages */
  2568. if (j == 0 && realsize > dma_reserve) {
  2569. realsize -= dma_reserve;
  2570. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  2571. zone_names[0], dma_reserve);
  2572. }
  2573. if (!is_highmem_idx(j))
  2574. nr_kernel_pages += realsize;
  2575. nr_all_pages += realsize;
  2576. zone->spanned_pages = size;
  2577. zone->present_pages = realsize;
  2578. #ifdef CONFIG_NUMA
  2579. zone->node = nid;
  2580. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  2581. / 100;
  2582. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  2583. #endif
  2584. zone->name = zone_names[j];
  2585. spin_lock_init(&zone->lock);
  2586. spin_lock_init(&zone->lru_lock);
  2587. zone_seqlock_init(zone);
  2588. zone->zone_pgdat = pgdat;
  2589. zone->prev_priority = DEF_PRIORITY;
  2590. zone_pcp_init(zone);
  2591. INIT_LIST_HEAD(&zone->active_list);
  2592. INIT_LIST_HEAD(&zone->inactive_list);
  2593. zone->nr_scan_active = 0;
  2594. zone->nr_scan_inactive = 0;
  2595. zap_zone_vm_stats(zone);
  2596. atomic_set(&zone->reclaim_in_progress, 0);
  2597. if (!size)
  2598. continue;
  2599. ret = init_currently_empty_zone(zone, zone_start_pfn,
  2600. size, MEMMAP_EARLY);
  2601. BUG_ON(ret);
  2602. zone_start_pfn += size;
  2603. }
  2604. }
  2605. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  2606. {
  2607. /* Skip empty nodes */
  2608. if (!pgdat->node_spanned_pages)
  2609. return;
  2610. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  2611. /* ia64 gets its own node_mem_map, before this, without bootmem */
  2612. if (!pgdat->node_mem_map) {
  2613. unsigned long size, start, end;
  2614. struct page *map;
  2615. /*
  2616. * The zone's endpoints aren't required to be MAX_ORDER
  2617. * aligned but the node_mem_map endpoints must be in order
  2618. * for the buddy allocator to function correctly.
  2619. */
  2620. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  2621. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  2622. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  2623. size = (end - start) * sizeof(struct page);
  2624. map = alloc_remap(pgdat->node_id, size);
  2625. if (!map)
  2626. map = alloc_bootmem_node(pgdat, size);
  2627. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  2628. }
  2629. #ifndef CONFIG_NEED_MULTIPLE_NODES
  2630. /*
  2631. * With no DISCONTIG, the global mem_map is just set as node 0's
  2632. */
  2633. if (pgdat == NODE_DATA(0)) {
  2634. mem_map = NODE_DATA(0)->node_mem_map;
  2635. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2636. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  2637. mem_map -= pgdat->node_start_pfn;
  2638. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  2639. }
  2640. #endif
  2641. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  2642. }
  2643. void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
  2644. unsigned long *zones_size, unsigned long node_start_pfn,
  2645. unsigned long *zholes_size)
  2646. {
  2647. pgdat->node_id = nid;
  2648. pgdat->node_start_pfn = node_start_pfn;
  2649. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  2650. alloc_node_mem_map(pgdat);
  2651. free_area_init_core(pgdat, zones_size, zholes_size);
  2652. }
  2653. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2654. #if MAX_NUMNODES > 1
  2655. /*
  2656. * Figure out the number of possible node ids.
  2657. */
  2658. static void __init setup_nr_node_ids(void)
  2659. {
  2660. unsigned int node;
  2661. unsigned int highest = 0;
  2662. for_each_node_mask(node, node_possible_map)
  2663. highest = node;
  2664. nr_node_ids = highest + 1;
  2665. }
  2666. #else
  2667. static inline void setup_nr_node_ids(void)
  2668. {
  2669. }
  2670. #endif
  2671. /**
  2672. * add_active_range - Register a range of PFNs backed by physical memory
  2673. * @nid: The node ID the range resides on
  2674. * @start_pfn: The start PFN of the available physical memory
  2675. * @end_pfn: The end PFN of the available physical memory
  2676. *
  2677. * These ranges are stored in an early_node_map[] and later used by
  2678. * free_area_init_nodes() to calculate zone sizes and holes. If the
  2679. * range spans a memory hole, it is up to the architecture to ensure
  2680. * the memory is not freed by the bootmem allocator. If possible
  2681. * the range being registered will be merged with existing ranges.
