ipmi_si_intf.c 88 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523
  1. /*
  2. * ipmi_si.c
  3. *
  4. * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
  5. * BT).
  6. *
  7. * Author: MontaVista Software, Inc.
  8. * Corey Minyard <minyard@mvista.com>
  9. * source@mvista.com
  10. *
  11. * Copyright 2002 MontaVista Software Inc.
  12. * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
  13. *
  14. * This program is free software; you can redistribute it and/or modify it
  15. * under the terms of the GNU General Public License as published by the
  16. * Free Software Foundation; either version 2 of the License, or (at your
  17. * option) any later version.
  18. *
  19. *
  20. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  21. * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
  22. * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  23. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  24. * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
  25. * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
  26. * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  27. * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
  28. * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  29. * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  30. *
  31. * You should have received a copy of the GNU General Public License along
  32. * with this program; if not, write to the Free Software Foundation, Inc.,
  33. * 675 Mass Ave, Cambridge, MA 02139, USA.
  34. */
  35. /*
  36. * This file holds the "policy" for the interface to the SMI state
  37. * machine. It does the configuration, handles timers and interrupts,
  38. * and drives the real SMI state machine.
  39. */
  40. #include <linux/module.h>
  41. #include <linux/moduleparam.h>
  42. #include <asm/system.h>
  43. #include <linux/sched.h>
  44. #include <linux/timer.h>
  45. #include <linux/errno.h>
  46. #include <linux/spinlock.h>
  47. #include <linux/slab.h>
  48. #include <linux/delay.h>
  49. #include <linux/list.h>
  50. #include <linux/pci.h>
  51. #include <linux/ioport.h>
  52. #include <linux/notifier.h>
  53. #include <linux/mutex.h>
  54. #include <linux/kthread.h>
  55. #include <asm/irq.h>
  56. #include <linux/interrupt.h>
  57. #include <linux/rcupdate.h>
  58. #include <linux/ipmi_smi.h>
  59. #include <asm/io.h>
  60. #include "ipmi_si_sm.h"
  61. #include <linux/init.h>
  62. #include <linux/dmi.h>
  63. #include <linux/string.h>
  64. #include <linux/ctype.h>
  65. #include <linux/pnp.h>
  66. #ifdef CONFIG_PPC_OF
  67. #include <linux/of_device.h>
  68. #include <linux/of_platform.h>
  69. #endif
  70. #define PFX "ipmi_si: "
  71. /* Measure times between events in the driver. */
  72. #undef DEBUG_TIMING
  73. /* Call every 10 ms. */
  74. #define SI_TIMEOUT_TIME_USEC 10000
  75. #define SI_USEC_PER_JIFFY (1000000/HZ)
  76. #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
  77. #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
  78. short timeout */
  79. enum si_intf_state {
  80. SI_NORMAL,
  81. SI_GETTING_FLAGS,
  82. SI_GETTING_EVENTS,
  83. SI_CLEARING_FLAGS,
  84. SI_CLEARING_FLAGS_THEN_SET_IRQ,
  85. SI_GETTING_MESSAGES,
  86. SI_ENABLE_INTERRUPTS1,
  87. SI_ENABLE_INTERRUPTS2,
  88. SI_DISABLE_INTERRUPTS1,
  89. SI_DISABLE_INTERRUPTS2
  90. /* FIXME - add watchdog stuff. */
  91. };
  92. /* Some BT-specific defines we need here. */
  93. #define IPMI_BT_INTMASK_REG 2
  94. #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
  95. #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
  96. enum si_type {
  97. SI_KCS, SI_SMIC, SI_BT
  98. };
  99. static char *si_to_str[] = { "kcs", "smic", "bt" };
  100. enum ipmi_addr_src {
  101. SI_INVALID = 0, SI_HOTMOD, SI_HARDCODED, SI_SPMI, SI_ACPI, SI_SMBIOS,
  102. SI_PCI, SI_DEVICETREE, SI_DEFAULT
  103. };
  104. static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
  105. "ACPI", "SMBIOS", "PCI",
  106. "device-tree", "default" };
  107. #define DEVICE_NAME "ipmi_si"
  108. static struct platform_driver ipmi_driver = {
  109. .driver = {
  110. .name = DEVICE_NAME,
  111. .bus = &platform_bus_type
  112. }
  113. };
  114. /*
  115. * Indexes into stats[] in smi_info below.
  116. */
  117. enum si_stat_indexes {
  118. /*
  119. * Number of times the driver requested a timer while an operation
  120. * was in progress.
  121. */
  122. SI_STAT_short_timeouts = 0,
  123. /*
  124. * Number of times the driver requested a timer while nothing was in
  125. * progress.
  126. */
  127. SI_STAT_long_timeouts,
  128. /* Number of times the interface was idle while being polled. */
  129. SI_STAT_idles,
  130. /* Number of interrupts the driver handled. */
  131. SI_STAT_interrupts,
  132. /* Number of time the driver got an ATTN from the hardware. */
  133. SI_STAT_attentions,
  134. /* Number of times the driver requested flags from the hardware. */
  135. SI_STAT_flag_fetches,
  136. /* Number of times the hardware didn't follow the state machine. */
  137. SI_STAT_hosed_count,
  138. /* Number of completed messages. */
  139. SI_STAT_complete_transactions,
  140. /* Number of IPMI events received from the hardware. */
  141. SI_STAT_events,
  142. /* Number of watchdog pretimeouts. */
  143. SI_STAT_watchdog_pretimeouts,
  144. /* Number of asyncronous messages received. */
  145. SI_STAT_incoming_messages,
  146. /* This *must* remain last, add new values above this. */
  147. SI_NUM_STATS
  148. };
  149. struct smi_info {
  150. int intf_num;
  151. ipmi_smi_t intf;
  152. struct si_sm_data *si_sm;
  153. struct si_sm_handlers *handlers;
  154. enum si_type si_type;
  155. spinlock_t si_lock;
  156. spinlock_t msg_lock;
  157. struct list_head xmit_msgs;
  158. struct list_head hp_xmit_msgs;
  159. struct ipmi_smi_msg *curr_msg;
  160. enum si_intf_state si_state;
  161. /*
  162. * Used to handle the various types of I/O that can occur with
  163. * IPMI
  164. */
  165. struct si_sm_io io;
  166. int (*io_setup)(struct smi_info *info);
  167. void (*io_cleanup)(struct smi_info *info);
  168. int (*irq_setup)(struct smi_info *info);
  169. void (*irq_cleanup)(struct smi_info *info);
  170. unsigned int io_size;
  171. enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
  172. void (*addr_source_cleanup)(struct smi_info *info);
  173. void *addr_source_data;
  174. /*
  175. * Per-OEM handler, called from handle_flags(). Returns 1
  176. * when handle_flags() needs to be re-run or 0 indicating it
  177. * set si_state itself.
  178. */
  179. int (*oem_data_avail_handler)(struct smi_info *smi_info);
  180. /*
  181. * Flags from the last GET_MSG_FLAGS command, used when an ATTN
  182. * is set to hold the flags until we are done handling everything
  183. * from the flags.
  184. */
  185. #define RECEIVE_MSG_AVAIL 0x01
  186. #define EVENT_MSG_BUFFER_FULL 0x02
  187. #define WDT_PRE_TIMEOUT_INT 0x08
  188. #define OEM0_DATA_AVAIL 0x20
  189. #define OEM1_DATA_AVAIL 0x40
  190. #define OEM2_DATA_AVAIL 0x80
  191. #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
  192. OEM1_DATA_AVAIL | \
  193. OEM2_DATA_AVAIL)
  194. unsigned char msg_flags;
  195. /* Does the BMC have an event buffer? */
  196. char has_event_buffer;
  197. /*
  198. * If set to true, this will request events the next time the
  199. * state machine is idle.
  200. */
  201. atomic_t req_events;
  202. /*
  203. * If true, run the state machine to completion on every send
  204. * call. Generally used after a panic to make sure stuff goes
  205. * out.
  206. */
  207. int run_to_completion;
  208. /* The I/O port of an SI interface. */
  209. int port;
  210. /*
  211. * The space between start addresses of the two ports. For
  212. * instance, if the first port is 0xca2 and the spacing is 4, then
  213. * the second port is 0xca6.
  214. */
  215. unsigned int spacing;
  216. /* zero if no irq; */
  217. int irq;
  218. /* The timer for this si. */
  219. struct timer_list si_timer;
  220. /* The time (in jiffies) the last timeout occurred at. */
  221. unsigned long last_timeout_jiffies;
  222. /* Used to gracefully stop the timer without race conditions. */
  223. atomic_t stop_operation;
  224. /*
  225. * The driver will disable interrupts when it gets into a
  226. * situation where it cannot handle messages due to lack of
  227. * memory. Once that situation clears up, it will re-enable
  228. * interrupts.
  229. */
  230. int interrupt_disabled;
  231. /* From the get device id response... */
  232. struct ipmi_device_id device_id;
  233. /* Driver model stuff. */
  234. struct device *dev;
  235. struct platform_device *pdev;
  236. /*
  237. * True if we allocated the device, false if it came from
  238. * someplace else (like PCI).
  239. */
  240. int dev_registered;
  241. /* Slave address, could be reported from DMI. */
  242. unsigned char slave_addr;
  243. /* Counters and things for the proc filesystem. */
  244. atomic_t stats[SI_NUM_STATS];
  245. struct task_struct *thread;
  246. struct list_head link;
  247. };
  248. #define smi_inc_stat(smi, stat) \
  249. atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
  250. #define smi_get_stat(smi, stat) \
  251. ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
  252. #define SI_MAX_PARMS 4
  253. static int force_kipmid[SI_MAX_PARMS];
  254. static int num_force_kipmid;
  255. #ifdef CONFIG_PCI
  256. static int pci_registered;
  257. #endif
  258. #ifdef CONFIG_PPC_OF
  259. static int of_registered;
  260. #endif
  261. static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
  262. static int num_max_busy_us;
  263. static int unload_when_empty = 1;
  264. static int add_smi(struct smi_info *smi);
  265. static int try_smi_init(struct smi_info *smi);
  266. static void cleanup_one_si(struct smi_info *to_clean);
  267. static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
  268. static int register_xaction_notifier(struct notifier_block *nb)
  269. {
  270. return atomic_notifier_chain_register(&xaction_notifier_list, nb);
  271. }
  272. static void deliver_recv_msg(struct smi_info *smi_info,
  273. struct ipmi_smi_msg *msg)
  274. {
  275. /* Deliver the message to the upper layer with the lock
  276. released. */
  277. if (smi_info->run_to_completion) {
  278. ipmi_smi_msg_received(smi_info->intf, msg);
  279. } else {
  280. spin_unlock(&(smi_info->si_lock));
  281. ipmi_smi_msg_received(smi_info->intf, msg);
  282. spin_lock(&(smi_info->si_lock));
  283. }
  284. }
  285. static void return_hosed_msg(struct smi_info *smi_info, int cCode)
  286. {
  287. struct ipmi_smi_msg *msg = smi_info->curr_msg;
  288. if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
  289. cCode = IPMI_ERR_UNSPECIFIED;
  290. /* else use it as is */
  291. /* Make it a reponse */
  292. msg->rsp[0] = msg->data[0] | 4;
  293. msg->rsp[1] = msg->data[1];
  294. msg->rsp[2] = cCode;
  295. msg->rsp_size = 3;
  296. smi_info->curr_msg = NULL;
  297. deliver_recv_msg(smi_info, msg);
  298. }
  299. static enum si_sm_result start_next_msg(struct smi_info *smi_info)
  300. {
  301. int rv;
  302. struct list_head *entry = NULL;
  303. #ifdef DEBUG_TIMING
  304. struct timeval t;
  305. #endif
  306. /*
  307. * No need to save flags, we aleady have interrupts off and we
  308. * already hold the SMI lock.
  309. */
  310. if (!smi_info->run_to_completion)
  311. spin_lock(&(smi_info->msg_lock));
  312. /* Pick the high priority queue first. */
  313. if (!list_empty(&(smi_info->hp_xmit_msgs))) {
  314. entry = smi_info->hp_xmit_msgs.next;
  315. } else if (!list_empty(&(smi_info->xmit_msgs))) {
  316. entry = smi_info->xmit_msgs.next;
  317. }
  318. if (!entry) {
  319. smi_info->curr_msg = NULL;
  320. rv = SI_SM_IDLE;
  321. } else {
  322. int err;
  323. list_del(entry);
  324. smi_info->curr_msg = list_entry(entry,
  325. struct ipmi_smi_msg,
  326. link);
  327. #ifdef DEBUG_TIMING
  328. do_gettimeofday(&t);
  329. printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
  330. #endif
  331. err = atomic_notifier_call_chain(&xaction_notifier_list,
  332. 0, smi_info);
  333. if (err & NOTIFY_STOP_MASK) {
  334. rv = SI_SM_CALL_WITHOUT_DELAY;
  335. goto out;
  336. }
  337. err = smi_info->handlers->start_transaction(
  338. smi_info->si_sm,
  339. smi_info->curr_msg->data,
  340. smi_info->curr_msg->data_size);
  341. if (err)
  342. return_hosed_msg(smi_info, err);
  343. rv = SI_SM_CALL_WITHOUT_DELAY;
  344. }
  345. out:
  346. if (!smi_info->run_to_completion)
  347. spin_unlock(&(smi_info->msg_lock));
  348. return rv;
  349. }
  350. static void start_enable_irq(struct smi_info *smi_info)
  351. {
  352. unsigned char msg[2];
  353. /*
  354. * If we are enabling interrupts, we have to tell the
  355. * BMC to use them.
  356. */
  357. msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
  358. msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
  359. smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
  360. smi_info->si_state = SI_ENABLE_INTERRUPTS1;
  361. }
  362. static void start_disable_irq(struct smi_info *smi_info)
  363. {
  364. unsigned char msg[2];
  365. msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
  366. msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
  367. smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
  368. smi_info->si_state = SI_DISABLE_INTERRUPTS1;
  369. }
  370. static void start_clear_flags(struct smi_info *smi_info)
  371. {
  372. unsigned char msg[3];
  373. /* Make sure the watchdog pre-timeout flag is not set at startup. */
  374. msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
  375. msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
  376. msg[2] = WDT_PRE_TIMEOUT_INT;
  377. smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
  378. smi_info->si_state = SI_CLEARING_FLAGS;
  379. }
  380. /*
  381. * When we have a situtaion where we run out of memory and cannot
  382. * allocate messages, we just leave them in the BMC and run the system
  383. * polled until we can allocate some memory. Once we have some
  384. * memory, we will re-enable the interrupt.
  385. */
  386. static inline void disable_si_irq(struct smi_info *smi_info)
  387. {
  388. if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
  389. start_disable_irq(smi_info);
  390. smi_info->interrupt_disabled = 1;
  391. if (!atomic_read(&smi_info->stop_operation))
  392. mod_timer(&smi_info->si_timer,
  393. jiffies + SI_TIMEOUT_JIFFIES);
  394. }
  395. }
  396. static inline void enable_si_irq(struct smi_info *smi_info)
  397. {
  398. if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
  399. start_enable_irq(smi_info);
  400. smi_info->interrupt_disabled = 0;
  401. }
  402. }
  403. static void handle_flags(struct smi_info *smi_info)
  404. {
  405. retry:
  406. if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
  407. /* Watchdog pre-timeout */
  408. smi_inc_stat(smi_info, watchdog_pretimeouts);
  409. start_clear_flags(smi_info);
  410. smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
  411. spin_unlock(&(smi_info->si_lock));
  412. ipmi_smi_watchdog_pretimeout(smi_info->intf);
  413. spin_lock(&(smi_info->si_lock));
  414. } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
  415. /* Messages available. */
  416. smi_info->curr_msg = ipmi_alloc_smi_msg();
  417. if (!smi_info->curr_msg) {
  418. disable_si_irq(smi_info);
  419. smi_info->si_state = SI_NORMAL;
  420. return;
  421. }
  422. enable_si_irq(smi_info);
  423. smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
  424. smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
  425. smi_info->curr_msg->data_size = 2;
  426. smi_info->handlers->start_transaction(
  427. smi_info->si_sm,
  428. smi_info->curr_msg->data,
  429. smi_info->curr_msg->data_size);
  430. smi_info->si_state = SI_GETTING_MESSAGES;
  431. } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
  432. /* Events available. */
  433. smi_info->curr_msg = ipmi_alloc_smi_msg();
  434. if (!smi_info->curr_msg) {
  435. disable_si_irq(smi_info);
  436. smi_info->si_state = SI_NORMAL;
  437. return;
  438. }
  439. enable_si_irq(smi_info);
  440. smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
  441. smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
  442. smi_info->curr_msg->data_size = 2;
  443. smi_info->handlers->start_transaction(
  444. smi_info->si_sm,
  445. smi_info->curr_msg->data,
  446. smi_info->curr_msg->data_size);
  447. smi_info->si_state = SI_GETTING_EVENTS;
  448. } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
  449. smi_info->oem_data_avail_handler) {
  450. if (smi_info->oem_data_avail_handler(smi_info))
  451. goto retry;
  452. } else
  453. smi_info->si_state = SI_NORMAL;
  454. }
  455. static void handle_transaction_done(struct smi_info *smi_info)
  456. {
  457. struct ipmi_smi_msg *msg;
  458. #ifdef DEBUG_TIMING
  459. struct timeval t;
  460. do_gettimeofday(&t);
  461. printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
  462. #endif
  463. switch (smi_info->si_state) {
  464. case SI_NORMAL:
  465. if (!smi_info->curr_msg)
  466. break;
  467. smi_info->curr_msg->rsp_size
  468. = smi_info->handlers->get_result(
  469. smi_info->si_sm,
  470. smi_info->curr_msg->rsp,
  471. IPMI_MAX_MSG_LENGTH);
  472. /*
  473. * Do this here becase deliver_recv_msg() releases the
  474. * lock, and a new message can be put in during the
  475. * time the lock is released.
  476. */
  477. msg = smi_info->curr_msg;
  478. smi_info->curr_msg = NULL;
  479. deliver_recv_msg(smi_info, msg);
  480. break;
  481. case SI_GETTING_FLAGS:
  482. {
  483. unsigned char msg[4];
  484. unsigned int len;
  485. /* We got the flags from the SMI, now handle them. */
  486. len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
  487. if (msg[2] != 0) {
  488. /* Error fetching flags, just give up for now. */
  489. smi_info->si_state = SI_NORMAL;
  490. } else if (len < 4) {
  491. /*
  492. * Hmm, no flags. That's technically illegal, but
  493. * don't use uninitialized data.
  494. */
  495. smi_info->si_state = SI_NORMAL;
  496. } else {
  497. smi_info->msg_flags = msg[3];
  498. handle_flags(smi_info);
  499. }
  500. break;
  501. }
  502. case SI_CLEARING_FLAGS:
  503. case SI_CLEARING_FLAGS_THEN_SET_IRQ:
  504. {
  505. unsigned char msg[3];
  506. /* We cleared the flags. */
  507. smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
  508. if (msg[2] != 0) {
  509. /* Error clearing flags */
  510. dev_warn(smi_info->dev,
  511. "Error clearing flags: %2.2x\n", msg[2]);
  512. }
  513. if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
  514. start_enable_irq(smi_info);
  515. else
  516. smi_info->si_state = SI_NORMAL;
  517. break;
  518. }
  519. case SI_GETTING_EVENTS:
  520. {
  521. smi_info->curr_msg->rsp_size
  522. = smi_info->handlers->get_result(
  523. smi_info->si_sm,
  524. smi_info->curr_msg->rsp,
  525. IPMI_MAX_MSG_LENGTH);
  526. /*
  527. * Do this here becase deliver_recv_msg() releases the
  528. * lock, and a new message can be put in during the
  529. * time the lock is released.
  530. */
  531. msg = smi_info->curr_msg;
  532. smi_info->curr_msg = NULL;
  533. if (msg->rsp[2] != 0) {
  534. /* Error getting event, probably done. */
  535. msg->done(msg);
  536. /* Take off the event flag. */
  537. smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
  538. handle_flags(smi_info);
  539. } else {
  540. smi_inc_stat(smi_info, events);
  541. /*
  542. * Do this before we deliver the message
  543. * because delivering the message releases the
  544. * lock and something else can mess with the
  545. * state.
  546. */
  547. handle_flags(smi_info);
  548. deliver_recv_msg(smi_info, msg);
  549. }
  550. break;
  551. }
  552. case SI_GETTING_MESSAGES:
  553. {
  554. smi_info->curr_msg->rsp_size
  555. = smi_info->handlers->get_result(
  556. smi_info->si_sm,
  557. smi_info->curr_msg->rsp,
  558. IPMI_MAX_MSG_LENGTH);
  559. /*
  560. * Do this here becase deliver_recv_msg() releases the
  561. * lock, and a new message can be put in during the
  562. * time the lock is released.
  563. */
  564. msg = smi_info->curr_msg;
  565. smi_info->curr_msg = NULL;
  566. if (msg->rsp[2] != 0) {
  567. /* Error getting event, probably done. */
  568. msg->done(msg);
  569. /* Take off the msg flag. */
  570. smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
  571. handle_flags(smi_info);
  572. } else {
  573. smi_inc_stat(smi_info, incoming_messages);
  574. /*
  575. * Do this before we deliver the message
  576. * because delivering the message releases the
  577. * lock and something else can mess with the
  578. * state.
  579. */
  580. handle_flags(smi_info);
  581. deliver_recv_msg(smi_info, msg);
  582. }
  583. break;
  584. }
  585. case SI_ENABLE_INTERRUPTS1:
  586. {
  587. unsigned char msg[4];
  588. /* We got the flags from the SMI, now handle them. */
  589. smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
  590. if (msg[2] != 0) {
  591. dev_warn(smi_info->dev, "Could not enable interrupts"
  592. ", failed get, using polled mode.\n");
  593. smi_info->si_state = SI_NORMAL;
  594. } else {
  595. msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
  596. msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
  597. msg[2] = (msg[3] |
  598. IPMI_BMC_RCV_MSG_INTR |
  599. IPMI_BMC_EVT_MSG_INTR);
  600. smi_info->handlers->start_transaction(
  601. smi_info->si_sm, msg, 3);
  602. smi_info->si_state = SI_ENABLE_INTERRUPTS2;
  603. }
  604. break;
  605. }
  606. case SI_ENABLE_INTERRUPTS2:
  607. {
  608. unsigned char msg[4];
  609. /* We got the flags from the SMI, now handle them. */
  610. smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
  611. if (msg[2] != 0)
  612. dev_warn(smi_info->dev, "Could not enable interrupts"
  613. ", failed set, using polled mode.\n");
  614. else
  615. smi_info->interrupt_disabled = 0;
  616. smi_info->si_state = SI_NORMAL;
  617. break;
  618. }
  619. case SI_DISABLE_INTERRUPTS1:
  620. {
  621. unsigned char msg[4];
  622. /* We got the flags from the SMI, now handle them. */
  623. smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
  624. if (msg[2] != 0) {
  625. dev_warn(smi_info->dev, "Could not disable interrupts"
  626. ", failed get.\n");
  627. smi_info->si_state = SI_NORMAL;
  628. } else {
  629. msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
  630. msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
  631. msg[2] = (msg[3] &
  632. ~(IPMI_BMC_RCV_MSG_INTR |
  633. IPMI_BMC_EVT_MSG_INTR));
  634. smi_info->handlers->start_transaction(
  635. smi_info->si_sm, msg, 3);
  636. smi_info->si_state = SI_DISABLE_INTERRUPTS2;
  637. }
  638. break;
  639. }
  640. case SI_DISABLE_INTERRUPTS2:
  641. {
  642. unsigned char msg[4];
  643. /* We got the flags from the SMI, now handle them. */
  644. smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
  645. if (msg[2] != 0) {
  646. dev_warn(smi_info->dev, "Could not disable interrupts"
  647. ", failed set.\n");
  648. }
  649. smi_info->si_state = SI_NORMAL;
  650. break;
  651. }
  652. }
  653. }
  654. /*
  655. * Called on timeouts and events. Timeouts should pass the elapsed
  656. * time, interrupts should pass in zero. Must be called with
  657. * si_lock held and interrupts disabled.
  658. */
  659. static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
  660. int time)
  661. {
  662. enum si_sm_result si_sm_result;
  663. restart:
  664. /*
  665. * There used to be a loop here that waited a little while
  666. * (around 25us) before giving up. That turned out to be
  667. * pointless, the minimum delays I was seeing were in the 300us
  668. * range, which is far too long to wait in an interrupt. So
  669. * we just run until the state machine tells us something
  670. * happened or it needs a delay.
  671. */
  672. si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
  673. time = 0;
  674. while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
  675. si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
  676. if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
  677. smi_inc_stat(smi_info, complete_transactions);
  678. handle_transaction_done(smi_info);
  679. si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
  680. } else if (si_sm_result == SI_SM_HOSED) {
  681. smi_inc_stat(smi_info, hosed_count);
  682. /*
  683. * Do the before return_hosed_msg, because that
  684. * releases the lock.
  685. */
  686. smi_info->si_state = SI_NORMAL;
  687. if (smi_info->curr_msg != NULL) {
  688. /*
  689. * If we were handling a user message, format
  690. * a response to send to the upper layer to
  691. * tell it about the error.
  692. */
  693. return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
  694. }
  695. si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
  696. }
  697. /*
  698. * We prefer handling attn over new messages. But don't do
  699. * this if there is not yet an upper layer to handle anything.
  700. */
  701. if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
  702. unsigned char msg[2];
  703. smi_inc_stat(smi_info, attentions);
  704. /*
  705. * Got a attn, send down a get message flags to see
  706. * what's causing it. It would be better to handle
  707. * this in the upper layer, but due to the way
  708. * interrupts work with the SMI, that's not really
  709. * possible.
  710. */
  711. msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
  712. msg[1] = IPMI_GET_MSG_FLAGS_CMD;
  713. smi_info->handlers->start_transaction(
  714. smi_info->si_sm, msg, 2);
  715. smi_info->si_state = SI_GETTING_FLAGS;
  716. goto restart;
  717. }
  718. /* If we are currently idle, try to start the next message. */
  719. if (si_sm_result == SI_SM_IDLE) {
  720. smi_inc_stat(smi_info, idles);
  721. si_sm_result = start_next_msg(smi_info);
  722. if (si_sm_result != SI_SM_IDLE)
  723. goto restart;
  724. }
  725. if ((si_sm_result == SI_SM_IDLE)
  726. && (atomic_read(&smi_info->req_events))) {
  727. /*
  728. * We are idle and the upper layer requested that I fetch
  729. * events, so do so.
  730. */
  731. atomic_set(&smi_info->req_events, 0);
  732. smi_info->curr_msg = ipmi_alloc_smi_msg();
  733. if (!smi_info->curr_msg)
  734. goto out;
  735. smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
  736. smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
  737. smi_info->curr_msg->data_size = 2;
  738. smi_info->handlers->start_transaction(
  739. smi_info->si_sm,
  740. smi_info->curr_msg->data,
  741. smi_info->curr_msg->data_size);
  742. smi_info->si_state = SI_GETTING_EVENTS;
  743. goto restart;
  744. }
  745. out:
  746. return si_sm_result;
  747. }
  748. static void sender(void *send_info,
  749. struct ipmi_smi_msg *msg,
  750. int priority)
  751. {
  752. struct smi_info *smi_info = send_info;
  753. enum si_sm_result result;
  754. unsigned long flags;
  755. #ifdef DEBUG_TIMING
  756. struct timeval t;
  757. #endif
  758. if (atomic_read(&smi_info->stop_operation)) {
  759. msg->rsp[0] = msg->data[0] | 4;
  760. msg->rsp[1] = msg->data[1];
  761. msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
  762. msg->rsp_size = 3;
  763. deliver_recv_msg(smi_info, msg);
  764. return;
  765. }
  766. #ifdef DEBUG_TIMING
  767. do_gettimeofday(&t);
  768. printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
  769. #endif
  770. mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
  771. if (smi_info->thread)
  772. wake_up_process(smi_info->thread);
  773. if (smi_info->run_to_completion) {
  774. /*
  775. * If we are running to completion, then throw it in
  776. * the list and run transactions until everything is
  777. * clear. Priority doesn't matter here.
  778. */
  779. /*
  780. * Run to completion means we are single-threaded, no
  781. * need for locks.