  2682. */
  2683. void __init add_active_range(unsigned int nid, unsigned long start_pfn,
  2684. unsigned long end_pfn)
  2685. {
  2686. int i;
  2687. printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
  2688. "%d entries of %d used\n",
  2689. nid, start_pfn, end_pfn,
  2690. nr_nodemap_entries, MAX_ACTIVE_REGIONS);
  2691. /* Merge with existing active regions if possible */
  2692. for (i = 0; i < nr_nodemap_entries; i++) {
  2693. if (early_node_map[i].nid != nid)
  2694. continue;
  2695. /* Skip if an existing region covers this new one */
  2696. if (start_pfn >= early_node_map[i].start_pfn &&
  2697. end_pfn <= early_node_map[i].end_pfn)
  2698. return;
  2699. /* Merge forward if suitable */
  2700. if (start_pfn <= early_node_map[i].end_pfn &&
  2701. end_pfn > early_node_map[i].end_pfn) {
  2702. early_node_map[i].end_pfn = end_pfn;
  2703. return;
  2704. }
  2705. /* Merge backward if suitable */
  2706. if (start_pfn < early_node_map[i].end_pfn &&
  2707. end_pfn >= early_node_map[i].start_pfn) {
  2708. early_node_map[i].start_pfn = start_pfn;
  2709. return;
  2710. }
  2711. }
  2712. /* Check that early_node_map is large enough */
  2713. if (i >= MAX_ACTIVE_REGIONS) {
  2714. printk(KERN_CRIT "More than %d memory regions, truncating\n",
  2715. MAX_ACTIVE_REGIONS);
  2716. return;
  2717. }
  2718. early_node_map[i].nid = nid;
  2719. early_node_map[i].start_pfn = start_pfn;
  2720. early_node_map[i].end_pfn = end_pfn;
  2721. nr_nodemap_entries = i + 1;
  2722. }
  2723. /**
  2724. * shrink_active_range - Shrink an existing registered range of PFNs
  2725. * @nid: The node id the range is on that should be shrunk
  2726. * @old_end_pfn: The old end PFN of the range
  2727. * @new_end_pfn: The new PFN of the range
  2728. *
  2729. * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
  2730. * The map is kept at the end physical page range that has already been
  2731. * registered with add_active_range(). This function allows an arch to shrink
  2732. * an existing registered range.
  2733. */
  2734. void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
  2735. unsigned long new_end_pfn)
  2736. {
  2737. int i;
  2738. /* Find the old active region end and shrink */
  2739. for_each_active_range_index_in_nid(i, nid)
  2740. if (early_node_map[i].end_pfn == old_end_pfn) {
  2741. early_node_map[i].end_pfn = new_end_pfn;
  2742. break;
  2743. }
  2744. }
  2745. /**
  2746. * remove_all_active_ranges - Remove all currently registered regions
  2747. *
  2748. * During discovery, it may be found that a table like SRAT is invalid
  2749. * and an alternative discovery method must be used. This function removes
  2750. * all currently registered regions.