  782. */
  783. list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
  784. result = smi_event_handler(smi_info, 0);
  785. while (result != SI_SM_IDLE) {
  786. udelay(SI_SHORT_TIMEOUT_USEC);
  787. result = smi_event_handler(smi_info,
  788. SI_SHORT_TIMEOUT_USEC);
  789. }
  790. return;
  791. }
  792. spin_lock_irqsave(&smi_info->msg_lock, flags);
  793. if (priority > 0)
  794. list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
  795. else
  796. list_add_tail(&msg->link, &smi_info->xmit_msgs);
  797. spin_unlock_irqrestore(&smi_info->msg_lock, flags);
  798. spin_lock_irqsave(&smi_info->si_lock, flags);
  799. if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
  800. start_next_msg(smi_info);
  801. spin_unlock_irqrestore(&smi_info->si_lock, flags);
  802. }
  803. static void set_run_to_completion(void *send_info, int i_run_to_completion)
  804. {
  805. struct smi_info *smi_info = send_info;
  806. enum si_sm_result result;
  807. smi_info->run_to_completion = i_run_to_completion;
  808. if (i_run_to_completion) {
  809. result = smi_event_handler(smi_info, 0);
  810. while (result != SI_SM_IDLE) {
  811. udelay(SI_SHORT_TIMEOUT_USEC);
  812. result = smi_event_handler(smi_info,
  813. SI_SHORT_TIMEOUT_USEC);
  814. }
  815. }
  816. }
  817. /*
  818. * Use -1 in the nsec value of the busy waiting timespec to tell that
  819. * we are spinning in kipmid looking for something and not delaying
  820. * between checks
  821. */
  822. static inline void ipmi_si_set_not_busy(struct timespec *ts)
  823. {
  824. ts->tv_nsec = -1;
  825. }
  826. static inline int ipmi_si_is_busy(struct timespec *ts)
  827. {
  828. return ts->tv_nsec != -1;
  829. }
  830. static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
  831. const struct smi_info *smi_info,
  832. struct timespec *busy_until)
  833. {
  834. unsigned int max_busy_us = 0;
  835. if (smi_info->intf_num < num_max_busy_us)
  836. max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
  837. if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
  838. ipmi_si_set_not_busy(busy_until);
  839. else if (!ipmi_si_is_busy(busy_until)) {
  840. getnstimeofday(busy_until);
  841. timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
  842. } else {
  843. struct timespec now;
  844. getnstimeofday(&now);
  845. if (unlikely(timespec_compare(&now, busy_until) > 0)) {
  846. ipmi_si_set_not_busy(busy_until);
  847. return 0;
  848. }
  849. }
  850. return 1;
  851. }
  852. /*
  853. * A busy-waiting loop for speeding up IPMI operation.
  854. *
  855. * Lousy hardware makes this hard. This is only enabled for systems
  856. * that are not BT and do not have interrupts. It starts spinning
  857. * when an operation is complete or until max_busy tells it to stop
  858. * (if that is enabled). See the paragraph on kimid_max_busy_us in
  859. * Documentation/IPMI.txt for details.
  860. */
  861. static int ipmi_thread(void *data)
  862. {
  863. struct smi_info *smi_info = data;
  864. unsigned long flags;
  865. enum si_sm_result smi_result;
  866. struct timespec busy_until;
  867. ipmi_si_set_not_busy(&busy_until);
  868. set_user_nice(current, 19);
  869. while (!kthread_should_stop()) {
  870. int busy_wait;
  871. spin_lock_irqsave(&(smi_info->si_lock), flags);
  872. smi_result = smi_event_handler(smi_info, 0);
  873. spin_unlock_irqrestore(&(smi_info->si_lock), flags);
  874. busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
  875. &busy_until);
  876. if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
  877. ; /* do nothing */
  878. else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
  879. schedule();
  880. else if (smi_result == SI_SM_IDLE)
  881. schedule_timeout_interruptible(100);
  882. else
  883. schedule_timeout_interruptible(1);
  884. }
  885. return 0;
  886. }
  887. static void poll(void *send_info)
  888. {
  889. struct smi_info *smi_info = send_info;
  890. unsigned long flags;
  891. /*
  892. * Make sure there is some delay in the poll loop so we can
  893. * drive time forward and timeout things.
  894. */
  895. udelay(10);
  896. spin_lock_irqsave(&smi_info->si_lock, flags);
  897. smi_event_handler(smi_info, 10);
  898. spin_unlock_irqrestore(&smi_info->si_lock, flags);
  899. }
  900. static void request_events(void *send_info)
  901. {
  902. struct smi_info *smi_info = send_info;
  903. if (atomic_read(&smi_info->stop_operation) ||
  904. !smi_info->has_event_buffer)
  905. return;
  906. atomic_set(&smi_info->req_events, 1);
  907. }
  908. static int initialized;
  909. static void smi_timeout(unsigned long data)
  910. {
  911. struct smi_info *smi_info = (struct smi_info *) data;
  912. enum si_sm_result smi_result;
  913. unsigned long flags;
  914. unsigned long jiffies_now;
  915. long time_diff;
  916. long timeout;
  917. #ifdef DEBUG_TIMING
  918. struct timeval t;
  919. #endif
  920. spin_lock_irqsave(&(smi_info->si_lock), flags);
  921. #ifdef DEBUG_TIMING
  922. do_gettimeofday(&t);
  923. printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
  924. #endif
  925. jiffies_now = jiffies;
  926. time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
  927. * SI_USEC_PER_JIFFY);
  928. smi_result = smi_event_handler(smi_info, time_diff);
  929. spin_unlock_irqrestore(&(smi_info->si_lock), flags);
  930. smi_info->last_timeout_jiffies = jiffies_now;
  931. if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
  932. /* Running with interrupts, only do long timeouts. */
  933. timeout = jiffies + SI_TIMEOUT_JIFFIES;
  934. smi_inc_stat(smi_info, long_timeouts);
  935. goto do_mod_timer;
  936. }
  937. /*
  938. * If the state machine asks for a short delay, then shorten
  939. * the timer timeout.
  940. */
  941. if (smi_result == SI_SM_CALL_WITH_DELAY) {
  942. smi_inc_stat(smi_info, short_timeouts);
  943. timeout = jiffies + 1;
  944. } else {
  945. smi_inc_stat(smi_info, long_timeouts);
  946. timeout = jiffies + SI_TIMEOUT_JIFFIES;
  947. }
  948. do_mod_timer:
  949. if (smi_result != SI_SM_IDLE)
  950. mod_timer(&(smi_info->si_timer), timeout);
  951. }
  952. static irqreturn_t si_irq_handler(int irq, void *data)
  953. {
  954. struct smi_info *smi_info = data;
  955. unsigned long flags;
  956. #ifdef DEBUG_TIMING
  957. struct timeval t;
  958. #endif
  959. spin_lock_irqsave(&(smi_info->si_lock), flags);
  960. smi_inc_stat(smi_info, interrupts);
  961. #ifdef DEBUG_TIMING
  962. do_gettimeofday(&t);
  963. printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
  964. #endif
  965. smi_event_handler(smi_info, 0);
  966. spin_unlock_irqrestore(&(smi_info->si_lock), flags);
  967. return IRQ_HANDLED;
  968. }
  969. static irqreturn_t si_bt_irq_handler(int irq, void *data)
  970. {
  971. struct smi_info *smi_info = data;
  972. /* We need to clear the IRQ flag for the BT interface. */
  973. smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
  974. IPMI_BT_INTMASK_CLEAR_IRQ_BIT
  975. | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
  976. return si_irq_handler(irq, data);
  977. }
  978. static int smi_start_processing(void *send_info,
  979. ipmi_smi_t intf)
  980. {
  981. struct smi_info *new_smi = send_info;
  982. int enable = 0;
  983. new_smi->intf = intf;
  984. /* Try to claim any interrupts. */
  985. if (new_smi->irq_setup)
  986. new_smi->irq_setup(new_smi);
  987. /* Set up the timer that drives the interface. */
  988. setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
  989. new_smi->last_timeout_jiffies = jiffies;
  990. mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
  991. /*
  992. * Check if the user forcefully enabled the daemon.
  993. */
  994. if (new_smi->intf_num < num_force_kipmid)
  995. enable = force_kipmid[new_smi->intf_num];
  996. /*
  997. * The BT interface is efficient enough to not need a thread,
  998. * and there is no need for a thread if we have interrupts.
  999. */
  1000. else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
  1001. enable = 1;
  1002. if (enable) {
  1003. new_smi->thread = kthread_run(ipmi_thread, new_smi,
  1004. "kipmi%d", new_smi->intf_num);
  1005. if (IS_ERR(new_smi->thread)) {
  1006. dev_notice(new_smi->dev, "Could not start"
  1007. " kernel thread due to error %ld, only using"
  1008. " timers to drive the interface\n",
  1009. PTR_ERR(new_smi->thread));
  1010. new_smi->thread = NULL;
  1011. }
  1012. }
  1013. return 0;
  1014. }
  1015. static void set_maintenance_mode(void *send_info, int enable)
  1016. {
  1017. struct smi_info *smi_info = send_info;
  1018. if (!enable)
  1019. atomic_set(&smi_info->req_events, 0);
  1020. }
  1021. static struct ipmi_smi_handlers handlers = {
  1022. .owner = THIS_MODULE,
  1023. .start_processing = smi_start_processing,
  1024. .sender = sender,
  1025. .request_events = request_events,
  1026. .set_maintenance_mode = set_maintenance_mode,
  1027. .set_run_to_completion = set_run_to_completion,
  1028. .poll = poll,
  1029. };
  1030. /*
  1031. * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
  1032. * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
  1033. */
  1034. static LIST_HEAD(smi_infos);
  1035. static DEFINE_MUTEX(smi_infos_lock);
  1036. static int smi_num; /* Used to sequence the SMIs */
  1037. #define DEFAULT_REGSPACING 1
  1038. #define DEFAULT_REGSIZE 1
  1039. static int si_trydefaults = 1;
  1040. static char *si_type[SI_MAX_PARMS];
  1041. #define MAX_SI_TYPE_STR 30
  1042. static char si_type_str[MAX_SI_TYPE_STR];
  1043. static unsigned long addrs[SI_MAX_PARMS];
  1044. static unsigned int num_addrs;
  1045. static unsigned int ports[SI_MAX_PARMS];
  1046. static unsigned int num_ports;
  1047. static int irqs[SI_MAX_PARMS];
  1048. static unsigned int num_irqs;
  1049. static int regspacings[SI_MAX_PARMS];
  1050. static unsigned int num_regspacings;
  1051. static int regsizes[SI_MAX_PARMS];
  1052. static unsigned int num_regsizes;
  1053. static int regshifts[SI_MAX_PARMS];
  1054. static unsigned int num_regshifts;
  1055. static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
  1056. static unsigned int num_slave_addrs;
  1057. #define IPMI_IO_ADDR_SPACE 0
  1058. #define IPMI_MEM_ADDR_SPACE 1
  1059. static char *addr_space_to_str[] = { "i/o", "mem" };
  1060. static int hotmod_handler(const char *val, struct kernel_param *kp);
  1061. module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
  1062. MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
  1063. " Documentation/IPMI.txt in the kernel sources for the"
  1064. " gory details.");
  1065. module_param_named(trydefaults, si_trydefaults, bool, 0);
  1066. MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
  1067. " default scan of the KCS and SMIC interface at the standard"
  1068. " address");
  1069. module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
  1070. MODULE_PARM_DESC(type, "Defines the type of each interface, each"
  1071. " interface separated by commas. The types are 'kcs',"
  1072. " 'smic', and 'bt'. For example si_type=kcs,bt will set"
  1073. " the first interface to kcs and the second to bt");
  1074. module_param_array(addrs, ulong, &num_addrs, 0);
  1075. MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
  1076. " addresses separated by commas. Only use if an interface"
  1077. " is in memory. Otherwise, set it to zero or leave"
  1078. " it blank.");
  1079. module_param_array(ports, uint, &num_ports, 0);
  1080. MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
  1081. " addresses separated by commas. Only use if an interface"
  1082. " is a port. Otherwise, set it to zero or leave"
  1083. " it blank.");
  1084. module_param_array(irqs, int, &num_irqs, 0);
  1085. MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
  1086. " addresses separated by commas. Only use if an interface"
  1087. " has an interrupt. Otherwise, set it to zero or leave"
  1088. " it blank.");
  1089. module_param_array(regspacings, int, &num_regspacings, 0);
  1090. MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
  1091. " and each successive register used by the interface. For"
  1092. " instance, if the start address is 0xca2 and the spacing"
  1093. " is 2, then the second address is at 0xca4. Defaults"
  1094. " to 1.");
  1095. module_param_array(regsizes, int, &num_regsizes, 0);
  1096. MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
  1097. " This should generally be 1, 2, 4, or 8 for an 8-bit,"
  1098. " 16-bit, 32-bit, or 64-bit register. Use this if you"
  1099. " the 8-bit IPMI register has to be read from a larger"
  1100. " register.");
  1101. module_param_array(regshifts, int, &num_regshifts, 0);
  1102. MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
  1103. " IPMI register, in bits. For instance, if the data"
  1104. " is read from a 32-bit word and the IPMI data is in"
  1105. " bit 8-15, then the shift would be 8");
  1106. module_param_array(slave_addrs, int, &num_slave_addrs, 0);
  1107. MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
  1108. " the controller. Normally this is 0x20, but can be"
  1109. " overridden by this parm. This is an array indexed"
  1110. " by interface number.");
  1111. module_param_array(force_kipmid, int, &num_force_kipmid, 0);
  1112. MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
  1113. " disabled(0). Normally the IPMI driver auto-detects"
  1114. " this, but the value may be overridden by this parm.");
  1115. module_param(unload_when_empty, int, 0);
  1116. MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
  1117. " specified or found, default is 1. Setting to 0"
  1118. " is useful for hot add of devices using hotmod.");
  1119. module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
  1120. MODULE_PARM_DESC(kipmid_max_busy_us,
  1121. "Max time (in microseconds) to busy-wait for IPMI data before"
  1122. " sleeping. 0 (default) means to wait forever. Set to 100-500"
  1123. " if kipmid is using up a lot of CPU time.");
  1124. static void std_irq_cleanup(struct smi_info *info)
  1125. {
  1126. if (info->si_type == SI_BT)
  1127. /* Disable the interrupt in the BT interface. */
  1128. info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
  1129. free_irq(info->irq, info);
  1130. }
  1131. static int std_irq_setup(struct smi_info *info)
  1132. {
  1133. int rv;
  1134. if (!info->irq)
  1135. return 0;
  1136. if (info->si_type == SI_BT) {
  1137. rv = request_irq(info->irq,
  1138. si_bt_irq_handler,
  1139. IRQF_SHARED | IRQF_DISABLED,
  1140. DEVICE_NAME,
  1141. info);
  1142. if (!rv)
  1143. /* Enable the interrupt in the BT interface. */
  1144. info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
  1145. IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
  1146. } else
  1147. rv = request_irq(info->irq,
  1148. si_irq_handler,
  1149. IRQF_SHARED | IRQF_DISABLED,
  1150. DEVICE_NAME,
  1151. info);
  1152. if (rv) {
  1153. dev_warn(info->dev, "%s unable to claim interrupt %d,"
  1154. " running polled\n",
  1155. DEVICE_NAME, info->irq);
  1156. info->irq = 0;
  1157. } else {
  1158. info->irq_cleanup = std_irq_cleanup;
  1159. dev_info(info->dev, "Using irq %d\n", info->irq);
  1160. }
  1161. return rv;
  1162. }
  1163. static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
  1164. {
  1165. unsigned int addr = io->addr_data;
  1166. return inb(addr + (offset * io->regspacing));
  1167. }
  1168. static void port_outb(struct si_sm_io *io, unsigned int offset,
  1169. unsigned char b)
  1170. {
  1171. unsigned int addr = io->addr_data;
  1172. outb(b, addr + (offset * io->regspacing));
  1173. }
  1174. static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
  1175. {
  1176. unsigned int addr = io->addr_data;
  1177. return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
  1178. }
  1179. static void port_outw(struct si_sm_io *io, unsigned int offset,
  1180. unsigned char b)
  1181. {
  1182. unsigned int addr = io->addr_data;
  1183. outw(b << io->regshift, addr + (offset * io->regspacing));
  1184. }
  1185. static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
  1186. {
  1187. unsigned int addr = io->addr_data;
  1188. return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
  1189. }
  1190. static void port_outl(struct si_sm_io *io, unsigned int offset,
  1191. unsigned char b)
  1192. {
  1193. unsigned int addr = io->addr_data;
  1194. outl(b << io->regshift, addr+(offset * io->regspacing));
  1195. }
  1196. static void port_cleanup(struct smi_info *info)
  1197. {
  1198. unsigned int addr = info->io.addr_data;
  1199. int idx;
  1200. if (addr) {
  1201. for (idx = 0; idx < info->io_size; idx++)
  1202. release_region(addr + idx * info->io.regspacing,
  1203. info->io.regsize);
  1204. }
  1205. }
  1206. static int port_setup(struct smi_info *info)
  1207. {
  1208. unsigned int addr = info->io.addr_data;
  1209. int idx;
  1210. if (!addr)
  1211. return -ENODEV;
  1212. info->io_cleanup = port_cleanup;
  1213. /*
  1214. * Figure out the actual inb/inw/inl/etc routine to use based
  1215. * upon the register size.
  1216. */
  1217. switch (info->io.regsize) {
  1218. case 1:
  1219. info->io.inputb = port_inb;
  1220. info->io.outputb = port_outb;
  1221. break;
  1222. case 2:
  1223. info->io.inputb = port_inw;
  1224. info->io.outputb = port_outw;
  1225. break;
  1226. case 4:
  1227. info->io.inputb = port_inl;
  1228. info->io.outputb = port_outl;
  1229. break;
  1230. default:
  1231. dev_warn(info->dev, "Invalid register size: %d\n",
  1232. info->io.regsize);
  1233. return -EINVAL;
  1234. }
  1235. /*
  1236. * Some BIOSes reserve disjoint I/O regions in their ACPI
  1237. * tables. This causes problems when trying to register the
  1238. * entire I/O region. Therefore we must register each I/O
  1239. * port separately.
  1240. */
  1241. for (idx = 0; idx < info->io_size; idx++) {
  1242. if (request_region(addr + idx * info->io.regspacing,
  1243. info->io.regsize, DEVICE_NAME) == NULL) {
  1244. /* Undo allocations */
  1245. while (idx--) {
  1246. release_region(addr + idx * info->io.regspacing,
  1247. info->io.regsize);
  1248. }
  1249. return -EIO;
  1250. }
  1251. }
  1252. return 0;
  1253. }
  1254. static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
  1255. {
  1256. return readb((io->addr)+(offset * io->regspacing));
  1257. }
  1258. static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
  1259. unsigned char b)
  1260. {
  1261. writeb(b, (io->addr)+(offset * io->regspacing));
  1262. }
  1263. static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
  1264. {
  1265. return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
  1266. & 0xff;
  1267. }
  1268. static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
  1269. unsigned char b)
  1270. {
  1271. writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
  1272. }
  1273. static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
  1274. {
  1275. return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
  1276. & 0xff;
  1277. }
  1278. static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
  1279. unsigned char b)
  1280. {
  1281. writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
  1282. }
  1283. #ifdef readq
  1284. static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
  1285. {
  1286. return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
  1287. & 0xff;
  1288. }
  1289. static void mem_outq(struct si_sm_io *io, unsigned int offset,
  1290. unsigned char b)
  1291. {
  1292. writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
  1293. }
  1294. #endif
  1295. static void mem_cleanup(struct smi_info *info)
  1296. {
  1297. unsigned long addr = info->io.addr_data;
  1298. int mapsize;
  1299. if (info->io.addr) {
  1300. iounmap(info->io.addr);
  1301. mapsize = ((info->io_size * info->io.regspacing)
  1302. - (info->io.regspacing - info->io.regsize));
  1303. release_mem_region(addr, mapsize);
  1304. }
  1305. }
  1306. static int mem_setup(struct smi_info *info)
  1307. {
  1308. unsigned long addr = info->io.addr_data;
  1309. int mapsize;
  1310. if (!addr)
  1311. return -ENODEV;
  1312. info->io_cleanup = mem_cleanup;
  1313. /*
  1314. * Figure out the actual readb/readw/readl/etc routine to use based
  1315. * upon the register size.
  1316. */
  1317. switch (info->io.regsize) {
  1318. case 1:
  1319. info->io.inputb = intf_mem_inb;
  1320. info->io.outputb = intf_mem_outb;
  1321. break;
  1322. case 2:
  1323. info->io.inputb = intf_mem_inw;
  1324. info->io.outputb = intf_mem_outw;
  1325. break;
  1326. case 4:
  1327. info->io.inputb = intf_mem_inl;
  1328. info->io.outputb = intf_mem_outl;
  1329. break;
  1330. #ifdef readq
  1331. case 8:
  1332. info->io.inputb = mem_inq;
  1333. info->io.outputb = mem_outq;
  1334. break;
  1335. #endif
  1336. default:
  1337. dev_warn(info->dev, "Invalid register size: %d\n",
  1338. info->io.regsize);
  1339. return -EINVAL;
  1340. }
  1341. /*
  1342. * Calculate the total amount of memory to claim. This is an
  1343. * unusual looking calculation, but it avoids claiming any
  1344. * more memory than it has to. It will claim everything
  1345. * between the first address to the end of the last full
  1346. * register.
  1347. */
  1348. mapsize = ((info->io_size * info->io.regspacing)
  1349. - (info->io.regspacing - info->io.regsize));
  1350. if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
  1351. return -EIO;
  1352. info->io.addr = ioremap(addr, mapsize);
  1353. if (info->io.addr == NULL) {
  1354. release_mem_region(addr, mapsize);
  1355. return -EIO;
  1356. }
  1357. return 0;
  1358. }
  1359. /*
  1360. * Parms come in as <op1>[:op2[:op3...]]. ops are:
  1361. * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
  1362. * Options are:
  1363. * rsp=<regspacing>
  1364. * rsi=<regsize>
  1365. * rsh=<regshift>
  1366. * irq=<irq>
  1367. * ipmb=<ipmb addr>
  1368. */
  1369. enum hotmod_op { HM_ADD, HM_REMOVE };
  1370. struct hotmod_vals {
  1371. char *name;
  1372. int val;
  1373. };
  1374. static struct hotmod_vals hotmod_ops[] = {
  1375. { "add", HM_ADD },
  1376. { "remove", HM_REMOVE },
  1377. { NULL }
  1378. };
  1379. static struct hotmod_vals hotmod_si[] = {
  1380. { "kcs", SI_KCS },
  1381. { "smic", SI_SMIC },
  1382. { "bt", SI_BT },
  1383. { NULL }
  1384. };
  1385. static struct hotmod_vals hotmod_as[] = {
  1386. { "mem", IPMI_MEM_ADDR_SPACE },
  1387. { "i/o", IPMI_IO_ADDR_SPACE },
  1388. { NULL }
  1389. };
  1390. static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
  1391. {
  1392. char *s;
  1393. int i;
  1394. s = strchr(*curr, ',');
  1395. if (!s) {
  1396. printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
  1397. return -EINVAL;
  1398. }
  1399. *s = '\0';
  1400. s++;
  1401. for (i = 0; hotmod_ops[i].name; i++) {
  1402. if (strcmp(*curr, v[i].name) == 0) {
  1403. *val = v[i].val;
  1404. *curr = s;
  1405. return 0;
  1406. }
  1407. }
  1408. printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
  1409. return -EINVAL;
  1410. }
  1411. static int check_hotmod_int_op(const char *curr, const char *option,
  1412. const char *name, int *val)
  1413. {
  1414. char *n;
  1415. if (strcmp(curr, name) == 0) {
  1416. if (!option) {
  1417. printk(KERN_WARNING PFX
  1418. "No option given for '%s'\n",
  1419. curr);
  1420. return -EINVAL;
  1421. }
  1422. *val = simple_strtoul(option, &n, 0);
  1423. if ((*n != '\0') || (*option == '\0')) {
  1424. printk(KERN_WARNING PFX
  1425. "Bad option given for '%s'\n",
  1426. curr);
  1427. return -EINVAL;
  1428. }
  1429. return 1;
  1430. }
  1431. return 0;
  1432. }
  1433. static int hotmod_handler(const char *val, struct kernel_param *kp)
  1434. {
  1435. char *str = kstrdup(val, GFP_KERNEL);
  1436. int rv;
  1437. char *next, *curr, *s, *n, *o;
  1438. enum hotmod_op op;
  1439. enum si_type si_type;
  1440. int addr_space;
  1441. unsigned long addr;
  1442. int regspacing;
  1443. int regsize;
  1444. int regshift;
  1445. int irq;
  1446. int ipmb;
  1447. int ival;
  1448. int len;
  1449. struct smi_info *info;
  1450. if (!str)
  1451. return -ENOMEM;
  1452. /* Kill any trailing spaces, as we can get a "\n" from echo. */
  1453. len = strlen(str);
  1454. ival = len - 1;
  1455. while ((ival >= 0) && isspace(str[ival])) {
  1456. str[ival] = '\0';
  1457. ival--;
  1458. }
  1459. for (curr = str; curr; curr = next) {
  1460. regspacing = 1;
  1461. regsize = 1;
  1462. regshift = 0;
  1463. irq = 0;
  1464. ipmb = 0; /* Choose the default if not specified */
  1465. next = strchr(curr, ':');
  1466. if (next) {
  1467. *next = '\0';
  1468. next++;
  1469. }
  1470. rv = parse_str(hotmod_ops, &ival, "operation", &curr);
  1471. if (rv)
  1472. break;
  1473. op = ival;
  1474. rv = parse_str(hotmod_si, &ival, "interface type", &curr);
  1475. if (rv)
  1476. break;
  1477. si_type = ival;
  1478. rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
  1479. if (rv)
  1480. break;
  1481. s = strchr(curr, ',');
  1482. if (s) {
  1483. *s = '\0';
  1484. s++;
  1485. }
  1486. addr = simple_strtoul(curr, &n, 0);
  1487. if ((*n != '\0') || (*curr == '\0')) {
  1488. printk(KERN_WARNING PFX "Invalid hotmod address"
  1489. " '%s'\n", curr);
  1490. break;
  1491. }
  1492. while (s) {
  1493. curr = s;
  1494. s = strchr(curr, ',');
  1495. if (s) {
  1496. *s = '\0';
  1497. s++;
  1498. }
  1499. o = strchr(curr, '=');
  1500. if (o) {
  1501. *o = '\0';
  1502. o++;
  1503. }
  1504. rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
  1505. if (rv < 0)
  1506. goto out;
  1507. else if (rv)
  1508. continue;
  1509. rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
  1510. if (rv < 0)
  1511. goto out;
  1512. else if (rv)
  1513. continue;
  1514. rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
  1515. if (rv < 0)
  1516. goto out;
  1517. else if (rv)
  1518. continue;
  1519. rv = check_hotmod_int_op(curr, o, "irq", &irq);
  1520. if (rv < 0)
  1521. goto out;
  1522. else if (rv)
  1523. continue;
  1524. rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
  1525. if (rv < 0)
  1526. goto out;
  1527. else if (rv)
  1528. continue;
  1529. rv = -EINVAL;
  1530. printk(KERN_WARNING PFX
  1531. "Invalid hotmod option '%s'\n",
  1532. curr);
  1533. goto out;
  1534. }
  1535. if (op == HM_ADD) {
  1536. info = kzalloc(sizeof(*info), GFP_KERNEL);
  1537. if (!info) {
  1538. rv = -ENOMEM;
  1539. goto out;
  1540. }
  1541. info->addr_source = SI_HOTMOD;
  1542. info->si_type = si_type;
  1543. info->io.addr_data = addr;
  1544. info->io.addr_type = addr_space;
  1545. if (addr_space == IPMI_MEM_ADDR_SPACE)
  1546. info->io_setup = mem_setup;
  1547. else
  1548. info->io_setup = port_setup;
  1549. info->io.addr = NULL;
  1550. info->io.regspacing = regspacing;
  1551. if (!info->io.regspacing)
  1552. info->io.regspacing = DEFAULT_REGSPACING;
  1553. info->io.regsize = regsize;
  1554. if (!info->io.regsize)
  1555. info->io.regsize = DEFAULT_REGSPACING;
  1556. info->io.regshift = regshift;
  1557. info->irq = irq;
  1558. if (info->irq)
  1559. info->irq_setup = std_irq_setup;
  1560. info->slave_addr = ipmb;
  1561. if (!add_smi(info))
  1562. if (try_smi_init(info))
  1563. cleanup_one_si(info);
  1564. } else {
  1565. /* remove */
  1566. struct smi_info *e, *tmp_e;
  1567. mutex_lock(&smi_infos_lock);
  1568. list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
  1569. if (e->io.addr_type != addr_space)
  1570. continue;
  1571. if (e->si_type != si_type)
  1572. continue;
  1573. if (e->io.addr_data == addr)
  1574. cleanup_one_si(e);
  1575. }
  1576. mutex_unlock(&smi_infos_lock);
  1577. }
  1578. }
  1579. rv = len;
  1580. out:
  1581. kfree(str);
  1582. return rv;
  1583. }
  1584. static __devinit void hardcode_find_bmc(void)
  1585. {
  1586. int i;
  1587. struct smi_info *info;
  1588. for (i = 0; i < SI_MAX_PARMS; i++) {
  1589. if (!ports[i] && !addrs[i])
  1590. continue;
  1591. info = kzalloc(sizeof(*info), GFP_KERNEL);
  1592. if (!info)
  1593. return;
  1594. info->addr_source = SI_HARDCODED;
  1595. printk(KERN_INFO PFX "probing via hardcoded address\n");
  1596. if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
  1597. info->si_type = SI_KCS;
  1598. } else if (strcmp(si_type[i], "smic") == 0) {
  1599. info->si_type = SI_SMIC;
  1600. } else if (strcmp(si_type[i], "bt") == 0) {
  1601. info->si_type = SI_BT;
  1602. } else {
  1603. printk(KERN_WARNING PFX "Interface type specified "
  1604. "for interface %d, was invalid: %s\n",
  1605. i, si_type[i]);
  1606. kfree(info);
  1607. continue;
  1608. }
  1609. if (ports[i]) {
  1610. /* An I/O port */
  1611. info->io_setup = port_setup;
  1612. info->io.addr_data = ports[i];
  1613. info->io.addr_type = IPMI_IO_ADDR_SPACE;
  1614. } else if (addrs[i]) {
  1615. /* A memory port */
  1616. info->io_setup = mem_setup;
  1617. info->io.addr_data = addrs[i];
  1618. info->io.addr_type = IPMI_MEM_ADDR_SPACE;
  1619. } else {
  1620. printk(KERN_WARNING PFX "Interface type specified "
  1621. "for interface %d, but port and address were "
  1622. "not set or set to zero.\n", i);
  1623. kfree(info);
  1624. continue;
  1625. }
  1626. info->io.addr = NULL;
  1627. info->io.regspacing = regspacings[i];
  1628. if (!info->io.regspacing)
  1629. info->io.regspacing = DEFAULT_REGSPACING;
  1630. info->io.regsize = regsizes[i];
  1631. if (!info->io.regsize)
  1632. info->io.regsize = DEFAULT_REGSPACING;
  1633. info->io.regshift = regshifts[i];
  1634. info->irq = irqs[i];
  1635. if (info->irq)
  1636. info->irq_setup = std_irq_setup;
  1637. info->slave_addr = slave_addrs[i];
  1638. if (!add_smi(info))
  1639. if (try_smi_init(info))
  1640. cleanup_one_si(info);
  1641. }
  1642. }
  1643. #ifdef CONFIG_ACPI
  1644. #include <linux/acpi.h>
  1645. /*
  1646. * Once we get an ACPI failure, we don't try any more, because we go
  1647. * through the tables sequentially. Once we don't find a table, there
  1648. * are no more.