  2751. */
  2752. void __init remove_all_active_ranges(void)
  2753. {
  2754. memset(early_node_map, 0, sizeof(early_node_map));
  2755. nr_nodemap_entries = 0;
  2756. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  2757. memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
  2758. memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
  2759. #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
  2760. }
  2761. /* Compare two active node_active_regions */
  2762. static int __init cmp_node_active_region(const void *a, const void *b)
  2763. {
  2764. struct node_active_region *arange = (struct node_active_region *)a;
  2765. struct node_active_region *brange = (struct node_active_region *)b;
  2766. /* Done this way to avoid overflows */
  2767. if (arange->start_pfn > brange->start_pfn)
  2768. return 1;
  2769. if (arange->start_pfn < brange->start_pfn)
  2770. return -1;
  2771. return 0;
  2772. }
  2773. /* sort the node_map by start_pfn */
  2774. static void __init sort_node_map(void)
  2775. {
  2776. sort(early_node_map, (size_t)nr_nodemap_entries,
  2777. sizeof(struct node_active_region),
  2778. cmp_node_active_region, NULL);
  2779. }
  2780. /* Find the lowest pfn for a node */
  2781. unsigned long __init find_min_pfn_for_node(unsigned long nid)
  2782. {
  2783. int i;
  2784. unsigned long min_pfn = ULONG_MAX;
  2785. /* Assuming a sorted map, the first range found has the starting pfn */
  2786. for_each_active_range_index_in_nid(i, nid)
  2787. min_pfn = min(min_pfn, early_node_map[i].start_pfn);
  2788. if (min_pfn == ULONG_MAX) {
  2789. printk(KERN_WARNING
  2790. "Could not find start_pfn for node %lu\n", nid);
  2791. return 0;
  2792. }
  2793. return min_pfn;
  2794. }
  2795. /**
  2796. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  2797. *
  2798. * It returns the minimum PFN based on information provided via
  2799. * add_active_range().
  2800. */
  2801. unsigned long __init find_min_pfn_with_active_regions(void)
  2802. {
  2803. return find_min_pfn_for_node(MAX_NUMNODES);
  2804. }
  2805. /**
  2806. * find_max_pfn_with_active_regions - Find the maximum PFN registered
  2807. *
  2808. * It returns the maximum PFN based on information provided via
  2809. * add_active_range().
  2810. */
  2811. unsigned long __init find_max_pfn_with_active_regions(void)
  2812. {
  2813. int i;
  2814. unsigned long max_pfn = 0;
  2815. for (i = 0; i < nr_nodemap_entries; i++)
  2816. max_pfn = max(max_pfn, early_node_map[i].end_pfn);
  2817. return max_pfn;
  2818. }
  2819. unsigned long __init early_calculate_totalpages(void)
  2820. {
  2821. int i;
  2822. unsigned long totalpages = 0;
  2823. for (i = 0; i < nr_nodemap_entries; i++)
  2824. totalpages += early_node_map[i].end_pfn -
  2825. early_node_map[i].start_pfn;
  2826. return totalpages;
  2827. }
  2828. /*
  2829. * Find the PFN the Movable zone begins in each node. Kernel memory
  2830. * is spread evenly between nodes as long as the nodes have enough
  2831. * memory. When they don't, some nodes will have more kernelcore than
  2832. * others
  2833. */
  2834. void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
  2835. {
  2836. int i, nid;
  2837. unsigned long usable_startpfn;
  2838. unsigned long kernelcore_node, kernelcore_remaining;
  2839. int usable_nodes = num_online_nodes();
  2840. /*
  2841. * If movablecore was specified, calculate what size of
  2842. * kernelcore that corresponds so that memory usable for
  2843. * any allocation type is evenly spread. If both kernelcore
  2844. * and movablecore are specified, then the value of kernelcore
  2845. * will be used for required_kernelcore if it's greater than
  2846. * what movablecore would have allowed.
  2847. */
  2848. if (required_movablecore) {
  2849. unsigned long totalpages = early_calculate_totalpages();
  2850. unsigned long corepages;
  2851. /*
  2852. * Round-up so that ZONE_MOVABLE is at least as large as what
  2853. * was requested by the user
  2854. */
  2855. required_movablecore =
  2856. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  2857. corepages = totalpages - required_movablecore;
  2858. required_kernelcore = max(required_kernelcore, corepages);