  1649. */
  1650. static int acpi_failure;
  1651. /* For GPE-type interrupts. */
  1652. static u32 ipmi_acpi_gpe(void *context)
  1653. {
  1654. struct smi_info *smi_info = context;
  1655. unsigned long flags;
  1656. #ifdef DEBUG_TIMING
  1657. struct timeval t;
  1658. #endif
  1659. spin_lock_irqsave(&(smi_info->si_lock), flags);
  1660. smi_inc_stat(smi_info, interrupts);
  1661. #ifdef DEBUG_TIMING
  1662. do_gettimeofday(&t);
  1663. printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
  1664. #endif
  1665. smi_event_handler(smi_info, 0);
  1666. spin_unlock_irqrestore(&(smi_info->si_lock), flags);
  1667. return ACPI_INTERRUPT_HANDLED;
  1668. }
  1669. static void acpi_gpe_irq_cleanup(struct smi_info *info)
  1670. {
  1671. if (!info->irq)
  1672. return;
  1673. acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
  1674. }
  1675. static int acpi_gpe_irq_setup(struct smi_info *info)
  1676. {
  1677. acpi_status status;
  1678. if (!info->irq)
  1679. return 0;
  1680. /* FIXME - is level triggered right? */
  1681. status = acpi_install_gpe_handler(NULL,
  1682. info->irq,
  1683. ACPI_GPE_LEVEL_TRIGGERED,
  1684. &ipmi_acpi_gpe,
  1685. info);
  1686. if (status != AE_OK) {
  1687. dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
  1688. " running polled\n", DEVICE_NAME, info->irq);
  1689. info->irq = 0;
  1690. return -EINVAL;
  1691. } else {
  1692. info->irq_cleanup = acpi_gpe_irq_cleanup;
  1693. dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
  1694. return 0;
  1695. }
  1696. }
  1697. /*
  1698. * Defined at
  1699. * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
  1700. */
  1701. struct SPMITable {
  1702. s8 Signature[4];
  1703. u32 Length;
  1704. u8 Revision;
  1705. u8 Checksum;
  1706. s8 OEMID[6];
  1707. s8 OEMTableID[8];
  1708. s8 OEMRevision[4];
  1709. s8 CreatorID[4];
  1710. s8 CreatorRevision[4];
  1711. u8 InterfaceType;
  1712. u8 IPMIlegacy;
  1713. s16 SpecificationRevision;
  1714. /*
  1715. * Bit 0 - SCI interrupt supported
  1716. * Bit 1 - I/O APIC/SAPIC
  1717. */
  1718. u8 InterruptType;
  1719. /*
  1720. * If bit 0 of InterruptType is set, then this is the SCI
  1721. * interrupt in the GPEx_STS register.
  1722. */
  1723. u8 GPE;
  1724. s16 Reserved;
  1725. /*
  1726. * If bit 1 of InterruptType is set, then this is the I/O
  1727. * APIC/SAPIC interrupt.
  1728. */
  1729. u32 GlobalSystemInterrupt;
  1730. /* The actual register address. */
  1731. struct acpi_generic_address addr;
  1732. u8 UID[4];
  1733. s8 spmi_id[1]; /* A '\0' terminated array starts here. */
  1734. };
  1735. static __devinit int try_init_spmi(struct SPMITable *spmi)
  1736. {
  1737. struct smi_info *info;
  1738. u8 addr_space;
  1739. if (spmi->IPMIlegacy != 1) {
  1740. printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
  1741. return -ENODEV;
  1742. }
  1743. if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
  1744. addr_space = IPMI_MEM_ADDR_SPACE;
  1745. else
  1746. addr_space = IPMI_IO_ADDR_SPACE;
  1747. info = kzalloc(sizeof(*info), GFP_KERNEL);
  1748. if (!info) {
  1749. printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
  1750. return -ENOMEM;
  1751. }
  1752. info->addr_source = SI_SPMI;
  1753. printk(KERN_INFO PFX "probing via SPMI\n");
  1754. /* Figure out the interface type. */
  1755. switch (spmi->InterfaceType) {
  1756. case 1: /* KCS */
  1757. info->si_type = SI_KCS;
  1758. break;
  1759. case 2: /* SMIC */
  1760. info->si_type = SI_SMIC;
  1761. break;
  1762. case 3: /* BT */
  1763. info->si_type = SI_BT;
  1764. break;
  1765. default:
  1766. printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
  1767. spmi->InterfaceType);
  1768. kfree(info);
  1769. return -EIO;
  1770. }
  1771. if (spmi->InterruptType & 1) {
  1772. /* We've got a GPE interrupt. */
  1773. info->irq = spmi->GPE;
  1774. info->irq_setup = acpi_gpe_irq_setup;
  1775. } else if (spmi->InterruptType & 2) {
  1776. /* We've got an APIC/SAPIC interrupt. */
  1777. info->irq = spmi->GlobalSystemInterrupt;
  1778. info->irq_setup = std_irq_setup;
  1779. } else {
  1780. /* Use the default interrupt setting. */
  1781. info->irq = 0;
  1782. info->irq_setup = NULL;
  1783. }
  1784. if (spmi->addr.bit_width) {
  1785. /* A (hopefully) properly formed register bit width. */
  1786. info->io.regspacing = spmi->addr.bit_width / 8;
  1787. } else {
  1788. info->io.regspacing = DEFAULT_REGSPACING;
  1789. }
  1790. info->io.regsize = info->io.regspacing;
  1791. info->io.regshift = spmi->addr.bit_offset;
  1792. if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
  1793. info->io_setup = mem_setup;
  1794. info->io.addr_type = IPMI_MEM_ADDR_SPACE;
  1795. } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
  1796. info->io_setup = port_setup;
  1797. info->io.addr_type = IPMI_IO_ADDR_SPACE;
  1798. } else {
  1799. kfree(info);
  1800. printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
  1801. return -EIO;
  1802. }
  1803. info->io.addr_data = spmi->addr.address;
  1804. add_smi(info);
  1805. return 0;
  1806. }
  1807. static __devinit void spmi_find_bmc(void)
  1808. {
  1809. acpi_status status;
  1810. struct SPMITable *spmi;
  1811. int i;
  1812. if (acpi_disabled)
  1813. return;
  1814. if (acpi_failure)
  1815. return;
  1816. for (i = 0; ; i++) {
  1817. status = acpi_get_table(ACPI_SIG_SPMI, i+1,
  1818. (struct acpi_table_header **)&spmi);
  1819. if (status != AE_OK)
  1820. return;
  1821. try_init_spmi(spmi);
  1822. }
  1823. }
  1824. static int __devinit ipmi_pnp_probe(struct pnp_dev *dev,
  1825. const struct pnp_device_id *dev_id)
  1826. {
  1827. struct acpi_device *acpi_dev;
  1828. struct smi_info *info;
  1829. struct resource *res;
  1830. acpi_handle handle;
  1831. acpi_status status;
  1832. unsigned long long tmp;
  1833. acpi_dev = pnp_acpi_device(dev);
  1834. if (!acpi_dev)
  1835. return -ENODEV;
  1836. info = kzalloc(sizeof(*info), GFP_KERNEL);
  1837. if (!info)
  1838. return -ENOMEM;
  1839. info->addr_source = SI_ACPI;
  1840. printk(KERN_INFO PFX "probing via ACPI\n");
  1841. handle = acpi_dev->handle;
  1842. /* _IFT tells us the interface type: KCS, BT, etc */
  1843. status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
  1844. if (ACPI_FAILURE(status))
  1845. goto err_free;
  1846. switch (tmp) {
  1847. case 1:
  1848. info->si_type = SI_KCS;
  1849. break;
  1850. case 2:
  1851. info->si_type = SI_SMIC;
  1852. break;
  1853. case 3:
  1854. info->si_type = SI_BT;
  1855. break;
  1856. default:
  1857. dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
  1858. goto err_free;
  1859. }
  1860. res = pnp_get_resource(dev, IORESOURCE_IO, 0);
  1861. if (res) {
  1862. info->io_setup = port_setup;
  1863. info->io.addr_type = IPMI_IO_ADDR_SPACE;
  1864. } else {
  1865. res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
  1866. if (res) {
  1867. info->io_setup = mem_setup;
  1868. info->io.addr_type = IPMI_MEM_ADDR_SPACE;
  1869. }
  1870. }
  1871. if (!res) {
  1872. dev_err(&dev->dev, "no I/O or memory address\n");
  1873. goto err_free;
  1874. }
  1875. info->io.addr_data = res->start;
  1876. info->io.regspacing = DEFAULT_REGSPACING;
  1877. res = pnp_get_resource(dev,
  1878. (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
  1879. IORESOURCE_IO : IORESOURCE_MEM,
  1880. 1);
  1881. if (res) {
  1882. if (res->start > info->io.addr_data)
  1883. info->io.regspacing = res->start - info->io.addr_data;
  1884. }
  1885. info->io.regsize = DEFAULT_REGSPACING;
  1886. info->io.regshift = 0;
  1887. /* If _GPE exists, use it; otherwise use standard interrupts */
  1888. status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
  1889. if (ACPI_SUCCESS(status)) {
  1890. info->irq = tmp;
  1891. info->irq_setup = acpi_gpe_irq_setup;
  1892. } else if (pnp_irq_valid(dev, 0)) {
  1893. info->irq = pnp_irq(dev, 0);
  1894. info->irq_setup = std_irq_setup;
  1895. }
  1896. info->dev = &dev->dev;
  1897. pnp_set_drvdata(dev, info);
  1898. dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
  1899. res, info->io.regsize, info->io.regspacing,
  1900. info->irq);
  1901. return add_smi(info);
  1902. err_free:
  1903. kfree(info);
  1904. return -EINVAL;
  1905. }
  1906. static void __devexit ipmi_pnp_remove(struct pnp_dev *dev)
  1907. {
  1908. struct smi_info *info = pnp_get_drvdata(dev);
  1909. cleanup_one_si(info);
  1910. }
  1911. static const struct pnp_device_id pnp_dev_table[] = {
  1912. {"IPI0001", 0},
  1913. {"", 0},
  1914. };
  1915. static struct pnp_driver ipmi_pnp_driver = {
  1916. .name = DEVICE_NAME,
  1917. .probe = ipmi_pnp_probe,
  1918. .remove = __devexit_p(ipmi_pnp_remove),
  1919. .id_table = pnp_dev_table,
  1920. };
  1921. #endif
  1922. #ifdef CONFIG_DMI
  1923. struct dmi_ipmi_data {
  1924. u8 type;
  1925. u8 addr_space;
  1926. unsigned long base_addr;
  1927. u8 irq;
  1928. u8 offset;
  1929. u8 slave_addr;
  1930. };
  1931. static int __devinit decode_dmi(const struct dmi_header *dm,
  1932. struct dmi_ipmi_data *dmi)
  1933. {
  1934. const u8 *data = (const u8 *)dm;
  1935. unsigned long base_addr;
  1936. u8 reg_spacing;
  1937. u8 len = dm->length;
  1938. dmi->type = data[4];
  1939. memcpy(&base_addr, data+8, sizeof(unsigned long));
  1940. if (len >= 0x11) {
  1941. if (base_addr & 1) {
  1942. /* I/O */
  1943. base_addr &= 0xFFFE;
  1944. dmi->addr_space = IPMI_IO_ADDR_SPACE;
  1945. } else
  1946. /* Memory */
  1947. dmi->addr_space = IPMI_MEM_ADDR_SPACE;
  1948. /* If bit 4 of byte 0x10 is set, then the lsb for the address
  1949. is odd. */
  1950. dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
  1951. dmi->irq = data[0x11];
  1952. /* The top two bits of byte 0x10 hold the register spacing. */
  1953. reg_spacing = (data[0x10] & 0xC0) >> 6;
  1954. switch (reg_spacing) {
  1955. case 0x00: /* Byte boundaries */
  1956. dmi->offset = 1;
  1957. break;
  1958. case 0x01: /* 32-bit boundaries */
  1959. dmi->offset = 4;
  1960. break;
  1961. case 0x02: /* 16-byte boundaries */
  1962. dmi->offset = 16;
  1963. break;
  1964. default:
  1965. /* Some other interface, just ignore it. */
  1966. return -EIO;
  1967. }
  1968. } else {
  1969. /* Old DMI spec. */
  1970. /*
  1971. * Note that technically, the lower bit of the base
  1972. * address should be 1 if the address is I/O and 0 if
  1973. * the address is in memory. So many systems get that
  1974. * wrong (and all that I have seen are I/O) so we just
  1975. * ignore that bit and assume I/O. Systems that use
  1976. * memory should use the newer spec, anyway.