  2859. }
  2860. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  2861. if (!required_kernelcore)
  2862. return;
  2863. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  2864. find_usable_zone_for_movable();
  2865. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  2866. restart:
  2867. /* Spread kernelcore memory as evenly as possible throughout nodes */
  2868. kernelcore_node = required_kernelcore / usable_nodes;
  2869. for_each_online_node(nid) {
  2870. /*
  2871. * Recalculate kernelcore_node if the division per node
  2872. * now exceeds what is necessary to satisfy the requested
  2873. * amount of memory for the kernel
  2874. */
  2875. if (required_kernelcore < kernelcore_node)
  2876. kernelcore_node = required_kernelcore / usable_nodes;
  2877. /*
  2878. * As the map is walked, we track how much memory is usable
  2879. * by the kernel using kernelcore_remaining. When it is
  2880. * 0, the rest of the node is usable by ZONE_MOVABLE
  2881. */
  2882. kernelcore_remaining = kernelcore_node;
  2883. /* Go through each range of PFNs within this node */
  2884. for_each_active_range_index_in_nid(i, nid) {
  2885. unsigned long start_pfn, end_pfn;
  2886. unsigned long size_pages;
  2887. start_pfn = max(early_node_map[i].start_pfn,
  2888. zone_movable_pfn[nid]);
  2889. end_pfn = early_node_map[i].end_pfn;
  2890. if (start_pfn >= end_pfn)
  2891. continue;
  2892. /* Account for what is only usable for kernelcore */
  2893. if (start_pfn < usable_startpfn) {
  2894. unsigned long kernel_pages;
  2895. kernel_pages = min(end_pfn, usable_startpfn)
  2896. - start_pfn;
  2897. kernelcore_remaining -= min(kernel_pages,
  2898. kernelcore_remaining);
  2899. required_kernelcore -= min(kernel_pages,
  2900. required_kernelcore);
  2901. /* Continue if range is now fully accounted */
  2902. if (end_pfn <= usable_startpfn) {
  2903. /*
  2904. * Push zone_movable_pfn to the end so
  2905. * that if we have to rebalance
  2906. * kernelcore across nodes, we will
  2907. * not double account here
  2908. */
  2909. zone_movable_pfn[nid] = end_pfn;
  2910. continue;
  2911. }
  2912. start_pfn = usable_startpfn;
  2913. }
  2914. /*
  2915. * The usable PFN range for ZONE_MOVABLE is from
  2916. * start_pfn->end_pfn. Calculate size_pages as the
  2917. * number of pages used as kernelcore
  2918. */
  2919. size_pages = end_pfn - start_pfn;
  2920. if (size_pages > kernelcore_remaining)
  2921. size_pages = kernelcore_remaining;
  2922. zone_movable_pfn[nid] = start_pfn + size_pages;
  2923. /*
  2924. * Some kernelcore has been met, update counts and
  2925. * break if the kernelcore for this node has been
  2926. * satisified
  2927. */
  2928. required_kernelcore -= min(required_kernelcore,
  2929. size_pages);
  2930. kernelcore_remaining -= size_pages;
  2931. if (!kernelcore_remaining)
  2932. break;
  2933. }
  2934. }
  2935. /*
  2936. * If there is still required_kernelcore, we do another pass with one
  2937. * less node in the count. This will push zone_movable_pfn[nid] further
  2938. * along on the nodes that still have memory until kernelcore is
  2939. * satisified
  2940. */
  2941. usable_nodes--;
  2942. if (usable_nodes && required_kernelcore > usable_nodes)
  2943. goto restart;
  2944. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  2945. for (nid = 0; nid < MAX_NUMNODES; nid++)
  2946. zone_movable_pfn[nid] =
  2947. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  2948. }
  2949. /**
  2950. * free_area_init_nodes - Initialise all pg_data_t and zone data
  2951. * @max_zone_pfn: an array of max PFNs for each zone
  2952. *
  2953. * This will call free_area_init_node() for each active node in the system.
  2954. * Using the page ranges provided by add_active_range(), the size of each
  2955. * zone in each node and their holes is calculated. If the maximum PFN
  2956. * between two adjacent zones match, it is assumed that the zone is empty.
  2957. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  2958. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  2959. * starts where the previous one ended. For example, ZONE_DMA32 starts
  2960. * at arch_max_dma_pfn.
  2961. */
  2962. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  2963. {
  2964. unsigned long nid;
  2965. enum zone_type i;
  2966. /* Sort early_node_map as initialisation assumes it is sorted */
  2967. sort_node_map();
  2968. /* Record where the zone boundaries are */
  2969. memset(arch_zone_lowest_possible_pfn, 0,
  2970. sizeof(arch_zone_lowest_possible_pfn));
  2971. memset(arch_zone_highest_possible_pfn, 0,
  2972. sizeof(arch_zone_highest_possible_pfn));
  2973. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  2974. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  2975. for (i = 1; i < MAX_NR_ZONES; i++) {
  2976. if (i == ZONE_MOVABLE)
  2977. continue;
  2978. arch_zone_lowest_possible_pfn[i] =
  2979. arch_zone_highest_possible_pfn[i-1];
  2980. arch_zone_highest_possible_pfn[i] =
  2981. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  2982. }
  2983. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  2984. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  2985. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  2986. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  2987. find_zone_movable_pfns_for_nodes(zone_movable_pfn);
  2988. /* Print out the zone ranges */
  2989. printk("Zone PFN ranges:\n");
  2990. for (i = 0; i < MAX_NR_ZONES; i++) {
  2991. if (i == ZONE_MOVABLE)
  2992. continue;
  2993. printk(" %-8s %8lu -> %8lu\n",
  2994. zone_names[i],
  2995. arch_zone_lowest_possible_pfn[i],
  2996. arch_zone_highest_possible_pfn[i]);
  2997. }
  2998. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  2999. printk("Movable zone start PFN for each node\n");
  3000. for (i = 0; i < MAX_NUMNODES; i++) {
  3001. if (zone_movable_pfn[i])
  3002. printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
  3003. }
  3004. /* Print out the early_node_map[] */
  3005. printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
  3006. for (i = 0; i < nr_nodemap_entries; i++)
  3007. printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
  3008. early_node_map[i].start_pfn,
  3009. early_node_map[i].end_pfn);
  3010. /* Initialise every node */
  3011. setup_nr_node_ids();
  3012. for_each_online_node(nid) {
  3013. pg_data_t *pgdat = NODE_DATA(nid);
  3014. free_area_init_node(nid, pgdat, NULL,
  3015. find_min_pfn_for_node(nid), NULL);
  3016. }
  3017. }
  3018. static int __init cmdline_parse_core(char *p, unsigned long *core)
  3019. {
  3020. unsigned long long coremem;
  3021. if (!p)
  3022. return -EINVAL;
  3023. coremem = memparse(p, &p);
  3024. *core = coremem >> PAGE_SHIFT;
  3025. /* Paranoid check that UL is enough for the coremem value */
  3026. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  3027. return 0;
  3028. }
  3029. /*
  3030. * kernelcore=size sets the amount of memory for use for allocations that
  3031. * cannot be reclaimed or migrated.
  3032. */
  3033. static int __init cmdline_parse_kernelcore(char *p)
  3034. {
  3035. return cmdline_parse_core(p, &required_kernelcore);
  3036. }
  3037. /*
  3038. * movablecore=size sets the amount of memory for use for allocations that
  3039. * can be reclaimed or migrated.
  3040. */
  3041. static int __init cmdline_parse_movablecore(char *p)
  3042. {
  3043. return cmdline_parse_core(p, &required_movablecore);
  3044. }
  3045. early_param("kernelcore", cmdline_parse_kernelcore);
  3046. early_param("movablecore", cmdline_parse_movablecore);
  3047. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3048. /**
  3049. * set_dma_reserve - set the specified number of pages reserved in the first zone
  3050. * @new_dma_reserve: The number of pages to mark reserved
  3051. *
  3052. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  3053. * In the DMA zone, a significant percentage may be consumed by kernel image
  3054. * and other unfreeable allocations which can skew the watermarks badly. This
  3055. * function may optionally be used to account for unfreeable pages in the
  3056. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  3057. * smaller per-cpu batchsize.
  3058. */
  3059. void __init set_dma_reserve(unsigned long new_dma_reserve)
  3060. {
  3061. dma_reserve = new_dma_reserve;
  3062. }
  3063. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3064. static bootmem_data_t contig_bootmem_data;
  3065. struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
  3066. EXPORT_SYMBOL(contig_page_data);
  3067. #endif
  3068. void __init free_area_init(unsigned long *zones_size)
  3069. {
  3070. free_area_init_node(0, NODE_DATA(0), zones_size,
  3071. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  3072. }
  3073. static int page_alloc_cpu_notify(struct notifier_block *self,
  3074. unsigned long action, void *hcpu)
  3075. {
  3076. int cpu = (unsigned long)hcpu;
  3077. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  3078. local_irq_disable();
  3079. __drain_pages(cpu);
  3080. vm_events_fold_cpu(cpu);
  3081. local_irq_enable();
  3082. refresh_cpu_vm_stats(cpu);
  3083. }
  3084. return NOTIFY_OK;
  3085. }
  3086. void __init page_alloc_init(void)
  3087. {
  3088. hotcpu_notifier(page_alloc_cpu_notify, 0);
  3089. }
  3090. /*
  3091. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  3092. * or min_free_kbytes changes.