  1977. */
  1978. dmi->base_addr = base_addr & 0xfffe;
  1979. dmi->addr_space = IPMI_IO_ADDR_SPACE;
  1980. dmi->offset = 1;
  1981. }
  1982. dmi->slave_addr = data[6];
  1983. return 0;
  1984. }
  1985. static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
  1986. {
  1987. struct smi_info *info;
  1988. info = kzalloc(sizeof(*info), GFP_KERNEL);
  1989. if (!info) {
  1990. printk(KERN_ERR PFX "Could not allocate SI data\n");
  1991. return;
  1992. }
  1993. info->addr_source = SI_SMBIOS;
  1994. printk(KERN_INFO PFX "probing via SMBIOS\n");
  1995. switch (ipmi_data->type) {
  1996. case 0x01: /* KCS */
  1997. info->si_type = SI_KCS;
  1998. break;
  1999. case 0x02: /* SMIC */
  2000. info->si_type = SI_SMIC;
  2001. break;
  2002. case 0x03: /* BT */
  2003. info->si_type = SI_BT;
  2004. break;
  2005. default:
  2006. kfree(info);
  2007. return;
  2008. }
  2009. switch (ipmi_data->addr_space) {
  2010. case IPMI_MEM_ADDR_SPACE:
  2011. info->io_setup = mem_setup;
  2012. info->io.addr_type = IPMI_MEM_ADDR_SPACE;
  2013. break;
  2014. case IPMI_IO_ADDR_SPACE:
  2015. info->io_setup = port_setup;
  2016. info->io.addr_type = IPMI_IO_ADDR_SPACE;
  2017. break;
  2018. default:
  2019. kfree(info);
  2020. printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
  2021. ipmi_data->addr_space);
  2022. return;
  2023. }
  2024. info->io.addr_data = ipmi_data->base_addr;
  2025. info->io.regspacing = ipmi_data->offset;
  2026. if (!info->io.regspacing)
  2027. info->io.regspacing = DEFAULT_REGSPACING;
  2028. info->io.regsize = DEFAULT_REGSPACING;
  2029. info->io.regshift = 0;
  2030. info->slave_addr = ipmi_data->slave_addr;
  2031. info->irq = ipmi_data->irq;
  2032. if (info->irq)
  2033. info->irq_setup = std_irq_setup;
  2034. add_smi(info);
  2035. }
  2036. static void __devinit dmi_find_bmc(void)
  2037. {
  2038. const struct dmi_device *dev = NULL;
  2039. struct dmi_ipmi_data data;
  2040. int rv;
  2041. while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
  2042. memset(&data, 0, sizeof(data));
  2043. rv = decode_dmi((const struct dmi_header *) dev->device_data,
  2044. &data);
  2045. if (!rv)
  2046. try_init_dmi(&data);
  2047. }
  2048. }
  2049. #endif /* CONFIG_DMI */
  2050. #ifdef CONFIG_PCI
  2051. #define PCI_ERMC_CLASSCODE 0x0C0700
  2052. #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
  2053. #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
  2054. #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
  2055. #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
  2056. #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
  2057. #define PCI_HP_VENDOR_ID 0x103C
  2058. #define PCI_MMC_DEVICE_ID 0x121A
  2059. #define PCI_MMC_ADDR_CW 0x10
  2060. static void ipmi_pci_cleanup(struct smi_info *info)
  2061. {
  2062. struct pci_dev *pdev = info->addr_source_data;
  2063. pci_disable_device(pdev);
  2064. }
  2065. static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
  2066. const struct pci_device_id *ent)
  2067. {
  2068. int rv;
  2069. int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
  2070. struct smi_info *info;
  2071. info = kzalloc(sizeof(*info), GFP_KERNEL);
  2072. if (!info)
  2073. return -ENOMEM;
  2074. info->addr_source = SI_PCI;
  2075. dev_info(&pdev->dev, "probing via PCI");
  2076. switch (class_type) {
  2077. case PCI_ERMC_CLASSCODE_TYPE_SMIC:
  2078. info->si_type = SI_SMIC;
  2079. break;
  2080. case PCI_ERMC_CLASSCODE_TYPE_KCS:
  2081. info->si_type = SI_KCS;
  2082. break;
  2083. case PCI_ERMC_CLASSCODE_TYPE_BT:
  2084. info->si_type = SI_BT;
  2085. break;
  2086. default:
  2087. kfree(info);
  2088. dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
  2089. return -ENOMEM;
  2090. }
  2091. rv = pci_enable_device(pdev);
  2092. if (rv) {
  2093. dev_err(&pdev->dev, "couldn't enable PCI device\n");
  2094. kfree(info);
  2095. return rv;
  2096. }
  2097. info->addr_source_cleanup = ipmi_pci_cleanup;
  2098. info->addr_source_data = pdev;
  2099. if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
  2100. info->io_setup = port_setup;
  2101. info->io.addr_type = IPMI_IO_ADDR_SPACE;
  2102. } else {
  2103. info->io_setup = mem_setup;
  2104. info->io.addr_type = IPMI_MEM_ADDR_SPACE;
  2105. }
  2106. info->io.addr_data = pci_resource_start(pdev, 0);
  2107. info->io.regspacing = DEFAULT_REGSPACING;
  2108. info->io.regsize = DEFAULT_REGSPACING;
  2109. info->io.regshift = 0;
  2110. info->irq = pdev->irq;
  2111. if (info->irq)
  2112. info->irq_setup = std_irq_setup;
  2113. info->dev = &pdev->dev;
  2114. pci_set_drvdata(pdev, info);
  2115. dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
  2116. &pdev->resource[0], info->io.regsize, info->io.regspacing,
  2117. info->irq);
  2118. return add_smi(info);
  2119. }
  2120. static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
  2121. {
  2122. struct smi_info *info = pci_get_drvdata(pdev);
  2123. cleanup_one_si(info);
  2124. }
  2125. #ifdef CONFIG_PM
  2126. static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
  2127. {
  2128. return 0;
  2129. }
  2130. static int ipmi_pci_resume(struct pci_dev *pdev)
  2131. {
  2132. return 0;
  2133. }
  2134. #endif
  2135. static struct pci_device_id ipmi_pci_devices[] = {
  2136. { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
  2137. { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
  2138. { 0, }
  2139. };
  2140. MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
  2141. static struct pci_driver ipmi_pci_driver = {
  2142. .name = DEVICE_NAME,
  2143. .id_table = ipmi_pci_devices,
  2144. .probe = ipmi_pci_probe,
  2145. .remove = __devexit_p(ipmi_pci_remove),
  2146. #ifdef CONFIG_PM
  2147. .suspend = ipmi_pci_suspend,
  2148. .resume = ipmi_pci_resume,
  2149. #endif
  2150. };
  2151. #endif /* CONFIG_PCI */
  2152. #ifdef CONFIG_PPC_OF
  2153. static int __devinit ipmi_of_probe(struct of_device *dev,
  2154. const struct of_device_id *match)
  2155. {
  2156. struct smi_info *info;
  2157. struct resource resource;
  2158. const int *regsize, *regspacing, *regshift;
  2159. struct device_node *np = dev->dev.of_node;
  2160. int ret;
  2161. int proplen;
  2162. dev_info(&dev->dev, "probing via device tree\n");
  2163. ret = of_address_to_resource(np, 0, &resource);
  2164. if (ret) {
  2165. dev_warn(&dev->dev, PFX "invalid address from OF\n");
  2166. return ret;
  2167. }
  2168. regsize = of_get_property(np, "reg-size", &proplen);
  2169. if (regsize && proplen != 4) {
  2170. dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
  2171. return -EINVAL;
  2172. }
  2173. regspacing = of_get_property(np, "reg-spacing", &proplen);
  2174. if (regspacing && proplen != 4) {
  2175. dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
  2176. return -EINVAL;
  2177. }
  2178. regshift = of_get_property(np, "reg-shift", &proplen);
  2179. if (regshift && proplen != 4) {
  2180. dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
  2181. return -EINVAL;
  2182. }
  2183. info = kzalloc(sizeof(*info), GFP_KERNEL);
  2184. if (!info) {
  2185. dev_err(&dev->dev,
  2186. "could not allocate memory for OF probe\n");
  2187. return -ENOMEM;
  2188. }
  2189. info->si_type = (enum si_type) match->data;
  2190. info->addr_source = SI_DEVICETREE;
  2191. info->irq_setup = std_irq_setup;
  2192. if (resource.flags & IORESOURCE_IO) {
  2193. info->io_setup = port_setup;
  2194. info->io.addr_type = IPMI_IO_ADDR_SPACE;
  2195. } else {
  2196. info->io_setup = mem_setup;
  2197. info->io.addr_type = IPMI_MEM_ADDR_SPACE;
  2198. }
  2199. info->io.addr_data = resource.start;
  2200. info->io.regsize = regsize ? *regsize : DEFAULT_REGSIZE;
  2201. info->io.regspacing = regspacing ? *regspacing : DEFAULT_REGSPACING;
  2202. info->io.regshift = regshift ? *regshift : 0;
  2203. info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
  2204. info->dev = &dev->dev;
  2205. dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
  2206. info->io.addr_data, info->io.regsize, info->io.regspacing,
  2207. info->irq);
  2208. dev_set_drvdata(&dev->dev, info);
  2209. return add_smi(info);
  2210. }
  2211. static int __devexit ipmi_of_remove(struct of_device *dev)
  2212. {
  2213. cleanup_one_si(dev_get_drvdata(&dev->dev));
  2214. return 0;
  2215. }
  2216. static struct of_device_id ipmi_match[] =
  2217. {
  2218. { .type = "ipmi", .compatible = "ipmi-kcs",
  2219. .data = (void *)(unsigned long) SI_KCS },
  2220. { .type = "ipmi", .compatible = "ipmi-smic",
  2221. .data = (void *)(unsigned long) SI_SMIC },
  2222. { .type = "ipmi", .compatible = "ipmi-bt",
  2223. .data = (void *)(unsigned long) SI_BT },
  2224. {},
  2225. };
  2226. static struct of_platform_driver ipmi_of_platform_driver = {
  2227. .driver = {
  2228. .name = "ipmi",
  2229. .owner = THIS_MODULE,
  2230. .of_match_table = ipmi_match,
  2231. },
  2232. .probe = ipmi_of_probe,
  2233. .remove = __devexit_p(ipmi_of_remove),
  2234. };
  2235. #endif /* CONFIG_PPC_OF */
  2236. static int wait_for_msg_done(struct smi_info *smi_info)
  2237. {
  2238. enum si_sm_result smi_result;
  2239. smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
  2240. for (;;) {
  2241. if (smi_result == SI_SM_CALL_WITH_DELAY ||
  2242. smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
  2243. schedule_timeout_uninterruptible(1);
  2244. smi_result = smi_info->handlers->event(
  2245. smi_info->si_sm, 100);
  2246. } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
  2247. smi_result = smi_info->handlers->event(
  2248. smi_info->si_sm, 0);
  2249. } else
  2250. break;
  2251. }
  2252. if (smi_result == SI_SM_HOSED)
  2253. /*
  2254. * We couldn't get the state machine to run, so whatever's at
  2255. * the port is probably not an IPMI SMI interface.
  2256. */
  2257. return -ENODEV;
  2258. return 0;
  2259. }
  2260. static int try_get_dev_id(struct smi_info *smi_info)
  2261. {
  2262. unsigned char msg[2];
  2263. unsigned char *resp;
  2264. unsigned long resp_len;
  2265. int rv = 0;
  2266. resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
  2267. if (!resp)
  2268. return -ENOMEM;
  2269. /*
  2270. * Do a Get Device ID command, since it comes back with some
  2271. * useful info.
  2272. */
  2273. msg[0] = IPMI_NETFN_APP_REQUEST << 2;
  2274. msg[1] = IPMI_GET_DEVICE_ID_CMD;
  2275. smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
  2276. rv = wait_for_msg_done(smi_info);
  2277. if (rv)
  2278. goto out;
  2279. resp_len = smi_info->handlers->get_result(smi_info->si_sm,
  2280. resp, IPMI_MAX_MSG_LENGTH);
  2281. /* Check and record info from the get device id, in case we need it. */
  2282. rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
  2283. out:
  2284. kfree(resp);
  2285. return rv;
  2286. }
  2287. static int try_enable_event_buffer(struct smi_info *smi_info)
  2288. {
  2289. unsigned char msg[3];
  2290. unsigned char *resp;
  2291. unsigned long resp_len;
  2292. int rv = 0;
  2293. resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
  2294. if (!resp)
  2295. return -ENOMEM;
  2296. msg[0] = IPMI_NETFN_APP_REQUEST << 2;
  2297. msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
  2298. smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
  2299. rv = wait_for_msg_done(smi_info);
  2300. if (rv) {
  2301. printk(KERN_WARNING PFX "Error getting response from get"
  2302. " global enables command, the event buffer is not"
  2303. " enabled.\n");
  2304. goto out;
  2305. }
  2306. resp_len = smi_info->handlers->get_result(smi_info->si_sm,
  2307. resp, IPMI_MAX_MSG_LENGTH);
  2308. if (resp_len < 4 ||
  2309. resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
  2310. resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
  2311. resp[2] != 0) {
  2312. printk(KERN_WARNING PFX "Invalid return from get global"
  2313. " enables command, cannot enable the event buffer.\n");
  2314. rv = -EINVAL;
  2315. goto out;
  2316. }
  2317. if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
  2318. /* buffer is already enabled, nothing to do. */
  2319. goto out;
  2320. msg[0] = IPMI_NETFN_APP_REQUEST << 2;
  2321. msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
  2322. msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
  2323. smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
  2324. rv = wait_for_msg_done(smi_info);
  2325. if (rv) {
  2326. printk(KERN_WARNING PFX "Error getting response from set"
  2327. " global, enables command, the event buffer is not"
  2328. " enabled.\n");
  2329. goto out;
  2330. }
  2331. resp_len = smi_info->handlers->get_result(smi_info->si_sm,
  2332. resp, IPMI_MAX_MSG_LENGTH);
  2333. if (resp_len < 3 ||
  2334. resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
  2335. resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
  2336. printk(KERN_WARNING PFX "Invalid return from get global,"
  2337. "enables command, not enable the event buffer.\n");
  2338. rv = -EINVAL;
  2339. goto out;
  2340. }
  2341. if (resp[2] != 0)
  2342. /*
  2343. * An error when setting the event buffer bit means
  2344. * that the event buffer is not supported.
  2345. */
  2346. rv = -ENOENT;
  2347. out:
  2348. kfree(resp);
  2349. return rv;
  2350. }
  2351. static int type_file_read_proc(char *page, char **start, off_t off,
  2352. int count, int *eof, void *data)
  2353. {
  2354. struct smi_info *smi = data;
  2355. return sprintf(page, "%s\n", si_to_str[smi->si_type]);
  2356. }
  2357. static int stat_file_read_proc(char *page, char **start, off_t off,
  2358. int count, int *eof, void *data)
  2359. {
  2360. char *out = (char *) page;
  2361. struct smi_info *smi = data;
  2362. out += sprintf(out, "interrupts_enabled: %d\n",
  2363. smi->irq && !smi->interrupt_disabled);
  2364. out += sprintf(out, "short_timeouts: %u\n",
  2365. smi_get_stat(smi, short_timeouts));
  2366. out += sprintf(out, "long_timeouts: %u\n",
  2367. smi_get_stat(smi, long_timeouts));
  2368. out += sprintf(out, "idles: %u\n",
  2369. smi_get_stat(smi, idles));
  2370. out += sprintf(out, "interrupts: %u\n",
  2371. smi_get_stat(smi, interrupts));
  2372. out += sprintf(out, "attentions: %u\n",
  2373. smi_get_stat(smi, attentions));
  2374. out += sprintf(out, "flag_fetches: %u\n",
  2375. smi_get_stat(smi, flag_fetches));
  2376. out += sprintf(out, "hosed_count: %u\n",
  2377. smi_get_stat(smi, hosed_count));
  2378. out += sprintf(out, "complete_transactions: %u\n",
  2379. smi_get_stat(smi, complete_transactions));
  2380. out += sprintf(out, "events: %u\n",
  2381. smi_get_stat(smi, events));
  2382. out += sprintf(out, "watchdog_pretimeouts: %u\n",
  2383. smi_get_stat(smi, watchdog_pretimeouts));
  2384. out += sprintf(out, "incoming_messages: %u\n",
  2385. smi_get_stat(smi, incoming_messages));
  2386. return out - page;
  2387. }
  2388. static int param_read_proc(char *page, char **start, off_t off,
  2389. int count, int *eof, void *data)
  2390. {
  2391. struct smi_info *smi = data;
  2392. return sprintf(page,
  2393. "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
  2394. si_to_str[smi->si_type],
  2395. addr_space_to_str[smi->io.addr_type],
  2396. smi->io.addr_data,
  2397. smi->io.regspacing,
  2398. smi->io.regsize,
  2399. smi->io.regshift,
  2400. smi->irq,
  2401. smi->slave_addr);
  2402. }
  2403. /*
  2404. * oem_data_avail_to_receive_msg_avail
  2405. * @info - smi_info structure with msg_flags set
  2406. *
  2407. * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
  2408. * Returns 1 indicating need to re-run handle_flags().
  2409. */
  2410. static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
  2411. {
  2412. smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
  2413. RECEIVE_MSG_AVAIL);
  2414. return 1;
  2415. }
  2416. /*
  2417. * setup_dell_poweredge_oem_data_handler
  2418. * @info - smi_info.device_id must be populated
  2419. *
  2420. * Systems that match, but have firmware version < 1.40 may assert
  2421. * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
  2422. * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
  2423. * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
  2424. * as RECEIVE_MSG_AVAIL instead.
  2425. *
  2426. * As Dell has no plans to release IPMI 1.5 firmware that *ever*
  2427. * assert the OEM[012] bits, and if it did, the driver would have to
  2428. * change to handle that properly, we don't actually check for the
  2429. * firmware version.
  2430. * Device ID = 0x20 BMC on PowerEdge 8G servers
  2431. * Device Revision = 0x80
  2432. * Firmware Revision1 = 0x01 BMC version 1.40
  2433. * Firmware Revision2 = 0x40 BCD encoded
  2434. * IPMI Version = 0x51 IPMI 1.5
  2435. * Manufacturer ID = A2 02 00 Dell IANA
  2436. *
  2437. * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
  2438. * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
  2439. *
  2440. */
  2441. #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
  2442. #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
  2443. #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
  2444. #define DELL_IANA_MFR_ID 0x0002a2
  2445. static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
  2446. {
  2447. struct ipmi_device_id *id = &smi_info->device_id;
  2448. if (id->manufacturer_id == DELL_IANA_MFR_ID) {
  2449. if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
  2450. id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
  2451. id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
  2452. smi_info->oem_data_avail_handler =
  2453. oem_data_avail_to_receive_msg_avail;
  2454. } else if (ipmi_version_major(id) < 1 ||
  2455. (ipmi_version_major(id) == 1 &&
  2456. ipmi_version_minor(id) < 5)) {
  2457. smi_info->oem_data_avail_handler =
  2458. oem_data_avail_to_receive_msg_avail;
  2459. }
  2460. }
  2461. }
  2462. #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
  2463. static void return_hosed_msg_badsize(struct smi_info *smi_info)
  2464. {
  2465. struct ipmi_smi_msg *msg = smi_info->curr_msg;
  2466. /* Make it a reponse */
  2467. msg->rsp[0] = msg->data[0] | 4;
  2468. msg->rsp[1] = msg->data[1];
  2469. msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
  2470. msg->rsp_size = 3;
  2471. smi_info->curr_msg = NULL;
  2472. deliver_recv_msg(smi_info, msg);
  2473. }
  2474. /*
  2475. * dell_poweredge_bt_xaction_handler
  2476. * @info - smi_info.device_id must be populated
  2477. *
  2478. * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
  2479. * not respond to a Get SDR command if the length of the data
  2480. * requested is exactly 0x3A, which leads to command timeouts and no
  2481. * data returned. This intercepts such commands, and causes userspace
  2482. * callers to try again with a different-sized buffer, which succeeds.
  2483. */
  2484. #define STORAGE_NETFN 0x0A
  2485. #define STORAGE_CMD_GET_SDR 0x23
  2486. static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
  2487. unsigned long unused,
  2488. void *in)
  2489. {
  2490. struct smi_info *smi_info = in;
  2491. unsigned char *data = smi_info->curr_msg->data;
  2492. unsigned int size = smi_info->curr_msg->data_size;
  2493. if (size >= 8 &&
  2494. (data[0]>>2) == STORAGE_NETFN &&
  2495. data[1] == STORAGE_CMD_GET_SDR &&
  2496. data[7] == 0x3A) {
  2497. return_hosed_msg_badsize(smi_info);
  2498. return NOTIFY_STOP;
  2499. }
  2500. return NOTIFY_DONE;
  2501. }
  2502. static struct notifier_block dell_poweredge_bt_xaction_notifier = {
  2503. .notifier_call = dell_poweredge_bt_xaction_handler,
  2504. };
  2505. /*
  2506. * setup_dell_poweredge_bt_xaction_handler
  2507. * @info - smi_info.device_id must be filled in already
  2508. *
  2509. * Fills in smi_info.device_id.start_transaction_pre_hook
  2510. * when we know what function to use there.
  2511. */
  2512. static void
  2513. setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
  2514. {
  2515. struct ipmi_device_id *id = &smi_info->device_id;
  2516. if (id->manufacturer_id == DELL_IANA_MFR_ID &&
  2517. smi_info->si_type == SI_BT)
  2518. register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
  2519. }
  2520. /*
  2521. * setup_oem_data_handler
  2522. * @info - smi_info.device_id must be filled in already
  2523. *
  2524. * Fills in smi_info.device_id.oem_data_available_handler
  2525. * when we know what function to use there.
  2526. */
  2527. static void setup_oem_data_handler(struct smi_info *smi_info)
  2528. {
  2529. setup_dell_poweredge_oem_data_handler(smi_info);
  2530. }
  2531. static void setup_xaction_handlers(struct smi_info *smi_info)
  2532. {
  2533. setup_dell_poweredge_bt_xaction_handler(smi_info);
  2534. }
  2535. static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
  2536. {
  2537. if (smi_info->intf) {
  2538. /*
  2539. * The timer and thread are only running if the
  2540. * interface has been started up and registered.
  2541. */
  2542. if (smi_info->thread != NULL)
  2543. kthread_stop(smi_info->thread);
  2544. del_timer_sync(&smi_info->si_timer);
  2545. }
  2546. }
  2547. static __devinitdata struct ipmi_default_vals
  2548. {
  2549. int type;
  2550. int port;
  2551. } ipmi_defaults[] =
  2552. {
  2553. { .type = SI_KCS, .port = 0xca2 },
  2554. { .type = SI_SMIC, .port = 0xca9 },
  2555. { .type = SI_BT, .port = 0xe4 },
  2556. { .port = 0 }
  2557. };
  2558. static __devinit void default_find_bmc(void)
  2559. {
  2560. struct smi_info *info;
  2561. int i;
  2562. for (i = 0; ; i++) {
  2563. if (!ipmi_defaults[i].port)
  2564. break;
  2565. #ifdef CONFIG_PPC
  2566. if (check_legacy_ioport(ipmi_defaults[i].port))
  2567. continue;
  2568. #endif
  2569. info = kzalloc(sizeof(*info), GFP_KERNEL);
  2570. if (!info)
  2571. return;
  2572. info->addr_source = SI_DEFAULT;
  2573. info->si_type = ipmi_defaults[i].type;
  2574. info->io_setup = port_setup;
  2575. info->io.addr_data = ipmi_defaults[i].port;
  2576. info->io.addr_type = IPMI_IO_ADDR_SPACE;
  2577. info->io.addr = NULL;
  2578. info->io.regspacing = DEFAULT_REGSPACING;
  2579. info->io.regsize = DEFAULT_REGSPACING;
  2580. info->io.regshift = 0;
  2581. if (add_smi(info) == 0) {
  2582. if ((try_smi_init(info)) == 0) {
  2583. /* Found one... */
  2584. printk(KERN_INFO PFX "Found default %s"
  2585. " state machine at %s address 0x%lx\n",
  2586. si_to_str[info->si_type],
  2587. addr_space_to_str[info->io.addr_type],
  2588. info->io.addr_data);
  2589. } else
  2590. cleanup_one_si(info);
  2591. }
  2592. }
  2593. }
  2594. static int is_new_interface(struct smi_info *info)
  2595. {
  2596. struct smi_info *e;
  2597. list_for_each_entry(e, &smi_infos, link) {
  2598. if (e->io.addr_type != info->io.addr_type)
  2599. continue;
  2600. if (e->io.addr_data == info->io.addr_data)
  2601. return 0;
  2602. }
  2603. return 1;
  2604. }
  2605. static int add_smi(struct smi_info *new_smi)
  2606. {
  2607. int rv = 0;
  2608. printk(KERN_INFO PFX "Adding %s-specified %s state machine",
  2609. ipmi_addr_src_to_str[new_smi->addr_source],
  2610. si_to_str[new_smi->si_type]);
  2611. mutex_lock(&smi_infos_lock);
  2612. if (!is_new_interface(new_smi)) {
  2613. printk(KERN_CONT PFX "duplicate interface\n");
  2614. rv = -EBUSY;
  2615. goto out_err;
  2616. }
  2617. printk(KERN_CONT "\n");
  2618. /* So we know not to free it unless we have allocated one. */
  2619. new_smi->intf = NULL;
  2620. new_smi->si_sm = NULL;
  2621. new_smi->handlers = NULL;
  2622. list_add_tail(&new_smi->link, &smi_infos);
  2623. out_err:
  2624. mutex_unlock(&smi_infos_lock);
  2625. return rv;
  2626. }
  2627. static int try_smi_init(struct smi_info *new_smi)
  2628. {
  2629. int rv = 0;
  2630. int i;
  2631. printk(KERN_INFO PFX "Trying %s-specified %s state"
  2632. " machine at %s address 0x%lx, slave address 0x%x,"
  2633. " irq %d\n",
  2634. ipmi_addr_src_to_str[new_smi->addr_source],
  2635. si_to_str[new_smi->si_type],
  2636. addr_space_to_str[new_smi->io.addr_type],
  2637. new_smi->io.addr_data,
  2638. new_smi->slave_addr, new_smi->irq);
  2639. switch (new_smi->si_type) {
  2640. case SI_KCS:
  2641. new_smi->handlers = &kcs_smi_handlers;
  2642. break;
  2643. case SI_SMIC:
  2644. new_smi->handlers = &smic_smi_handlers;
  2645. break;
  2646. case SI_BT:
  2647. new_smi->handlers = &bt_smi_handlers;
  2648. break;
  2649. default:
  2650. /* No support for anything else yet. */
  2651. rv = -EIO;
  2652. goto out_err;
  2653. }
  2654. /* Allocate the state machine's data and initialize it. */
  2655. new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
  2656. if (!new_smi->si_sm) {
  2657. printk(KERN_ERR PFX
  2658. "Could not allocate state machine memory\n");
  2659. rv = -ENOMEM;
  2660. goto out_err;
  2661. }
  2662. new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
  2663. &new_smi->io);
  2664. /* Now that we know the I/O size, we can set up the I/O. */
  2665. rv = new_smi->io_setup(new_smi);
  2666. if (rv) {
  2667. printk(KERN_ERR PFX "Could not set up I/O space\n");
  2668. goto out_err;
  2669. }
  2670. spin_lock_init(&(new_smi->si_lock));
  2671. spin_lock_init(&(new_smi->msg_lock));
  2672. /* Do low-level detection first. */
  2673. if (new_smi->handlers->detect(new_smi->si_sm)) {
  2674. if (new_smi->addr_source)
  2675. printk(KERN_INFO PFX "Interface detection failed\n");
  2676. rv = -ENODEV;
  2677. goto out_err;
  2678. }
  2679. /*
  2680. * Attempt a get device id command. If it fails, we probably
  2681. * don't have a BMC here.