  3093. */
  3094. static void calculate_totalreserve_pages(void)
  3095. {
  3096. struct pglist_data *pgdat;
  3097. unsigned long reserve_pages = 0;
  3098. enum zone_type i, j;
  3099. for_each_online_pgdat(pgdat) {
  3100. for (i = 0; i < MAX_NR_ZONES; i++) {
  3101. struct zone *zone = pgdat->node_zones + i;
  3102. unsigned long max = 0;
  3103. /* Find valid and maximum lowmem_reserve in the zone */
  3104. for (j = i; j < MAX_NR_ZONES; j++) {
  3105. if (zone->lowmem_reserve[j] > max)
  3106. max = zone->lowmem_reserve[j];
  3107. }
  3108. /* we treat pages_high as reserved pages. */
  3109. max += zone->pages_high;
  3110. if (max > zone->present_pages)
  3111. max = zone->present_pages;
  3112. reserve_pages += max;
  3113. }
  3114. }
  3115. totalreserve_pages = reserve_pages;
  3116. }
  3117. /*
  3118. * setup_per_zone_lowmem_reserve - called whenever
  3119. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  3120. * has a correct pages reserved value, so an adequate number of
  3121. * pages are left in the zone after a successful __alloc_pages().
  3122. */
  3123. static void setup_per_zone_lowmem_reserve(void)
  3124. {
  3125. struct pglist_data *pgdat;
  3126. enum zone_type j, idx;
  3127. for_each_online_pgdat(pgdat) {
  3128. for (j = 0; j < MAX_NR_ZONES; j++) {
  3129. struct zone *zone = pgdat->node_zones + j;
  3130. unsigned long present_pages = zone->present_pages;
  3131. zone->lowmem_reserve[j] = 0;
  3132. idx = j;
  3133. while (idx) {
  3134. struct zone *lower_zone;
  3135. idx--;
  3136. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  3137. sysctl_lowmem_reserve_ratio[idx] = 1;
  3138. lower_zone = pgdat->node_zones + idx;
  3139. lower_zone->lowmem_reserve[j] = present_pages /
  3140. sysctl_lowmem_reserve_ratio[idx];
  3141. present_pages += lower_zone->present_pages;
  3142. }
  3143. }
  3144. }
  3145. /* update totalreserve_pages */
  3146. calculate_totalreserve_pages();
  3147. }
  3148. /**
  3149. * setup_per_zone_pages_min - called when min_free_kbytes changes.
  3150. *
  3151. * Ensures that the pages_{min,low,high} values for each zone are set correctly
  3152. * with respect to min_free_kbytes.
  3153. */
  3154. void setup_per_zone_pages_min(void)
  3155. {
  3156. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  3157. unsigned long lowmem_pages = 0;
  3158. struct zone *zone;
  3159. unsigned long flags;
  3160. /* Calculate total number of !ZONE_HIGHMEM pages */
  3161. for_each_zone(zone) {
  3162. if (!is_highmem(zone))
  3163. lowmem_pages += zone->present_pages;
  3164. }
  3165. for_each_zone(zone) {
  3166. u64 tmp;
  3167. spin_lock_irqsave(&zone->lru_lock, flags);
  3168. tmp = (u64)pages_min * zone->present_pages;
  3169. do_div(tmp, lowmem_pages);
  3170. if (is_highmem(zone)) {
  3171. /*
  3172. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  3173. * need highmem pages, so cap pages_min to a small
  3174. * value here.
  3175. *
  3176. * The (pages_high-pages_low) and (pages_low-pages_min)
  3177. * deltas controls asynch page reclaim, and so should
  3178. * not be capped for highmem.
  3179. */
  3180. int min_pages;
  3181. min_pages = zone->present_pages / 1024;
  3182. if (min_pages < SWAP_CLUSTER_MAX)
  3183. min_pages = SWAP_CLUSTER_MAX;
  3184. if (min_pages > 128)
  3185. min_pages = 128;
  3186. zone->pages_min = min_pages;
  3187. } else {
  3188. /*
  3189. * If it's a lowmem zone, reserve a number of pages
  3190. * proportionate to the zone's size.
  3191. */
  3192. zone->pages_min = tmp;
  3193. }
  3194. zone->pages_low = zone->pages_min + (tmp >> 2);
  3195. zone->pages_high = zone->pages_min + (tmp >> 1);
  3196. spin_unlock_irqrestore(&zone->lru_lock, flags);
  3197. }
  3198. /* update totalreserve_pages */
  3199. calculate_totalreserve_pages();
  3200. }
  3201. /*
  3202. * Initialise min_free_kbytes.
  3203. *
  3204. * For small machines we want it small (128k min). For large machines
  3205. * we want it large (64MB max). But it is not linear, because network
  3206. * bandwidth does not increase linearly with machine size. We use
  3207. *
  3208. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  3209. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  3210. *
  3211. * which yields
  3212. *
  3213. * 16MB: 512k
  3214. * 32MB: 724k
  3215. * 64MB: 1024k
  3216. * 128MB: 1448k
  3217. * 256MB: 2048k
  3218. * 512MB: 2896k
  3219. * 1024MB: 4096k
  3220. * 2048MB: 5792k
  3221. * 4096MB: 8192k
  3222. * 8192MB: 11584k
  3223. * 16384MB: 16384k
  3224. */
  3225. static int __init init_per_zone_pages_min(void)
  3226. {
  3227. unsigned long lowmem_kbytes;
  3228. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  3229. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  3230. if (min_free_kbytes < 128)
  3231. min_free_kbytes = 128;
  3232. if (min_free_kbytes > 65536)
  3233. min_free_kbytes = 65536;
  3234. setup_per_zone_pages_min();
  3235. setup_per_zone_lowmem_reserve();
  3236. return 0;
  3237. }
  3238. module_init(init_per_zone_pages_min)
  3239. /*
  3240. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  3241. * that we can call two helper functions whenever min_free_kbytes
  3242. * changes.
  3243. */
  3244. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  3245. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3246. {
  3247. proc_dointvec(table, write, file, buffer, length, ppos);
  3248. if (write)
  3249. setup_per_zone_pages_min();
  3250. return 0;
  3251. }
  3252. #ifdef CONFIG_NUMA
  3253. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  3254. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3255. {
  3256. struct zone *zone;
  3257. int rc;
  3258. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3259. if (rc)
  3260. return rc;
  3261. for_each_zone(zone)
  3262. zone->min_unmapped_pages = (zone->present_pages *
  3263. sysctl_min_unmapped_ratio) / 100;
  3264. return 0;
  3265. }
  3266. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  3267. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3268. {
  3269. struct zone *zone;
  3270. int rc;
  3271. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3272. if (rc)
  3273. return rc;
  3274. for_each_zone(zone)
  3275. zone->min_slab_pages = (zone->present_pages *
  3276. sysctl_min_slab_ratio) / 100;
  3277. return 0;
  3278. }
  3279. #endif
  3280. /*
  3281. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  3282. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  3283. * whenever sysctl_lowmem_reserve_ratio changes.
  3284. *
  3285. * The reserve ratio obviously has absolutely no relation with the
  3286. * pages_min watermarks. The lowmem reserve ratio can only make sense
  3287. * if in function of the boot time zone sizes.
  3288. */
  3289. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  3290. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3291. {
  3292. proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3293. setup_per_zone_lowmem_reserve();
  3294. return 0;
  3295. }
  3296. /*
  3297. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  3298. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  3299. * can have before it gets flushed back to buddy allocator.