  2682. */
  2683. rv = try_get_dev_id(new_smi);
  2684. if (rv) {
  2685. if (new_smi->addr_source)
  2686. printk(KERN_INFO PFX "There appears to be no BMC"
  2687. " at this location\n");
  2688. goto out_err;
  2689. }
  2690. setup_oem_data_handler(new_smi);
  2691. setup_xaction_handlers(new_smi);
  2692. INIT_LIST_HEAD(&(new_smi->xmit_msgs));
  2693. INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
  2694. new_smi->curr_msg = NULL;
  2695. atomic_set(&new_smi->req_events, 0);
  2696. new_smi->run_to_completion = 0;
  2697. for (i = 0; i < SI_NUM_STATS; i++)
  2698. atomic_set(&new_smi->stats[i], 0);
  2699. new_smi->interrupt_disabled = 1;
  2700. atomic_set(&new_smi->stop_operation, 0);
  2701. new_smi->intf_num = smi_num;
  2702. smi_num++;
  2703. rv = try_enable_event_buffer(new_smi);
  2704. if (rv == 0)
  2705. new_smi->has_event_buffer = 1;
  2706. /*
  2707. * Start clearing the flags before we enable interrupts or the
  2708. * timer to avoid racing with the timer.
  2709. */
  2710. start_clear_flags(new_smi);
  2711. /* IRQ is defined to be set when non-zero. */
  2712. if (new_smi->irq)
  2713. new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
  2714. if (!new_smi->dev) {
  2715. /*
  2716. * If we don't already have a device from something
  2717. * else (like PCI), then register a new one.
  2718. */
  2719. new_smi->pdev = platform_device_alloc("ipmi_si",
  2720. new_smi->intf_num);
  2721. if (!new_smi->pdev) {
  2722. printk(KERN_ERR PFX
  2723. "Unable to allocate platform device\n");
  2724. goto out_err;
  2725. }
  2726. new_smi->dev = &new_smi->pdev->dev;
  2727. new_smi->dev->driver = &ipmi_driver.driver;
  2728. rv = platform_device_add(new_smi->pdev);
  2729. if (rv) {
  2730. printk(KERN_ERR PFX
  2731. "Unable to register system interface device:"
  2732. " %d\n",
  2733. rv);
  2734. goto out_err;
  2735. }
  2736. new_smi->dev_registered = 1;
  2737. }
  2738. rv = ipmi_register_smi(&handlers,
  2739. new_smi,
  2740. &new_smi->device_id,
  2741. new_smi->dev,
  2742. "bmc",
  2743. new_smi->slave_addr);
  2744. if (rv) {
  2745. dev_err(new_smi->dev, "Unable to register device: error %d\n",
  2746. rv);
  2747. goto out_err_stop_timer;
  2748. }
  2749. rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
  2750. type_file_read_proc,
  2751. new_smi);
  2752. if (rv) {
  2753. dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
  2754. goto out_err_stop_timer;
  2755. }
  2756. rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
  2757. stat_file_read_proc,
  2758. new_smi);
  2759. if (rv) {
  2760. dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
  2761. goto out_err_stop_timer;
  2762. }
  2763. rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
  2764. param_read_proc,
  2765. new_smi);
  2766. if (rv) {
  2767. dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
  2768. goto out_err_stop_timer;
  2769. }
  2770. dev_info(new_smi->dev, "IPMI %s interface initialized\n",
  2771. si_to_str[new_smi->si_type]);
  2772. return 0;
  2773. out_err_stop_timer:
  2774. atomic_inc(&new_smi->stop_operation);
  2775. wait_for_timer_and_thread(new_smi);
  2776. out_err:
  2777. new_smi->interrupt_disabled = 1;
  2778. if (new_smi->intf) {
  2779. ipmi_unregister_smi(new_smi->intf);
  2780. new_smi->intf = NULL;
  2781. }
  2782. if (new_smi->irq_cleanup) {
  2783. new_smi->irq_cleanup(new_smi);
  2784. new_smi->irq_cleanup = NULL;
  2785. }
  2786. /*
  2787. * Wait until we know that we are out of any interrupt
  2788. * handlers might have been running before we freed the
  2789. * interrupt.
  2790. */
  2791. synchronize_sched();
  2792. if (new_smi->si_sm) {
  2793. if (new_smi->handlers)
  2794. new_smi->handlers->cleanup(new_smi->si_sm);
  2795. kfree(new_smi->si_sm);
  2796. new_smi->si_sm = NULL;
  2797. }
  2798. if (new_smi->addr_source_cleanup) {
  2799. new_smi->addr_source_cleanup(new_smi);
  2800. new_smi->addr_source_cleanup = NULL;
  2801. }
  2802. if (new_smi->io_cleanup) {
  2803. new_smi->io_cleanup(new_smi);
  2804. new_smi->io_cleanup = NULL;
  2805. }
  2806. if (new_smi->dev_registered) {
  2807. platform_device_unregister(new_smi->pdev);
  2808. new_smi->dev_registered = 0;
  2809. }
  2810. return rv;
  2811. }
  2812. static __devinit int init_ipmi_si(void)
  2813. {
  2814. int i;
  2815. char *str;
  2816. int rv;
  2817. struct smi_info *e;
  2818. enum ipmi_addr_src type = SI_INVALID;
  2819. if (initialized)
  2820. return 0;
  2821. initialized = 1;
  2822. /* Register the device drivers. */
  2823. rv = driver_register(&ipmi_driver.driver);
  2824. if (rv) {
  2825. printk(KERN_ERR PFX "Unable to register driver: %d\n", rv);
  2826. return rv;
  2827. }
  2828. /* Parse out the si_type string into its components. */
  2829. str = si_type_str;
  2830. if (*str != '\0') {
  2831. for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
  2832. si_type[i] = str;
  2833. str = strchr(str, ',');
  2834. if (str) {
  2835. *str = '\0';
  2836. str++;
  2837. } else {
  2838. break;
  2839. }
  2840. }
  2841. }
  2842. printk(KERN_INFO "IPMI System Interface driver.\n");
  2843. hardcode_find_bmc();
  2844. /* If the user gave us a device, they presumably want us to use it */
  2845. mutex_lock(&smi_infos_lock);
  2846. if (!list_empty(&smi_infos)) {
  2847. mutex_unlock(&smi_infos_lock);
  2848. return 0;
  2849. }
  2850. mutex_unlock(&smi_infos_lock);
  2851. #ifdef CONFIG_PCI
  2852. rv = pci_register_driver(&ipmi_pci_driver);
  2853. if (rv)
  2854. printk(KERN_ERR PFX "Unable to register PCI driver: %d\n", rv);
  2855. else
  2856. pci_registered = 1;
  2857. #endif
  2858. #ifdef CONFIG_ACPI
  2859. pnp_register_driver(&ipmi_pnp_driver);
  2860. #endif
  2861. #ifdef CONFIG_DMI
  2862. dmi_find_bmc();
  2863. #endif
  2864. #ifdef CONFIG_ACPI
  2865. spmi_find_bmc();
  2866. #endif
  2867. #ifdef CONFIG_PPC_OF
  2868. of_register_platform_driver(&ipmi_of_platform_driver);
  2869. of_registered = 1;
  2870. #endif
  2871. /* We prefer devices with interrupts, but in the case of a machine
  2872. with multiple BMCs we assume that there will be several instances
  2873. of a given type so if we succeed in registering a type then also
  2874. try to register everything else of the same type */
  2875. mutex_lock(&smi_infos_lock);
  2876. list_for_each_entry(e, &smi_infos, link) {
  2877. /* Try to register a device if it has an IRQ and we either
  2878. haven't successfully registered a device yet or this
  2879. device has the same type as one we successfully registered */
  2880. if (e->irq && (!type || e->addr_source == type)) {
  2881. if (!try_smi_init(e)) {
  2882. type = e->addr_source;
  2883. }
  2884. }
  2885. }
  2886. /* type will only have been set if we successfully registered an si */
  2887. if (type) {
  2888. mutex_unlock(&smi_infos_lock);
  2889. return 0;
  2890. }
  2891. /* Fall back to the preferred device */
  2892. list_for_each_entry(e, &smi_infos, link) {
  2893. if (!e->irq && (!type || e->addr_source == type)) {
  2894. if (!try_smi_init(e)) {
  2895. type = e->addr_source;
  2896. }
  2897. }
  2898. }
  2899. mutex_unlock(&smi_infos_lock);
  2900. if (type)
  2901. return 0;
  2902. if (si_trydefaults) {
  2903. mutex_lock(&smi_infos_lock);
  2904. if (list_empty(&smi_infos)) {
  2905. /* No BMC was found, try defaults. */
  2906. mutex_unlock(&smi_infos_lock);
  2907. default_find_bmc();
  2908. } else
  2909. mutex_unlock(&smi_infos_lock);
  2910. }
  2911. mutex_lock(&smi_infos_lock);
  2912. if (unload_when_empty && list_empty(&smi_infos)) {
  2913. mutex_unlock(&smi_infos_lock);
  2914. #ifdef CONFIG_PCI
  2915. if (pci_registered)
  2916. pci_unregister_driver(&ipmi_pci_driver);
  2917. #endif
  2918. #ifdef CONFIG_PPC_OF
  2919. if (of_registered)
  2920. of_unregister_platform_driver(&ipmi_of_platform_driver);
  2921. #endif
  2922. driver_unregister(&ipmi_driver.driver);
  2923. printk(KERN_WARNING PFX
  2924. "Unable to find any System Interface(s)\n");
  2925. return -ENODEV;
  2926. } else {
  2927. mutex_unlock(&smi_infos_lock);
  2928. return 0;
  2929. }
  2930. }
  2931. module_init(init_ipmi_si);
  2932. static void cleanup_one_si(struct smi_info *to_clean)
  2933. {
  2934. int rv = 0;
  2935. unsigned long flags;
  2936. if (!to_clean)
  2937. return;
  2938. list_del(&to_clean->link);
  2939. /* Tell the driver that we are shutting down. */
  2940. atomic_inc(&to_clean->stop_operation);
  2941. /*
  2942. * Make sure the timer and thread are stopped and will not run
  2943. * again.
  2944. */
  2945. wait_for_timer_and_thread(to_clean);
  2946. /*
  2947. * Timeouts are stopped, now make sure the interrupts are off
  2948. * for the device. A little tricky with locks to make sure
  2949. * there are no races.
  2950. */
  2951. spin_lock_irqsave(&to_clean->si_lock, flags);
  2952. while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
  2953. spin_unlock_irqrestore(&to_clean->si_lock, flags);
  2954. poll(to_clean);
  2955. schedule_timeout_uninterruptible(1);
  2956. spin_lock_irqsave(&to_clean->si_lock, flags);
  2957. }
  2958. disable_si_irq(to_clean);
  2959. spin_unlock_irqrestore(&to_clean->si_lock, flags);
  2960. while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
  2961. poll(to_clean);
  2962. schedule_timeout_uninterruptible(1);
  2963. }
  2964. /* Clean up interrupts and make sure that everything is done. */
  2965. if (to_clean->irq_cleanup)
  2966. to_clean->irq_cleanup(to_clean);
  2967. while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
  2968. poll(to_clean);
  2969. schedule_timeout_uninterruptible(1);
  2970. }
  2971. if (to_clean->intf)
  2972. rv = ipmi_unregister_smi(to_clean->intf);
  2973. if (rv) {
  2974. printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
  2975. rv);
  2976. }
  2977. if (to_clean->handlers)
  2978. to_clean->handlers->cleanup(to_clean->si_sm);
  2979. kfree(to_clean->si_sm);
  2980. if (to_clean->addr_source_cleanup)
  2981. to_clean->addr_source_cleanup(to_clean);
  2982. if (to_clean->io_cleanup)
  2983. to_clean->io_cleanup(to_clean);
  2984. if (to_clean->dev_registered)
  2985. platform_device_unregister(to_clean->pdev);
  2986. kfree(to_clean);
  2987. }
  2988. static __exit void cleanup_ipmi_si(void)
  2989. {
  2990. struct smi_info *e, *tmp_e;
  2991. if (!initialized)
  2992. return;
  2993. #ifdef CONFIG_PCI
  2994. if (pci_registered)
  2995. pci_unregister_driver(&ipmi_pci_driver);
  2996. #endif
  2997. #ifdef CONFIG_ACPI
  2998. pnp_unregister_driver(&ipmi_pnp_driver);
  2999. #endif
  3000. #ifdef CONFIG_PPC_OF
  3001. if (of_registered)
  3002. of_unregister_platform_driver(&ipmi_of_platform_driver);
  3003. #endif
  3004. mutex_lock(&smi_infos_lock);
  3005. list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
  3006. cleanup_one_si(e);
  3007. mutex_unlock(&smi_infos_lock);
  3008. driver_unregister(&ipmi_driver.driver);
  3009. }
  3010. module_exit(cleanup_ipmi_si);
  3011. MODULE_LICENSE("GPL");
  3012. MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
  3013. MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
  3014. " system interfaces.");