  3300. */
  3301. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  3302. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3303. {
  3304. struct zone *zone;
  3305. unsigned int cpu;
  3306. int ret;
  3307. ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3308. if (!write || (ret == -EINVAL))
  3309. return ret;
  3310. for_each_zone(zone) {
  3311. for_each_online_cpu(cpu) {
  3312. unsigned long high;
  3313. high = zone->present_pages / percpu_pagelist_fraction;
  3314. setup_pagelist_highmark(zone_pcp(zone, cpu), high);
  3315. }
  3316. }
  3317. return 0;
  3318. }
  3319. int hashdist = HASHDIST_DEFAULT;
  3320. #ifdef CONFIG_NUMA
  3321. static int __init set_hashdist(char *str)
  3322. {
  3323. if (!str)
  3324. return 0;
  3325. hashdist = simple_strtoul(str, &str, 0);
  3326. return 1;
  3327. }
  3328. __setup("hashdist=", set_hashdist);
  3329. #endif
  3330. /*
  3331. * allocate a large system hash table from bootmem
  3332. * - it is assumed that the hash table must contain an exact power-of-2
  3333. * quantity of entries
  3334. * - limit is the number of hash buckets, not the total allocation size
  3335. */
  3336. void *__init alloc_large_system_hash(const char *tablename,
  3337. unsigned long bucketsize,
  3338. unsigned long numentries,
  3339. int scale,
  3340. int flags,
  3341. unsigned int *_hash_shift,
  3342. unsigned int *_hash_mask,
  3343. unsigned long limit)
  3344. {
  3345. unsigned long long max = limit;
  3346. unsigned long log2qty, size;
  3347. void *table = NULL;
  3348. /* allow the kernel cmdline to have a say */
  3349. if (!numentries) {
  3350. /* round applicable memory size up to nearest megabyte */
  3351. numentries = nr_kernel_pages;
  3352. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  3353. numentries >>= 20 - PAGE_SHIFT;
  3354. numentries <<= 20 - PAGE_SHIFT;
  3355. /* limit to 1 bucket per 2^scale bytes of low memory */
  3356. if (scale > PAGE_SHIFT)
  3357. numentries >>= (scale - PAGE_SHIFT);
  3358. else
  3359. numentries <<= (PAGE_SHIFT - scale);
  3360. /* Make sure we've got at least a 0-order allocation.. */
  3361. if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  3362. numentries = PAGE_SIZE / bucketsize;
  3363. }
  3364. numentries = roundup_pow_of_two(numentries);
  3365. /* limit allocation size to 1/16 total memory by default */
  3366. if (max == 0) {
  3367. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  3368. do_div(max, bucketsize);
  3369. }
  3370. if (numentries > max)
  3371. numentries = max;
  3372. log2qty = ilog2(numentries);
  3373. do {
  3374. size = bucketsize << log2qty;
  3375. if (flags & HASH_EARLY)
  3376. table = alloc_bootmem(size);
  3377. else if (hashdist)
  3378. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  3379. else {
  3380. unsigned long order;
  3381. for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
  3382. ;
  3383. table = (void*) __get_free_pages(GFP_ATOMIC, order);
  3384. /*
  3385. * If bucketsize is not a power-of-two, we may free
  3386. * some pages at the end of hash table.
  3387. */
  3388. if (table) {
  3389. unsigned long alloc_end = (unsigned long)table +
  3390. (PAGE_SIZE << order);
  3391. unsigned long used = (unsigned long)table +
  3392. PAGE_ALIGN(size);
  3393. split_page(virt_to_page(table), order);
  3394. while (used < alloc_end) {
  3395. free_page(used);
  3396. used += PAGE_SIZE;
  3397. }
  3398. }
  3399. }
  3400. } while (!table && size > PAGE_SIZE && --log2qty);
  3401. if (!table)
  3402. panic("Failed to allocate %s hash table\n", tablename);
  3403. printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
  3404. tablename,
  3405. (1U << log2qty),
  3406. ilog2(size) - PAGE_SHIFT,
  3407. size);
  3408. if (_hash_shift)
  3409. *_hash_shift = log2qty;
  3410. if (_hash_mask)
  3411. *_hash_mask = (1 << log2qty) - 1;
  3412. return table;
  3413. }
  3414. #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
  3415. struct page *pfn_to_page(unsigned long pfn)
  3416. {
  3417. return __pfn_to_page(pfn);
  3418. }
  3419. unsigned long page_to_pfn(struct page *page)
  3420. {
  3421. return __page_to_pfn(page);
  3422. }
  3423. EXPORT_SYMBOL(pfn_to_page);
  3424. EXPORT_SYMBOL(page_to_pfn);
  3425. #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */